vm_page.c revision 101019
1193323Sed/*
2193323Sed * Copyright (c) 1991 Regents of the University of California.
3193323Sed * All rights reserved.
4193323Sed *
5193323Sed * This code is derived from software contributed to Berkeley by
6193323Sed * The Mach Operating System project at Carnegie-Mellon University.
7193323Sed *
8193323Sed * Redistribution and use in source and binary forms, with or without
9193323Sed * modification, are permitted provided that the following conditions
10193323Sed * are met:
11193323Sed * 1. Redistributions of source code must retain the above copyright
12193323Sed *    notice, this list of conditions and the following disclaimer.
13193323Sed * 2. Redistributions in binary form must reproduce the above copyright
14234353Sdim *    notice, this list of conditions and the following disclaimer in the
15193323Sed *    documentation and/or other materials provided with the distribution.
16276479Sdim * 3. All advertising materials mentioning features or use of this software
17276479Sdim *    must display the following acknowledgement:
18276479Sdim *	This product includes software developed by the University of
19276479Sdim *	California, Berkeley and its contributors.
20239462Sdim * 4. Neither the name of the University nor the names of its contributors
21239462Sdim *    may be used to endorse or promote products derived from this software
22251662Sdim *    without specific prior written permission.
23276479Sdim *
24276479Sdim * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25251662Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26280031Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27251662Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28249423Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29288943Sdim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30251662Sdim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31276479Sdim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32251662Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33261991Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34288943Sdim * SUCH DAMAGE.
35193323Sed *
36193323Sed *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37276479Sdim * $FreeBSD: head/sys/vm/vm_page.c 101019 2002-07-31 07:27:08Z alc $
38251662Sdim */
39198090Srdivacky
40198090Srdivacky/*
41226633Sdim * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42198090Srdivacky * All rights reserved.
43239462Sdim *
44239462Sdim * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45193323Sed *
46193323Sed * Permission to use, copy, modify and distribute this software and
47288943Sdim * its documentation is hereby granted, provided that both the copyright
48288943Sdim * notice and this permission notice appear in all copies of the
49288943Sdim * software, derivative works or modified versions, and any portions
50288943Sdim * thereof, and that both notices appear in supporting documentation.
51288943Sdim *
52288943Sdim * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53288943Sdim * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54288943Sdim * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55288943Sdim *
56288943Sdim * Carnegie Mellon requests users of this software to return to
57288943Sdim *
58288943Sdim *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59288943Sdim *  School of Computer Science
60288943Sdim *  Carnegie Mellon University
61288943Sdim *  Pittsburgh PA 15213-3890
62288943Sdim *
63288943Sdim * any improvements or extensions that they make and grant Carnegie the
64288943Sdim * rights to redistribute these changes.
65288943Sdim */
66288943Sdim
67288943Sdim/*
68288943Sdim *			GENERAL RULES ON VM_PAGE MANIPULATION
69288943Sdim *
70288943Sdim *	- a pageq mutex is required when adding or removing a page from a
71288943Sdim *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72288943Sdim *	  busy state of a page.
73288943Sdim *
74288943Sdim *	- a hash chain mutex is required when associating or disassociating
75288943Sdim *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76288943Sdim *	  regardless of other mutexes or the busy state of a page.
77288943Sdim *
78288943Sdim *	- either a hash chain mutex OR a busied page is required in order
79288943Sdim *	  to modify the page flags.  A hash chain mutex must be obtained in
80193323Sed *	  order to busy a page.  A page's flags cannot be modified by a
81193323Sed *	  hash chain mutex if the page is marked busy.
82218893Sdim *
83193323Sed *	- The object memq mutex is held when inserting or removing
84193323Sed *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85288943Sdim *	  is different from the object's main mutex.
86276479Sdim *
87276479Sdim *	Generally speaking, you have to be aware of side effects when running
88276479Sdim *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89276479Sdim *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90288943Sdim *	vm_page_cache(), vm_page_activate(), and a number of other routines
91288943Sdim *	will release the hash chain mutex for you.  Intermediate manipulation
92288943Sdim *	routines such as vm_page_flag_set() expect the hash chain to be held
93288943Sdim *	on entry and the hash chain will remain held on return.
94288943Sdim *
95276479Sdim *	pageq scanning can only occur with the pageq in question locked.
96280031Sdim *	We have a known bottleneck with the active queue, but the cache
97276479Sdim *	and free queues are actually arrays already.
98280031Sdim */
99276479Sdim
100261991Sdim/*
101193323Sed *	Resident memory management module.
102193323Sed */
103280031Sdim
104280031Sdim#include <sys/param.h>
105234353Sdim#include <sys/systm.h>
106234353Sdim#include <sys/lock.h>
107288943Sdim#include <sys/malloc.h>
108288943Sdim#include <sys/mutex.h>
109288943Sdim#include <sys/proc.h>
110288943Sdim#include <sys/vmmeter.h>
111288943Sdim#include <sys/vnode.h>
112288943Sdim
113226633Sdim#include <vm/vm.h>
114234353Sdim#include <vm/vm_param.h>
115234353Sdim#include <vm/vm_kern.h>
116288943Sdim#include <vm/vm_object.h>
117288943Sdim#include <vm/vm_page.h>
118288943Sdim#include <vm/vm_pageout.h>
119288943Sdim#include <vm/vm_pager.h>
120288943Sdim#include <vm/vm_extern.h>
121288943Sdim#include <vm/uma.h>
122193323Sed#include <vm/uma_int.h>
123280031Sdim
124280031Sdim/*
125288943Sdim *	Associated with page of user-allocatable memory is a
126288943Sdim *	page structure.
127280031Sdim */
128280031Sdimstatic struct mtx vm_page_buckets_mtx;
129280031Sdimstatic struct vm_page **vm_page_buckets; /* Array of buckets */
130280031Sdimstatic int vm_page_bucket_count;	/* How big is array? */
131280031Sdimstatic int vm_page_hash_mask;		/* Mask for hash function */
132280031Sdim
133280031Sdimstruct mtx vm_page_queue_mtx;
134280031Sdimstruct mtx vm_page_queue_free_mtx;
135288943Sdim
136280031Sdimvm_page_t vm_page_array = 0;
137288943Sdimint vm_page_array_size = 0;
138280031Sdimlong first_page = 0;
139280031Sdimint vm_page_zero_count = 0;
140280031Sdim
141288943Sdim/*
142288943Sdim *	vm_set_page_size:
143288943Sdim *
144288943Sdim *	Sets the page size, perhaps based upon the memory
145280031Sdim *	size.  Must be called before any use of page-size
146280031Sdim *	dependent functions.
147280031Sdim */
148280031Sdimvoid
149280031Sdimvm_set_page_size(void)
150288943Sdim{
151288943Sdim	if (cnt.v_page_size == 0)
152280031Sdim		cnt.v_page_size = PAGE_SIZE;
153288943Sdim	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
154280031Sdim		panic("vm_set_page_size: page size not a power of two");
155280031Sdim}
156280031Sdim
157280031Sdim/*
158280031Sdim *	vm_page_startup:
159288943Sdim *
160288943Sdim *	Initializes the resident memory module.
161280031Sdim *
162280031Sdim *	Allocates memory for the page cells, and
163280031Sdim *	for the object/offset-to-page hash table headers.
164280031Sdim *	Each page cell is initialized and placed on the free list.
165276479Sdim */
166276479Sdimvm_offset_t
167280031Sdimvm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
168280031Sdim{
169280031Sdim	vm_offset_t mapped;
170276479Sdim	struct vm_page **bucket;
171276479Sdim	vm_size_t npages, page_range;
172276479Sdim	vm_offset_t new_end;
173234353Sdim	int i;
174234353Sdim	vm_offset_t pa;
175234353Sdim	int nblocks;
176234353Sdim	vm_offset_t last_pa;
177234353Sdim
178261991Sdim	/* the biggest memory array is the second group of pages */
179261991Sdim	vm_offset_t end;
180261991Sdim	vm_offset_t biggestone, biggestsize;
181261991Sdim
182261991Sdim	vm_offset_t total;
183261991Sdim	vm_size_t bootpages;
184261991Sdim
185234353Sdim	total = 0;
186234353Sdim	biggestsize = 0;
187234353Sdim	biggestone = 0;
188234353Sdim	nblocks = 0;
189234353Sdim	vaddr = round_page(vaddr);
190234353Sdim
191234353Sdim	for (i = 0; phys_avail[i + 1]; i += 2) {
192234353Sdim		phys_avail[i] = round_page(phys_avail[i]);
193234353Sdim		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
194276479Sdim	}
195276479Sdim
196276479Sdim	for (i = 0; phys_avail[i + 1]; i += 2) {
197280031Sdim		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
198276479Sdim
199280031Sdim		if (size > biggestsize) {
200276479Sdim			biggestone = i;
201234353Sdim			biggestsize = size;
202234353Sdim		}
203234353Sdim		++nblocks;
204234353Sdim		total += size;
205234353Sdim	}
206234353Sdim
207234353Sdim	end = phys_avail[biggestone+1];
208251662Sdim
209251662Sdim	/*
210280031Sdim	 * Initialize the locks.
211251662Sdim	 */
212288943Sdim	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
213261991Sdim	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
214288943Sdim	   MTX_SPIN);
215251662Sdim
216218893Sdim	/*
217193323Sed	 * Initialize the queue headers for the free queue, the active queue
218234982Sdim	 * and the inactive queue.
219288943Sdim	 */
220276479Sdim	vm_pageq_init();
221276479Sdim
222193323Sed	/*
223193323Sed	 * Allocate memory for use when boot strapping the kernel memory allocator
224193323Sed	 */
225276479Sdim	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226276479Sdim	new_end = end - bootpages;
227276479Sdim	new_end = trunc_page(new_end);
228276479Sdim	mapped = pmap_map(&vaddr, new_end, end,
229276479Sdim	    VM_PROT_READ | VM_PROT_WRITE);
230280031Sdim	bzero((caddr_t) mapped, end - new_end);
231280031Sdim	uma_startup((caddr_t)mapped);
232276479Sdim
233276479Sdim	end = new_end;
234276479Sdim
235288943Sdim	/*
236296417Sdim	 * Allocate (and initialize) the hash table buckets.
237288943Sdim	 *
238288943Sdim	 * The number of buckets MUST BE a power of 2, and the actual value is
239288943Sdim	 * the next power of 2 greater than the number of physical pages in
240288943Sdim	 * the system.
241288943Sdim	 *
242288943Sdim	 * We make the hash table approximately 2x the number of pages to
243288943Sdim	 * reduce the chain length.  This is about the same size using the
244288943Sdim	 * singly-linked list as the 1x hash table we were using before
245288943Sdim	 * using TAILQ but the chain length will be smaller.
246251662Sdim	 *
247251662Sdim	 * Note: This computation can be tweaked if desired.
248218893Sdim	 */
249218893Sdim	if (vm_page_bucket_count == 0) {
250193323Sed		vm_page_bucket_count = 1;
251280031Sdim		while (vm_page_bucket_count < atop(total))
252239462Sdim			vm_page_bucket_count <<= 1;
253239462Sdim	}
254276479Sdim	vm_page_bucket_count <<= 1;
255276479Sdim	vm_page_hash_mask = vm_page_bucket_count - 1;
256221345Sdim
257	/*
258	 * Validate these addresses.
259	 */
260	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
261	new_end = trunc_page(new_end);
262	mapped = pmap_map(&vaddr, new_end, end,
263	    VM_PROT_READ | VM_PROT_WRITE);
264	bzero((caddr_t) mapped, end - new_end);
265
266	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
267	vm_page_buckets = (struct vm_page **)mapped;
268	bucket = vm_page_buckets;
269	for (i = 0; i < vm_page_bucket_count; i++) {
270		*bucket = NULL;
271		bucket++;
272	}
273
274	/*
275	 * Compute the number of pages of memory that will be available for
276	 * use (taking into account the overhead of a page structure per
277	 * page).
278	 */
279	first_page = phys_avail[0] / PAGE_SIZE;
280	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
281	npages = (total - (page_range * sizeof(struct vm_page)) -
282	    (end - new_end)) / PAGE_SIZE;
283	end = new_end;
284
285	/*
286	 * Initialize the mem entry structures now, and put them in the free
287	 * queue.
288	 */
289	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
290	mapped = pmap_map(&vaddr, new_end, end,
291	    VM_PROT_READ | VM_PROT_WRITE);
292	vm_page_array = (vm_page_t) mapped;
293
294	/*
295	 * Clear all of the page structures
296	 */
297	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
298	vm_page_array_size = page_range;
299
300	/*
301	 * Construct the free queue(s) in descending order (by physical
302	 * address) so that the first 16MB of physical memory is allocated
303	 * last rather than first.  On large-memory machines, this avoids
304	 * the exhaustion of low physical memory before isa_dmainit has run.
305	 */
306	cnt.v_page_count = 0;
307	cnt.v_free_count = 0;
308	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
309		pa = phys_avail[i];
310		if (i == biggestone)
311			last_pa = new_end;
312		else
313			last_pa = phys_avail[i + 1];
314		while (pa < last_pa && npages-- > 0) {
315			vm_pageq_add_new_page(pa);
316			pa += PAGE_SIZE;
317		}
318	}
319	return (vaddr);
320}
321
322/*
323 *	vm_page_hash:
324 *
325 *	Distributes the object/offset key pair among hash buckets.
326 *
327 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
328 *	This routine may not block.
329 *
330 *	We try to randomize the hash based on the object to spread the pages
331 *	out in the hash table without it costing us too much.
332 */
333static __inline int
334vm_page_hash(vm_object_t object, vm_pindex_t pindex)
335{
336	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
337
338	return (i & vm_page_hash_mask);
339}
340
341void
342vm_page_flag_set(vm_page_t m, unsigned short bits)
343{
344	GIANT_REQUIRED;
345	m->flags |= bits;
346}
347
348void
349vm_page_flag_clear(vm_page_t m, unsigned short bits)
350{
351	GIANT_REQUIRED;
352	m->flags &= ~bits;
353}
354
355void
356vm_page_busy(vm_page_t m)
357{
358	KASSERT((m->flags & PG_BUSY) == 0,
359	    ("vm_page_busy: page already busy!!!"));
360	vm_page_flag_set(m, PG_BUSY);
361}
362
363/*
364 *      vm_page_flash:
365 *
366 *      wakeup anyone waiting for the page.
367 */
368void
369vm_page_flash(vm_page_t m)
370{
371	if (m->flags & PG_WANTED) {
372		vm_page_flag_clear(m, PG_WANTED);
373		wakeup(m);
374	}
375}
376
377/*
378 *      vm_page_wakeup:
379 *
380 *      clear the PG_BUSY flag and wakeup anyone waiting for the
381 *      page.
382 *
383 */
384void
385vm_page_wakeup(vm_page_t m)
386{
387	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
388	vm_page_flag_clear(m, PG_BUSY);
389	vm_page_flash(m);
390}
391
392/*
393 *
394 *
395 */
396void
397vm_page_io_start(vm_page_t m)
398{
399
400	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
401	m->busy++;
402}
403
404void
405vm_page_io_finish(vm_page_t m)
406{
407	GIANT_REQUIRED;
408	m->busy--;
409	if (m->busy == 0)
410		vm_page_flash(m);
411}
412
413/*
414 * Keep page from being freed by the page daemon
415 * much of the same effect as wiring, except much lower
416 * overhead and should be used only for *very* temporary
417 * holding ("wiring").
418 */
419void
420vm_page_hold(vm_page_t mem)
421{
422        GIANT_REQUIRED;
423        mem->hold_count++;
424}
425
426void
427vm_page_unhold(vm_page_t mem)
428{
429	GIANT_REQUIRED;
430	--mem->hold_count;
431	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
432	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
433		vm_page_free_toq(mem);
434}
435
436/*
437 *	vm_page_protect:
438 *
439 *	Reduce the protection of a page.  This routine never raises the
440 *	protection and therefore can be safely called if the page is already
441 *	at VM_PROT_NONE (it will be a NOP effectively ).
442 */
443void
444vm_page_protect(vm_page_t mem, int prot)
445{
446	if (prot == VM_PROT_NONE) {
447		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
448			pmap_page_protect(mem, VM_PROT_NONE);
449			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
450		}
451	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
452		pmap_page_protect(mem, VM_PROT_READ);
453		vm_page_flag_clear(mem, PG_WRITEABLE);
454	}
455}
456/*
457 *	vm_page_zero_fill:
458 *
459 *	Zero-fill the specified page.
460 *	Written as a standard pagein routine, to
461 *	be used by the zero-fill object.
462 */
463boolean_t
464vm_page_zero_fill(vm_page_t m)
465{
466	pmap_zero_page(m);
467	return (TRUE);
468}
469
470/*
471 *	vm_page_zero_fill_area:
472 *
473 *	Like vm_page_zero_fill but only fill the specified area.
474 */
475boolean_t
476vm_page_zero_fill_area(vm_page_t m, int off, int size)
477{
478	pmap_zero_page_area(m, off, size);
479	return (TRUE);
480}
481
482/*
483 *	vm_page_copy:
484 *
485 *	Copy one page to another
486 */
487void
488vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
489{
490	pmap_copy_page(src_m, dest_m);
491	dest_m->valid = VM_PAGE_BITS_ALL;
492}
493
494/*
495 *	vm_page_free:
496 *
497 *	Free a page
498 *
499 *	The clearing of PG_ZERO is a temporary safety until the code can be
500 *	reviewed to determine that PG_ZERO is being properly cleared on
501 *	write faults or maps.  PG_ZERO was previously cleared in
502 *	vm_page_alloc().
503 */
504void
505vm_page_free(vm_page_t m)
506{
507	vm_page_flag_clear(m, PG_ZERO);
508	vm_page_free_toq(m);
509	vm_page_zero_idle_wakeup();
510}
511
512/*
513 *	vm_page_free_zero:
514 *
515 *	Free a page to the zerod-pages queue
516 */
517void
518vm_page_free_zero(vm_page_t m)
519{
520	vm_page_flag_set(m, PG_ZERO);
521	vm_page_free_toq(m);
522}
523
524/*
525 *	vm_page_sleep_busy:
526 *
527 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
528 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
529 *	it almost had to sleep and made temporary spl*() mods), FALSE
530 *	otherwise.
531 *
532 *	This routine assumes that interrupts can only remove the busy
533 *	status from a page, not set the busy status or change it from
534 *	PG_BUSY to m->busy or vise versa (which would create a timing
535 *	window).
536 */
537int
538vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
539{
540	GIANT_REQUIRED;
541	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
542		int s = splvm();
543		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
544			/*
545			 * Page is busy. Wait and retry.
546			 */
547			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
548			tsleep(m, PVM, msg, 0);
549		}
550		splx(s);
551		return (TRUE);
552		/* not reached */
553	}
554	return (FALSE);
555}
556
557/*
558 *	vm_page_sleep_if_busy:
559 *
560 *	Sleep and release the page queues lock if PG_BUSY is set or,
561 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
562 *	thread slept and the page queues lock was released.
563 *	Otherwise, retains the page queues lock and returns FALSE.
564 */
565int
566vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
567{
568
569	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
570	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
571		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
572		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
573		return (TRUE);
574	}
575	return (FALSE);
576}
577
578/*
579 *	vm_page_dirty:
580 *
581 *	make page all dirty
582 */
583void
584vm_page_dirty(vm_page_t m)
585{
586	KASSERT(m->queue - m->pc != PQ_CACHE,
587	    ("vm_page_dirty: page in cache!"));
588	m->dirty = VM_PAGE_BITS_ALL;
589}
590
591/*
592 *	vm_page_undirty:
593 *
594 *	Set page to not be dirty.  Note: does not clear pmap modify bits
595 */
596void
597vm_page_undirty(vm_page_t m)
598{
599	m->dirty = 0;
600}
601
602/*
603 *	vm_page_insert:		[ internal use only ]
604 *
605 *	Inserts the given mem entry into the object and object list.
606 *
607 *	The pagetables are not updated but will presumably fault the page
608 *	in if necessary, or if a kernel page the caller will at some point
609 *	enter the page into the kernel's pmap.  We are not allowed to block
610 *	here so we *can't* do this anyway.
611 *
612 *	The object and page must be locked, and must be splhigh.
613 *	This routine may not block.
614 */
615void
616vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
617{
618	struct vm_page **bucket;
619
620	GIANT_REQUIRED;
621
622	if (m->object != NULL)
623		panic("vm_page_insert: already inserted");
624
625	/*
626	 * Record the object/offset pair in this page
627	 */
628	m->object = object;
629	m->pindex = pindex;
630
631	/*
632	 * Insert it into the object_object/offset hash table
633	 */
634	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
635	mtx_lock_spin(&vm_page_buckets_mtx);
636	m->hnext = *bucket;
637	*bucket = m;
638	mtx_unlock_spin(&vm_page_buckets_mtx);
639
640	/*
641	 * Now link into the object's list of backed pages.
642	 */
643	TAILQ_INSERT_TAIL(&object->memq, m, listq);
644	object->generation++;
645
646	/*
647	 * show that the object has one more resident page.
648	 */
649	object->resident_page_count++;
650
651	/*
652	 * Since we are inserting a new and possibly dirty page,
653	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
654	 */
655	if (m->flags & PG_WRITEABLE)
656		vm_object_set_writeable_dirty(object);
657}
658
659/*
660 *	vm_page_remove:
661 *				NOTE: used by device pager as well -wfj
662 *
663 *	Removes the given mem entry from the object/offset-page
664 *	table and the object page list, but do not invalidate/terminate
665 *	the backing store.
666 *
667 *	The object and page must be locked, and at splhigh.
668 *	The underlying pmap entry (if any) is NOT removed here.
669 *	This routine may not block.
670 */
671void
672vm_page_remove(vm_page_t m)
673{
674	vm_object_t object;
675	vm_page_t *bucket;
676
677	GIANT_REQUIRED;
678
679	if (m->object == NULL)
680		return;
681
682	if ((m->flags & PG_BUSY) == 0) {
683		panic("vm_page_remove: page not busy");
684	}
685
686	/*
687	 * Basically destroy the page.
688	 */
689	vm_page_wakeup(m);
690
691	object = m->object;
692
693	/*
694	 * Remove from the object_object/offset hash table.  The object
695	 * must be on the hash queue, we will panic if it isn't
696	 */
697	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
698	mtx_lock_spin(&vm_page_buckets_mtx);
699	while (*bucket != m) {
700		if (*bucket == NULL)
701			panic("vm_page_remove(): page not found in hash");
702		bucket = &(*bucket)->hnext;
703	}
704	*bucket = m->hnext;
705	m->hnext = NULL;
706	mtx_unlock_spin(&vm_page_buckets_mtx);
707
708	/*
709	 * Now remove from the object's list of backed pages.
710	 */
711	TAILQ_REMOVE(&object->memq, m, listq);
712
713	/*
714	 * And show that the object has one fewer resident page.
715	 */
716	object->resident_page_count--;
717	object->generation++;
718
719	m->object = NULL;
720}
721
722/*
723 *	vm_page_lookup:
724 *
725 *	Returns the page associated with the object/offset
726 *	pair specified; if none is found, NULL is returned.
727 *
728 *	The object must be locked.  No side effects.
729 *	This routine may not block.
730 *	This is a critical path routine
731 */
732vm_page_t
733vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
734{
735	vm_page_t m;
736	struct vm_page **bucket;
737
738	/*
739	 * Search the hash table for this object/offset pair
740	 */
741	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
742	mtx_lock_spin(&vm_page_buckets_mtx);
743	for (m = *bucket; m != NULL; m = m->hnext)
744		if (m->object == object && m->pindex == pindex)
745			break;
746	mtx_unlock_spin(&vm_page_buckets_mtx);
747	return (m);
748}
749
750/*
751 *	vm_page_rename:
752 *
753 *	Move the given memory entry from its
754 *	current object to the specified target object/offset.
755 *
756 *	The object must be locked.
757 *	This routine may not block.
758 *
759 *	Note: this routine will raise itself to splvm(), the caller need not.
760 *
761 *	Note: swap associated with the page must be invalidated by the move.  We
762 *	      have to do this for several reasons:  (1) we aren't freeing the
763 *	      page, (2) we are dirtying the page, (3) the VM system is probably
764 *	      moving the page from object A to B, and will then later move
765 *	      the backing store from A to B and we can't have a conflict.
766 *
767 *	Note: we *always* dirty the page.  It is necessary both for the
768 *	      fact that we moved it, and because we may be invalidating
769 *	      swap.  If the page is on the cache, we have to deactivate it
770 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
771 *	      on the cache.
772 */
773void
774vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
775{
776	int s;
777
778	s = splvm();
779	vm_page_lock_queues();
780	vm_page_remove(m);
781	vm_page_insert(m, new_object, new_pindex);
782	if (m->queue - m->pc == PQ_CACHE)
783		vm_page_deactivate(m);
784	vm_page_dirty(m);
785	vm_page_unlock_queues();
786	splx(s);
787}
788
789/*
790 *	vm_page_select_cache:
791 *
792 *	Find a page on the cache queue with color optimization.  As pages
793 *	might be found, but not applicable, they are deactivated.  This
794 *	keeps us from using potentially busy cached pages.
795 *
796 *	This routine must be called at splvm().
797 *	This routine may not block.
798 */
799static vm_page_t
800vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
801{
802	vm_page_t m;
803
804	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
805	while (TRUE) {
806		m = vm_pageq_find(
807		    PQ_CACHE,
808		    (pindex + object->pg_color) & PQ_L2_MASK,
809		    FALSE
810		);
811		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
812			       m->hold_count || m->wire_count)) {
813			vm_page_deactivate(m);
814			continue;
815		}
816		return m;
817	}
818}
819
820/*
821 *	vm_page_select_free:
822 *
823 *	Find a free or zero page, with specified preference.
824 *
825 *	This routine must be called at splvm().
826 *	This routine may not block.
827 */
828static __inline vm_page_t
829vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
830{
831	vm_page_t m;
832
833	m = vm_pageq_find(
834		PQ_FREE,
835		(pindex + object->pg_color) & PQ_L2_MASK,
836		prefer_zero
837	);
838	return (m);
839}
840
841/*
842 *	vm_page_alloc:
843 *
844 *	Allocate and return a memory cell associated
845 *	with this VM object/offset pair.
846 *
847 *	page_req classes:
848 *	VM_ALLOC_NORMAL		normal process request
849 *	VM_ALLOC_SYSTEM		system *really* needs a page
850 *	VM_ALLOC_INTERRUPT	interrupt time request
851 *	VM_ALLOC_ZERO		zero page
852 *
853 *	This routine may not block.
854 *
855 *	Additional special handling is required when called from an
856 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
857 *	the page cache in this case.
858 */
859vm_page_t
860vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
861{
862	vm_page_t m = NULL;
863	int page_req, s;
864
865	GIANT_REQUIRED;
866
867	KASSERT(!vm_page_lookup(object, pindex),
868		("vm_page_alloc: page already allocated"));
869
870	page_req = req & VM_ALLOC_CLASS_MASK;
871
872	/*
873	 * The pager is allowed to eat deeper into the free page list.
874	 */
875	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
876		page_req = VM_ALLOC_SYSTEM;
877	};
878
879	s = splvm();
880loop:
881	mtx_lock_spin(&vm_page_queue_free_mtx);
882	if (cnt.v_free_count > cnt.v_free_reserved) {
883		/*
884		 * Allocate from the free queue if there are plenty of pages
885		 * in it.
886		 */
887		m = vm_page_select_free(object, pindex,
888					(req & VM_ALLOC_ZERO) != 0);
889	} else if (
890	    (page_req == VM_ALLOC_SYSTEM &&
891	     cnt.v_cache_count == 0 &&
892	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
893	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
894	) {
895		/*
896		 * Interrupt or system, dig deeper into the free list.
897		 */
898		m = vm_page_select_free(object, pindex, FALSE);
899	} else if (page_req != VM_ALLOC_INTERRUPT) {
900		mtx_unlock_spin(&vm_page_queue_free_mtx);
901		/*
902		 * Allocatable from cache (non-interrupt only).  On success,
903		 * we must free the page and try again, thus ensuring that
904		 * cnt.v_*_free_min counters are replenished.
905		 */
906		vm_page_lock_queues();
907		if ((m = vm_page_select_cache(object, pindex)) == NULL) {
908			vm_page_unlock_queues();
909			splx(s);
910#if defined(DIAGNOSTIC)
911			if (cnt.v_cache_count > 0)
912				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
913#endif
914			vm_pageout_deficit++;
915			pagedaemon_wakeup();
916			return (NULL);
917		}
918		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
919		vm_page_busy(m);
920		vm_page_protect(m, VM_PROT_NONE);
921		vm_page_free(m);
922		vm_page_unlock_queues();
923		goto loop;
924	} else {
925		/*
926		 * Not allocatable from cache from interrupt, give up.
927		 */
928		mtx_unlock_spin(&vm_page_queue_free_mtx);
929		splx(s);
930		vm_pageout_deficit++;
931		pagedaemon_wakeup();
932		return (NULL);
933	}
934
935	/*
936	 *  At this point we had better have found a good page.
937	 */
938
939	KASSERT(
940	    m != NULL,
941	    ("vm_page_alloc(): missing page on free queue\n")
942	);
943
944	/*
945	 * Remove from free queue
946	 */
947
948	vm_pageq_remove_nowakeup(m);
949
950	/*
951	 * Initialize structure.  Only the PG_ZERO flag is inherited.
952	 */
953	if (m->flags & PG_ZERO) {
954		vm_page_zero_count--;
955		m->flags = PG_ZERO | PG_BUSY;
956	} else {
957		m->flags = PG_BUSY;
958	}
959	if (req & VM_ALLOC_WIRED) {
960		cnt.v_wire_count++;
961		m->flags |= PG_MAPPED;	/* XXX this does not belong here */
962		m->wire_count = 1;
963	} else
964		m->wire_count = 0;
965	m->hold_count = 0;
966	m->act_count = 0;
967	m->busy = 0;
968	m->valid = 0;
969	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
970	mtx_unlock_spin(&vm_page_queue_free_mtx);
971
972	/*
973	 * vm_page_insert() is safe prior to the splx().  Note also that
974	 * inserting a page here does not insert it into the pmap (which
975	 * could cause us to block allocating memory).  We cannot block
976	 * anywhere.
977	 */
978	vm_page_insert(m, object, pindex);
979
980	/*
981	 * Don't wakeup too often - wakeup the pageout daemon when
982	 * we would be nearly out of memory.
983	 */
984	if (vm_paging_needed())
985		pagedaemon_wakeup();
986
987	splx(s);
988	return (m);
989}
990
991/*
992 *	vm_wait:	(also see VM_WAIT macro)
993 *
994 *	Block until free pages are available for allocation
995 *	- Called in various places before memory allocations.
996 */
997void
998vm_wait(void)
999{
1000	int s;
1001
1002	s = splvm();
1003	if (curproc == pageproc) {
1004		vm_pageout_pages_needed = 1;
1005		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
1006	} else {
1007		if (!vm_pages_needed) {
1008			vm_pages_needed = 1;
1009			wakeup(&vm_pages_needed);
1010		}
1011		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
1012	}
1013	splx(s);
1014}
1015
1016/*
1017 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1018 *
1019 *	Block until free pages are available for allocation
1020 *	- Called only in vm_fault so that processes page faulting
1021 *	  can be easily tracked.
1022 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1023 *	  processes will be able to grab memory first.  Do not change
1024 *	  this balance without careful testing first.
1025 */
1026void
1027vm_waitpfault(void)
1028{
1029	int s;
1030
1031	s = splvm();
1032	if (!vm_pages_needed) {
1033		vm_pages_needed = 1;
1034		wakeup(&vm_pages_needed);
1035	}
1036	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
1037	splx(s);
1038}
1039
1040/*
1041 *	vm_page_activate:
1042 *
1043 *	Put the specified page on the active list (if appropriate).
1044 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1045 *	mess with it.
1046 *
1047 *	The page queues must be locked.
1048 *	This routine may not block.
1049 */
1050void
1051vm_page_activate(vm_page_t m)
1052{
1053	int s;
1054
1055	GIANT_REQUIRED;
1056	s = splvm();
1057	if (m->queue != PQ_ACTIVE) {
1058		if ((m->queue - m->pc) == PQ_CACHE)
1059			cnt.v_reactivated++;
1060		vm_pageq_remove(m);
1061		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1062			if (m->act_count < ACT_INIT)
1063				m->act_count = ACT_INIT;
1064			vm_pageq_enqueue(PQ_ACTIVE, m);
1065		}
1066	} else {
1067		if (m->act_count < ACT_INIT)
1068			m->act_count = ACT_INIT;
1069	}
1070	splx(s);
1071}
1072
1073/*
1074 *	vm_page_free_wakeup:
1075 *
1076 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1077 *	routine is called when a page has been added to the cache or free
1078 *	queues.
1079 *
1080 *	This routine may not block.
1081 *	This routine must be called at splvm()
1082 */
1083static __inline void
1084vm_page_free_wakeup(void)
1085{
1086	/*
1087	 * if pageout daemon needs pages, then tell it that there are
1088	 * some free.
1089	 */
1090	if (vm_pageout_pages_needed &&
1091	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1092		wakeup(&vm_pageout_pages_needed);
1093		vm_pageout_pages_needed = 0;
1094	}
1095	/*
1096	 * wakeup processes that are waiting on memory if we hit a
1097	 * high water mark. And wakeup scheduler process if we have
1098	 * lots of memory. this process will swapin processes.
1099	 */
1100	if (vm_pages_needed && !vm_page_count_min()) {
1101		vm_pages_needed = 0;
1102		wakeup(&cnt.v_free_count);
1103	}
1104}
1105
1106/*
1107 *	vm_page_free_toq:
1108 *
1109 *	Returns the given page to the PQ_FREE list,
1110 *	disassociating it with any VM object.
1111 *
1112 *	Object and page must be locked prior to entry.
1113 *	This routine may not block.
1114 */
1115
1116void
1117vm_page_free_toq(vm_page_t m)
1118{
1119	int s;
1120	struct vpgqueues *pq;
1121	vm_object_t object = m->object;
1122
1123	GIANT_REQUIRED;
1124	s = splvm();
1125	cnt.v_tfree++;
1126
1127	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1128		printf(
1129		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1130		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1131		    m->hold_count);
1132		if ((m->queue - m->pc) == PQ_FREE)
1133			panic("vm_page_free: freeing free page");
1134		else
1135			panic("vm_page_free: freeing busy page");
1136	}
1137
1138	/*
1139	 * unqueue, then remove page.  Note that we cannot destroy
1140	 * the page here because we do not want to call the pager's
1141	 * callback routine until after we've put the page on the
1142	 * appropriate free queue.
1143	 */
1144	vm_pageq_remove_nowakeup(m);
1145	vm_page_remove(m);
1146
1147	/*
1148	 * If fictitious remove object association and
1149	 * return, otherwise delay object association removal.
1150	 */
1151	if ((m->flags & PG_FICTITIOUS) != 0) {
1152		splx(s);
1153		return;
1154	}
1155
1156	m->valid = 0;
1157	vm_page_undirty(m);
1158
1159	if (m->wire_count != 0) {
1160		if (m->wire_count > 1) {
1161			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1162				m->wire_count, (long)m->pindex);
1163		}
1164		panic("vm_page_free: freeing wired page\n");
1165	}
1166
1167	/*
1168	 * If we've exhausted the object's resident pages we want to free
1169	 * it up.
1170	 */
1171	if (object &&
1172	    (object->type == OBJT_VNODE) &&
1173	    ((object->flags & OBJ_DEAD) == 0)
1174	) {
1175		struct vnode *vp = (struct vnode *)object->handle;
1176
1177		if (vp && VSHOULDFREE(vp))
1178			vfree(vp);
1179	}
1180
1181	/*
1182	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1183	 */
1184	if (m->flags & PG_UNMANAGED) {
1185		m->flags &= ~PG_UNMANAGED;
1186	} else {
1187#ifdef __alpha__
1188		pmap_page_is_free(m);
1189#endif
1190	}
1191
1192	if (m->hold_count != 0) {
1193		m->flags &= ~PG_ZERO;
1194		m->queue = PQ_HOLD;
1195	} else
1196		m->queue = PQ_FREE + m->pc;
1197	pq = &vm_page_queues[m->queue];
1198	mtx_lock_spin(&vm_page_queue_free_mtx);
1199	pq->lcnt++;
1200	++(*pq->cnt);
1201
1202	/*
1203	 * Put zero'd pages on the end ( where we look for zero'd pages
1204	 * first ) and non-zerod pages at the head.
1205	 */
1206	if (m->flags & PG_ZERO) {
1207		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1208		++vm_page_zero_count;
1209	} else {
1210		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1211	}
1212	mtx_unlock_spin(&vm_page_queue_free_mtx);
1213	vm_page_free_wakeup();
1214	splx(s);
1215}
1216
1217/*
1218 *	vm_page_unmanage:
1219 *
1220 * 	Prevent PV management from being done on the page.  The page is
1221 *	removed from the paging queues as if it were wired, and as a
1222 *	consequence of no longer being managed the pageout daemon will not
1223 *	touch it (since there is no way to locate the pte mappings for the
1224 *	page).  madvise() calls that mess with the pmap will also no longer
1225 *	operate on the page.
1226 *
1227 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1228 *	will clear the flag.
1229 *
1230 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1231 *	physical memory as backing store rather then swap-backed memory and
1232 *	will eventually be extended to support 4MB unmanaged physical
1233 *	mappings.
1234 */
1235void
1236vm_page_unmanage(vm_page_t m)
1237{
1238	int s;
1239
1240	s = splvm();
1241	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1242	if ((m->flags & PG_UNMANAGED) == 0) {
1243		if (m->wire_count == 0)
1244			vm_pageq_remove(m);
1245	}
1246	vm_page_flag_set(m, PG_UNMANAGED);
1247	splx(s);
1248}
1249
1250/*
1251 *	vm_page_wire:
1252 *
1253 *	Mark this page as wired down by yet
1254 *	another map, removing it from paging queues
1255 *	as necessary.
1256 *
1257 *	The page queues must be locked.
1258 *	This routine may not block.
1259 */
1260void
1261vm_page_wire(vm_page_t m)
1262{
1263	int s;
1264
1265	/*
1266	 * Only bump the wire statistics if the page is not already wired,
1267	 * and only unqueue the page if it is on some queue (if it is unmanaged
1268	 * it is already off the queues).
1269	 */
1270	s = splvm();
1271	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1272	if (m->wire_count == 0) {
1273		if ((m->flags & PG_UNMANAGED) == 0)
1274			vm_pageq_remove(m);
1275		cnt.v_wire_count++;
1276	}
1277	m->wire_count++;
1278	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1279	splx(s);
1280	vm_page_flag_set(m, PG_MAPPED);	/* XXX this does not belong here */
1281}
1282
1283/*
1284 *	vm_page_unwire:
1285 *
1286 *	Release one wiring of this page, potentially
1287 *	enabling it to be paged again.
1288 *
1289 *	Many pages placed on the inactive queue should actually go
1290 *	into the cache, but it is difficult to figure out which.  What
1291 *	we do instead, if the inactive target is well met, is to put
1292 *	clean pages at the head of the inactive queue instead of the tail.
1293 *	This will cause them to be moved to the cache more quickly and
1294 *	if not actively re-referenced, freed more quickly.  If we just
1295 *	stick these pages at the end of the inactive queue, heavy filesystem
1296 *	meta-data accesses can cause an unnecessary paging load on memory bound
1297 *	processes.  This optimization causes one-time-use metadata to be
1298 *	reused more quickly.
1299 *
1300 *	BUT, if we are in a low-memory situation we have no choice but to
1301 *	put clean pages on the cache queue.
1302 *
1303 *	A number of routines use vm_page_unwire() to guarantee that the page
1304 *	will go into either the inactive or active queues, and will NEVER
1305 *	be placed in the cache - for example, just after dirtying a page.
1306 *	dirty pages in the cache are not allowed.
1307 *
1308 *	The page queues must be locked.
1309 *	This routine may not block.
1310 */
1311void
1312vm_page_unwire(vm_page_t m, int activate)
1313{
1314	int s;
1315
1316	s = splvm();
1317	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1318	if (m->wire_count > 0) {
1319		m->wire_count--;
1320		if (m->wire_count == 0) {
1321			cnt.v_wire_count--;
1322			if (m->flags & PG_UNMANAGED) {
1323				;
1324			} else if (activate)
1325				vm_pageq_enqueue(PQ_ACTIVE, m);
1326			else {
1327				vm_page_flag_clear(m, PG_WINATCFLS);
1328				vm_pageq_enqueue(PQ_INACTIVE, m);
1329			}
1330		}
1331	} else {
1332		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1333	}
1334	splx(s);
1335}
1336
1337
1338/*
1339 * Move the specified page to the inactive queue.  If the page has
1340 * any associated swap, the swap is deallocated.
1341 *
1342 * Normally athead is 0 resulting in LRU operation.  athead is set
1343 * to 1 if we want this page to be 'as if it were placed in the cache',
1344 * except without unmapping it from the process address space.
1345 *
1346 * This routine may not block.
1347 */
1348static __inline void
1349_vm_page_deactivate(vm_page_t m, int athead)
1350{
1351	int s;
1352
1353	GIANT_REQUIRED;
1354	/*
1355	 * Ignore if already inactive.
1356	 */
1357	if (m->queue == PQ_INACTIVE)
1358		return;
1359
1360	s = splvm();
1361	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1362		if ((m->queue - m->pc) == PQ_CACHE)
1363			cnt.v_reactivated++;
1364		vm_page_flag_clear(m, PG_WINATCFLS);
1365		vm_pageq_remove(m);
1366		if (athead)
1367			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1368		else
1369			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1370		m->queue = PQ_INACTIVE;
1371		vm_page_queues[PQ_INACTIVE].lcnt++;
1372		cnt.v_inactive_count++;
1373	}
1374	splx(s);
1375}
1376
1377void
1378vm_page_deactivate(vm_page_t m)
1379{
1380    _vm_page_deactivate(m, 0);
1381}
1382
1383/*
1384 * vm_page_try_to_cache:
1385 *
1386 * Returns 0 on failure, 1 on success
1387 */
1388int
1389vm_page_try_to_cache(vm_page_t m)
1390{
1391
1392	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1393	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1394	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1395		return (0);
1396	}
1397	vm_page_test_dirty(m);
1398	if (m->dirty)
1399		return (0);
1400	vm_page_cache(m);
1401	return (1);
1402}
1403
1404/*
1405 * vm_page_try_to_free()
1406 *
1407 *	Attempt to free the page.  If we cannot free it, we do nothing.
1408 *	1 is returned on success, 0 on failure.
1409 */
1410int
1411vm_page_try_to_free(vm_page_t m)
1412{
1413
1414	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1415	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1416	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1417		return (0);
1418	}
1419	vm_page_test_dirty(m);
1420	if (m->dirty)
1421		return (0);
1422	vm_page_busy(m);
1423	vm_page_protect(m, VM_PROT_NONE);
1424	vm_page_free(m);
1425	return (1);
1426}
1427
1428/*
1429 * vm_page_cache
1430 *
1431 * Put the specified page onto the page cache queue (if appropriate).
1432 *
1433 * This routine may not block.
1434 */
1435void
1436vm_page_cache(vm_page_t m)
1437{
1438	int s;
1439
1440	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1441	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1442		printf("vm_page_cache: attempting to cache busy page\n");
1443		return;
1444	}
1445	if ((m->queue - m->pc) == PQ_CACHE)
1446		return;
1447
1448	/*
1449	 * Remove all pmaps and indicate that the page is not
1450	 * writeable or mapped.
1451	 */
1452	vm_page_protect(m, VM_PROT_NONE);
1453	if (m->dirty != 0) {
1454		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1455			(long)m->pindex);
1456	}
1457	s = splvm();
1458	vm_pageq_remove_nowakeup(m);
1459	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1460	vm_page_free_wakeup();
1461	splx(s);
1462}
1463
1464/*
1465 * vm_page_dontneed
1466 *
1467 *	Cache, deactivate, or do nothing as appropriate.  This routine
1468 *	is typically used by madvise() MADV_DONTNEED.
1469 *
1470 *	Generally speaking we want to move the page into the cache so
1471 *	it gets reused quickly.  However, this can result in a silly syndrome
1472 *	due to the page recycling too quickly.  Small objects will not be
1473 *	fully cached.  On the otherhand, if we move the page to the inactive
1474 *	queue we wind up with a problem whereby very large objects
1475 *	unnecessarily blow away our inactive and cache queues.
1476 *
1477 *	The solution is to move the pages based on a fixed weighting.  We
1478 *	either leave them alone, deactivate them, or move them to the cache,
1479 *	where moving them to the cache has the highest weighting.
1480 *	By forcing some pages into other queues we eventually force the
1481 *	system to balance the queues, potentially recovering other unrelated
1482 *	space from active.  The idea is to not force this to happen too
1483 *	often.
1484 */
1485void
1486vm_page_dontneed(vm_page_t m)
1487{
1488	static int dnweight;
1489	int dnw;
1490	int head;
1491
1492	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1493	dnw = ++dnweight;
1494
1495	/*
1496	 * occassionally leave the page alone
1497	 */
1498	if ((dnw & 0x01F0) == 0 ||
1499	    m->queue == PQ_INACTIVE ||
1500	    m->queue - m->pc == PQ_CACHE
1501	) {
1502		if (m->act_count >= ACT_INIT)
1503			--m->act_count;
1504		return;
1505	}
1506
1507	if (m->dirty == 0)
1508		vm_page_test_dirty(m);
1509
1510	if (m->dirty || (dnw & 0x0070) == 0) {
1511		/*
1512		 * Deactivate the page 3 times out of 32.
1513		 */
1514		head = 0;
1515	} else {
1516		/*
1517		 * Cache the page 28 times out of every 32.  Note that
1518		 * the page is deactivated instead of cached, but placed
1519		 * at the head of the queue instead of the tail.
1520		 */
1521		head = 1;
1522	}
1523	_vm_page_deactivate(m, head);
1524}
1525
1526/*
1527 * Grab a page, waiting until we are waken up due to the page
1528 * changing state.  We keep on waiting, if the page continues
1529 * to be in the object.  If the page doesn't exist, allocate it.
1530 *
1531 * This routine may block.
1532 */
1533vm_page_t
1534vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1535{
1536	vm_page_t m;
1537	int s, generation;
1538
1539	GIANT_REQUIRED;
1540retrylookup:
1541	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1542		if (m->busy || (m->flags & PG_BUSY)) {
1543			generation = object->generation;
1544
1545			s = splvm();
1546			while ((object->generation == generation) &&
1547					(m->busy || (m->flags & PG_BUSY))) {
1548				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1549				tsleep(m, PVM, "pgrbwt", 0);
1550				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1551					splx(s);
1552					return NULL;
1553				}
1554			}
1555			splx(s);
1556			goto retrylookup;
1557		} else {
1558			vm_page_lock_queues();
1559			if (allocflags & VM_ALLOC_WIRED)
1560				vm_page_wire(m);
1561			vm_page_busy(m);
1562			vm_page_unlock_queues();
1563			return m;
1564		}
1565	}
1566
1567	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1568	if (m == NULL) {
1569		VM_WAIT;
1570		if ((allocflags & VM_ALLOC_RETRY) == 0)
1571			return NULL;
1572		goto retrylookup;
1573	}
1574
1575	return m;
1576}
1577
1578/*
1579 * Mapping function for valid bits or for dirty bits in
1580 * a page.  May not block.
1581 *
1582 * Inputs are required to range within a page.
1583 */
1584__inline int
1585vm_page_bits(int base, int size)
1586{
1587	int first_bit;
1588	int last_bit;
1589
1590	KASSERT(
1591	    base + size <= PAGE_SIZE,
1592	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1593	);
1594
1595	if (size == 0)		/* handle degenerate case */
1596		return (0);
1597
1598	first_bit = base >> DEV_BSHIFT;
1599	last_bit = (base + size - 1) >> DEV_BSHIFT;
1600
1601	return ((2 << last_bit) - (1 << first_bit));
1602}
1603
1604/*
1605 *	vm_page_set_validclean:
1606 *
1607 *	Sets portions of a page valid and clean.  The arguments are expected
1608 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1609 *	of any partial chunks touched by the range.  The invalid portion of
1610 *	such chunks will be zero'd.
1611 *
1612 *	This routine may not block.
1613 *
1614 *	(base + size) must be less then or equal to PAGE_SIZE.
1615 */
1616void
1617vm_page_set_validclean(vm_page_t m, int base, int size)
1618{
1619	int pagebits;
1620	int frag;
1621	int endoff;
1622
1623	GIANT_REQUIRED;
1624	if (size == 0)	/* handle degenerate case */
1625		return;
1626
1627	/*
1628	 * If the base is not DEV_BSIZE aligned and the valid
1629	 * bit is clear, we have to zero out a portion of the
1630	 * first block.
1631	 */
1632	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1633	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1634		pmap_zero_page_area(m, frag, base - frag);
1635
1636	/*
1637	 * If the ending offset is not DEV_BSIZE aligned and the
1638	 * valid bit is clear, we have to zero out a portion of
1639	 * the last block.
1640	 */
1641	endoff = base + size;
1642	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1643	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1644		pmap_zero_page_area(m, endoff,
1645		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1646
1647	/*
1648	 * Set valid, clear dirty bits.  If validating the entire
1649	 * page we can safely clear the pmap modify bit.  We also
1650	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1651	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1652	 * be set again.
1653	 *
1654	 * We set valid bits inclusive of any overlap, but we can only
1655	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1656	 * the range.
1657	 */
1658	pagebits = vm_page_bits(base, size);
1659	m->valid |= pagebits;
1660#if 0	/* NOT YET */
1661	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1662		frag = DEV_BSIZE - frag;
1663		base += frag;
1664		size -= frag;
1665		if (size < 0)
1666			size = 0;
1667	}
1668	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1669#endif
1670	m->dirty &= ~pagebits;
1671	if (base == 0 && size == PAGE_SIZE) {
1672		pmap_clear_modify(m);
1673		vm_page_flag_clear(m, PG_NOSYNC);
1674	}
1675}
1676
1677#if 0
1678
1679void
1680vm_page_set_dirty(vm_page_t m, int base, int size)
1681{
1682	m->dirty |= vm_page_bits(base, size);
1683}
1684
1685#endif
1686
1687void
1688vm_page_clear_dirty(vm_page_t m, int base, int size)
1689{
1690	GIANT_REQUIRED;
1691	m->dirty &= ~vm_page_bits(base, size);
1692}
1693
1694/*
1695 *	vm_page_set_invalid:
1696 *
1697 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1698 *	valid and dirty bits for the effected areas are cleared.
1699 *
1700 *	May not block.
1701 */
1702void
1703vm_page_set_invalid(vm_page_t m, int base, int size)
1704{
1705	int bits;
1706
1707	GIANT_REQUIRED;
1708	bits = vm_page_bits(base, size);
1709	m->valid &= ~bits;
1710	m->dirty &= ~bits;
1711	m->object->generation++;
1712}
1713
1714/*
1715 * vm_page_zero_invalid()
1716 *
1717 *	The kernel assumes that the invalid portions of a page contain
1718 *	garbage, but such pages can be mapped into memory by user code.
1719 *	When this occurs, we must zero out the non-valid portions of the
1720 *	page so user code sees what it expects.
1721 *
1722 *	Pages are most often semi-valid when the end of a file is mapped
1723 *	into memory and the file's size is not page aligned.
1724 */
1725void
1726vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1727{
1728	int b;
1729	int i;
1730
1731	/*
1732	 * Scan the valid bits looking for invalid sections that
1733	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1734	 * valid bit may be set ) have already been zerod by
1735	 * vm_page_set_validclean().
1736	 */
1737	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1738		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1739		    (m->valid & (1 << i))
1740		) {
1741			if (i > b) {
1742				pmap_zero_page_area(m,
1743				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1744			}
1745			b = i + 1;
1746		}
1747	}
1748
1749	/*
1750	 * setvalid is TRUE when we can safely set the zero'd areas
1751	 * as being valid.  We can do this if there are no cache consistancy
1752	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1753	 */
1754	if (setvalid)
1755		m->valid = VM_PAGE_BITS_ALL;
1756}
1757
1758/*
1759 *	vm_page_is_valid:
1760 *
1761 *	Is (partial) page valid?  Note that the case where size == 0
1762 *	will return FALSE in the degenerate case where the page is
1763 *	entirely invalid, and TRUE otherwise.
1764 *
1765 *	May not block.
1766 */
1767int
1768vm_page_is_valid(vm_page_t m, int base, int size)
1769{
1770	int bits = vm_page_bits(base, size);
1771
1772	if (m->valid && ((m->valid & bits) == bits))
1773		return 1;
1774	else
1775		return 0;
1776}
1777
1778/*
1779 * update dirty bits from pmap/mmu.  May not block.
1780 */
1781void
1782vm_page_test_dirty(vm_page_t m)
1783{
1784	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1785		vm_page_dirty(m);
1786	}
1787}
1788
1789int so_zerocp_fullpage = 0;
1790
1791void
1792vm_page_cowfault(vm_page_t m)
1793{
1794	vm_page_t mnew;
1795	vm_object_t object;
1796	vm_pindex_t pindex;
1797
1798	object = m->object;
1799	pindex = m->pindex;
1800	vm_page_busy(m);
1801
1802 retry_alloc:
1803	vm_page_remove(m);
1804	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1805	if (mnew == NULL) {
1806		vm_page_insert(m, object, pindex);
1807		VM_WAIT;
1808		goto retry_alloc;
1809	}
1810
1811	if (m->cow == 0) {
1812		/*
1813		 * check to see if we raced with an xmit complete when
1814		 * waiting to allocate a page.  If so, put things back
1815		 * the way they were
1816		 */
1817		vm_page_busy(mnew);
1818		vm_page_free(mnew);
1819		vm_page_insert(m, object, pindex);
1820	} else { /* clear COW & copy page */
1821		if (so_zerocp_fullpage) {
1822			mnew->valid = VM_PAGE_BITS_ALL;
1823		} else {
1824			vm_page_copy(m, mnew);
1825		}
1826		vm_page_dirty(mnew);
1827		vm_page_flag_clear(mnew, PG_BUSY);
1828	}
1829}
1830
1831void
1832vm_page_cowclear(vm_page_t m)
1833{
1834
1835	/* XXX KDM find out if giant is required here. */
1836	GIANT_REQUIRED;
1837	if (m->cow) {
1838		atomic_subtract_int(&m->cow, 1);
1839		/*
1840		 * let vm_fault add back write permission  lazily
1841		 */
1842	}
1843	/*
1844	 *  sf_buf_free() will free the page, so we needn't do it here
1845	 */
1846}
1847
1848void
1849vm_page_cowsetup(vm_page_t m)
1850{
1851	/* XXX KDM find out if giant is required here */
1852	GIANT_REQUIRED;
1853	atomic_add_int(&m->cow, 1);
1854	vm_page_protect(m, VM_PROT_READ);
1855}
1856
1857#include "opt_ddb.h"
1858#ifdef DDB
1859#include <sys/kernel.h>
1860
1861#include <ddb/ddb.h>
1862
1863DB_SHOW_COMMAND(page, vm_page_print_page_info)
1864{
1865	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1866	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1867	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1868	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1869	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1870	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1871	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1872	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1873	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1874	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1875}
1876
1877DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1878{
1879	int i;
1880	db_printf("PQ_FREE:");
1881	for (i = 0; i < PQ_L2_SIZE; i++) {
1882		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1883	}
1884	db_printf("\n");
1885
1886	db_printf("PQ_CACHE:");
1887	for (i = 0; i < PQ_L2_SIZE; i++) {
1888		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1889	}
1890	db_printf("\n");
1891
1892	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1893		vm_page_queues[PQ_ACTIVE].lcnt,
1894		vm_page_queues[PQ_INACTIVE].lcnt);
1895}
1896#endif /* DDB */
1897