vm_page.c revision 101174
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 101174 2002-08-01 17:57:42Z alc $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *			GENERAL RULES ON VM_PAGE MANIPULATION
69 *
70 *	- a pageq mutex is required when adding or removing a page from a
71 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72 *	  busy state of a page.
73 *
74 *	- a hash chain mutex is required when associating or disassociating
75 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76 *	  regardless of other mutexes or the busy state of a page.
77 *
78 *	- either a hash chain mutex OR a busied page is required in order
79 *	  to modify the page flags.  A hash chain mutex must be obtained in
80 *	  order to busy a page.  A page's flags cannot be modified by a
81 *	  hash chain mutex if the page is marked busy.
82 *
83 *	- The object memq mutex is held when inserting or removing
84 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85 *	  is different from the object's main mutex.
86 *
87 *	Generally speaking, you have to be aware of side effects when running
88 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90 *	vm_page_cache(), vm_page_activate(), and a number of other routines
91 *	will release the hash chain mutex for you.  Intermediate manipulation
92 *	routines such as vm_page_flag_set() expect the hash chain to be held
93 *	on entry and the hash chain will remain held on return.
94 *
95 *	pageq scanning can only occur with the pageq in question locked.
96 *	We have a known bottleneck with the active queue, but the cache
97 *	and free queues are actually arrays already.
98 */
99
100/*
101 *	Resident memory management module.
102 */
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/lock.h>
107#include <sys/malloc.h>
108#include <sys/mutex.h>
109#include <sys/proc.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128static struct mtx vm_page_buckets_mtx;
129static struct vm_page **vm_page_buckets; /* Array of buckets */
130static int vm_page_bucket_count;	/* How big is array? */
131static int vm_page_hash_mask;		/* Mask for hash function */
132
133struct mtx vm_page_queue_mtx;
134struct mtx vm_page_queue_free_mtx;
135
136vm_page_t vm_page_array = 0;
137int vm_page_array_size = 0;
138long first_page = 0;
139int vm_page_zero_count = 0;
140
141/*
142 *	vm_set_page_size:
143 *
144 *	Sets the page size, perhaps based upon the memory
145 *	size.  Must be called before any use of page-size
146 *	dependent functions.
147 */
148void
149vm_set_page_size(void)
150{
151	if (cnt.v_page_size == 0)
152		cnt.v_page_size = PAGE_SIZE;
153	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
154		panic("vm_set_page_size: page size not a power of two");
155}
156
157/*
158 *	vm_page_startup:
159 *
160 *	Initializes the resident memory module.
161 *
162 *	Allocates memory for the page cells, and
163 *	for the object/offset-to-page hash table headers.
164 *	Each page cell is initialized and placed on the free list.
165 */
166vm_offset_t
167vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
168{
169	vm_offset_t mapped;
170	struct vm_page **bucket;
171	vm_size_t npages, page_range;
172	vm_offset_t new_end;
173	int i;
174	vm_offset_t pa;
175	int nblocks;
176	vm_offset_t last_pa;
177
178	/* the biggest memory array is the second group of pages */
179	vm_offset_t end;
180	vm_offset_t biggestone, biggestsize;
181
182	vm_offset_t total;
183	vm_size_t bootpages;
184
185	total = 0;
186	biggestsize = 0;
187	biggestone = 0;
188	nblocks = 0;
189	vaddr = round_page(vaddr);
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		phys_avail[i] = round_page(phys_avail[i]);
193		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
194	}
195
196	for (i = 0; phys_avail[i + 1]; i += 2) {
197		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
198
199		if (size > biggestsize) {
200			biggestone = i;
201			biggestsize = size;
202		}
203		++nblocks;
204		total += size;
205	}
206
207	end = phys_avail[biggestone+1];
208
209	/*
210	 * Initialize the locks.
211	 */
212	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
213	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
214	   MTX_SPIN);
215
216	/*
217	 * Initialize the queue headers for the free queue, the active queue
218	 * and the inactive queue.
219	 */
220	vm_pageq_init();
221
222	/*
223	 * Allocate memory for use when boot strapping the kernel memory allocator
224	 */
225	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226	new_end = end - bootpages;
227	new_end = trunc_page(new_end);
228	mapped = pmap_map(&vaddr, new_end, end,
229	    VM_PROT_READ | VM_PROT_WRITE);
230	bzero((caddr_t) mapped, end - new_end);
231	uma_startup((caddr_t)mapped);
232
233	end = new_end;
234
235	/*
236	 * Allocate (and initialize) the hash table buckets.
237	 *
238	 * The number of buckets MUST BE a power of 2, and the actual value is
239	 * the next power of 2 greater than the number of physical pages in
240	 * the system.
241	 *
242	 * We make the hash table approximately 2x the number of pages to
243	 * reduce the chain length.  This is about the same size using the
244	 * singly-linked list as the 1x hash table we were using before
245	 * using TAILQ but the chain length will be smaller.
246	 *
247	 * Note: This computation can be tweaked if desired.
248	 */
249	if (vm_page_bucket_count == 0) {
250		vm_page_bucket_count = 1;
251		while (vm_page_bucket_count < atop(total))
252			vm_page_bucket_count <<= 1;
253	}
254	vm_page_bucket_count <<= 1;
255	vm_page_hash_mask = vm_page_bucket_count - 1;
256
257	/*
258	 * Validate these addresses.
259	 */
260	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
261	new_end = trunc_page(new_end);
262	mapped = pmap_map(&vaddr, new_end, end,
263	    VM_PROT_READ | VM_PROT_WRITE);
264	bzero((caddr_t) mapped, end - new_end);
265
266	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
267	vm_page_buckets = (struct vm_page **)mapped;
268	bucket = vm_page_buckets;
269	for (i = 0; i < vm_page_bucket_count; i++) {
270		*bucket = NULL;
271		bucket++;
272	}
273
274	/*
275	 * Compute the number of pages of memory that will be available for
276	 * use (taking into account the overhead of a page structure per
277	 * page).
278	 */
279	first_page = phys_avail[0] / PAGE_SIZE;
280	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
281	npages = (total - (page_range * sizeof(struct vm_page)) -
282	    (end - new_end)) / PAGE_SIZE;
283	end = new_end;
284
285	/*
286	 * Initialize the mem entry structures now, and put them in the free
287	 * queue.
288	 */
289	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
290	mapped = pmap_map(&vaddr, new_end, end,
291	    VM_PROT_READ | VM_PROT_WRITE);
292	vm_page_array = (vm_page_t) mapped;
293
294	/*
295	 * Clear all of the page structures
296	 */
297	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
298	vm_page_array_size = page_range;
299
300	/*
301	 * Construct the free queue(s) in descending order (by physical
302	 * address) so that the first 16MB of physical memory is allocated
303	 * last rather than first.  On large-memory machines, this avoids
304	 * the exhaustion of low physical memory before isa_dmainit has run.
305	 */
306	cnt.v_page_count = 0;
307	cnt.v_free_count = 0;
308	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
309		pa = phys_avail[i];
310		if (i == biggestone)
311			last_pa = new_end;
312		else
313			last_pa = phys_avail[i + 1];
314		while (pa < last_pa && npages-- > 0) {
315			vm_pageq_add_new_page(pa);
316			pa += PAGE_SIZE;
317		}
318	}
319	return (vaddr);
320}
321
322/*
323 *	vm_page_hash:
324 *
325 *	Distributes the object/offset key pair among hash buckets.
326 *
327 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
328 *	This routine may not block.
329 *
330 *	We try to randomize the hash based on the object to spread the pages
331 *	out in the hash table without it costing us too much.
332 */
333static __inline int
334vm_page_hash(vm_object_t object, vm_pindex_t pindex)
335{
336	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
337
338	return (i & vm_page_hash_mask);
339}
340
341void
342vm_page_flag_set(vm_page_t m, unsigned short bits)
343{
344	GIANT_REQUIRED;
345	m->flags |= bits;
346}
347
348void
349vm_page_flag_clear(vm_page_t m, unsigned short bits)
350{
351	GIANT_REQUIRED;
352	m->flags &= ~bits;
353}
354
355void
356vm_page_busy(vm_page_t m)
357{
358	KASSERT((m->flags & PG_BUSY) == 0,
359	    ("vm_page_busy: page already busy!!!"));
360	vm_page_flag_set(m, PG_BUSY);
361}
362
363/*
364 *      vm_page_flash:
365 *
366 *      wakeup anyone waiting for the page.
367 */
368void
369vm_page_flash(vm_page_t m)
370{
371	if (m->flags & PG_WANTED) {
372		vm_page_flag_clear(m, PG_WANTED);
373		wakeup(m);
374	}
375}
376
377/*
378 *      vm_page_wakeup:
379 *
380 *      clear the PG_BUSY flag and wakeup anyone waiting for the
381 *      page.
382 *
383 */
384void
385vm_page_wakeup(vm_page_t m)
386{
387	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
388	vm_page_flag_clear(m, PG_BUSY);
389	vm_page_flash(m);
390}
391
392/*
393 *
394 *
395 */
396void
397vm_page_io_start(vm_page_t m)
398{
399
400	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
401	m->busy++;
402}
403
404void
405vm_page_io_finish(vm_page_t m)
406{
407
408	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
409	m->busy--;
410	if (m->busy == 0)
411		vm_page_flash(m);
412}
413
414/*
415 * Keep page from being freed by the page daemon
416 * much of the same effect as wiring, except much lower
417 * overhead and should be used only for *very* temporary
418 * holding ("wiring").
419 */
420void
421vm_page_hold(vm_page_t mem)
422{
423        GIANT_REQUIRED;
424        mem->hold_count++;
425}
426
427void
428vm_page_unhold(vm_page_t mem)
429{
430	GIANT_REQUIRED;
431	--mem->hold_count;
432	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
433	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
434		vm_page_free_toq(mem);
435}
436
437/*
438 *	vm_page_protect:
439 *
440 *	Reduce the protection of a page.  This routine never raises the
441 *	protection and therefore can be safely called if the page is already
442 *	at VM_PROT_NONE (it will be a NOP effectively ).
443 */
444void
445vm_page_protect(vm_page_t mem, int prot)
446{
447	if (prot == VM_PROT_NONE) {
448		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
449			pmap_page_protect(mem, VM_PROT_NONE);
450			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
451		}
452	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
453		pmap_page_protect(mem, VM_PROT_READ);
454		vm_page_flag_clear(mem, PG_WRITEABLE);
455	}
456}
457/*
458 *	vm_page_zero_fill:
459 *
460 *	Zero-fill the specified page.
461 *	Written as a standard pagein routine, to
462 *	be used by the zero-fill object.
463 */
464boolean_t
465vm_page_zero_fill(vm_page_t m)
466{
467	pmap_zero_page(m);
468	return (TRUE);
469}
470
471/*
472 *	vm_page_zero_fill_area:
473 *
474 *	Like vm_page_zero_fill but only fill the specified area.
475 */
476boolean_t
477vm_page_zero_fill_area(vm_page_t m, int off, int size)
478{
479	pmap_zero_page_area(m, off, size);
480	return (TRUE);
481}
482
483/*
484 *	vm_page_copy:
485 *
486 *	Copy one page to another
487 */
488void
489vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
490{
491	pmap_copy_page(src_m, dest_m);
492	dest_m->valid = VM_PAGE_BITS_ALL;
493}
494
495/*
496 *	vm_page_free:
497 *
498 *	Free a page
499 *
500 *	The clearing of PG_ZERO is a temporary safety until the code can be
501 *	reviewed to determine that PG_ZERO is being properly cleared on
502 *	write faults or maps.  PG_ZERO was previously cleared in
503 *	vm_page_alloc().
504 */
505void
506vm_page_free(vm_page_t m)
507{
508	vm_page_flag_clear(m, PG_ZERO);
509	vm_page_free_toq(m);
510	vm_page_zero_idle_wakeup();
511}
512
513/*
514 *	vm_page_free_zero:
515 *
516 *	Free a page to the zerod-pages queue
517 */
518void
519vm_page_free_zero(vm_page_t m)
520{
521	vm_page_flag_set(m, PG_ZERO);
522	vm_page_free_toq(m);
523}
524
525/*
526 *	vm_page_sleep_busy:
527 *
528 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
529 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
530 *	it almost had to sleep and made temporary spl*() mods), FALSE
531 *	otherwise.
532 *
533 *	This routine assumes that interrupts can only remove the busy
534 *	status from a page, not set the busy status or change it from
535 *	PG_BUSY to m->busy or vise versa (which would create a timing
536 *	window).
537 */
538int
539vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
540{
541	GIANT_REQUIRED;
542	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
543		int s = splvm();
544		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
545			/*
546			 * Page is busy. Wait and retry.
547			 */
548			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
549			tsleep(m, PVM, msg, 0);
550		}
551		splx(s);
552		return (TRUE);
553		/* not reached */
554	}
555	return (FALSE);
556}
557
558/*
559 *	vm_page_sleep_if_busy:
560 *
561 *	Sleep and release the page queues lock if PG_BUSY is set or,
562 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
563 *	thread slept and the page queues lock was released.
564 *	Otherwise, retains the page queues lock and returns FALSE.
565 */
566int
567vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
568{
569
570	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
571	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
572		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
573		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
574		return (TRUE);
575	}
576	return (FALSE);
577}
578
579/*
580 *	vm_page_dirty:
581 *
582 *	make page all dirty
583 */
584void
585vm_page_dirty(vm_page_t m)
586{
587	KASSERT(m->queue - m->pc != PQ_CACHE,
588	    ("vm_page_dirty: page in cache!"));
589	m->dirty = VM_PAGE_BITS_ALL;
590}
591
592/*
593 *	vm_page_undirty:
594 *
595 *	Set page to not be dirty.  Note: does not clear pmap modify bits
596 */
597void
598vm_page_undirty(vm_page_t m)
599{
600	m->dirty = 0;
601}
602
603/*
604 *	vm_page_insert:		[ internal use only ]
605 *
606 *	Inserts the given mem entry into the object and object list.
607 *
608 *	The pagetables are not updated but will presumably fault the page
609 *	in if necessary, or if a kernel page the caller will at some point
610 *	enter the page into the kernel's pmap.  We are not allowed to block
611 *	here so we *can't* do this anyway.
612 *
613 *	The object and page must be locked, and must be splhigh.
614 *	This routine may not block.
615 */
616void
617vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
618{
619	struct vm_page **bucket;
620
621	GIANT_REQUIRED;
622
623	if (m->object != NULL)
624		panic("vm_page_insert: already inserted");
625
626	/*
627	 * Record the object/offset pair in this page
628	 */
629	m->object = object;
630	m->pindex = pindex;
631
632	/*
633	 * Insert it into the object_object/offset hash table
634	 */
635	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
636	mtx_lock_spin(&vm_page_buckets_mtx);
637	m->hnext = *bucket;
638	*bucket = m;
639	mtx_unlock_spin(&vm_page_buckets_mtx);
640
641	/*
642	 * Now link into the object's list of backed pages.
643	 */
644	TAILQ_INSERT_TAIL(&object->memq, m, listq);
645	object->generation++;
646
647	/*
648	 * show that the object has one more resident page.
649	 */
650	object->resident_page_count++;
651
652	/*
653	 * Since we are inserting a new and possibly dirty page,
654	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
655	 */
656	if (m->flags & PG_WRITEABLE)
657		vm_object_set_writeable_dirty(object);
658}
659
660/*
661 *	vm_page_remove:
662 *				NOTE: used by device pager as well -wfj
663 *
664 *	Removes the given mem entry from the object/offset-page
665 *	table and the object page list, but do not invalidate/terminate
666 *	the backing store.
667 *
668 *	The object and page must be locked, and at splhigh.
669 *	The underlying pmap entry (if any) is NOT removed here.
670 *	This routine may not block.
671 */
672void
673vm_page_remove(vm_page_t m)
674{
675	vm_object_t object;
676	vm_page_t *bucket;
677
678	GIANT_REQUIRED;
679
680	if (m->object == NULL)
681		return;
682
683	if ((m->flags & PG_BUSY) == 0) {
684		panic("vm_page_remove: page not busy");
685	}
686
687	/*
688	 * Basically destroy the page.
689	 */
690	vm_page_wakeup(m);
691
692	object = m->object;
693
694	/*
695	 * Remove from the object_object/offset hash table.  The object
696	 * must be on the hash queue, we will panic if it isn't
697	 */
698	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
699	mtx_lock_spin(&vm_page_buckets_mtx);
700	while (*bucket != m) {
701		if (*bucket == NULL)
702			panic("vm_page_remove(): page not found in hash");
703		bucket = &(*bucket)->hnext;
704	}
705	*bucket = m->hnext;
706	m->hnext = NULL;
707	mtx_unlock_spin(&vm_page_buckets_mtx);
708
709	/*
710	 * Now remove from the object's list of backed pages.
711	 */
712	TAILQ_REMOVE(&object->memq, m, listq);
713
714	/*
715	 * And show that the object has one fewer resident page.
716	 */
717	object->resident_page_count--;
718	object->generation++;
719
720	m->object = NULL;
721}
722
723/*
724 *	vm_page_lookup:
725 *
726 *	Returns the page associated with the object/offset
727 *	pair specified; if none is found, NULL is returned.
728 *
729 *	The object must be locked.  No side effects.
730 *	This routine may not block.
731 *	This is a critical path routine
732 */
733vm_page_t
734vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
735{
736	vm_page_t m;
737	struct vm_page **bucket;
738
739	/*
740	 * Search the hash table for this object/offset pair
741	 */
742	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
743	mtx_lock_spin(&vm_page_buckets_mtx);
744	for (m = *bucket; m != NULL; m = m->hnext)
745		if (m->object == object && m->pindex == pindex)
746			break;
747	mtx_unlock_spin(&vm_page_buckets_mtx);
748	return (m);
749}
750
751/*
752 *	vm_page_rename:
753 *
754 *	Move the given memory entry from its
755 *	current object to the specified target object/offset.
756 *
757 *	The object must be locked.
758 *	This routine may not block.
759 *
760 *	Note: this routine will raise itself to splvm(), the caller need not.
761 *
762 *	Note: swap associated with the page must be invalidated by the move.  We
763 *	      have to do this for several reasons:  (1) we aren't freeing the
764 *	      page, (2) we are dirtying the page, (3) the VM system is probably
765 *	      moving the page from object A to B, and will then later move
766 *	      the backing store from A to B and we can't have a conflict.
767 *
768 *	Note: we *always* dirty the page.  It is necessary both for the
769 *	      fact that we moved it, and because we may be invalidating
770 *	      swap.  If the page is on the cache, we have to deactivate it
771 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
772 *	      on the cache.
773 */
774void
775vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
776{
777	int s;
778
779	s = splvm();
780	vm_page_lock_queues();
781	vm_page_remove(m);
782	vm_page_insert(m, new_object, new_pindex);
783	if (m->queue - m->pc == PQ_CACHE)
784		vm_page_deactivate(m);
785	vm_page_dirty(m);
786	vm_page_unlock_queues();
787	splx(s);
788}
789
790/*
791 *	vm_page_select_cache:
792 *
793 *	Find a page on the cache queue with color optimization.  As pages
794 *	might be found, but not applicable, they are deactivated.  This
795 *	keeps us from using potentially busy cached pages.
796 *
797 *	This routine must be called at splvm().
798 *	This routine may not block.
799 */
800static vm_page_t
801vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
802{
803	vm_page_t m;
804
805	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
806	while (TRUE) {
807		m = vm_pageq_find(
808		    PQ_CACHE,
809		    (pindex + object->pg_color) & PQ_L2_MASK,
810		    FALSE
811		);
812		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
813			       m->hold_count || m->wire_count)) {
814			vm_page_deactivate(m);
815			continue;
816		}
817		return m;
818	}
819}
820
821/*
822 *	vm_page_select_free:
823 *
824 *	Find a free or zero page, with specified preference.
825 *
826 *	This routine must be called at splvm().
827 *	This routine may not block.
828 */
829static __inline vm_page_t
830vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
831{
832	vm_page_t m;
833
834	m = vm_pageq_find(
835		PQ_FREE,
836		(pindex + object->pg_color) & PQ_L2_MASK,
837		prefer_zero
838	);
839	return (m);
840}
841
842/*
843 *	vm_page_alloc:
844 *
845 *	Allocate and return a memory cell associated
846 *	with this VM object/offset pair.
847 *
848 *	page_req classes:
849 *	VM_ALLOC_NORMAL		normal process request
850 *	VM_ALLOC_SYSTEM		system *really* needs a page
851 *	VM_ALLOC_INTERRUPT	interrupt time request
852 *	VM_ALLOC_ZERO		zero page
853 *
854 *	This routine may not block.
855 *
856 *	Additional special handling is required when called from an
857 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
858 *	the page cache in this case.
859 */
860vm_page_t
861vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
862{
863	vm_page_t m = NULL;
864	int page_req, s;
865
866	GIANT_REQUIRED;
867
868	KASSERT(!vm_page_lookup(object, pindex),
869		("vm_page_alloc: page already allocated"));
870
871	page_req = req & VM_ALLOC_CLASS_MASK;
872
873	/*
874	 * The pager is allowed to eat deeper into the free page list.
875	 */
876	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
877		page_req = VM_ALLOC_SYSTEM;
878	};
879
880	s = splvm();
881loop:
882	mtx_lock_spin(&vm_page_queue_free_mtx);
883	if (cnt.v_free_count > cnt.v_free_reserved) {
884		/*
885		 * Allocate from the free queue if there are plenty of pages
886		 * in it.
887		 */
888		m = vm_page_select_free(object, pindex,
889					(req & VM_ALLOC_ZERO) != 0);
890	} else if (
891	    (page_req == VM_ALLOC_SYSTEM &&
892	     cnt.v_cache_count == 0 &&
893	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
894	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
895	) {
896		/*
897		 * Interrupt or system, dig deeper into the free list.
898		 */
899		m = vm_page_select_free(object, pindex, FALSE);
900	} else if (page_req != VM_ALLOC_INTERRUPT) {
901		mtx_unlock_spin(&vm_page_queue_free_mtx);
902		/*
903		 * Allocatable from cache (non-interrupt only).  On success,
904		 * we must free the page and try again, thus ensuring that
905		 * cnt.v_*_free_min counters are replenished.
906		 */
907		vm_page_lock_queues();
908		if ((m = vm_page_select_cache(object, pindex)) == NULL) {
909			vm_page_unlock_queues();
910			splx(s);
911#if defined(DIAGNOSTIC)
912			if (cnt.v_cache_count > 0)
913				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
914#endif
915			vm_pageout_deficit++;
916			pagedaemon_wakeup();
917			return (NULL);
918		}
919		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
920		vm_page_busy(m);
921		vm_page_protect(m, VM_PROT_NONE);
922		vm_page_free(m);
923		vm_page_unlock_queues();
924		goto loop;
925	} else {
926		/*
927		 * Not allocatable from cache from interrupt, give up.
928		 */
929		mtx_unlock_spin(&vm_page_queue_free_mtx);
930		splx(s);
931		vm_pageout_deficit++;
932		pagedaemon_wakeup();
933		return (NULL);
934	}
935
936	/*
937	 *  At this point we had better have found a good page.
938	 */
939
940	KASSERT(
941	    m != NULL,
942	    ("vm_page_alloc(): missing page on free queue\n")
943	);
944
945	/*
946	 * Remove from free queue
947	 */
948
949	vm_pageq_remove_nowakeup(m);
950
951	/*
952	 * Initialize structure.  Only the PG_ZERO flag is inherited.
953	 */
954	if (m->flags & PG_ZERO) {
955		vm_page_zero_count--;
956		m->flags = PG_ZERO | PG_BUSY;
957	} else {
958		m->flags = PG_BUSY;
959	}
960	if (req & VM_ALLOC_WIRED) {
961		cnt.v_wire_count++;
962		m->flags |= PG_MAPPED;	/* XXX this does not belong here */
963		m->wire_count = 1;
964	} else
965		m->wire_count = 0;
966	m->hold_count = 0;
967	m->act_count = 0;
968	m->busy = 0;
969	m->valid = 0;
970	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
971	mtx_unlock_spin(&vm_page_queue_free_mtx);
972
973	/*
974	 * vm_page_insert() is safe prior to the splx().  Note also that
975	 * inserting a page here does not insert it into the pmap (which
976	 * could cause us to block allocating memory).  We cannot block
977	 * anywhere.
978	 */
979	vm_page_insert(m, object, pindex);
980
981	/*
982	 * Don't wakeup too often - wakeup the pageout daemon when
983	 * we would be nearly out of memory.
984	 */
985	if (vm_paging_needed())
986		pagedaemon_wakeup();
987
988	splx(s);
989	return (m);
990}
991
992/*
993 *	vm_wait:	(also see VM_WAIT macro)
994 *
995 *	Block until free pages are available for allocation
996 *	- Called in various places before memory allocations.
997 */
998void
999vm_wait(void)
1000{
1001	int s;
1002
1003	s = splvm();
1004	if (curproc == pageproc) {
1005		vm_pageout_pages_needed = 1;
1006		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
1007	} else {
1008		if (!vm_pages_needed) {
1009			vm_pages_needed = 1;
1010			wakeup(&vm_pages_needed);
1011		}
1012		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
1013	}
1014	splx(s);
1015}
1016
1017/*
1018 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1019 *
1020 *	Block until free pages are available for allocation
1021 *	- Called only in vm_fault so that processes page faulting
1022 *	  can be easily tracked.
1023 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1024 *	  processes will be able to grab memory first.  Do not change
1025 *	  this balance without careful testing first.
1026 */
1027void
1028vm_waitpfault(void)
1029{
1030	int s;
1031
1032	s = splvm();
1033	if (!vm_pages_needed) {
1034		vm_pages_needed = 1;
1035		wakeup(&vm_pages_needed);
1036	}
1037	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
1038	splx(s);
1039}
1040
1041/*
1042 *	vm_page_activate:
1043 *
1044 *	Put the specified page on the active list (if appropriate).
1045 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1046 *	mess with it.
1047 *
1048 *	The page queues must be locked.
1049 *	This routine may not block.
1050 */
1051void
1052vm_page_activate(vm_page_t m)
1053{
1054	int s;
1055
1056	GIANT_REQUIRED;
1057	s = splvm();
1058	if (m->queue != PQ_ACTIVE) {
1059		if ((m->queue - m->pc) == PQ_CACHE)
1060			cnt.v_reactivated++;
1061		vm_pageq_remove(m);
1062		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1063			if (m->act_count < ACT_INIT)
1064				m->act_count = ACT_INIT;
1065			vm_pageq_enqueue(PQ_ACTIVE, m);
1066		}
1067	} else {
1068		if (m->act_count < ACT_INIT)
1069			m->act_count = ACT_INIT;
1070	}
1071	splx(s);
1072}
1073
1074/*
1075 *	vm_page_free_wakeup:
1076 *
1077 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1078 *	routine is called when a page has been added to the cache or free
1079 *	queues.
1080 *
1081 *	This routine may not block.
1082 *	This routine must be called at splvm()
1083 */
1084static __inline void
1085vm_page_free_wakeup(void)
1086{
1087	/*
1088	 * if pageout daemon needs pages, then tell it that there are
1089	 * some free.
1090	 */
1091	if (vm_pageout_pages_needed &&
1092	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1093		wakeup(&vm_pageout_pages_needed);
1094		vm_pageout_pages_needed = 0;
1095	}
1096	/*
1097	 * wakeup processes that are waiting on memory if we hit a
1098	 * high water mark. And wakeup scheduler process if we have
1099	 * lots of memory. this process will swapin processes.
1100	 */
1101	if (vm_pages_needed && !vm_page_count_min()) {
1102		vm_pages_needed = 0;
1103		wakeup(&cnt.v_free_count);
1104	}
1105}
1106
1107/*
1108 *	vm_page_free_toq:
1109 *
1110 *	Returns the given page to the PQ_FREE list,
1111 *	disassociating it with any VM object.
1112 *
1113 *	Object and page must be locked prior to entry.
1114 *	This routine may not block.
1115 */
1116
1117void
1118vm_page_free_toq(vm_page_t m)
1119{
1120	int s;
1121	struct vpgqueues *pq;
1122	vm_object_t object = m->object;
1123
1124	GIANT_REQUIRED;
1125	s = splvm();
1126	cnt.v_tfree++;
1127
1128	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1129		printf(
1130		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1131		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1132		    m->hold_count);
1133		if ((m->queue - m->pc) == PQ_FREE)
1134			panic("vm_page_free: freeing free page");
1135		else
1136			panic("vm_page_free: freeing busy page");
1137	}
1138
1139	/*
1140	 * unqueue, then remove page.  Note that we cannot destroy
1141	 * the page here because we do not want to call the pager's
1142	 * callback routine until after we've put the page on the
1143	 * appropriate free queue.
1144	 */
1145	vm_pageq_remove_nowakeup(m);
1146	vm_page_remove(m);
1147
1148	/*
1149	 * If fictitious remove object association and
1150	 * return, otherwise delay object association removal.
1151	 */
1152	if ((m->flags & PG_FICTITIOUS) != 0) {
1153		splx(s);
1154		return;
1155	}
1156
1157	m->valid = 0;
1158	vm_page_undirty(m);
1159
1160	if (m->wire_count != 0) {
1161		if (m->wire_count > 1) {
1162			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1163				m->wire_count, (long)m->pindex);
1164		}
1165		panic("vm_page_free: freeing wired page\n");
1166	}
1167
1168	/*
1169	 * If we've exhausted the object's resident pages we want to free
1170	 * it up.
1171	 */
1172	if (object &&
1173	    (object->type == OBJT_VNODE) &&
1174	    ((object->flags & OBJ_DEAD) == 0)
1175	) {
1176		struct vnode *vp = (struct vnode *)object->handle;
1177
1178		if (vp && VSHOULDFREE(vp))
1179			vfree(vp);
1180	}
1181
1182	/*
1183	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1184	 */
1185	if (m->flags & PG_UNMANAGED) {
1186		m->flags &= ~PG_UNMANAGED;
1187	} else {
1188#ifdef __alpha__
1189		pmap_page_is_free(m);
1190#endif
1191	}
1192
1193	if (m->hold_count != 0) {
1194		m->flags &= ~PG_ZERO;
1195		m->queue = PQ_HOLD;
1196	} else
1197		m->queue = PQ_FREE + m->pc;
1198	pq = &vm_page_queues[m->queue];
1199	mtx_lock_spin(&vm_page_queue_free_mtx);
1200	pq->lcnt++;
1201	++(*pq->cnt);
1202
1203	/*
1204	 * Put zero'd pages on the end ( where we look for zero'd pages
1205	 * first ) and non-zerod pages at the head.
1206	 */
1207	if (m->flags & PG_ZERO) {
1208		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1209		++vm_page_zero_count;
1210	} else {
1211		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1212	}
1213	mtx_unlock_spin(&vm_page_queue_free_mtx);
1214	vm_page_free_wakeup();
1215	splx(s);
1216}
1217
1218/*
1219 *	vm_page_unmanage:
1220 *
1221 * 	Prevent PV management from being done on the page.  The page is
1222 *	removed from the paging queues as if it were wired, and as a
1223 *	consequence of no longer being managed the pageout daemon will not
1224 *	touch it (since there is no way to locate the pte mappings for the
1225 *	page).  madvise() calls that mess with the pmap will also no longer
1226 *	operate on the page.
1227 *
1228 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1229 *	will clear the flag.
1230 *
1231 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1232 *	physical memory as backing store rather then swap-backed memory and
1233 *	will eventually be extended to support 4MB unmanaged physical
1234 *	mappings.
1235 */
1236void
1237vm_page_unmanage(vm_page_t m)
1238{
1239	int s;
1240
1241	s = splvm();
1242	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1243	if ((m->flags & PG_UNMANAGED) == 0) {
1244		if (m->wire_count == 0)
1245			vm_pageq_remove(m);
1246	}
1247	vm_page_flag_set(m, PG_UNMANAGED);
1248	splx(s);
1249}
1250
1251/*
1252 *	vm_page_wire:
1253 *
1254 *	Mark this page as wired down by yet
1255 *	another map, removing it from paging queues
1256 *	as necessary.
1257 *
1258 *	The page queues must be locked.
1259 *	This routine may not block.
1260 */
1261void
1262vm_page_wire(vm_page_t m)
1263{
1264	int s;
1265
1266	/*
1267	 * Only bump the wire statistics if the page is not already wired,
1268	 * and only unqueue the page if it is on some queue (if it is unmanaged
1269	 * it is already off the queues).
1270	 */
1271	s = splvm();
1272	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1273	if (m->wire_count == 0) {
1274		if ((m->flags & PG_UNMANAGED) == 0)
1275			vm_pageq_remove(m);
1276		cnt.v_wire_count++;
1277	}
1278	m->wire_count++;
1279	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1280	splx(s);
1281	vm_page_flag_set(m, PG_MAPPED);	/* XXX this does not belong here */
1282}
1283
1284/*
1285 *	vm_page_unwire:
1286 *
1287 *	Release one wiring of this page, potentially
1288 *	enabling it to be paged again.
1289 *
1290 *	Many pages placed on the inactive queue should actually go
1291 *	into the cache, but it is difficult to figure out which.  What
1292 *	we do instead, if the inactive target is well met, is to put
1293 *	clean pages at the head of the inactive queue instead of the tail.
1294 *	This will cause them to be moved to the cache more quickly and
1295 *	if not actively re-referenced, freed more quickly.  If we just
1296 *	stick these pages at the end of the inactive queue, heavy filesystem
1297 *	meta-data accesses can cause an unnecessary paging load on memory bound
1298 *	processes.  This optimization causes one-time-use metadata to be
1299 *	reused more quickly.
1300 *
1301 *	BUT, if we are in a low-memory situation we have no choice but to
1302 *	put clean pages on the cache queue.
1303 *
1304 *	A number of routines use vm_page_unwire() to guarantee that the page
1305 *	will go into either the inactive or active queues, and will NEVER
1306 *	be placed in the cache - for example, just after dirtying a page.
1307 *	dirty pages in the cache are not allowed.
1308 *
1309 *	The page queues must be locked.
1310 *	This routine may not block.
1311 */
1312void
1313vm_page_unwire(vm_page_t m, int activate)
1314{
1315	int s;
1316
1317	s = splvm();
1318	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1319	if (m->wire_count > 0) {
1320		m->wire_count--;
1321		if (m->wire_count == 0) {
1322			cnt.v_wire_count--;
1323			if (m->flags & PG_UNMANAGED) {
1324				;
1325			} else if (activate)
1326				vm_pageq_enqueue(PQ_ACTIVE, m);
1327			else {
1328				vm_page_flag_clear(m, PG_WINATCFLS);
1329				vm_pageq_enqueue(PQ_INACTIVE, m);
1330			}
1331		}
1332	} else {
1333		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1334	}
1335	splx(s);
1336}
1337
1338
1339/*
1340 * Move the specified page to the inactive queue.  If the page has
1341 * any associated swap, the swap is deallocated.
1342 *
1343 * Normally athead is 0 resulting in LRU operation.  athead is set
1344 * to 1 if we want this page to be 'as if it were placed in the cache',
1345 * except without unmapping it from the process address space.
1346 *
1347 * This routine may not block.
1348 */
1349static __inline void
1350_vm_page_deactivate(vm_page_t m, int athead)
1351{
1352	int s;
1353
1354	GIANT_REQUIRED;
1355	/*
1356	 * Ignore if already inactive.
1357	 */
1358	if (m->queue == PQ_INACTIVE)
1359		return;
1360
1361	s = splvm();
1362	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1363		if ((m->queue - m->pc) == PQ_CACHE)
1364			cnt.v_reactivated++;
1365		vm_page_flag_clear(m, PG_WINATCFLS);
1366		vm_pageq_remove(m);
1367		if (athead)
1368			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1369		else
1370			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1371		m->queue = PQ_INACTIVE;
1372		vm_page_queues[PQ_INACTIVE].lcnt++;
1373		cnt.v_inactive_count++;
1374	}
1375	splx(s);
1376}
1377
1378void
1379vm_page_deactivate(vm_page_t m)
1380{
1381    _vm_page_deactivate(m, 0);
1382}
1383
1384/*
1385 * vm_page_try_to_cache:
1386 *
1387 * Returns 0 on failure, 1 on success
1388 */
1389int
1390vm_page_try_to_cache(vm_page_t m)
1391{
1392
1393	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1394	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1395	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1396		return (0);
1397	}
1398	vm_page_test_dirty(m);
1399	if (m->dirty)
1400		return (0);
1401	vm_page_cache(m);
1402	return (1);
1403}
1404
1405/*
1406 * vm_page_try_to_free()
1407 *
1408 *	Attempt to free the page.  If we cannot free it, we do nothing.
1409 *	1 is returned on success, 0 on failure.
1410 */
1411int
1412vm_page_try_to_free(vm_page_t m)
1413{
1414
1415	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1416	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1417	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1418		return (0);
1419	}
1420	vm_page_test_dirty(m);
1421	if (m->dirty)
1422		return (0);
1423	vm_page_busy(m);
1424	vm_page_protect(m, VM_PROT_NONE);
1425	vm_page_free(m);
1426	return (1);
1427}
1428
1429/*
1430 * vm_page_cache
1431 *
1432 * Put the specified page onto the page cache queue (if appropriate).
1433 *
1434 * This routine may not block.
1435 */
1436void
1437vm_page_cache(vm_page_t m)
1438{
1439	int s;
1440
1441	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1442	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1443		printf("vm_page_cache: attempting to cache busy page\n");
1444		return;
1445	}
1446	if ((m->queue - m->pc) == PQ_CACHE)
1447		return;
1448
1449	/*
1450	 * Remove all pmaps and indicate that the page is not
1451	 * writeable or mapped.
1452	 */
1453	vm_page_protect(m, VM_PROT_NONE);
1454	if (m->dirty != 0) {
1455		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1456			(long)m->pindex);
1457	}
1458	s = splvm();
1459	vm_pageq_remove_nowakeup(m);
1460	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1461	vm_page_free_wakeup();
1462	splx(s);
1463}
1464
1465/*
1466 * vm_page_dontneed
1467 *
1468 *	Cache, deactivate, or do nothing as appropriate.  This routine
1469 *	is typically used by madvise() MADV_DONTNEED.
1470 *
1471 *	Generally speaking we want to move the page into the cache so
1472 *	it gets reused quickly.  However, this can result in a silly syndrome
1473 *	due to the page recycling too quickly.  Small objects will not be
1474 *	fully cached.  On the otherhand, if we move the page to the inactive
1475 *	queue we wind up with a problem whereby very large objects
1476 *	unnecessarily blow away our inactive and cache queues.
1477 *
1478 *	The solution is to move the pages based on a fixed weighting.  We
1479 *	either leave them alone, deactivate them, or move them to the cache,
1480 *	where moving them to the cache has the highest weighting.
1481 *	By forcing some pages into other queues we eventually force the
1482 *	system to balance the queues, potentially recovering other unrelated
1483 *	space from active.  The idea is to not force this to happen too
1484 *	often.
1485 */
1486void
1487vm_page_dontneed(vm_page_t m)
1488{
1489	static int dnweight;
1490	int dnw;
1491	int head;
1492
1493	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1494	dnw = ++dnweight;
1495
1496	/*
1497	 * occassionally leave the page alone
1498	 */
1499	if ((dnw & 0x01F0) == 0 ||
1500	    m->queue == PQ_INACTIVE ||
1501	    m->queue - m->pc == PQ_CACHE
1502	) {
1503		if (m->act_count >= ACT_INIT)
1504			--m->act_count;
1505		return;
1506	}
1507
1508	if (m->dirty == 0)
1509		vm_page_test_dirty(m);
1510
1511	if (m->dirty || (dnw & 0x0070) == 0) {
1512		/*
1513		 * Deactivate the page 3 times out of 32.
1514		 */
1515		head = 0;
1516	} else {
1517		/*
1518		 * Cache the page 28 times out of every 32.  Note that
1519		 * the page is deactivated instead of cached, but placed
1520		 * at the head of the queue instead of the tail.
1521		 */
1522		head = 1;
1523	}
1524	_vm_page_deactivate(m, head);
1525}
1526
1527/*
1528 * Grab a page, waiting until we are waken up due to the page
1529 * changing state.  We keep on waiting, if the page continues
1530 * to be in the object.  If the page doesn't exist, allocate it.
1531 *
1532 * This routine may block.
1533 */
1534vm_page_t
1535vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1536{
1537	vm_page_t m;
1538	int s, generation;
1539
1540	GIANT_REQUIRED;
1541retrylookup:
1542	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1543		if (m->busy || (m->flags & PG_BUSY)) {
1544			generation = object->generation;
1545
1546			s = splvm();
1547			while ((object->generation == generation) &&
1548					(m->busy || (m->flags & PG_BUSY))) {
1549				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1550				tsleep(m, PVM, "pgrbwt", 0);
1551				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1552					splx(s);
1553					return NULL;
1554				}
1555			}
1556			splx(s);
1557			goto retrylookup;
1558		} else {
1559			vm_page_lock_queues();
1560			if (allocflags & VM_ALLOC_WIRED)
1561				vm_page_wire(m);
1562			vm_page_busy(m);
1563			vm_page_unlock_queues();
1564			return m;
1565		}
1566	}
1567
1568	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1569	if (m == NULL) {
1570		VM_WAIT;
1571		if ((allocflags & VM_ALLOC_RETRY) == 0)
1572			return NULL;
1573		goto retrylookup;
1574	}
1575
1576	return m;
1577}
1578
1579/*
1580 * Mapping function for valid bits or for dirty bits in
1581 * a page.  May not block.
1582 *
1583 * Inputs are required to range within a page.
1584 */
1585__inline int
1586vm_page_bits(int base, int size)
1587{
1588	int first_bit;
1589	int last_bit;
1590
1591	KASSERT(
1592	    base + size <= PAGE_SIZE,
1593	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1594	);
1595
1596	if (size == 0)		/* handle degenerate case */
1597		return (0);
1598
1599	first_bit = base >> DEV_BSHIFT;
1600	last_bit = (base + size - 1) >> DEV_BSHIFT;
1601
1602	return ((2 << last_bit) - (1 << first_bit));
1603}
1604
1605/*
1606 *	vm_page_set_validclean:
1607 *
1608 *	Sets portions of a page valid and clean.  The arguments are expected
1609 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1610 *	of any partial chunks touched by the range.  The invalid portion of
1611 *	such chunks will be zero'd.
1612 *
1613 *	This routine may not block.
1614 *
1615 *	(base + size) must be less then or equal to PAGE_SIZE.
1616 */
1617void
1618vm_page_set_validclean(vm_page_t m, int base, int size)
1619{
1620	int pagebits;
1621	int frag;
1622	int endoff;
1623
1624	GIANT_REQUIRED;
1625	if (size == 0)	/* handle degenerate case */
1626		return;
1627
1628	/*
1629	 * If the base is not DEV_BSIZE aligned and the valid
1630	 * bit is clear, we have to zero out a portion of the
1631	 * first block.
1632	 */
1633	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1634	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1635		pmap_zero_page_area(m, frag, base - frag);
1636
1637	/*
1638	 * If the ending offset is not DEV_BSIZE aligned and the
1639	 * valid bit is clear, we have to zero out a portion of
1640	 * the last block.
1641	 */
1642	endoff = base + size;
1643	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1644	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1645		pmap_zero_page_area(m, endoff,
1646		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1647
1648	/*
1649	 * Set valid, clear dirty bits.  If validating the entire
1650	 * page we can safely clear the pmap modify bit.  We also
1651	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1652	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1653	 * be set again.
1654	 *
1655	 * We set valid bits inclusive of any overlap, but we can only
1656	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1657	 * the range.
1658	 */
1659	pagebits = vm_page_bits(base, size);
1660	m->valid |= pagebits;
1661#if 0	/* NOT YET */
1662	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1663		frag = DEV_BSIZE - frag;
1664		base += frag;
1665		size -= frag;
1666		if (size < 0)
1667			size = 0;
1668	}
1669	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1670#endif
1671	m->dirty &= ~pagebits;
1672	if (base == 0 && size == PAGE_SIZE) {
1673		pmap_clear_modify(m);
1674		vm_page_flag_clear(m, PG_NOSYNC);
1675	}
1676}
1677
1678#if 0
1679
1680void
1681vm_page_set_dirty(vm_page_t m, int base, int size)
1682{
1683	m->dirty |= vm_page_bits(base, size);
1684}
1685
1686#endif
1687
1688void
1689vm_page_clear_dirty(vm_page_t m, int base, int size)
1690{
1691	GIANT_REQUIRED;
1692	m->dirty &= ~vm_page_bits(base, size);
1693}
1694
1695/*
1696 *	vm_page_set_invalid:
1697 *
1698 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1699 *	valid and dirty bits for the effected areas are cleared.
1700 *
1701 *	May not block.
1702 */
1703void
1704vm_page_set_invalid(vm_page_t m, int base, int size)
1705{
1706	int bits;
1707
1708	GIANT_REQUIRED;
1709	bits = vm_page_bits(base, size);
1710	m->valid &= ~bits;
1711	m->dirty &= ~bits;
1712	m->object->generation++;
1713}
1714
1715/*
1716 * vm_page_zero_invalid()
1717 *
1718 *	The kernel assumes that the invalid portions of a page contain
1719 *	garbage, but such pages can be mapped into memory by user code.
1720 *	When this occurs, we must zero out the non-valid portions of the
1721 *	page so user code sees what it expects.
1722 *
1723 *	Pages are most often semi-valid when the end of a file is mapped
1724 *	into memory and the file's size is not page aligned.
1725 */
1726void
1727vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1728{
1729	int b;
1730	int i;
1731
1732	/*
1733	 * Scan the valid bits looking for invalid sections that
1734	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1735	 * valid bit may be set ) have already been zerod by
1736	 * vm_page_set_validclean().
1737	 */
1738	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1739		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1740		    (m->valid & (1 << i))
1741		) {
1742			if (i > b) {
1743				pmap_zero_page_area(m,
1744				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1745			}
1746			b = i + 1;
1747		}
1748	}
1749
1750	/*
1751	 * setvalid is TRUE when we can safely set the zero'd areas
1752	 * as being valid.  We can do this if there are no cache consistancy
1753	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1754	 */
1755	if (setvalid)
1756		m->valid = VM_PAGE_BITS_ALL;
1757}
1758
1759/*
1760 *	vm_page_is_valid:
1761 *
1762 *	Is (partial) page valid?  Note that the case where size == 0
1763 *	will return FALSE in the degenerate case where the page is
1764 *	entirely invalid, and TRUE otherwise.
1765 *
1766 *	May not block.
1767 */
1768int
1769vm_page_is_valid(vm_page_t m, int base, int size)
1770{
1771	int bits = vm_page_bits(base, size);
1772
1773	if (m->valid && ((m->valid & bits) == bits))
1774		return 1;
1775	else
1776		return 0;
1777}
1778
1779/*
1780 * update dirty bits from pmap/mmu.  May not block.
1781 */
1782void
1783vm_page_test_dirty(vm_page_t m)
1784{
1785	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1786		vm_page_dirty(m);
1787	}
1788}
1789
1790int so_zerocp_fullpage = 0;
1791
1792void
1793vm_page_cowfault(vm_page_t m)
1794{
1795	vm_page_t mnew;
1796	vm_object_t object;
1797	vm_pindex_t pindex;
1798
1799	object = m->object;
1800	pindex = m->pindex;
1801	vm_page_busy(m);
1802
1803 retry_alloc:
1804	vm_page_remove(m);
1805	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1806	if (mnew == NULL) {
1807		vm_page_insert(m, object, pindex);
1808		VM_WAIT;
1809		goto retry_alloc;
1810	}
1811
1812	if (m->cow == 0) {
1813		/*
1814		 * check to see if we raced with an xmit complete when
1815		 * waiting to allocate a page.  If so, put things back
1816		 * the way they were
1817		 */
1818		vm_page_busy(mnew);
1819		vm_page_free(mnew);
1820		vm_page_insert(m, object, pindex);
1821	} else { /* clear COW & copy page */
1822		if (so_zerocp_fullpage) {
1823			mnew->valid = VM_PAGE_BITS_ALL;
1824		} else {
1825			vm_page_copy(m, mnew);
1826		}
1827		vm_page_dirty(mnew);
1828		vm_page_flag_clear(mnew, PG_BUSY);
1829	}
1830}
1831
1832void
1833vm_page_cowclear(vm_page_t m)
1834{
1835
1836	/* XXX KDM find out if giant is required here. */
1837	GIANT_REQUIRED;
1838	if (m->cow) {
1839		atomic_subtract_int(&m->cow, 1);
1840		/*
1841		 * let vm_fault add back write permission  lazily
1842		 */
1843	}
1844	/*
1845	 *  sf_buf_free() will free the page, so we needn't do it here
1846	 */
1847}
1848
1849void
1850vm_page_cowsetup(vm_page_t m)
1851{
1852	/* XXX KDM find out if giant is required here */
1853	GIANT_REQUIRED;
1854	atomic_add_int(&m->cow, 1);
1855	vm_page_protect(m, VM_PROT_READ);
1856}
1857
1858#include "opt_ddb.h"
1859#ifdef DDB
1860#include <sys/kernel.h>
1861
1862#include <ddb/ddb.h>
1863
1864DB_SHOW_COMMAND(page, vm_page_print_page_info)
1865{
1866	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1867	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1868	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1869	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1870	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1871	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1872	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1873	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1874	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1875	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1876}
1877
1878DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1879{
1880	int i;
1881	db_printf("PQ_FREE:");
1882	for (i = 0; i < PQ_L2_SIZE; i++) {
1883		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1884	}
1885	db_printf("\n");
1886
1887	db_printf("PQ_CACHE:");
1888	for (i = 0; i < PQ_L2_SIZE; i++) {
1889		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1890	}
1891	db_printf("\n");
1892
1893	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1894		vm_page_queues[PQ_ACTIVE].lcnt,
1895		vm_page_queues[PQ_INACTIVE].lcnt);
1896}
1897#endif /* DDB */
1898