vm_kern.c revision 99893
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 99893 2002-07-12 23:20:06Z alc $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>		/* for ticks and hz */
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/malloc.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t clean_map=0;
92vm_map_t buffer_map=0;
93
94/*
95 *	kmem_alloc_pageable:
96 *
97 *	Allocate pageable memory to the kernel's address map.
98 *	"map" must be kernel_map or a submap of kernel_map.
99 */
100vm_offset_t
101kmem_alloc_pageable(map, size)
102	vm_map_t map;
103	vm_size_t size;
104{
105	vm_offset_t addr;
106	int result;
107
108	size = round_page(size);
109	addr = vm_map_min(map);
110	result = vm_map_find(map, NULL, 0,
111	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
112	if (result != KERN_SUCCESS) {
113		return (0);
114	}
115	return (addr);
116}
117
118/*
119 *	kmem_alloc_nofault:
120 *
121 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
122 */
123vm_offset_t
124kmem_alloc_nofault(map, size)
125	vm_map_t map;
126	vm_size_t size;
127{
128	vm_offset_t addr;
129	int result;
130
131	size = round_page(size);
132	addr = vm_map_min(map);
133	result = vm_map_find(map, NULL, 0,
134	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
135	if (result != KERN_SUCCESS) {
136		return (0);
137	}
138	return (addr);
139}
140
141/*
142 *	Allocate wired-down memory in the kernel's address map
143 *	or a submap.
144 */
145vm_offset_t
146kmem_alloc(map, size)
147	vm_map_t map;
148	vm_size_t size;
149{
150	vm_offset_t addr;
151	vm_offset_t offset;
152	vm_offset_t i;
153
154	GIANT_REQUIRED;
155
156	size = round_page(size);
157
158	/*
159	 * Use the kernel object for wired-down kernel pages. Assume that no
160	 * region of the kernel object is referenced more than once.
161	 */
162
163	/*
164	 * Locate sufficient space in the map.  This will give us the final
165	 * virtual address for the new memory, and thus will tell us the
166	 * offset within the kernel map.
167	 */
168	vm_map_lock(map);
169	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
170		vm_map_unlock(map);
171		return (0);
172	}
173	offset = addr - VM_MIN_KERNEL_ADDRESS;
174	vm_object_reference(kernel_object);
175	vm_map_insert(map, kernel_object, offset, addr, addr + size,
176		VM_PROT_ALL, VM_PROT_ALL, 0);
177	vm_map_unlock(map);
178
179	/*
180	 * Guarantee that there are pages already in this object before
181	 * calling vm_map_pageable.  This is to prevent the following
182	 * scenario:
183	 *
184	 * 1) Threads have swapped out, so that there is a pager for the
185	 * kernel_object. 2) The kmsg zone is empty, and so we are
186	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
187	 * there is no page, but there is a pager, so we call
188	 * pager_data_request.  But the kmsg zone is empty, so we must
189	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
190	 * we get the data back from the pager, it will be (very stale)
191	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
192	 *
193	 * We're intentionally not activating the pages we allocate to prevent a
194	 * race with page-out.  vm_map_pageable will wire the pages.
195	 */
196	for (i = 0; i < size; i += PAGE_SIZE) {
197		vm_page_t mem;
198
199		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
200				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
201		if ((mem->flags & PG_ZERO) == 0)
202			vm_page_zero_fill(mem);
203		mem->valid = VM_PAGE_BITS_ALL;
204		vm_page_flag_clear(mem, PG_ZERO);
205		vm_page_wakeup(mem);
206	}
207
208	/*
209	 * And finally, mark the data as non-pageable.
210	 */
211	(void) vm_map_wire(map, addr, addr + size, FALSE);
212
213	return (addr);
214}
215
216/*
217 *	kmem_free:
218 *
219 *	Release a region of kernel virtual memory allocated
220 *	with kmem_alloc, and return the physical pages
221 *	associated with that region.
222 *
223 *	This routine may not block on kernel maps.
224 */
225void
226kmem_free(map, addr, size)
227	vm_map_t map;
228	vm_offset_t addr;
229	vm_size_t size;
230{
231
232	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
233}
234
235/*
236 *	kmem_suballoc:
237 *
238 *	Allocates a map to manage a subrange
239 *	of the kernel virtual address space.
240 *
241 *	Arguments are as follows:
242 *
243 *	parent		Map to take range from
244 *	min, max	Returned endpoints of map
245 *	size		Size of range to find
246 */
247vm_map_t
248kmem_suballoc(parent, min, max, size)
249	vm_map_t parent;
250	vm_offset_t *min, *max;
251	vm_size_t size;
252{
253	int ret;
254	vm_map_t result;
255
256	GIANT_REQUIRED;
257
258	size = round_page(size);
259
260	*min = (vm_offset_t) vm_map_min(parent);
261	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
262	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
263	if (ret != KERN_SUCCESS) {
264		printf("kmem_suballoc: bad status return of %d.\n", ret);
265		panic("kmem_suballoc");
266	}
267	*max = *min + size;
268	result = vm_map_create(vm_map_pmap(parent), *min, *max);
269	if (result == NULL)
270		panic("kmem_suballoc: cannot create submap");
271	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
272		panic("kmem_suballoc: unable to change range to submap");
273	return (result);
274}
275
276/*
277 *	kmem_malloc:
278 *
279 * 	Allocate wired-down memory in the kernel's address map for the higher
280 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
281 * 	kmem_alloc() because we may need to allocate memory at interrupt
282 * 	level where we cannot block (canwait == FALSE).
283 *
284 * 	This routine has its own private kernel submap (kmem_map) and object
285 * 	(kmem_object).  This, combined with the fact that only malloc uses
286 * 	this routine, ensures that we will never block in map or object waits.
287 *
288 * 	Note that this still only works in a uni-processor environment and
289 * 	when called at splhigh().
290 *
291 * 	We don't worry about expanding the map (adding entries) since entries
292 * 	for wired maps are statically allocated.
293 *
294 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
295 *	I have not verified that it actually does not block.
296 *
297 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
298 *	which we never free.
299 */
300vm_offset_t
301kmem_malloc(map, size, flags)
302	vm_map_t map;
303	vm_size_t size;
304	int flags;
305{
306	vm_offset_t offset, i;
307	vm_map_entry_t entry;
308	vm_offset_t addr;
309	vm_page_t m;
310	int pflags;
311
312	GIANT_REQUIRED;
313
314	size = round_page(size);
315	addr = vm_map_min(map);
316
317	/*
318	 * Locate sufficient space in the map.  This will give us the final
319	 * virtual address for the new memory, and thus will tell us the
320	 * offset within the kernel map.
321	 */
322	vm_map_lock(map);
323	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
324		vm_map_unlock(map);
325		if (map != kmem_map) {
326			static int last_report; /* when we did it (in ticks) */
327			if (ticks < last_report ||
328			    (ticks - last_report) >= hz) {
329				last_report = ticks;
330				printf("Out of mbuf address space!\n");
331				printf("Consider increasing NMBCLUSTERS\n");
332			}
333			goto bad;
334		}
335		if ((flags & M_NOWAIT) == 0)
336			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
337				(long)size, (long)map->size);
338		goto bad;
339	}
340	offset = addr - VM_MIN_KERNEL_ADDRESS;
341	vm_object_reference(kmem_object);
342	vm_map_insert(map, kmem_object, offset, addr, addr + size,
343		VM_PROT_ALL, VM_PROT_ALL, 0);
344
345	/*
346	 * Note: if M_NOWAIT specified alone, allocate from
347	 * interrupt-safe queues only (just the free list).  If
348	 * M_USE_RESERVE is also specified, we can also
349	 * allocate from the cache.  Neither of the latter two
350	 * flags may be specified from an interrupt since interrupts
351	 * are not allowed to mess with the cache queue.
352	 */
353
354	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
355		pflags = VM_ALLOC_INTERRUPT;
356	else
357		pflags = VM_ALLOC_SYSTEM;
358
359	if (flags & M_ZERO)
360		pflags |= VM_ALLOC_ZERO;
361
362
363	for (i = 0; i < size; i += PAGE_SIZE) {
364retry:
365		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
366
367		/*
368		 * Ran out of space, free everything up and return. Don't need
369		 * to lock page queues here as we know that the pages we got
370		 * aren't on any queues.
371		 */
372		if (m == NULL) {
373			if ((flags & M_NOWAIT) == 0) {
374				vm_map_unlock(map);
375				VM_WAIT;
376				vm_map_lock(map);
377				goto retry;
378			}
379			/*
380			 * Free the pages before removing the map entry.
381			 * They are already marked busy.  Calling
382			 * vm_map_delete before the pages has been freed or
383			 * unbusied will cause a deadlock.
384			 */
385			while (i != 0) {
386				i -= PAGE_SIZE;
387				m = vm_page_lookup(kmem_object,
388						   OFF_TO_IDX(offset + i));
389				vm_page_free(m);
390			}
391			vm_map_delete(map, addr, addr + size);
392			vm_map_unlock(map);
393			goto bad;
394		}
395		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
396			vm_page_zero_fill(m);
397		vm_page_flag_clear(m, PG_ZERO);
398		m->valid = VM_PAGE_BITS_ALL;
399	}
400
401	/*
402	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
403	 * be able to extend the previous entry so there will be a new entry
404	 * exactly corresponding to this address range and it will have
405	 * wired_count == 0.
406	 */
407	if (!vm_map_lookup_entry(map, addr, &entry) ||
408	    entry->start != addr || entry->end != addr + size ||
409	    entry->wired_count != 0)
410		panic("kmem_malloc: entry not found or misaligned");
411	entry->wired_count = 1;
412
413	vm_map_simplify_entry(map, entry);
414
415	/*
416	 * Loop thru pages, entering them in the pmap. (We cannot add them to
417	 * the wired count without wrapping the vm_page_queue_lock in
418	 * splimp...)
419	 */
420	for (i = 0; i < size; i += PAGE_SIZE) {
421		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
422		vm_page_wire(m);
423		vm_page_wakeup(m);
424		/*
425		 * Because this is kernel_pmap, this call will not block.
426		 */
427		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
428		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
429	}
430	vm_map_unlock(map);
431
432	return (addr);
433
434bad:
435	return (0);
436}
437
438/*
439 *	kmem_alloc_wait:
440 *
441 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
442 *	has no room, the caller sleeps waiting for more memory in the submap.
443 *
444 *	This routine may block.
445 */
446vm_offset_t
447kmem_alloc_wait(map, size)
448	vm_map_t map;
449	vm_size_t size;
450{
451	vm_offset_t addr;
452
453	size = round_page(size);
454
455	for (;;) {
456		/*
457		 * To make this work for more than one map, use the map's lock
458		 * to lock out sleepers/wakers.
459		 */
460		vm_map_lock(map);
461		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
462			break;
463		/* no space now; see if we can ever get space */
464		if (vm_map_max(map) - vm_map_min(map) < size) {
465			vm_map_unlock(map);
466			return (0);
467		}
468		map->needs_wakeup = TRUE;
469		vm_map_unlock_and_wait(map, FALSE);
470	}
471	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
472	vm_map_unlock(map);
473	return (addr);
474}
475
476/*
477 *	kmem_free_wakeup:
478 *
479 *	Returns memory to a submap of the kernel, and wakes up any processes
480 *	waiting for memory in that map.
481 */
482void
483kmem_free_wakeup(map, addr, size)
484	vm_map_t map;
485	vm_offset_t addr;
486	vm_size_t size;
487{
488
489	vm_map_lock(map);
490	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
491	if (map->needs_wakeup) {
492		map->needs_wakeup = FALSE;
493		vm_map_wakeup(map);
494	}
495	vm_map_unlock(map);
496}
497
498/*
499 * 	kmem_init:
500 *
501 *	Create the kernel map; insert a mapping covering kernel text,
502 *	data, bss, and all space allocated thus far (`boostrap' data).  The
503 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
504 *	`start' as allocated, and the range between `start' and `end' as free.
505 */
506void
507kmem_init(start, end)
508	vm_offset_t start, end;
509{
510	vm_map_t m;
511
512	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
513	vm_map_lock(m);
514	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
515	kernel_map = m;
516	kernel_map->system_map = 1;
517	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
518	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
519	/* ... and ending with the completion of the above `insert' */
520	vm_map_unlock(m);
521}
522