vm_page.c revision 111712
1234370Sjasone/*
2234370Sjasone * Copyright (c) 1991 Regents of the University of California.
3234370Sjasone * All rights reserved.
4234370Sjasone *
5234370Sjasone * This code is derived from software contributed to Berkeley by
6234370Sjasone * The Mach Operating System project at Carnegie-Mellon University.
7234370Sjasone *
8234370Sjasone * Redistribution and use in source and binary forms, with or without
9234370Sjasone * modification, are permitted provided that the following conditions
10235238Sjasone * are met:
11234370Sjasone * 1. Redistributions of source code must retain the above copyright
12234370Sjasone *    notice, this list of conditions and the following disclaimer.
13234370Sjasone * 2. Redistributions in binary form must reproduce the above copyright
14234370Sjasone *    notice, this list of conditions and the following disclaimer in the
15234370Sjasone *    documentation and/or other materials provided with the distribution.
16234370Sjasone * 3. All advertising materials mentioning features or use of this software
17234370Sjasone *    must display the following acknowledgement:
18234370Sjasone *	This product includes software developed by the University of
19235238Sjasone *	California, Berkeley and its contributors.
20235238Sjasone * 4. Neither the name of the University nor the names of its contributors
21235238Sjasone *    may be used to endorse or promote products derived from this software
22234370Sjasone *    without specific prior written permission.
23235238Sjasone *
24235238Sjasone * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25235238Sjasone * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26235238Sjasone * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27235238Sjasone * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28235238Sjasone * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29235238Sjasone * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30234370Sjasone * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31234370Sjasone * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32234370Sjasone * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33234370Sjasone * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34234370Sjasone * SUCH DAMAGE.
35234370Sjasone *
36234370Sjasone *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37234370Sjasone * $FreeBSD: head/sys/vm/vm_page.c 111712 2003-03-01 19:16:32Z alc $
38234370Sjasone */
39234370Sjasone
40234370Sjasone/*
41234370Sjasone * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42234370Sjasone * All rights reserved.
43234370Sjasone *
44234370Sjasone * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45234370Sjasone *
46235238Sjasone * Permission to use, copy, modify and distribute this software and
47234370Sjasone * its documentation is hereby granted, provided that both the copyright
48234370Sjasone * notice and this permission notice appear in all copies of the
49234370Sjasone * software, derivative works or modified versions, and any portions
50234370Sjasone * thereof, and that both notices appear in supporting documentation.
51234370Sjasone *
52234370Sjasone * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53234370Sjasone * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54235238Sjasone * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55234370Sjasone *
56234370Sjasone * Carnegie Mellon requests users of this software to return to
57234370Sjasone *
58234370Sjasone *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59234370Sjasone *  School of Computer Science
60234370Sjasone *  Carnegie Mellon University
61234370Sjasone *  Pittsburgh PA 15213-3890
62234370Sjasone *
63234370Sjasone * any improvements or extensions that they make and grant Carnegie the
64235238Sjasone * rights to redistribute these changes.
65235238Sjasone */
66235238Sjasone
67235238Sjasone/*
68235238Sjasone *			GENERAL RULES ON VM_PAGE MANIPULATION
69235238Sjasone *
70234370Sjasone *	- a pageq mutex is required when adding or removing a page from a
71234370Sjasone *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72235238Sjasone *	  busy state of a page.
73235238Sjasone *
74235238Sjasone *	- a hash chain mutex is required when associating or disassociating
75235238Sjasone *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76235238Sjasone *	  regardless of other mutexes or the busy state of a page.
77235238Sjasone *
78235238Sjasone *	- either a hash chain mutex OR a busied page is required in order
79235238Sjasone *	  to modify the page flags.  A hash chain mutex must be obtained in
80234370Sjasone *	  order to busy a page.  A page's flags cannot be modified by a
81234370Sjasone *	  hash chain mutex if the page is marked busy.
82234370Sjasone *
83234370Sjasone *	- The object memq mutex is held when inserting or removing
84234370Sjasone *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85235238Sjasone *	  is different from the object's main mutex.
86235238Sjasone *
87235238Sjasone *	Generally speaking, you have to be aware of side effects when running
88235238Sjasone *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89235238Sjasone *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90235238Sjasone *	vm_page_cache(), vm_page_activate(), and a number of other routines
91235238Sjasone *	will release the hash chain mutex for you.  Intermediate manipulation
92235238Sjasone *	routines such as vm_page_flag_set() expect the hash chain to be held
93235238Sjasone *	on entry and the hash chain will remain held on return.
94235238Sjasone *
95235238Sjasone *	pageq scanning can only occur with the pageq in question locked.
96235238Sjasone *	We have a known bottleneck with the active queue, but the cache
97235238Sjasone *	and free queues are actually arrays already.
98235238Sjasone */
99235238Sjasone
100235238Sjasone/*
101235238Sjasone *	Resident memory management module.
102235238Sjasone */
103235238Sjasone
104235238Sjasone#include <sys/param.h>
105235238Sjasone#include <sys/systm.h>
106235238Sjasone#include <sys/lock.h>
107235238Sjasone#include <sys/malloc.h>
108235238Sjasone#include <sys/mutex.h>
109235238Sjasone#include <sys/proc.h>
110235238Sjasone#include <sys/vmmeter.h>
111235238Sjasone#include <sys/vnode.h>
112235238Sjasone
113235238Sjasone#include <vm/vm.h>
114235238Sjasone#include <vm/vm_param.h>
115235238Sjasone#include <vm/vm_kern.h>
116234543Sjasone#include <vm/vm_object.h>
117234543Sjasone#include <vm/vm_page.h>
118234543Sjasone#include <vm/vm_pageout.h>
119234543Sjasone#include <vm/vm_pager.h>
120235238Sjasone#include <vm/vm_extern.h>
121235238Sjasone#include <vm/uma.h>
122234543Sjasone#include <vm/uma_int.h>
123235238Sjasone
124235238Sjasone/*
125235238Sjasone *	Associated with page of user-allocatable memory is a
126235238Sjasone *	page structure.
127235238Sjasone */
128235238Sjasone
129235238Sjasonestruct mtx vm_page_queue_mtx;
130235238Sjasonestruct mtx vm_page_queue_free_mtx;
131234543Sjasone
132234543Sjasonevm_page_t vm_page_array = 0;
133234543Sjasoneint vm_page_array_size = 0;
134234370Sjasonelong first_page = 0;
135235238Sjasoneint vm_page_zero_count = 0;
136234370Sjasone
137234370Sjasone/*
138235238Sjasone *	vm_set_page_size:
139234370Sjasone *
140234370Sjasone *	Sets the page size, perhaps based upon the memory
141234370Sjasone *	size.  Must be called before any use of page-size
142234370Sjasone *	dependent functions.
143234370Sjasone */
144235238Sjasonevoid
145235238Sjasonevm_set_page_size(void)
146235238Sjasone{
147235238Sjasone	if (cnt.v_page_size == 0)
148235238Sjasone		cnt.v_page_size = PAGE_SIZE;
149235238Sjasone	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
150235238Sjasone		panic("vm_set_page_size: page size not a power of two");
151235238Sjasone}
152234370Sjasone
153234569Sjasone/*
154234569Sjasone *	vm_page_startup:
155234370Sjasone *
156234370Sjasone *	Initializes the resident memory module.
157234370Sjasone *
158234370Sjasone *	Allocates memory for the page cells, and
159234569Sjasone *	for the object/offset-to-page hash table headers.
160234370Sjasone *	Each page cell is initialized and placed on the free list.
161234370Sjasone */
162234569Sjasonevm_offset_t
163234370Sjasonevm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
164234370Sjasone{
165234370Sjasone	vm_offset_t mapped;
166234370Sjasone	vm_size_t npages, page_range;
167234370Sjasone	vm_offset_t new_end;
168234370Sjasone	int i;
169235238Sjasone	vm_offset_t pa;
170234370Sjasone	int nblocks;
171234370Sjasone	vm_offset_t last_pa;
172235238Sjasone
173235238Sjasone	/* the biggest memory array is the second group of pages */
174235238Sjasone	vm_offset_t end;
175234370Sjasone	vm_offset_t biggestone, biggestsize;
176234370Sjasone
177235238Sjasone	vm_offset_t total;
178235238Sjasone	vm_size_t bootpages;
179235238Sjasone
180234569Sjasone	total = 0;
181234569Sjasone	biggestsize = 0;
182234569Sjasone	biggestone = 0;
183234569Sjasone	nblocks = 0;
184234569Sjasone	vaddr = round_page(vaddr);
185235238Sjasone
186235238Sjasone	for (i = 0; phys_avail[i + 1]; i += 2) {
187234569Sjasone		phys_avail[i] = round_page(phys_avail[i]);
188234370Sjasone		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189234569Sjasone	}
190234569Sjasone
191234370Sjasone	for (i = 0; phys_avail[i + 1]; i += 2) {
192234370Sjasone		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
193234370Sjasone
194234370Sjasone		if (size > biggestsize) {
195234370Sjasone			biggestone = i;
196234370Sjasone			biggestsize = size;
197234370Sjasone		}
198234370Sjasone		++nblocks;
199234370Sjasone		total += size;
200234370Sjasone	}
201234370Sjasone
202234370Sjasone	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209	   MTX_SPIN);
210
211	/*
212	 * Initialize the queue headers for the free queue, the active queue
213	 * and the inactive queue.
214	 */
215	vm_pageq_init();
216
217	/*
218	 * Allocate memory for use when boot strapping the kernel memory
219	 * allocator.
220	 */
221	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222	new_end = end - bootpages;
223	new_end = trunc_page(new_end);
224	mapped = pmap_map(&vaddr, new_end, end,
225	    VM_PROT_READ | VM_PROT_WRITE);
226	bzero((caddr_t) mapped, end - new_end);
227	uma_startup((caddr_t)mapped);
228
229	/*
230	 * Compute the number of pages of memory that will be available for
231	 * use (taking into account the overhead of a page structure per
232	 * page).
233	 */
234	first_page = phys_avail[0] / PAGE_SIZE;
235	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236	npages = (total - (page_range * sizeof(struct vm_page)) -
237	    (end - new_end)) / PAGE_SIZE;
238	end = new_end;
239
240	/*
241	 * Initialize the mem entry structures now, and put them in the free
242	 * queue.
243	 */
244	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
245	mapped = pmap_map(&vaddr, new_end, end,
246	    VM_PROT_READ | VM_PROT_WRITE);
247	vm_page_array = (vm_page_t) mapped;
248
249	/*
250	 * Clear all of the page structures
251	 */
252	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
253	vm_page_array_size = page_range;
254
255	/*
256	 * Construct the free queue(s) in descending order (by physical
257	 * address) so that the first 16MB of physical memory is allocated
258	 * last rather than first.  On large-memory machines, this avoids
259	 * the exhaustion of low physical memory before isa_dmainit has run.
260	 */
261	cnt.v_page_count = 0;
262	cnt.v_free_count = 0;
263	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
264		pa = phys_avail[i];
265		if (i == biggestone)
266			last_pa = new_end;
267		else
268			last_pa = phys_avail[i + 1];
269		while (pa < last_pa && npages-- > 0) {
270			vm_pageq_add_new_page(pa);
271			pa += PAGE_SIZE;
272		}
273	}
274	return (vaddr);
275}
276
277void
278vm_page_flag_set(vm_page_t m, unsigned short bits)
279{
280
281	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
282	m->flags |= bits;
283}
284
285void
286vm_page_flag_clear(vm_page_t m, unsigned short bits)
287{
288
289	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290	m->flags &= ~bits;
291}
292
293void
294vm_page_busy(vm_page_t m)
295{
296	KASSERT((m->flags & PG_BUSY) == 0,
297	    ("vm_page_busy: page already busy!!!"));
298	vm_page_flag_set(m, PG_BUSY);
299}
300
301/*
302 *      vm_page_flash:
303 *
304 *      wakeup anyone waiting for the page.
305 */
306void
307vm_page_flash(vm_page_t m)
308{
309	if (m->flags & PG_WANTED) {
310		vm_page_flag_clear(m, PG_WANTED);
311		wakeup(m);
312	}
313}
314
315/*
316 *      vm_page_wakeup:
317 *
318 *      clear the PG_BUSY flag and wakeup anyone waiting for the
319 *      page.
320 *
321 */
322void
323vm_page_wakeup(vm_page_t m)
324{
325	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
326	vm_page_flag_clear(m, PG_BUSY);
327	vm_page_flash(m);
328}
329
330/*
331 *
332 *
333 */
334void
335vm_page_io_start(vm_page_t m)
336{
337
338	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
339	m->busy++;
340}
341
342void
343vm_page_io_finish(vm_page_t m)
344{
345
346	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
347	m->busy--;
348	if (m->busy == 0)
349		vm_page_flash(m);
350}
351
352/*
353 * Keep page from being freed by the page daemon
354 * much of the same effect as wiring, except much lower
355 * overhead and should be used only for *very* temporary
356 * holding ("wiring").
357 */
358void
359vm_page_hold(vm_page_t mem)
360{
361
362	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
363        mem->hold_count++;
364}
365
366void
367vm_page_unhold(vm_page_t mem)
368{
369
370	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
371	--mem->hold_count;
372	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
373	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
374		vm_page_free_toq(mem);
375}
376
377/*
378 *	vm_page_copy:
379 *
380 *	Copy one page to another
381 */
382void
383vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
384{
385	pmap_copy_page(src_m, dest_m);
386	dest_m->valid = VM_PAGE_BITS_ALL;
387}
388
389/*
390 *	vm_page_free:
391 *
392 *	Free a page
393 *
394 *	The clearing of PG_ZERO is a temporary safety until the code can be
395 *	reviewed to determine that PG_ZERO is being properly cleared on
396 *	write faults or maps.  PG_ZERO was previously cleared in
397 *	vm_page_alloc().
398 */
399void
400vm_page_free(vm_page_t m)
401{
402	vm_page_flag_clear(m, PG_ZERO);
403	vm_page_free_toq(m);
404	vm_page_zero_idle_wakeup();
405}
406
407/*
408 *	vm_page_free_zero:
409 *
410 *	Free a page to the zerod-pages queue
411 */
412void
413vm_page_free_zero(vm_page_t m)
414{
415	vm_page_flag_set(m, PG_ZERO);
416	vm_page_free_toq(m);
417}
418
419/*
420 *	vm_page_sleep_if_busy:
421 *
422 *	Sleep and release the page queues lock if PG_BUSY is set or,
423 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
424 *	thread slept and the page queues lock was released.
425 *	Otherwise, retains the page queues lock and returns FALSE.
426 */
427int
428vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
429{
430	int is_object_locked;
431
432	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
433	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
434		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
435		/*
436		 * Remove mtx_owned() after vm_object locking is finished.
437		 */
438		if ((is_object_locked = m->object != NULL &&
439		     mtx_owned(&m->object->mtx)))
440			mtx_unlock(&m->object->mtx);
441		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
442		if (is_object_locked)
443			mtx_lock(&m->object->mtx);
444		return (TRUE);
445	}
446	return (FALSE);
447}
448
449/*
450 *	vm_page_dirty:
451 *
452 *	make page all dirty
453 */
454void
455vm_page_dirty(vm_page_t m)
456{
457	KASSERT(m->queue - m->pc != PQ_CACHE,
458	    ("vm_page_dirty: page in cache!"));
459	KASSERT(m->queue - m->pc != PQ_FREE,
460	    ("vm_page_dirty: page is free!"));
461	m->dirty = VM_PAGE_BITS_ALL;
462}
463
464/*
465 *	vm_page_splay:
466 *
467 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
468 *	the vm_page containing the given pindex.  If, however, that
469 *	pindex is not found in the vm_object, returns a vm_page that is
470 *	adjacent to the pindex, coming before or after it.
471 */
472vm_page_t
473vm_page_splay(vm_pindex_t pindex, vm_page_t root)
474{
475	struct vm_page dummy;
476	vm_page_t lefttreemax, righttreemin, y;
477
478	if (root == NULL)
479		return (root);
480	lefttreemax = righttreemin = &dummy;
481	for (;; root = y) {
482		if (pindex < root->pindex) {
483			if ((y = root->left) == NULL)
484				break;
485			if (pindex < y->pindex) {
486				/* Rotate right. */
487				root->left = y->right;
488				y->right = root;
489				root = y;
490				if ((y = root->left) == NULL)
491					break;
492			}
493			/* Link into the new root's right tree. */
494			righttreemin->left = root;
495			righttreemin = root;
496		} else if (pindex > root->pindex) {
497			if ((y = root->right) == NULL)
498				break;
499			if (pindex > y->pindex) {
500				/* Rotate left. */
501				root->right = y->left;
502				y->left = root;
503				root = y;
504				if ((y = root->right) == NULL)
505					break;
506			}
507			/* Link into the new root's left tree. */
508			lefttreemax->right = root;
509			lefttreemax = root;
510		} else
511			break;
512	}
513	/* Assemble the new root. */
514	lefttreemax->right = root->left;
515	righttreemin->left = root->right;
516	root->left = dummy.right;
517	root->right = dummy.left;
518	return (root);
519}
520
521/*
522 *	vm_page_insert:		[ internal use only ]
523 *
524 *	Inserts the given mem entry into the object and object list.
525 *
526 *	The pagetables are not updated but will presumably fault the page
527 *	in if necessary, or if a kernel page the caller will at some point
528 *	enter the page into the kernel's pmap.  We are not allowed to block
529 *	here so we *can't* do this anyway.
530 *
531 *	The object and page must be locked, and must be splhigh.
532 *	This routine may not block.
533 */
534void
535vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
536{
537	vm_page_t root;
538
539	if (m->object != NULL)
540		panic("vm_page_insert: already inserted");
541
542	/*
543	 * Record the object/offset pair in this page
544	 */
545	m->object = object;
546	m->pindex = pindex;
547
548	mtx_assert(object == kmem_object ? &object->mtx : &Giant, MA_OWNED);
549	/*
550	 * Now link into the object's ordered list of backed pages.
551	 */
552	root = object->root;
553	if (root == NULL) {
554		m->left = NULL;
555		m->right = NULL;
556		TAILQ_INSERT_TAIL(&object->memq, m, listq);
557	} else {
558		root = vm_page_splay(pindex, root);
559		if (pindex < root->pindex) {
560			m->left = root->left;
561			m->right = root;
562			root->left = NULL;
563			TAILQ_INSERT_BEFORE(root, m, listq);
564		} else {
565			m->right = root->right;
566			m->left = root;
567			root->right = NULL;
568			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
569		}
570	}
571	object->root = m;
572	object->generation++;
573
574	/*
575	 * show that the object has one more resident page.
576	 */
577	object->resident_page_count++;
578
579	/*
580	 * Since we are inserting a new and possibly dirty page,
581	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
582	 */
583	if (m->flags & PG_WRITEABLE)
584		vm_object_set_writeable_dirty(object);
585}
586
587/*
588 *	vm_page_remove:
589 *				NOTE: used by device pager as well -wfj
590 *
591 *	Removes the given mem entry from the object/offset-page
592 *	table and the object page list, but do not invalidate/terminate
593 *	the backing store.
594 *
595 *	The object and page must be locked, and at splhigh.
596 *	The underlying pmap entry (if any) is NOT removed here.
597 *	This routine may not block.
598 */
599void
600vm_page_remove(vm_page_t m)
601{
602	vm_object_t object;
603	vm_page_t root;
604
605	GIANT_REQUIRED;
606	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
607	if (m->object == NULL)
608		return;
609
610	if ((m->flags & PG_BUSY) == 0) {
611		panic("vm_page_remove: page not busy");
612	}
613
614	/*
615	 * Basically destroy the page.
616	 */
617	vm_page_wakeup(m);
618
619	object = m->object;
620
621	/*
622	 * Now remove from the object's list of backed pages.
623	 */
624	if (m != object->root)
625		vm_page_splay(m->pindex, object->root);
626	if (m->left == NULL)
627		root = m->right;
628	else {
629		root = vm_page_splay(m->pindex, m->left);
630		root->right = m->right;
631	}
632	object->root = root;
633	TAILQ_REMOVE(&object->memq, m, listq);
634
635	/*
636	 * And show that the object has one fewer resident page.
637	 */
638	object->resident_page_count--;
639	object->generation++;
640
641	m->object = NULL;
642}
643
644/*
645 *	vm_page_lookup:
646 *
647 *	Returns the page associated with the object/offset
648 *	pair specified; if none is found, NULL is returned.
649 *
650 *	The object must be locked.
651 *	This routine may not block.
652 *	This is a critical path routine
653 */
654vm_page_t
655vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
656{
657	vm_page_t m;
658
659	mtx_assert(object == kmem_object ? &object->mtx : &Giant, MA_OWNED);
660	m = vm_page_splay(pindex, object->root);
661	if ((object->root = m) != NULL && m->pindex != pindex)
662		m = NULL;
663	return (m);
664}
665
666/*
667 *	vm_page_rename:
668 *
669 *	Move the given memory entry from its
670 *	current object to the specified target object/offset.
671 *
672 *	The object must be locked.
673 *	This routine may not block.
674 *
675 *	Note: this routine will raise itself to splvm(), the caller need not.
676 *
677 *	Note: swap associated with the page must be invalidated by the move.  We
678 *	      have to do this for several reasons:  (1) we aren't freeing the
679 *	      page, (2) we are dirtying the page, (3) the VM system is probably
680 *	      moving the page from object A to B, and will then later move
681 *	      the backing store from A to B and we can't have a conflict.
682 *
683 *	Note: we *always* dirty the page.  It is necessary both for the
684 *	      fact that we moved it, and because we may be invalidating
685 *	      swap.  If the page is on the cache, we have to deactivate it
686 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
687 *	      on the cache.
688 */
689void
690vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
691{
692	int s;
693
694	s = splvm();
695	vm_page_remove(m);
696	vm_page_insert(m, new_object, new_pindex);
697	if (m->queue - m->pc == PQ_CACHE)
698		vm_page_deactivate(m);
699	vm_page_dirty(m);
700	splx(s);
701}
702
703/*
704 *	vm_page_select_cache:
705 *
706 *	Find a page on the cache queue with color optimization.  As pages
707 *	might be found, but not applicable, they are deactivated.  This
708 *	keeps us from using potentially busy cached pages.
709 *
710 *	This routine must be called at splvm().
711 *	This routine may not block.
712 */
713static vm_page_t
714vm_page_select_cache(vm_pindex_t color)
715{
716	vm_page_t m;
717
718	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
719	while (TRUE) {
720		m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE);
721		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
722			       m->hold_count || m->wire_count)) {
723			vm_page_deactivate(m);
724			continue;
725		}
726		return m;
727	}
728}
729
730/*
731 *	vm_page_select_free:
732 *
733 *	Find a free or zero page, with specified preference.
734 *
735 *	This routine must be called at splvm().
736 *	This routine may not block.
737 */
738static __inline vm_page_t
739vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero)
740{
741	vm_page_t m;
742
743	m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero);
744	return (m);
745}
746
747/*
748 *	vm_page_alloc:
749 *
750 *	Allocate and return a memory cell associated
751 *	with this VM object/offset pair.
752 *
753 *	page_req classes:
754 *	VM_ALLOC_NORMAL		normal process request
755 *	VM_ALLOC_SYSTEM		system *really* needs a page
756 *	VM_ALLOC_INTERRUPT	interrupt time request
757 *	VM_ALLOC_ZERO		zero page
758 *
759 *	This routine may not block.
760 *
761 *	Additional special handling is required when called from an
762 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
763 *	the page cache in this case.
764 */
765vm_page_t
766vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
767{
768	vm_page_t m = NULL;
769	vm_pindex_t color;
770	int flags, page_req, s;
771
772	page_req = req & VM_ALLOC_CLASS_MASK;
773
774	if ((req & VM_ALLOC_NOOBJ) == 0) {
775		KASSERT(object != NULL,
776		    ("vm_page_alloc: NULL object."));
777		mtx_assert(object == kmem_object ? &object->mtx : &Giant,
778		    MA_OWNED);
779		KASSERT(!vm_page_lookup(object, pindex),
780		    ("vm_page_alloc: page already allocated"));
781		color = pindex + object->pg_color;
782	} else
783		color = pindex;
784
785	/*
786	 * The pager is allowed to eat deeper into the free page list.
787	 */
788	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
789		page_req = VM_ALLOC_SYSTEM;
790	};
791
792	s = splvm();
793loop:
794	mtx_lock_spin(&vm_page_queue_free_mtx);
795	if (cnt.v_free_count > cnt.v_free_reserved ||
796	    (page_req == VM_ALLOC_SYSTEM &&
797	     cnt.v_cache_count == 0 &&
798	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
799	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
800		/*
801		 * Allocate from the free queue if the number of free pages
802		 * exceeds the minimum for the request class.
803		 */
804		m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0);
805	} else if (page_req != VM_ALLOC_INTERRUPT) {
806		mtx_unlock_spin(&vm_page_queue_free_mtx);
807		/*
808		 * Allocatable from cache (non-interrupt only).  On success,
809		 * we must free the page and try again, thus ensuring that
810		 * cnt.v_*_free_min counters are replenished.
811		 */
812		vm_page_lock_queues();
813		if ((m = vm_page_select_cache(color)) == NULL) {
814			vm_page_unlock_queues();
815			splx(s);
816#if defined(DIAGNOSTIC)
817			if (cnt.v_cache_count > 0)
818				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
819#endif
820			atomic_add_int(&vm_pageout_deficit, 1);
821			pagedaemon_wakeup();
822			return (NULL);
823		}
824		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
825		vm_page_busy(m);
826		pmap_remove_all(m);
827		vm_page_free(m);
828		vm_page_unlock_queues();
829		goto loop;
830	} else {
831		/*
832		 * Not allocatable from cache from interrupt, give up.
833		 */
834		mtx_unlock_spin(&vm_page_queue_free_mtx);
835		splx(s);
836		atomic_add_int(&vm_pageout_deficit, 1);
837		pagedaemon_wakeup();
838		return (NULL);
839	}
840
841	/*
842	 *  At this point we had better have found a good page.
843	 */
844
845	KASSERT(
846	    m != NULL,
847	    ("vm_page_alloc(): missing page on free queue\n")
848	);
849
850	/*
851	 * Remove from free queue
852	 */
853
854	vm_pageq_remove_nowakeup(m);
855
856	/*
857	 * Initialize structure.  Only the PG_ZERO flag is inherited.
858	 */
859	flags = PG_BUSY;
860	if (m->flags & PG_ZERO) {
861		vm_page_zero_count--;
862		if (req & VM_ALLOC_ZERO)
863			flags = PG_ZERO | PG_BUSY;
864	}
865	m->flags = flags;
866	if (req & VM_ALLOC_WIRED) {
867		atomic_add_int(&cnt.v_wire_count, 1);
868		m->wire_count = 1;
869	} else
870		m->wire_count = 0;
871	m->hold_count = 0;
872	m->act_count = 0;
873	m->busy = 0;
874	m->valid = 0;
875	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
876	mtx_unlock_spin(&vm_page_queue_free_mtx);
877
878	/*
879	 * vm_page_insert() is safe prior to the splx().  Note also that
880	 * inserting a page here does not insert it into the pmap (which
881	 * could cause us to block allocating memory).  We cannot block
882	 * anywhere.
883	 */
884	if ((req & VM_ALLOC_NOOBJ) == 0)
885		vm_page_insert(m, object, pindex);
886
887	/*
888	 * Don't wakeup too often - wakeup the pageout daemon when
889	 * we would be nearly out of memory.
890	 */
891	if (vm_paging_needed())
892		pagedaemon_wakeup();
893
894	splx(s);
895	return (m);
896}
897
898/*
899 *	vm_wait:	(also see VM_WAIT macro)
900 *
901 *	Block until free pages are available for allocation
902 *	- Called in various places before memory allocations.
903 */
904void
905vm_wait(void)
906{
907	int s;
908
909	s = splvm();
910	vm_page_lock_queues();
911	if (curproc == pageproc) {
912		vm_pageout_pages_needed = 1;
913		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
914		    PDROP | PSWP, "VMWait", 0);
915	} else {
916		if (!vm_pages_needed) {
917			vm_pages_needed = 1;
918			wakeup(&vm_pages_needed);
919		}
920		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
921		    "vmwait", 0);
922	}
923	splx(s);
924}
925
926/*
927 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
928 *
929 *	Block until free pages are available for allocation
930 *	- Called only in vm_fault so that processes page faulting
931 *	  can be easily tracked.
932 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
933 *	  processes will be able to grab memory first.  Do not change
934 *	  this balance without careful testing first.
935 */
936void
937vm_waitpfault(void)
938{
939	int s;
940
941	s = splvm();
942	vm_page_lock_queues();
943	if (!vm_pages_needed) {
944		vm_pages_needed = 1;
945		wakeup(&vm_pages_needed);
946	}
947	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
948	    "pfault", 0);
949	splx(s);
950}
951
952/*
953 *	vm_page_activate:
954 *
955 *	Put the specified page on the active list (if appropriate).
956 *	Ensure that act_count is at least ACT_INIT but do not otherwise
957 *	mess with it.
958 *
959 *	The page queues must be locked.
960 *	This routine may not block.
961 */
962void
963vm_page_activate(vm_page_t m)
964{
965	int s;
966
967	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
968	s = splvm();
969	if (m->queue != PQ_ACTIVE) {
970		if ((m->queue - m->pc) == PQ_CACHE)
971			cnt.v_reactivated++;
972		vm_pageq_remove(m);
973		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
974			if (m->act_count < ACT_INIT)
975				m->act_count = ACT_INIT;
976			vm_pageq_enqueue(PQ_ACTIVE, m);
977		}
978	} else {
979		if (m->act_count < ACT_INIT)
980			m->act_count = ACT_INIT;
981	}
982	splx(s);
983}
984
985/*
986 *	vm_page_free_wakeup:
987 *
988 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
989 *	routine is called when a page has been added to the cache or free
990 *	queues.
991 *
992 *	This routine may not block.
993 *	This routine must be called at splvm()
994 */
995static __inline void
996vm_page_free_wakeup(void)
997{
998
999	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1000	/*
1001	 * if pageout daemon needs pages, then tell it that there are
1002	 * some free.
1003	 */
1004	if (vm_pageout_pages_needed &&
1005	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1006		wakeup(&vm_pageout_pages_needed);
1007		vm_pageout_pages_needed = 0;
1008	}
1009	/*
1010	 * wakeup processes that are waiting on memory if we hit a
1011	 * high water mark. And wakeup scheduler process if we have
1012	 * lots of memory. this process will swapin processes.
1013	 */
1014	if (vm_pages_needed && !vm_page_count_min()) {
1015		vm_pages_needed = 0;
1016		wakeup(&cnt.v_free_count);
1017	}
1018}
1019
1020/*
1021 *	vm_page_free_toq:
1022 *
1023 *	Returns the given page to the PQ_FREE list,
1024 *	disassociating it with any VM object.
1025 *
1026 *	Object and page must be locked prior to entry.
1027 *	This routine may not block.
1028 */
1029
1030void
1031vm_page_free_toq(vm_page_t m)
1032{
1033	int s;
1034	struct vpgqueues *pq;
1035	vm_object_t object = m->object;
1036
1037	GIANT_REQUIRED;
1038	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1039	s = splvm();
1040	cnt.v_tfree++;
1041
1042	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1043		printf(
1044		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1045		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1046		    m->hold_count);
1047		if ((m->queue - m->pc) == PQ_FREE)
1048			panic("vm_page_free: freeing free page");
1049		else
1050			panic("vm_page_free: freeing busy page");
1051	}
1052
1053	/*
1054	 * unqueue, then remove page.  Note that we cannot destroy
1055	 * the page here because we do not want to call the pager's
1056	 * callback routine until after we've put the page on the
1057	 * appropriate free queue.
1058	 */
1059	vm_pageq_remove_nowakeup(m);
1060	vm_page_remove(m);
1061
1062	/*
1063	 * If fictitious remove object association and
1064	 * return, otherwise delay object association removal.
1065	 */
1066	if ((m->flags & PG_FICTITIOUS) != 0) {
1067		splx(s);
1068		return;
1069	}
1070
1071	m->valid = 0;
1072	vm_page_undirty(m);
1073
1074	if (m->wire_count != 0) {
1075		if (m->wire_count > 1) {
1076			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1077				m->wire_count, (long)m->pindex);
1078		}
1079		panic("vm_page_free: freeing wired page\n");
1080	}
1081
1082	/*
1083	 * If we've exhausted the object's resident pages we want to free
1084	 * it up.
1085	 */
1086	if (object &&
1087	    (object->type == OBJT_VNODE) &&
1088	    ((object->flags & OBJ_DEAD) == 0)
1089	) {
1090		struct vnode *vp = (struct vnode *)object->handle;
1091
1092		if (vp) {
1093			VI_LOCK(vp);
1094			if (VSHOULDFREE(vp))
1095				vfree(vp);
1096			VI_UNLOCK(vp);
1097		}
1098	}
1099
1100	/*
1101	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1102	 */
1103	if (m->flags & PG_UNMANAGED) {
1104		m->flags &= ~PG_UNMANAGED;
1105	} else {
1106#ifdef __alpha__
1107		pmap_page_is_free(m);
1108#endif
1109	}
1110
1111	if (m->hold_count != 0) {
1112		m->flags &= ~PG_ZERO;
1113		m->queue = PQ_HOLD;
1114	} else
1115		m->queue = PQ_FREE + m->pc;
1116	pq = &vm_page_queues[m->queue];
1117	mtx_lock_spin(&vm_page_queue_free_mtx);
1118	pq->lcnt++;
1119	++(*pq->cnt);
1120
1121	/*
1122	 * Put zero'd pages on the end ( where we look for zero'd pages
1123	 * first ) and non-zerod pages at the head.
1124	 */
1125	if (m->flags & PG_ZERO) {
1126		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1127		++vm_page_zero_count;
1128	} else {
1129		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1130	}
1131	mtx_unlock_spin(&vm_page_queue_free_mtx);
1132	vm_page_free_wakeup();
1133	splx(s);
1134}
1135
1136/*
1137 *	vm_page_unmanage:
1138 *
1139 * 	Prevent PV management from being done on the page.  The page is
1140 *	removed from the paging queues as if it were wired, and as a
1141 *	consequence of no longer being managed the pageout daemon will not
1142 *	touch it (since there is no way to locate the pte mappings for the
1143 *	page).  madvise() calls that mess with the pmap will also no longer
1144 *	operate on the page.
1145 *
1146 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1147 *	will clear the flag.
1148 *
1149 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1150 *	physical memory as backing store rather then swap-backed memory and
1151 *	will eventually be extended to support 4MB unmanaged physical
1152 *	mappings.
1153 */
1154void
1155vm_page_unmanage(vm_page_t m)
1156{
1157	int s;
1158
1159	s = splvm();
1160	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1161	if ((m->flags & PG_UNMANAGED) == 0) {
1162		if (m->wire_count == 0)
1163			vm_pageq_remove(m);
1164	}
1165	vm_page_flag_set(m, PG_UNMANAGED);
1166	splx(s);
1167}
1168
1169/*
1170 *	vm_page_wire:
1171 *
1172 *	Mark this page as wired down by yet
1173 *	another map, removing it from paging queues
1174 *	as necessary.
1175 *
1176 *	The page queues must be locked.
1177 *	This routine may not block.
1178 */
1179void
1180vm_page_wire(vm_page_t m)
1181{
1182	int s;
1183
1184	/*
1185	 * Only bump the wire statistics if the page is not already wired,
1186	 * and only unqueue the page if it is on some queue (if it is unmanaged
1187	 * it is already off the queues).
1188	 */
1189	s = splvm();
1190	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1191	if (m->wire_count == 0) {
1192		if ((m->flags & PG_UNMANAGED) == 0)
1193			vm_pageq_remove(m);
1194		atomic_add_int(&cnt.v_wire_count, 1);
1195	}
1196	m->wire_count++;
1197	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1198	splx(s);
1199}
1200
1201/*
1202 *	vm_page_unwire:
1203 *
1204 *	Release one wiring of this page, potentially
1205 *	enabling it to be paged again.
1206 *
1207 *	Many pages placed on the inactive queue should actually go
1208 *	into the cache, but it is difficult to figure out which.  What
1209 *	we do instead, if the inactive target is well met, is to put
1210 *	clean pages at the head of the inactive queue instead of the tail.
1211 *	This will cause them to be moved to the cache more quickly and
1212 *	if not actively re-referenced, freed more quickly.  If we just
1213 *	stick these pages at the end of the inactive queue, heavy filesystem
1214 *	meta-data accesses can cause an unnecessary paging load on memory bound
1215 *	processes.  This optimization causes one-time-use metadata to be
1216 *	reused more quickly.
1217 *
1218 *	BUT, if we are in a low-memory situation we have no choice but to
1219 *	put clean pages on the cache queue.
1220 *
1221 *	A number of routines use vm_page_unwire() to guarantee that the page
1222 *	will go into either the inactive or active queues, and will NEVER
1223 *	be placed in the cache - for example, just after dirtying a page.
1224 *	dirty pages in the cache are not allowed.
1225 *
1226 *	The page queues must be locked.
1227 *	This routine may not block.
1228 */
1229void
1230vm_page_unwire(vm_page_t m, int activate)
1231{
1232	int s;
1233
1234	s = splvm();
1235	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1236	if (m->wire_count > 0) {
1237		m->wire_count--;
1238		if (m->wire_count == 0) {
1239			atomic_subtract_int(&cnt.v_wire_count, 1);
1240			if (m->flags & PG_UNMANAGED) {
1241				;
1242			} else if (activate)
1243				vm_pageq_enqueue(PQ_ACTIVE, m);
1244			else {
1245				vm_page_flag_clear(m, PG_WINATCFLS);
1246				vm_pageq_enqueue(PQ_INACTIVE, m);
1247			}
1248		}
1249	} else {
1250		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1251	}
1252	splx(s);
1253}
1254
1255
1256/*
1257 * Move the specified page to the inactive queue.  If the page has
1258 * any associated swap, the swap is deallocated.
1259 *
1260 * Normally athead is 0 resulting in LRU operation.  athead is set
1261 * to 1 if we want this page to be 'as if it were placed in the cache',
1262 * except without unmapping it from the process address space.
1263 *
1264 * This routine may not block.
1265 */
1266static __inline void
1267_vm_page_deactivate(vm_page_t m, int athead)
1268{
1269	int s;
1270
1271	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1272	/*
1273	 * Ignore if already inactive.
1274	 */
1275	if (m->queue == PQ_INACTIVE)
1276		return;
1277
1278	s = splvm();
1279	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1280		if ((m->queue - m->pc) == PQ_CACHE)
1281			cnt.v_reactivated++;
1282		vm_page_flag_clear(m, PG_WINATCFLS);
1283		vm_pageq_remove(m);
1284		if (athead)
1285			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1286		else
1287			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1288		m->queue = PQ_INACTIVE;
1289		vm_page_queues[PQ_INACTIVE].lcnt++;
1290		cnt.v_inactive_count++;
1291	}
1292	splx(s);
1293}
1294
1295void
1296vm_page_deactivate(vm_page_t m)
1297{
1298    _vm_page_deactivate(m, 0);
1299}
1300
1301/*
1302 * vm_page_try_to_cache:
1303 *
1304 * Returns 0 on failure, 1 on success
1305 */
1306int
1307vm_page_try_to_cache(vm_page_t m)
1308{
1309
1310	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1311	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1312	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1313		return (0);
1314	}
1315	vm_page_test_dirty(m);
1316	if (m->dirty)
1317		return (0);
1318	vm_page_cache(m);
1319	return (1);
1320}
1321
1322/*
1323 * vm_page_try_to_free()
1324 *
1325 *	Attempt to free the page.  If we cannot free it, we do nothing.
1326 *	1 is returned on success, 0 on failure.
1327 */
1328int
1329vm_page_try_to_free(vm_page_t m)
1330{
1331
1332	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1333	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1334	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1335		return (0);
1336	}
1337	vm_page_test_dirty(m);
1338	if (m->dirty)
1339		return (0);
1340	vm_page_busy(m);
1341	pmap_remove_all(m);
1342	vm_page_free(m);
1343	return (1);
1344}
1345
1346/*
1347 * vm_page_cache
1348 *
1349 * Put the specified page onto the page cache queue (if appropriate).
1350 *
1351 * This routine may not block.
1352 */
1353void
1354vm_page_cache(vm_page_t m)
1355{
1356	int s;
1357
1358	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1359	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1360		printf("vm_page_cache: attempting to cache busy page\n");
1361		return;
1362	}
1363	if ((m->queue - m->pc) == PQ_CACHE)
1364		return;
1365
1366	/*
1367	 * Remove all pmaps and indicate that the page is not
1368	 * writeable or mapped.
1369	 */
1370	pmap_remove_all(m);
1371	if (m->dirty != 0) {
1372		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1373			(long)m->pindex);
1374	}
1375	s = splvm();
1376	vm_pageq_remove_nowakeup(m);
1377	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1378	vm_page_free_wakeup();
1379	splx(s);
1380}
1381
1382/*
1383 * vm_page_dontneed
1384 *
1385 *	Cache, deactivate, or do nothing as appropriate.  This routine
1386 *	is typically used by madvise() MADV_DONTNEED.
1387 *
1388 *	Generally speaking we want to move the page into the cache so
1389 *	it gets reused quickly.  However, this can result in a silly syndrome
1390 *	due to the page recycling too quickly.  Small objects will not be
1391 *	fully cached.  On the otherhand, if we move the page to the inactive
1392 *	queue we wind up with a problem whereby very large objects
1393 *	unnecessarily blow away our inactive and cache queues.
1394 *
1395 *	The solution is to move the pages based on a fixed weighting.  We
1396 *	either leave them alone, deactivate them, or move them to the cache,
1397 *	where moving them to the cache has the highest weighting.
1398 *	By forcing some pages into other queues we eventually force the
1399 *	system to balance the queues, potentially recovering other unrelated
1400 *	space from active.  The idea is to not force this to happen too
1401 *	often.
1402 */
1403void
1404vm_page_dontneed(vm_page_t m)
1405{
1406	static int dnweight;
1407	int dnw;
1408	int head;
1409
1410	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1411	dnw = ++dnweight;
1412
1413	/*
1414	 * occassionally leave the page alone
1415	 */
1416	if ((dnw & 0x01F0) == 0 ||
1417	    m->queue == PQ_INACTIVE ||
1418	    m->queue - m->pc == PQ_CACHE
1419	) {
1420		if (m->act_count >= ACT_INIT)
1421			--m->act_count;
1422		return;
1423	}
1424
1425	if (m->dirty == 0)
1426		vm_page_test_dirty(m);
1427
1428	if (m->dirty || (dnw & 0x0070) == 0) {
1429		/*
1430		 * Deactivate the page 3 times out of 32.
1431		 */
1432		head = 0;
1433	} else {
1434		/*
1435		 * Cache the page 28 times out of every 32.  Note that
1436		 * the page is deactivated instead of cached, but placed
1437		 * at the head of the queue instead of the tail.
1438		 */
1439		head = 1;
1440	}
1441	_vm_page_deactivate(m, head);
1442}
1443
1444/*
1445 * Grab a page, waiting until we are waken up due to the page
1446 * changing state.  We keep on waiting, if the page continues
1447 * to be in the object.  If the page doesn't exist, allocate it.
1448 *
1449 * This routine may block.
1450 */
1451vm_page_t
1452vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1453{
1454	vm_page_t m;
1455	int s, generation;
1456
1457	GIANT_REQUIRED;
1458retrylookup:
1459	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1460		vm_page_lock_queues();
1461		if (m->busy || (m->flags & PG_BUSY)) {
1462			generation = object->generation;
1463
1464			s = splvm();
1465			while ((object->generation == generation) &&
1466					(m->busy || (m->flags & PG_BUSY))) {
1467				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1468				msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1469				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1470					vm_page_unlock_queues();
1471					splx(s);
1472					return NULL;
1473				}
1474			}
1475			vm_page_unlock_queues();
1476			splx(s);
1477			goto retrylookup;
1478		} else {
1479			if (allocflags & VM_ALLOC_WIRED)
1480				vm_page_wire(m);
1481			vm_page_busy(m);
1482			vm_page_unlock_queues();
1483			return m;
1484		}
1485	}
1486
1487	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1488	if (m == NULL) {
1489		VM_WAIT;
1490		if ((allocflags & VM_ALLOC_RETRY) == 0)
1491			return NULL;
1492		goto retrylookup;
1493	}
1494
1495	return m;
1496}
1497
1498/*
1499 * Mapping function for valid bits or for dirty bits in
1500 * a page.  May not block.
1501 *
1502 * Inputs are required to range within a page.
1503 */
1504__inline int
1505vm_page_bits(int base, int size)
1506{
1507	int first_bit;
1508	int last_bit;
1509
1510	KASSERT(
1511	    base + size <= PAGE_SIZE,
1512	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1513	);
1514
1515	if (size == 0)		/* handle degenerate case */
1516		return (0);
1517
1518	first_bit = base >> DEV_BSHIFT;
1519	last_bit = (base + size - 1) >> DEV_BSHIFT;
1520
1521	return ((2 << last_bit) - (1 << first_bit));
1522}
1523
1524/*
1525 *	vm_page_set_validclean:
1526 *
1527 *	Sets portions of a page valid and clean.  The arguments are expected
1528 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1529 *	of any partial chunks touched by the range.  The invalid portion of
1530 *	such chunks will be zero'd.
1531 *
1532 *	This routine may not block.
1533 *
1534 *	(base + size) must be less then or equal to PAGE_SIZE.
1535 */
1536void
1537vm_page_set_validclean(vm_page_t m, int base, int size)
1538{
1539	int pagebits;
1540	int frag;
1541	int endoff;
1542
1543	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1544	if (size == 0)	/* handle degenerate case */
1545		return;
1546
1547	/*
1548	 * If the base is not DEV_BSIZE aligned and the valid
1549	 * bit is clear, we have to zero out a portion of the
1550	 * first block.
1551	 */
1552	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1553	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1554		pmap_zero_page_area(m, frag, base - frag);
1555
1556	/*
1557	 * If the ending offset is not DEV_BSIZE aligned and the
1558	 * valid bit is clear, we have to zero out a portion of
1559	 * the last block.
1560	 */
1561	endoff = base + size;
1562	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1563	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1564		pmap_zero_page_area(m, endoff,
1565		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1566
1567	/*
1568	 * Set valid, clear dirty bits.  If validating the entire
1569	 * page we can safely clear the pmap modify bit.  We also
1570	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1571	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1572	 * be set again.
1573	 *
1574	 * We set valid bits inclusive of any overlap, but we can only
1575	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1576	 * the range.
1577	 */
1578	pagebits = vm_page_bits(base, size);
1579	m->valid |= pagebits;
1580#if 0	/* NOT YET */
1581	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1582		frag = DEV_BSIZE - frag;
1583		base += frag;
1584		size -= frag;
1585		if (size < 0)
1586			size = 0;
1587	}
1588	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1589#endif
1590	m->dirty &= ~pagebits;
1591	if (base == 0 && size == PAGE_SIZE) {
1592		pmap_clear_modify(m);
1593		vm_page_flag_clear(m, PG_NOSYNC);
1594	}
1595}
1596
1597#if 0
1598
1599void
1600vm_page_set_dirty(vm_page_t m, int base, int size)
1601{
1602	m->dirty |= vm_page_bits(base, size);
1603}
1604
1605#endif
1606
1607void
1608vm_page_clear_dirty(vm_page_t m, int base, int size)
1609{
1610	GIANT_REQUIRED;
1611	m->dirty &= ~vm_page_bits(base, size);
1612}
1613
1614/*
1615 *	vm_page_set_invalid:
1616 *
1617 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1618 *	valid and dirty bits for the effected areas are cleared.
1619 *
1620 *	May not block.
1621 */
1622void
1623vm_page_set_invalid(vm_page_t m, int base, int size)
1624{
1625	int bits;
1626
1627	GIANT_REQUIRED;
1628	bits = vm_page_bits(base, size);
1629	m->valid &= ~bits;
1630	m->dirty &= ~bits;
1631	m->object->generation++;
1632}
1633
1634/*
1635 * vm_page_zero_invalid()
1636 *
1637 *	The kernel assumes that the invalid portions of a page contain
1638 *	garbage, but such pages can be mapped into memory by user code.
1639 *	When this occurs, we must zero out the non-valid portions of the
1640 *	page so user code sees what it expects.
1641 *
1642 *	Pages are most often semi-valid when the end of a file is mapped
1643 *	into memory and the file's size is not page aligned.
1644 */
1645void
1646vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1647{
1648	int b;
1649	int i;
1650
1651	/*
1652	 * Scan the valid bits looking for invalid sections that
1653	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1654	 * valid bit may be set ) have already been zerod by
1655	 * vm_page_set_validclean().
1656	 */
1657	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1658		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1659		    (m->valid & (1 << i))
1660		) {
1661			if (i > b) {
1662				pmap_zero_page_area(m,
1663				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1664			}
1665			b = i + 1;
1666		}
1667	}
1668
1669	/*
1670	 * setvalid is TRUE when we can safely set the zero'd areas
1671	 * as being valid.  We can do this if there are no cache consistancy
1672	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1673	 */
1674	if (setvalid)
1675		m->valid = VM_PAGE_BITS_ALL;
1676}
1677
1678/*
1679 *	vm_page_is_valid:
1680 *
1681 *	Is (partial) page valid?  Note that the case where size == 0
1682 *	will return FALSE in the degenerate case where the page is
1683 *	entirely invalid, and TRUE otherwise.
1684 *
1685 *	May not block.
1686 */
1687int
1688vm_page_is_valid(vm_page_t m, int base, int size)
1689{
1690	int bits = vm_page_bits(base, size);
1691
1692	if (m->valid && ((m->valid & bits) == bits))
1693		return 1;
1694	else
1695		return 0;
1696}
1697
1698/*
1699 * update dirty bits from pmap/mmu.  May not block.
1700 */
1701void
1702vm_page_test_dirty(vm_page_t m)
1703{
1704	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1705		vm_page_dirty(m);
1706	}
1707}
1708
1709int so_zerocp_fullpage = 0;
1710
1711void
1712vm_page_cowfault(vm_page_t m)
1713{
1714	vm_page_t mnew;
1715	vm_object_t object;
1716	vm_pindex_t pindex;
1717
1718	object = m->object;
1719	pindex = m->pindex;
1720	vm_page_busy(m);
1721
1722 retry_alloc:
1723	vm_page_remove(m);
1724	/*
1725	 * An interrupt allocation is requested because the page
1726	 * queues lock is held.
1727	 */
1728	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1729	if (mnew == NULL) {
1730		vm_page_insert(m, object, pindex);
1731		vm_page_unlock_queues();
1732		VM_WAIT;
1733		vm_page_lock_queues();
1734		goto retry_alloc;
1735	}
1736
1737	if (m->cow == 0) {
1738		/*
1739		 * check to see if we raced with an xmit complete when
1740		 * waiting to allocate a page.  If so, put things back
1741		 * the way they were
1742		 */
1743		vm_page_busy(mnew);
1744		vm_page_free(mnew);
1745		vm_page_insert(m, object, pindex);
1746	} else { /* clear COW & copy page */
1747		if (so_zerocp_fullpage) {
1748			mnew->valid = VM_PAGE_BITS_ALL;
1749		} else {
1750			vm_page_copy(m, mnew);
1751		}
1752		vm_page_dirty(mnew);
1753		vm_page_flag_clear(mnew, PG_BUSY);
1754	}
1755}
1756
1757void
1758vm_page_cowclear(vm_page_t m)
1759{
1760
1761	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1762	if (m->cow) {
1763		m->cow--;
1764		/*
1765		 * let vm_fault add back write permission  lazily
1766		 */
1767	}
1768	/*
1769	 *  sf_buf_free() will free the page, so we needn't do it here
1770	 */
1771}
1772
1773void
1774vm_page_cowsetup(vm_page_t m)
1775{
1776
1777	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1778	m->cow++;
1779	pmap_page_protect(m, VM_PROT_READ);
1780}
1781
1782#include "opt_ddb.h"
1783#ifdef DDB
1784#include <sys/kernel.h>
1785
1786#include <ddb/ddb.h>
1787
1788DB_SHOW_COMMAND(page, vm_page_print_page_info)
1789{
1790	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1791	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1792	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1793	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1794	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1795	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1796	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1797	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1798	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1799	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1800}
1801
1802DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1803{
1804	int i;
1805	db_printf("PQ_FREE:");
1806	for (i = 0; i < PQ_L2_SIZE; i++) {
1807		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1808	}
1809	db_printf("\n");
1810
1811	db_printf("PQ_CACHE:");
1812	for (i = 0; i < PQ_L2_SIZE; i++) {
1813		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1814	}
1815	db_printf("\n");
1816
1817	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1818		vm_page_queues[PQ_ACTIVE].lcnt,
1819		vm_page_queues[PQ_INACTIVE].lcnt);
1820}
1821#endif /* DDB */
1822