vm_page.c revision 105549
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 105549 2002-10-20 19:57:55Z alc $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *			GENERAL RULES ON VM_PAGE MANIPULATION
69 *
70 *	- a pageq mutex is required when adding or removing a page from a
71 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72 *	  busy state of a page.
73 *
74 *	- a hash chain mutex is required when associating or disassociating
75 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76 *	  regardless of other mutexes or the busy state of a page.
77 *
78 *	- either a hash chain mutex OR a busied page is required in order
79 *	  to modify the page flags.  A hash chain mutex must be obtained in
80 *	  order to busy a page.  A page's flags cannot be modified by a
81 *	  hash chain mutex if the page is marked busy.
82 *
83 *	- The object memq mutex is held when inserting or removing
84 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85 *	  is different from the object's main mutex.
86 *
87 *	Generally speaking, you have to be aware of side effects when running
88 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90 *	vm_page_cache(), vm_page_activate(), and a number of other routines
91 *	will release the hash chain mutex for you.  Intermediate manipulation
92 *	routines such as vm_page_flag_set() expect the hash chain to be held
93 *	on entry and the hash chain will remain held on return.
94 *
95 *	pageq scanning can only occur with the pageq in question locked.
96 *	We have a known bottleneck with the active queue, but the cache
97 *	and free queues are actually arrays already.
98 */
99
100/*
101 *	Resident memory management module.
102 */
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/lock.h>
107#include <sys/malloc.h>
108#include <sys/mutex.h>
109#include <sys/proc.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128static struct mtx vm_page_buckets_mtx;
129static struct vm_page **vm_page_buckets; /* Array of buckets */
130static int vm_page_bucket_count;	/* How big is array? */
131static int vm_page_hash_mask;		/* Mask for hash function */
132
133struct mtx vm_page_queue_mtx;
134struct mtx vm_page_queue_free_mtx;
135
136vm_page_t vm_page_array = 0;
137int vm_page_array_size = 0;
138long first_page = 0;
139int vm_page_zero_count = 0;
140
141/*
142 *	vm_set_page_size:
143 *
144 *	Sets the page size, perhaps based upon the memory
145 *	size.  Must be called before any use of page-size
146 *	dependent functions.
147 */
148void
149vm_set_page_size(void)
150{
151	if (cnt.v_page_size == 0)
152		cnt.v_page_size = PAGE_SIZE;
153	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
154		panic("vm_set_page_size: page size not a power of two");
155}
156
157/*
158 *	vm_page_startup:
159 *
160 *	Initializes the resident memory module.
161 *
162 *	Allocates memory for the page cells, and
163 *	for the object/offset-to-page hash table headers.
164 *	Each page cell is initialized and placed on the free list.
165 */
166vm_offset_t
167vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
168{
169	vm_offset_t mapped;
170	struct vm_page **bucket;
171	vm_size_t npages, page_range;
172	vm_offset_t new_end;
173	int i;
174	vm_offset_t pa;
175	int nblocks;
176	vm_offset_t last_pa;
177
178	/* the biggest memory array is the second group of pages */
179	vm_offset_t end;
180	vm_offset_t biggestone, biggestsize;
181
182	vm_offset_t total;
183	vm_size_t bootpages;
184
185	total = 0;
186	biggestsize = 0;
187	biggestone = 0;
188	nblocks = 0;
189	vaddr = round_page(vaddr);
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		phys_avail[i] = round_page(phys_avail[i]);
193		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
194	}
195
196	for (i = 0; phys_avail[i + 1]; i += 2) {
197		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
198
199		if (size > biggestsize) {
200			biggestone = i;
201			biggestsize = size;
202		}
203		++nblocks;
204		total += size;
205	}
206
207	end = phys_avail[biggestone+1];
208
209	/*
210	 * Initialize the locks.
211	 */
212	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
213	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
214	   MTX_SPIN);
215
216	/*
217	 * Initialize the queue headers for the free queue, the active queue
218	 * and the inactive queue.
219	 */
220	vm_pageq_init();
221
222	/*
223	 * Allocate memory for use when boot strapping the kernel memory allocator
224	 */
225	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226	new_end = end - bootpages;
227	new_end = trunc_page(new_end);
228	mapped = pmap_map(&vaddr, new_end, end,
229	    VM_PROT_READ | VM_PROT_WRITE);
230	bzero((caddr_t) mapped, end - new_end);
231	uma_startup((caddr_t)mapped);
232
233	end = new_end;
234
235	/*
236	 * Allocate (and initialize) the hash table buckets.
237	 *
238	 * The number of buckets MUST BE a power of 2, and the actual value is
239	 * the next power of 2 greater than the number of physical pages in
240	 * the system.
241	 *
242	 * We make the hash table approximately 2x the number of pages to
243	 * reduce the chain length.  This is about the same size using the
244	 * singly-linked list as the 1x hash table we were using before
245	 * using TAILQ but the chain length will be smaller.
246	 *
247	 * Note: This computation can be tweaked if desired.
248	 */
249	if (vm_page_bucket_count == 0) {
250		vm_page_bucket_count = 1;
251		while (vm_page_bucket_count < atop(total))
252			vm_page_bucket_count <<= 1;
253	}
254	vm_page_bucket_count <<= 1;
255	vm_page_hash_mask = vm_page_bucket_count - 1;
256
257	/*
258	 * Validate these addresses.
259	 */
260	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
261	new_end = trunc_page(new_end);
262	mapped = pmap_map(&vaddr, new_end, end,
263	    VM_PROT_READ | VM_PROT_WRITE);
264	bzero((caddr_t) mapped, end - new_end);
265
266	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
267	vm_page_buckets = (struct vm_page **)mapped;
268	bucket = vm_page_buckets;
269	for (i = 0; i < vm_page_bucket_count; i++) {
270		*bucket = NULL;
271		bucket++;
272	}
273
274	/*
275	 * Compute the number of pages of memory that will be available for
276	 * use (taking into account the overhead of a page structure per
277	 * page).
278	 */
279	first_page = phys_avail[0] / PAGE_SIZE;
280	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
281	npages = (total - (page_range * sizeof(struct vm_page)) -
282	    (end - new_end)) / PAGE_SIZE;
283	end = new_end;
284
285	/*
286	 * Initialize the mem entry structures now, and put them in the free
287	 * queue.
288	 */
289	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
290	mapped = pmap_map(&vaddr, new_end, end,
291	    VM_PROT_READ | VM_PROT_WRITE);
292	vm_page_array = (vm_page_t) mapped;
293
294	/*
295	 * Clear all of the page structures
296	 */
297	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
298	vm_page_array_size = page_range;
299
300	/*
301	 * Construct the free queue(s) in descending order (by physical
302	 * address) so that the first 16MB of physical memory is allocated
303	 * last rather than first.  On large-memory machines, this avoids
304	 * the exhaustion of low physical memory before isa_dmainit has run.
305	 */
306	cnt.v_page_count = 0;
307	cnt.v_free_count = 0;
308	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
309		pa = phys_avail[i];
310		if (i == biggestone)
311			last_pa = new_end;
312		else
313			last_pa = phys_avail[i + 1];
314		while (pa < last_pa && npages-- > 0) {
315			vm_pageq_add_new_page(pa);
316			pa += PAGE_SIZE;
317		}
318	}
319	return (vaddr);
320}
321
322void
323vm_page_flag_set(vm_page_t m, unsigned short bits)
324{
325	GIANT_REQUIRED;
326	m->flags |= bits;
327}
328
329void
330vm_page_flag_clear(vm_page_t m, unsigned short bits)
331{
332	GIANT_REQUIRED;
333	m->flags &= ~bits;
334}
335
336void
337vm_page_busy(vm_page_t m)
338{
339	KASSERT((m->flags & PG_BUSY) == 0,
340	    ("vm_page_busy: page already busy!!!"));
341	vm_page_flag_set(m, PG_BUSY);
342}
343
344/*
345 *      vm_page_flash:
346 *
347 *      wakeup anyone waiting for the page.
348 */
349void
350vm_page_flash(vm_page_t m)
351{
352	if (m->flags & PG_WANTED) {
353		vm_page_flag_clear(m, PG_WANTED);
354		wakeup(m);
355	}
356}
357
358/*
359 *      vm_page_wakeup:
360 *
361 *      clear the PG_BUSY flag and wakeup anyone waiting for the
362 *      page.
363 *
364 */
365void
366vm_page_wakeup(vm_page_t m)
367{
368	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
369	vm_page_flag_clear(m, PG_BUSY);
370	vm_page_flash(m);
371}
372
373/*
374 *
375 *
376 */
377void
378vm_page_io_start(vm_page_t m)
379{
380
381	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
382	m->busy++;
383}
384
385void
386vm_page_io_finish(vm_page_t m)
387{
388
389	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
390	m->busy--;
391	if (m->busy == 0)
392		vm_page_flash(m);
393}
394
395/*
396 * Keep page from being freed by the page daemon
397 * much of the same effect as wiring, except much lower
398 * overhead and should be used only for *very* temporary
399 * holding ("wiring").
400 */
401void
402vm_page_hold(vm_page_t mem)
403{
404        GIANT_REQUIRED;
405        mem->hold_count++;
406}
407
408void
409vm_page_unhold(vm_page_t mem)
410{
411	GIANT_REQUIRED;
412	--mem->hold_count;
413	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
414	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
415		vm_page_free_toq(mem);
416}
417
418/*
419 *	vm_page_protect:
420 *
421 *	Reduce the protection of a page.  This routine never raises the
422 *	protection and therefore can be safely called if the page is already
423 *	at VM_PROT_NONE (it will be a NOP effectively ).
424 */
425void
426vm_page_protect(vm_page_t mem, int prot)
427{
428	if (prot == VM_PROT_NONE) {
429		if (pmap_page_is_mapped(mem) || (mem->flags & PG_WRITEABLE)) {
430			pmap_page_protect(mem, VM_PROT_NONE);
431			vm_page_flag_clear(mem, PG_WRITEABLE);
432		}
433	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
434		pmap_page_protect(mem, VM_PROT_READ);
435		vm_page_flag_clear(mem, PG_WRITEABLE);
436	}
437}
438
439/*
440 *	vm_page_copy:
441 *
442 *	Copy one page to another
443 */
444void
445vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
446{
447	pmap_copy_page(src_m, dest_m);
448	dest_m->valid = VM_PAGE_BITS_ALL;
449}
450
451/*
452 *	vm_page_free:
453 *
454 *	Free a page
455 *
456 *	The clearing of PG_ZERO is a temporary safety until the code can be
457 *	reviewed to determine that PG_ZERO is being properly cleared on
458 *	write faults or maps.  PG_ZERO was previously cleared in
459 *	vm_page_alloc().
460 */
461void
462vm_page_free(vm_page_t m)
463{
464	vm_page_flag_clear(m, PG_ZERO);
465	vm_page_free_toq(m);
466	vm_page_zero_idle_wakeup();
467}
468
469/*
470 *	vm_page_free_zero:
471 *
472 *	Free a page to the zerod-pages queue
473 */
474void
475vm_page_free_zero(vm_page_t m)
476{
477	vm_page_flag_set(m, PG_ZERO);
478	vm_page_free_toq(m);
479}
480
481/*
482 *	vm_page_sleep_busy:
483 *
484 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
485 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
486 *	it almost had to sleep and made temporary spl*() mods), FALSE
487 *	otherwise.
488 *
489 *	This routine assumes that interrupts can only remove the busy
490 *	status from a page, not set the busy status or change it from
491 *	PG_BUSY to m->busy or vise versa (which would create a timing
492 *	window).
493 */
494int
495vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
496{
497	GIANT_REQUIRED;
498	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
499		int s = splvm();
500		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
501			/*
502			 * Page is busy. Wait and retry.
503			 */
504			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
505			tsleep(m, PVM, msg, 0);
506		}
507		splx(s);
508		return (TRUE);
509		/* not reached */
510	}
511	return (FALSE);
512}
513
514/*
515 *	vm_page_sleep_if_busy:
516 *
517 *	Sleep and release the page queues lock if PG_BUSY is set or,
518 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
519 *	thread slept and the page queues lock was released.
520 *	Otherwise, retains the page queues lock and returns FALSE.
521 */
522int
523vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
524{
525
526	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
527	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
528		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
529		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
530		return (TRUE);
531	}
532	return (FALSE);
533}
534
535/*
536 *	vm_page_dirty:
537 *
538 *	make page all dirty
539 */
540void
541vm_page_dirty(vm_page_t m)
542{
543	KASSERT(m->queue - m->pc != PQ_CACHE,
544	    ("vm_page_dirty: page in cache!"));
545	m->dirty = VM_PAGE_BITS_ALL;
546}
547
548/*
549 *	vm_page_splay:
550 *
551 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
552 *	the vm_page containing the given pindex.  If, however, that
553 *	pindex is not found in the vm_object, returns a vm_page that is
554 *	adjacent to the pindex, coming before or after it.
555 */
556static vm_page_t
557vm_page_splay(vm_pindex_t pindex, vm_page_t root)
558{
559	struct vm_page dummy;
560	vm_page_t lefttreemax, righttreemin, y;
561
562	if (root == NULL)
563		return (root);
564	lefttreemax = righttreemin = &dummy;
565	for (;; root = y) {
566		if (pindex < root->pindex) {
567			if ((y = root->left) == NULL)
568				break;
569			if (pindex < y->pindex) {
570				/* Rotate right. */
571				root->left = y->right;
572				y->right = root;
573				root = y;
574				if ((y = root->left) == NULL)
575					break;
576			}
577			/* Link into the new root's right tree. */
578			righttreemin->left = root;
579			righttreemin = root;
580		} else if (pindex > root->pindex) {
581			if ((y = root->right) == NULL)
582				break;
583			if (pindex > y->pindex) {
584				/* Rotate left. */
585				root->right = y->left;
586				y->left = root;
587				root = y;
588				if ((y = root->right) == NULL)
589					break;
590			}
591			/* Link into the new root's left tree. */
592			lefttreemax->right = root;
593			lefttreemax = root;
594		} else
595			break;
596	}
597	/* Assemble the new root. */
598	lefttreemax->right = root->left;
599	righttreemin->left = root->right;
600	root->left = dummy.right;
601	root->right = dummy.left;
602	return (root);
603}
604
605/*
606 *	vm_page_insert:		[ internal use only ]
607 *
608 *	Inserts the given mem entry into the object and object list.
609 *
610 *	The pagetables are not updated but will presumably fault the page
611 *	in if necessary, or if a kernel page the caller will at some point
612 *	enter the page into the kernel's pmap.  We are not allowed to block
613 *	here so we *can't* do this anyway.
614 *
615 *	The object and page must be locked, and must be splhigh.
616 *	This routine may not block.
617 */
618void
619vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
620{
621	vm_page_t root;
622
623	GIANT_REQUIRED;
624
625	if (m->object != NULL)
626		panic("vm_page_insert: already inserted");
627
628	/*
629	 * Record the object/offset pair in this page
630	 */
631	m->object = object;
632	m->pindex = pindex;
633
634	/*
635	 * Now link into the object's ordered list of backed pages.
636	 */
637	root = vm_page_splay(pindex, object->root);
638	if (root == NULL) {
639		m->left = NULL;
640		m->right = NULL;
641		TAILQ_INSERT_TAIL(&object->memq, m, listq);
642	} else if (pindex < root->pindex) {
643		m->left = root->left;
644		m->right = root;
645		root->left = NULL;
646		TAILQ_INSERT_BEFORE(root, m, listq);
647	} else {
648		m->right = root->right;
649		m->left = root;
650		root->right = NULL;
651		TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
652	}
653	object->root = m;
654	object->generation++;
655
656	/*
657	 * show that the object has one more resident page.
658	 */
659	object->resident_page_count++;
660
661	/*
662	 * Since we are inserting a new and possibly dirty page,
663	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
664	 */
665	if (m->flags & PG_WRITEABLE)
666		vm_object_set_writeable_dirty(object);
667}
668
669/*
670 *	vm_page_remove:
671 *				NOTE: used by device pager as well -wfj
672 *
673 *	Removes the given mem entry from the object/offset-page
674 *	table and the object page list, but do not invalidate/terminate
675 *	the backing store.
676 *
677 *	The object and page must be locked, and at splhigh.
678 *	The underlying pmap entry (if any) is NOT removed here.
679 *	This routine may not block.
680 */
681void
682vm_page_remove(vm_page_t m)
683{
684	vm_object_t object;
685	vm_page_t root;
686
687	GIANT_REQUIRED;
688
689	if (m->object == NULL)
690		return;
691
692	if ((m->flags & PG_BUSY) == 0) {
693		panic("vm_page_remove: page not busy");
694	}
695
696	/*
697	 * Basically destroy the page.
698	 */
699	vm_page_wakeup(m);
700
701	object = m->object;
702
703	/*
704	 * Now remove from the object's list of backed pages.
705	 */
706	if (m != object->root)
707		vm_page_splay(m->pindex, object->root);
708	if (m->left == NULL)
709		root = m->right;
710	else {
711		root = vm_page_splay(m->pindex, m->left);
712		root->right = m->right;
713	}
714	object->root = root;
715	TAILQ_REMOVE(&object->memq, m, listq);
716
717	/*
718	 * And show that the object has one fewer resident page.
719	 */
720	object->resident_page_count--;
721	object->generation++;
722
723	m->object = NULL;
724}
725
726/*
727 *	vm_page_lookup:
728 *
729 *	Returns the page associated with the object/offset
730 *	pair specified; if none is found, NULL is returned.
731 *
732 *	The object must be locked.
733 *	This routine may not block.
734 *	This is a critical path routine
735 */
736vm_page_t
737vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
738{
739	vm_page_t m;
740
741	GIANT_REQUIRED;
742
743	m = vm_page_splay(pindex, object->root);
744	if ((object->root = m) != NULL && m->pindex != pindex)
745		m = NULL;
746	return (m);
747}
748
749/*
750 *	vm_page_rename:
751 *
752 *	Move the given memory entry from its
753 *	current object to the specified target object/offset.
754 *
755 *	The object must be locked.
756 *	This routine may not block.
757 *
758 *	Note: this routine will raise itself to splvm(), the caller need not.
759 *
760 *	Note: swap associated with the page must be invalidated by the move.  We
761 *	      have to do this for several reasons:  (1) we aren't freeing the
762 *	      page, (2) we are dirtying the page, (3) the VM system is probably
763 *	      moving the page from object A to B, and will then later move
764 *	      the backing store from A to B and we can't have a conflict.
765 *
766 *	Note: we *always* dirty the page.  It is necessary both for the
767 *	      fact that we moved it, and because we may be invalidating
768 *	      swap.  If the page is on the cache, we have to deactivate it
769 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
770 *	      on the cache.
771 */
772void
773vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
774{
775	int s;
776
777	s = splvm();
778	vm_page_lock_queues();
779	vm_page_remove(m);
780	vm_page_insert(m, new_object, new_pindex);
781	if (m->queue - m->pc == PQ_CACHE)
782		vm_page_deactivate(m);
783	vm_page_dirty(m);
784	vm_page_unlock_queues();
785	splx(s);
786}
787
788/*
789 *	vm_page_select_cache:
790 *
791 *	Find a page on the cache queue with color optimization.  As pages
792 *	might be found, but not applicable, they are deactivated.  This
793 *	keeps us from using potentially busy cached pages.
794 *
795 *	This routine must be called at splvm().
796 *	This routine may not block.
797 */
798static vm_page_t
799vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
800{
801	vm_page_t m;
802
803	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
804	while (TRUE) {
805		m = vm_pageq_find(
806		    PQ_CACHE,
807		    (pindex + object->pg_color) & PQ_L2_MASK,
808		    FALSE
809		);
810		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
811			       m->hold_count || m->wire_count)) {
812			vm_page_deactivate(m);
813			continue;
814		}
815		return m;
816	}
817}
818
819/*
820 *	vm_page_select_free:
821 *
822 *	Find a free or zero page, with specified preference.
823 *
824 *	This routine must be called at splvm().
825 *	This routine may not block.
826 */
827static __inline vm_page_t
828vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
829{
830	vm_page_t m;
831
832	m = vm_pageq_find(
833		PQ_FREE,
834		(pindex + object->pg_color) & PQ_L2_MASK,
835		prefer_zero
836	);
837	return (m);
838}
839
840/*
841 *	vm_page_alloc:
842 *
843 *	Allocate and return a memory cell associated
844 *	with this VM object/offset pair.
845 *
846 *	page_req classes:
847 *	VM_ALLOC_NORMAL		normal process request
848 *	VM_ALLOC_SYSTEM		system *really* needs a page
849 *	VM_ALLOC_INTERRUPT	interrupt time request
850 *	VM_ALLOC_ZERO		zero page
851 *
852 *	This routine may not block.
853 *
854 *	Additional special handling is required when called from an
855 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
856 *	the page cache in this case.
857 */
858vm_page_t
859vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
860{
861	vm_page_t m = NULL;
862	int page_req, s;
863
864	GIANT_REQUIRED;
865
866	KASSERT(!vm_page_lookup(object, pindex),
867		("vm_page_alloc: page already allocated"));
868
869	page_req = req & VM_ALLOC_CLASS_MASK;
870
871	/*
872	 * The pager is allowed to eat deeper into the free page list.
873	 */
874	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
875		page_req = VM_ALLOC_SYSTEM;
876	};
877
878	s = splvm();
879loop:
880	mtx_lock_spin(&vm_page_queue_free_mtx);
881	if (cnt.v_free_count > cnt.v_free_reserved) {
882		/*
883		 * Allocate from the free queue if there are plenty of pages
884		 * in it.
885		 */
886		m = vm_page_select_free(object, pindex,
887					(req & VM_ALLOC_ZERO) != 0);
888	} else if (
889	    (page_req == VM_ALLOC_SYSTEM &&
890	     cnt.v_cache_count == 0 &&
891	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
892	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
893	) {
894		/*
895		 * Interrupt or system, dig deeper into the free list.
896		 */
897		m = vm_page_select_free(object, pindex, FALSE);
898	} else if (page_req != VM_ALLOC_INTERRUPT) {
899		mtx_unlock_spin(&vm_page_queue_free_mtx);
900		/*
901		 * Allocatable from cache (non-interrupt only).  On success,
902		 * we must free the page and try again, thus ensuring that
903		 * cnt.v_*_free_min counters are replenished.
904		 */
905		vm_page_lock_queues();
906		if ((m = vm_page_select_cache(object, pindex)) == NULL) {
907			vm_page_unlock_queues();
908			splx(s);
909#if defined(DIAGNOSTIC)
910			if (cnt.v_cache_count > 0)
911				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
912#endif
913			vm_pageout_deficit++;
914			pagedaemon_wakeup();
915			return (NULL);
916		}
917		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
918		vm_page_busy(m);
919		vm_page_protect(m, VM_PROT_NONE);
920		vm_page_free(m);
921		vm_page_unlock_queues();
922		goto loop;
923	} else {
924		/*
925		 * Not allocatable from cache from interrupt, give up.
926		 */
927		mtx_unlock_spin(&vm_page_queue_free_mtx);
928		splx(s);
929		vm_pageout_deficit++;
930		pagedaemon_wakeup();
931		return (NULL);
932	}
933
934	/*
935	 *  At this point we had better have found a good page.
936	 */
937
938	KASSERT(
939	    m != NULL,
940	    ("vm_page_alloc(): missing page on free queue\n")
941	);
942
943	/*
944	 * Remove from free queue
945	 */
946
947	vm_pageq_remove_nowakeup(m);
948
949	/*
950	 * Initialize structure.  Only the PG_ZERO flag is inherited.
951	 */
952	if (m->flags & PG_ZERO) {
953		vm_page_zero_count--;
954		m->flags = PG_ZERO | PG_BUSY;
955	} else {
956		m->flags = PG_BUSY;
957	}
958	if (req & VM_ALLOC_WIRED) {
959		cnt.v_wire_count++;
960		m->wire_count = 1;
961	} else
962		m->wire_count = 0;
963	m->hold_count = 0;
964	m->act_count = 0;
965	m->busy = 0;
966	m->valid = 0;
967	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
968	mtx_unlock_spin(&vm_page_queue_free_mtx);
969
970	/*
971	 * vm_page_insert() is safe prior to the splx().  Note also that
972	 * inserting a page here does not insert it into the pmap (which
973	 * could cause us to block allocating memory).  We cannot block
974	 * anywhere.
975	 */
976	vm_page_insert(m, object, pindex);
977
978	/*
979	 * Don't wakeup too often - wakeup the pageout daemon when
980	 * we would be nearly out of memory.
981	 */
982	if (vm_paging_needed())
983		pagedaemon_wakeup();
984
985	splx(s);
986	return (m);
987}
988
989/*
990 *	vm_wait:	(also see VM_WAIT macro)
991 *
992 *	Block until free pages are available for allocation
993 *	- Called in various places before memory allocations.
994 */
995void
996vm_wait(void)
997{
998	int s;
999
1000	s = splvm();
1001	if (curproc == pageproc) {
1002		vm_pageout_pages_needed = 1;
1003		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
1004	} else {
1005		if (!vm_pages_needed) {
1006			vm_pages_needed = 1;
1007			wakeup(&vm_pages_needed);
1008		}
1009		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
1010	}
1011	splx(s);
1012}
1013
1014/*
1015 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1016 *
1017 *	Block until free pages are available for allocation
1018 *	- Called only in vm_fault so that processes page faulting
1019 *	  can be easily tracked.
1020 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1021 *	  processes will be able to grab memory first.  Do not change
1022 *	  this balance without careful testing first.
1023 */
1024void
1025vm_waitpfault(void)
1026{
1027	int s;
1028
1029	s = splvm();
1030	if (!vm_pages_needed) {
1031		vm_pages_needed = 1;
1032		wakeup(&vm_pages_needed);
1033	}
1034	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
1035	splx(s);
1036}
1037
1038/*
1039 *	vm_page_activate:
1040 *
1041 *	Put the specified page on the active list (if appropriate).
1042 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1043 *	mess with it.
1044 *
1045 *	The page queues must be locked.
1046 *	This routine may not block.
1047 */
1048void
1049vm_page_activate(vm_page_t m)
1050{
1051	int s;
1052
1053	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1054	s = splvm();
1055	if (m->queue != PQ_ACTIVE) {
1056		if ((m->queue - m->pc) == PQ_CACHE)
1057			cnt.v_reactivated++;
1058		vm_pageq_remove(m);
1059		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1060			if (m->act_count < ACT_INIT)
1061				m->act_count = ACT_INIT;
1062			vm_pageq_enqueue(PQ_ACTIVE, m);
1063		}
1064	} else {
1065		if (m->act_count < ACT_INIT)
1066			m->act_count = ACT_INIT;
1067	}
1068	splx(s);
1069}
1070
1071/*
1072 *	vm_page_free_wakeup:
1073 *
1074 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1075 *	routine is called when a page has been added to the cache or free
1076 *	queues.
1077 *
1078 *	This routine may not block.
1079 *	This routine must be called at splvm()
1080 */
1081static __inline void
1082vm_page_free_wakeup(void)
1083{
1084	/*
1085	 * if pageout daemon needs pages, then tell it that there are
1086	 * some free.
1087	 */
1088	if (vm_pageout_pages_needed &&
1089	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1090		wakeup(&vm_pageout_pages_needed);
1091		vm_pageout_pages_needed = 0;
1092	}
1093	/*
1094	 * wakeup processes that are waiting on memory if we hit a
1095	 * high water mark. And wakeup scheduler process if we have
1096	 * lots of memory. this process will swapin processes.
1097	 */
1098	if (vm_pages_needed && !vm_page_count_min()) {
1099		vm_pages_needed = 0;
1100		wakeup(&cnt.v_free_count);
1101	}
1102}
1103
1104/*
1105 *	vm_page_free_toq:
1106 *
1107 *	Returns the given page to the PQ_FREE list,
1108 *	disassociating it with any VM object.
1109 *
1110 *	Object and page must be locked prior to entry.
1111 *	This routine may not block.
1112 */
1113
1114void
1115vm_page_free_toq(vm_page_t m)
1116{
1117	int s;
1118	struct vpgqueues *pq;
1119	vm_object_t object = m->object;
1120
1121	GIANT_REQUIRED;
1122	s = splvm();
1123	cnt.v_tfree++;
1124
1125	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1126		printf(
1127		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1128		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1129		    m->hold_count);
1130		if ((m->queue - m->pc) == PQ_FREE)
1131			panic("vm_page_free: freeing free page");
1132		else
1133			panic("vm_page_free: freeing busy page");
1134	}
1135
1136	/*
1137	 * unqueue, then remove page.  Note that we cannot destroy
1138	 * the page here because we do not want to call the pager's
1139	 * callback routine until after we've put the page on the
1140	 * appropriate free queue.
1141	 */
1142	vm_pageq_remove_nowakeup(m);
1143	vm_page_remove(m);
1144
1145	/*
1146	 * If fictitious remove object association and
1147	 * return, otherwise delay object association removal.
1148	 */
1149	if ((m->flags & PG_FICTITIOUS) != 0) {
1150		splx(s);
1151		return;
1152	}
1153
1154	m->valid = 0;
1155	vm_page_undirty(m);
1156
1157	if (m->wire_count != 0) {
1158		if (m->wire_count > 1) {
1159			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1160				m->wire_count, (long)m->pindex);
1161		}
1162		panic("vm_page_free: freeing wired page\n");
1163	}
1164
1165	/*
1166	 * If we've exhausted the object's resident pages we want to free
1167	 * it up.
1168	 */
1169	if (object &&
1170	    (object->type == OBJT_VNODE) &&
1171	    ((object->flags & OBJ_DEAD) == 0)
1172	) {
1173		struct vnode *vp = (struct vnode *)object->handle;
1174
1175		if (vp) {
1176			VI_LOCK(vp);
1177			if (VSHOULDFREE(vp))
1178				vfree(vp);
1179			VI_UNLOCK(vp);
1180		}
1181	}
1182
1183	/*
1184	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1185	 */
1186	if (m->flags & PG_UNMANAGED) {
1187		m->flags &= ~PG_UNMANAGED;
1188	} else {
1189#ifdef __alpha__
1190		pmap_page_is_free(m);
1191#endif
1192	}
1193
1194	if (m->hold_count != 0) {
1195		m->flags &= ~PG_ZERO;
1196		m->queue = PQ_HOLD;
1197	} else
1198		m->queue = PQ_FREE + m->pc;
1199	pq = &vm_page_queues[m->queue];
1200	mtx_lock_spin(&vm_page_queue_free_mtx);
1201	pq->lcnt++;
1202	++(*pq->cnt);
1203
1204	/*
1205	 * Put zero'd pages on the end ( where we look for zero'd pages
1206	 * first ) and non-zerod pages at the head.
1207	 */
1208	if (m->flags & PG_ZERO) {
1209		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1210		++vm_page_zero_count;
1211	} else {
1212		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1213	}
1214	mtx_unlock_spin(&vm_page_queue_free_mtx);
1215	vm_page_free_wakeup();
1216	splx(s);
1217}
1218
1219/*
1220 *	vm_page_unmanage:
1221 *
1222 * 	Prevent PV management from being done on the page.  The page is
1223 *	removed from the paging queues as if it were wired, and as a
1224 *	consequence of no longer being managed the pageout daemon will not
1225 *	touch it (since there is no way to locate the pte mappings for the
1226 *	page).  madvise() calls that mess with the pmap will also no longer
1227 *	operate on the page.
1228 *
1229 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1230 *	will clear the flag.
1231 *
1232 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1233 *	physical memory as backing store rather then swap-backed memory and
1234 *	will eventually be extended to support 4MB unmanaged physical
1235 *	mappings.
1236 */
1237void
1238vm_page_unmanage(vm_page_t m)
1239{
1240	int s;
1241
1242	s = splvm();
1243	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1244	if ((m->flags & PG_UNMANAGED) == 0) {
1245		if (m->wire_count == 0)
1246			vm_pageq_remove(m);
1247	}
1248	vm_page_flag_set(m, PG_UNMANAGED);
1249	splx(s);
1250}
1251
1252/*
1253 *	vm_page_wire:
1254 *
1255 *	Mark this page as wired down by yet
1256 *	another map, removing it from paging queues
1257 *	as necessary.
1258 *
1259 *	The page queues must be locked.
1260 *	This routine may not block.
1261 */
1262void
1263vm_page_wire(vm_page_t m)
1264{
1265	int s;
1266
1267	/*
1268	 * Only bump the wire statistics if the page is not already wired,
1269	 * and only unqueue the page if it is on some queue (if it is unmanaged
1270	 * it is already off the queues).
1271	 */
1272	s = splvm();
1273	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1274	if (m->wire_count == 0) {
1275		if ((m->flags & PG_UNMANAGED) == 0)
1276			vm_pageq_remove(m);
1277		cnt.v_wire_count++;
1278	}
1279	m->wire_count++;
1280	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1281	splx(s);
1282}
1283
1284/*
1285 *	vm_page_unwire:
1286 *
1287 *	Release one wiring of this page, potentially
1288 *	enabling it to be paged again.
1289 *
1290 *	Many pages placed on the inactive queue should actually go
1291 *	into the cache, but it is difficult to figure out which.  What
1292 *	we do instead, if the inactive target is well met, is to put
1293 *	clean pages at the head of the inactive queue instead of the tail.
1294 *	This will cause them to be moved to the cache more quickly and
1295 *	if not actively re-referenced, freed more quickly.  If we just
1296 *	stick these pages at the end of the inactive queue, heavy filesystem
1297 *	meta-data accesses can cause an unnecessary paging load on memory bound
1298 *	processes.  This optimization causes one-time-use metadata to be
1299 *	reused more quickly.
1300 *
1301 *	BUT, if we are in a low-memory situation we have no choice but to
1302 *	put clean pages on the cache queue.
1303 *
1304 *	A number of routines use vm_page_unwire() to guarantee that the page
1305 *	will go into either the inactive or active queues, and will NEVER
1306 *	be placed in the cache - for example, just after dirtying a page.
1307 *	dirty pages in the cache are not allowed.
1308 *
1309 *	The page queues must be locked.
1310 *	This routine may not block.
1311 */
1312void
1313vm_page_unwire(vm_page_t m, int activate)
1314{
1315	int s;
1316
1317	s = splvm();
1318	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1319	if (m->wire_count > 0) {
1320		m->wire_count--;
1321		if (m->wire_count == 0) {
1322			cnt.v_wire_count--;
1323			if (m->flags & PG_UNMANAGED) {
1324				;
1325			} else if (activate)
1326				vm_pageq_enqueue(PQ_ACTIVE, m);
1327			else {
1328				vm_page_flag_clear(m, PG_WINATCFLS);
1329				vm_pageq_enqueue(PQ_INACTIVE, m);
1330			}
1331		}
1332	} else {
1333		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1334	}
1335	splx(s);
1336}
1337
1338
1339/*
1340 * Move the specified page to the inactive queue.  If the page has
1341 * any associated swap, the swap is deallocated.
1342 *
1343 * Normally athead is 0 resulting in LRU operation.  athead is set
1344 * to 1 if we want this page to be 'as if it were placed in the cache',
1345 * except without unmapping it from the process address space.
1346 *
1347 * This routine may not block.
1348 */
1349static __inline void
1350_vm_page_deactivate(vm_page_t m, int athead)
1351{
1352	int s;
1353
1354	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1355	/*
1356	 * Ignore if already inactive.
1357	 */
1358	if (m->queue == PQ_INACTIVE)
1359		return;
1360
1361	s = splvm();
1362	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1363		if ((m->queue - m->pc) == PQ_CACHE)
1364			cnt.v_reactivated++;
1365		vm_page_flag_clear(m, PG_WINATCFLS);
1366		vm_pageq_remove(m);
1367		if (athead)
1368			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1369		else
1370			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1371		m->queue = PQ_INACTIVE;
1372		vm_page_queues[PQ_INACTIVE].lcnt++;
1373		cnt.v_inactive_count++;
1374	}
1375	splx(s);
1376}
1377
1378void
1379vm_page_deactivate(vm_page_t m)
1380{
1381    _vm_page_deactivate(m, 0);
1382}
1383
1384/*
1385 * vm_page_try_to_cache:
1386 *
1387 * Returns 0 on failure, 1 on success
1388 */
1389int
1390vm_page_try_to_cache(vm_page_t m)
1391{
1392
1393	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1394	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1395	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1396		return (0);
1397	}
1398	vm_page_test_dirty(m);
1399	if (m->dirty)
1400		return (0);
1401	vm_page_cache(m);
1402	return (1);
1403}
1404
1405/*
1406 * vm_page_try_to_free()
1407 *
1408 *	Attempt to free the page.  If we cannot free it, we do nothing.
1409 *	1 is returned on success, 0 on failure.
1410 */
1411int
1412vm_page_try_to_free(vm_page_t m)
1413{
1414
1415	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1416	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1417	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1418		return (0);
1419	}
1420	vm_page_test_dirty(m);
1421	if (m->dirty)
1422		return (0);
1423	vm_page_busy(m);
1424	vm_page_protect(m, VM_PROT_NONE);
1425	vm_page_free(m);
1426	return (1);
1427}
1428
1429/*
1430 * vm_page_cache
1431 *
1432 * Put the specified page onto the page cache queue (if appropriate).
1433 *
1434 * This routine may not block.
1435 */
1436void
1437vm_page_cache(vm_page_t m)
1438{
1439	int s;
1440
1441	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1442	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1443		printf("vm_page_cache: attempting to cache busy page\n");
1444		return;
1445	}
1446	if ((m->queue - m->pc) == PQ_CACHE)
1447		return;
1448
1449	/*
1450	 * Remove all pmaps and indicate that the page is not
1451	 * writeable or mapped.
1452	 */
1453	vm_page_protect(m, VM_PROT_NONE);
1454	if (m->dirty != 0) {
1455		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1456			(long)m->pindex);
1457	}
1458	s = splvm();
1459	vm_pageq_remove_nowakeup(m);
1460	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1461	vm_page_free_wakeup();
1462	splx(s);
1463}
1464
1465/*
1466 * vm_page_dontneed
1467 *
1468 *	Cache, deactivate, or do nothing as appropriate.  This routine
1469 *	is typically used by madvise() MADV_DONTNEED.
1470 *
1471 *	Generally speaking we want to move the page into the cache so
1472 *	it gets reused quickly.  However, this can result in a silly syndrome
1473 *	due to the page recycling too quickly.  Small objects will not be
1474 *	fully cached.  On the otherhand, if we move the page to the inactive
1475 *	queue we wind up with a problem whereby very large objects
1476 *	unnecessarily blow away our inactive and cache queues.
1477 *
1478 *	The solution is to move the pages based on a fixed weighting.  We
1479 *	either leave them alone, deactivate them, or move them to the cache,
1480 *	where moving them to the cache has the highest weighting.
1481 *	By forcing some pages into other queues we eventually force the
1482 *	system to balance the queues, potentially recovering other unrelated
1483 *	space from active.  The idea is to not force this to happen too
1484 *	often.
1485 */
1486void
1487vm_page_dontneed(vm_page_t m)
1488{
1489	static int dnweight;
1490	int dnw;
1491	int head;
1492
1493	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1494	dnw = ++dnweight;
1495
1496	/*
1497	 * occassionally leave the page alone
1498	 */
1499	if ((dnw & 0x01F0) == 0 ||
1500	    m->queue == PQ_INACTIVE ||
1501	    m->queue - m->pc == PQ_CACHE
1502	) {
1503		if (m->act_count >= ACT_INIT)
1504			--m->act_count;
1505		return;
1506	}
1507
1508	if (m->dirty == 0)
1509		vm_page_test_dirty(m);
1510
1511	if (m->dirty || (dnw & 0x0070) == 0) {
1512		/*
1513		 * Deactivate the page 3 times out of 32.
1514		 */
1515		head = 0;
1516	} else {
1517		/*
1518		 * Cache the page 28 times out of every 32.  Note that
1519		 * the page is deactivated instead of cached, but placed
1520		 * at the head of the queue instead of the tail.
1521		 */
1522		head = 1;
1523	}
1524	_vm_page_deactivate(m, head);
1525}
1526
1527/*
1528 * Grab a page, waiting until we are waken up due to the page
1529 * changing state.  We keep on waiting, if the page continues
1530 * to be in the object.  If the page doesn't exist, allocate it.
1531 *
1532 * This routine may block.
1533 */
1534vm_page_t
1535vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1536{
1537	vm_page_t m;
1538	int s, generation;
1539
1540	GIANT_REQUIRED;
1541retrylookup:
1542	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1543		vm_page_lock_queues();
1544		if (m->busy || (m->flags & PG_BUSY)) {
1545			generation = object->generation;
1546
1547			s = splvm();
1548			while ((object->generation == generation) &&
1549					(m->busy || (m->flags & PG_BUSY))) {
1550				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1551				msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1552				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1553					vm_page_unlock_queues();
1554					splx(s);
1555					return NULL;
1556				}
1557			}
1558			vm_page_unlock_queues();
1559			splx(s);
1560			goto retrylookup;
1561		} else {
1562			if (allocflags & VM_ALLOC_WIRED)
1563				vm_page_wire(m);
1564			vm_page_busy(m);
1565			vm_page_unlock_queues();
1566			return m;
1567		}
1568	}
1569
1570	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1571	if (m == NULL) {
1572		VM_WAIT;
1573		if ((allocflags & VM_ALLOC_RETRY) == 0)
1574			return NULL;
1575		goto retrylookup;
1576	}
1577
1578	return m;
1579}
1580
1581/*
1582 * Mapping function for valid bits or for dirty bits in
1583 * a page.  May not block.
1584 *
1585 * Inputs are required to range within a page.
1586 */
1587__inline int
1588vm_page_bits(int base, int size)
1589{
1590	int first_bit;
1591	int last_bit;
1592
1593	KASSERT(
1594	    base + size <= PAGE_SIZE,
1595	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1596	);
1597
1598	if (size == 0)		/* handle degenerate case */
1599		return (0);
1600
1601	first_bit = base >> DEV_BSHIFT;
1602	last_bit = (base + size - 1) >> DEV_BSHIFT;
1603
1604	return ((2 << last_bit) - (1 << first_bit));
1605}
1606
1607/*
1608 *	vm_page_set_validclean:
1609 *
1610 *	Sets portions of a page valid and clean.  The arguments are expected
1611 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1612 *	of any partial chunks touched by the range.  The invalid portion of
1613 *	such chunks will be zero'd.
1614 *
1615 *	This routine may not block.
1616 *
1617 *	(base + size) must be less then or equal to PAGE_SIZE.
1618 */
1619void
1620vm_page_set_validclean(vm_page_t m, int base, int size)
1621{
1622	int pagebits;
1623	int frag;
1624	int endoff;
1625
1626	GIANT_REQUIRED;
1627	if (size == 0)	/* handle degenerate case */
1628		return;
1629
1630	/*
1631	 * If the base is not DEV_BSIZE aligned and the valid
1632	 * bit is clear, we have to zero out a portion of the
1633	 * first block.
1634	 */
1635	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1636	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1637		pmap_zero_page_area(m, frag, base - frag);
1638
1639	/*
1640	 * If the ending offset is not DEV_BSIZE aligned and the
1641	 * valid bit is clear, we have to zero out a portion of
1642	 * the last block.
1643	 */
1644	endoff = base + size;
1645	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1646	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1647		pmap_zero_page_area(m, endoff,
1648		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1649
1650	/*
1651	 * Set valid, clear dirty bits.  If validating the entire
1652	 * page we can safely clear the pmap modify bit.  We also
1653	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1654	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1655	 * be set again.
1656	 *
1657	 * We set valid bits inclusive of any overlap, but we can only
1658	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1659	 * the range.
1660	 */
1661	pagebits = vm_page_bits(base, size);
1662	m->valid |= pagebits;
1663#if 0	/* NOT YET */
1664	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1665		frag = DEV_BSIZE - frag;
1666		base += frag;
1667		size -= frag;
1668		if (size < 0)
1669			size = 0;
1670	}
1671	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1672#endif
1673	m->dirty &= ~pagebits;
1674	if (base == 0 && size == PAGE_SIZE) {
1675		pmap_clear_modify(m);
1676		vm_page_flag_clear(m, PG_NOSYNC);
1677	}
1678}
1679
1680#if 0
1681
1682void
1683vm_page_set_dirty(vm_page_t m, int base, int size)
1684{
1685	m->dirty |= vm_page_bits(base, size);
1686}
1687
1688#endif
1689
1690void
1691vm_page_clear_dirty(vm_page_t m, int base, int size)
1692{
1693	GIANT_REQUIRED;
1694	m->dirty &= ~vm_page_bits(base, size);
1695}
1696
1697/*
1698 *	vm_page_set_invalid:
1699 *
1700 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1701 *	valid and dirty bits for the effected areas are cleared.
1702 *
1703 *	May not block.
1704 */
1705void
1706vm_page_set_invalid(vm_page_t m, int base, int size)
1707{
1708	int bits;
1709
1710	GIANT_REQUIRED;
1711	bits = vm_page_bits(base, size);
1712	m->valid &= ~bits;
1713	m->dirty &= ~bits;
1714	m->object->generation++;
1715}
1716
1717/*
1718 * vm_page_zero_invalid()
1719 *
1720 *	The kernel assumes that the invalid portions of a page contain
1721 *	garbage, but such pages can be mapped into memory by user code.
1722 *	When this occurs, we must zero out the non-valid portions of the
1723 *	page so user code sees what it expects.
1724 *
1725 *	Pages are most often semi-valid when the end of a file is mapped
1726 *	into memory and the file's size is not page aligned.
1727 */
1728void
1729vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1730{
1731	int b;
1732	int i;
1733
1734	/*
1735	 * Scan the valid bits looking for invalid sections that
1736	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1737	 * valid bit may be set ) have already been zerod by
1738	 * vm_page_set_validclean().
1739	 */
1740	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1741		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1742		    (m->valid & (1 << i))
1743		) {
1744			if (i > b) {
1745				pmap_zero_page_area(m,
1746				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1747			}
1748			b = i + 1;
1749		}
1750	}
1751
1752	/*
1753	 * setvalid is TRUE when we can safely set the zero'd areas
1754	 * as being valid.  We can do this if there are no cache consistancy
1755	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1756	 */
1757	if (setvalid)
1758		m->valid = VM_PAGE_BITS_ALL;
1759}
1760
1761/*
1762 *	vm_page_is_valid:
1763 *
1764 *	Is (partial) page valid?  Note that the case where size == 0
1765 *	will return FALSE in the degenerate case where the page is
1766 *	entirely invalid, and TRUE otherwise.
1767 *
1768 *	May not block.
1769 */
1770int
1771vm_page_is_valid(vm_page_t m, int base, int size)
1772{
1773	int bits = vm_page_bits(base, size);
1774
1775	if (m->valid && ((m->valid & bits) == bits))
1776		return 1;
1777	else
1778		return 0;
1779}
1780
1781/*
1782 * update dirty bits from pmap/mmu.  May not block.
1783 */
1784void
1785vm_page_test_dirty(vm_page_t m)
1786{
1787	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1788		vm_page_dirty(m);
1789	}
1790}
1791
1792int so_zerocp_fullpage = 0;
1793
1794void
1795vm_page_cowfault(vm_page_t m)
1796{
1797	vm_page_t mnew;
1798	vm_object_t object;
1799	vm_pindex_t pindex;
1800
1801	object = m->object;
1802	pindex = m->pindex;
1803	vm_page_busy(m);
1804
1805 retry_alloc:
1806	vm_page_remove(m);
1807	/*
1808	 * An interrupt allocation is requested because the page
1809	 * queues lock is held.
1810	 */
1811	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1812	if (mnew == NULL) {
1813		vm_page_insert(m, object, pindex);
1814		vm_page_unlock_queues();
1815		VM_WAIT;
1816		vm_page_lock_queues();
1817		goto retry_alloc;
1818	}
1819
1820	if (m->cow == 0) {
1821		/*
1822		 * check to see if we raced with an xmit complete when
1823		 * waiting to allocate a page.  If so, put things back
1824		 * the way they were
1825		 */
1826		vm_page_busy(mnew);
1827		vm_page_free(mnew);
1828		vm_page_insert(m, object, pindex);
1829	} else { /* clear COW & copy page */
1830		if (so_zerocp_fullpage) {
1831			mnew->valid = VM_PAGE_BITS_ALL;
1832		} else {
1833			vm_page_copy(m, mnew);
1834		}
1835		vm_page_dirty(mnew);
1836		vm_page_flag_clear(mnew, PG_BUSY);
1837	}
1838}
1839
1840void
1841vm_page_cowclear(vm_page_t m)
1842{
1843
1844	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1845	if (m->cow) {
1846		m->cow--;
1847		/*
1848		 * let vm_fault add back write permission  lazily
1849		 */
1850	}
1851	/*
1852	 *  sf_buf_free() will free the page, so we needn't do it here
1853	 */
1854}
1855
1856void
1857vm_page_cowsetup(vm_page_t m)
1858{
1859
1860	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1861	m->cow++;
1862	vm_page_protect(m, VM_PROT_READ);
1863}
1864
1865#include "opt_ddb.h"
1866#ifdef DDB
1867#include <sys/kernel.h>
1868
1869#include <ddb/ddb.h>
1870
1871DB_SHOW_COMMAND(page, vm_page_print_page_info)
1872{
1873	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1874	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1875	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1876	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1877	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1878	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1879	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1880	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1881	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1882	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1883}
1884
1885DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1886{
1887	int i;
1888	db_printf("PQ_FREE:");
1889	for (i = 0; i < PQ_L2_SIZE; i++) {
1890		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1891	}
1892	db_printf("\n");
1893
1894	db_printf("PQ_CACHE:");
1895	for (i = 0; i < PQ_L2_SIZE; i++) {
1896		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1897	}
1898	db_printf("\n");
1899
1900	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1901		vm_page_queues[PQ_ACTIVE].lcnt,
1902		vm_page_queues[PQ_INACTIVE].lcnt);
1903}
1904#endif /* DDB */
1905