vm_kern.c revision 98686
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 98686 2002-06-23 18:07:40Z alc $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>		/* for ticks and hz */
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/malloc.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t clean_map=0;
92vm_map_t buffer_map=0;
93
94/*
95 *	kmem_alloc_pageable:
96 *
97 *	Allocate pageable memory to the kernel's address map.
98 *	"map" must be kernel_map or a submap of kernel_map.
99 *
100 * MPSAFE
101 */
102vm_offset_t
103kmem_alloc_pageable(map, size)
104	vm_map_t map;
105	vm_size_t size;
106{
107	vm_offset_t addr;
108	int result;
109
110	size = round_page(size);
111	addr = vm_map_min(map);
112	result = vm_map_find(map, NULL, 0,
113	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
114	if (result != KERN_SUCCESS) {
115		return (0);
116	}
117	return (addr);
118}
119
120/*
121 *	kmem_alloc_nofault:
122 *
123 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
124 *
125 * MPSAFE
126 */
127vm_offset_t
128kmem_alloc_nofault(map, size)
129	vm_map_t map;
130	vm_size_t size;
131{
132	vm_offset_t addr;
133	int result;
134
135	size = round_page(size);
136	addr = vm_map_min(map);
137	result = vm_map_find(map, NULL, 0,
138	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
139	if (result != KERN_SUCCESS) {
140		return (0);
141	}
142	return (addr);
143}
144
145/*
146 *	Allocate wired-down memory in the kernel's address map
147 *	or a submap.
148 */
149vm_offset_t
150kmem_alloc(map, size)
151	vm_map_t map;
152	vm_size_t size;
153{
154	vm_offset_t addr;
155	vm_offset_t offset;
156	vm_offset_t i;
157
158	GIANT_REQUIRED;
159
160	size = round_page(size);
161
162	/*
163	 * Use the kernel object for wired-down kernel pages. Assume that no
164	 * region of the kernel object is referenced more than once.
165	 */
166
167	/*
168	 * Locate sufficient space in the map.  This will give us the final
169	 * virtual address for the new memory, and thus will tell us the
170	 * offset within the kernel map.
171	 */
172	vm_map_lock(map);
173	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
174		vm_map_unlock(map);
175		return (0);
176	}
177	offset = addr - VM_MIN_KERNEL_ADDRESS;
178	vm_object_reference(kernel_object);
179	vm_map_insert(map, kernel_object, offset, addr, addr + size,
180		VM_PROT_ALL, VM_PROT_ALL, 0);
181	vm_map_unlock(map);
182
183	/*
184	 * Guarantee that there are pages already in this object before
185	 * calling vm_map_pageable.  This is to prevent the following
186	 * scenario:
187	 *
188	 * 1) Threads have swapped out, so that there is a pager for the
189	 * kernel_object. 2) The kmsg zone is empty, and so we are
190	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
191	 * there is no page, but there is a pager, so we call
192	 * pager_data_request.  But the kmsg zone is empty, so we must
193	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
194	 * we get the data back from the pager, it will be (very stale)
195	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
196	 *
197	 * We're intentionally not activating the pages we allocate to prevent a
198	 * race with page-out.  vm_map_pageable will wire the pages.
199	 */
200	for (i = 0; i < size; i += PAGE_SIZE) {
201		vm_page_t mem;
202
203		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
204				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
205		if ((mem->flags & PG_ZERO) == 0)
206			vm_page_zero_fill(mem);
207		mem->valid = VM_PAGE_BITS_ALL;
208		vm_page_flag_clear(mem, PG_ZERO);
209		vm_page_wakeup(mem);
210	}
211
212	/*
213	 * And finally, mark the data as non-pageable.
214	 */
215	(void) vm_map_wire(map, addr, addr + size, FALSE);
216
217	return (addr);
218}
219
220/*
221 *	kmem_free:
222 *
223 *	Release a region of kernel virtual memory allocated
224 *	with kmem_alloc, and return the physical pages
225 *	associated with that region.
226 *
227 *	This routine may not block on kernel maps.
228 *
229 * MPSAFE
230 */
231void
232kmem_free(map, addr, size)
233	vm_map_t map;
234	vm_offset_t addr;
235	vm_size_t size;
236{
237
238	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
239}
240
241/*
242 *	kmem_suballoc:
243 *
244 *	Allocates a map to manage a subrange
245 *	of the kernel virtual address space.
246 *
247 *	Arguments are as follows:
248 *
249 *	parent		Map to take range from
250 *	min, max	Returned endpoints of map
251 *	size		Size of range to find
252 */
253vm_map_t
254kmem_suballoc(parent, min, max, size)
255	vm_map_t parent;
256	vm_offset_t *min, *max;
257	vm_size_t size;
258{
259	int ret;
260	vm_map_t result;
261
262	GIANT_REQUIRED;
263
264	size = round_page(size);
265
266	*min = (vm_offset_t) vm_map_min(parent);
267	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
268	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
269	if (ret != KERN_SUCCESS) {
270		printf("kmem_suballoc: bad status return of %d.\n", ret);
271		panic("kmem_suballoc");
272	}
273	*max = *min + size;
274	result = vm_map_create(vm_map_pmap(parent), *min, *max);
275	if (result == NULL)
276		panic("kmem_suballoc: cannot create submap");
277	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
278		panic("kmem_suballoc: unable to change range to submap");
279	return (result);
280}
281
282/*
283 *	kmem_malloc:
284 *
285 * 	Allocate wired-down memory in the kernel's address map for the higher
286 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
287 * 	kmem_alloc() because we may need to allocate memory at interrupt
288 * 	level where we cannot block (canwait == FALSE).
289 *
290 * 	This routine has its own private kernel submap (kmem_map) and object
291 * 	(kmem_object).  This, combined with the fact that only malloc uses
292 * 	this routine, ensures that we will never block in map or object waits.
293 *
294 * 	Note that this still only works in a uni-processor environment and
295 * 	when called at splhigh().
296 *
297 * 	We don't worry about expanding the map (adding entries) since entries
298 * 	for wired maps are statically allocated.
299 *
300 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
301 *	I have not verified that it actually does not block.
302 *
303 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
304 *	which we never free.
305 */
306vm_offset_t
307kmem_malloc(map, size, flags)
308	vm_map_t map;
309	vm_size_t size;
310	int flags;
311{
312	vm_offset_t offset, i;
313	vm_map_entry_t entry;
314	vm_offset_t addr;
315	vm_page_t m;
316	int pflags;
317
318	GIANT_REQUIRED;
319
320	size = round_page(size);
321	addr = vm_map_min(map);
322
323	/*
324	 * Locate sufficient space in the map.  This will give us the final
325	 * virtual address for the new memory, and thus will tell us the
326	 * offset within the kernel map.
327	 */
328	vm_map_lock(map);
329	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
330		vm_map_unlock(map);
331		if (map != kmem_map) {
332			static int last_report; /* when we did it (in ticks) */
333			if (ticks < last_report ||
334			    (ticks - last_report) >= hz) {
335				last_report = ticks;
336				printf("Out of mbuf address space!\n");
337				printf("Consider increasing NMBCLUSTERS\n");
338			}
339			goto bad;
340		}
341		if ((flags & M_NOWAIT) == 0)
342			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
343				(long)size, (long)map->size);
344		goto bad;
345	}
346	offset = addr - VM_MIN_KERNEL_ADDRESS;
347	vm_object_reference(kmem_object);
348	vm_map_insert(map, kmem_object, offset, addr, addr + size,
349		VM_PROT_ALL, VM_PROT_ALL, 0);
350
351	/*
352	 * Note: if M_NOWAIT specified alone, allocate from
353	 * interrupt-safe queues only (just the free list).  If
354	 * M_USE_RESERVE is also specified, we can also
355	 * allocate from the cache.  Neither of the latter two
356	 * flags may be specified from an interrupt since interrupts
357	 * are not allowed to mess with the cache queue.
358	 */
359
360	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
361		pflags = VM_ALLOC_INTERRUPT;
362	else
363		pflags = VM_ALLOC_SYSTEM;
364
365	if (flags & M_ZERO)
366		pflags |= VM_ALLOC_ZERO;
367
368
369	for (i = 0; i < size; i += PAGE_SIZE) {
370retry:
371		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
372
373		/*
374		 * Ran out of space, free everything up and return. Don't need
375		 * to lock page queues here as we know that the pages we got
376		 * aren't on any queues.
377		 */
378		if (m == NULL) {
379			if ((flags & M_NOWAIT) == 0) {
380				vm_map_unlock(map);
381				VM_WAIT;
382				vm_map_lock(map);
383				goto retry;
384			}
385			/*
386			 * Free the pages before removing the map entry.
387			 * They are already marked busy.  Calling
388			 * vm_map_delete before the pages has been freed or
389			 * unbusied will cause a deadlock.
390			 */
391			while (i != 0) {
392				i -= PAGE_SIZE;
393				m = vm_page_lookup(kmem_object,
394						   OFF_TO_IDX(offset + i));
395				vm_page_free(m);
396			}
397			vm_map_delete(map, addr, addr + size);
398			vm_map_unlock(map);
399			goto bad;
400		}
401		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
402			vm_page_zero_fill(m);
403		vm_page_flag_clear(m, PG_ZERO);
404		m->valid = VM_PAGE_BITS_ALL;
405	}
406
407	/*
408	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
409	 * be able to extend the previous entry so there will be a new entry
410	 * exactly corresponding to this address range and it will have
411	 * wired_count == 0.
412	 */
413	if (!vm_map_lookup_entry(map, addr, &entry) ||
414	    entry->start != addr || entry->end != addr + size ||
415	    entry->wired_count != 0)
416		panic("kmem_malloc: entry not found or misaligned");
417	entry->wired_count = 1;
418
419	vm_map_simplify_entry(map, entry);
420
421	/*
422	 * Loop thru pages, entering them in the pmap. (We cannot add them to
423	 * the wired count without wrapping the vm_page_queue_lock in
424	 * splimp...)
425	 */
426	for (i = 0; i < size; i += PAGE_SIZE) {
427		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
428		vm_page_wire(m);
429		vm_page_wakeup(m);
430		/*
431		 * Because this is kernel_pmap, this call will not block.
432		 */
433		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
434		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
435	}
436	vm_map_unlock(map);
437
438	return (addr);
439
440bad:
441	return (0);
442}
443
444/*
445 *	kmem_alloc_wait:
446 *
447 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
448 *	has no room, the caller sleeps waiting for more memory in the submap.
449 *
450 *	This routine may block.
451 */
452vm_offset_t
453kmem_alloc_wait(map, size)
454	vm_map_t map;
455	vm_size_t size;
456{
457	vm_offset_t addr;
458
459	GIANT_REQUIRED;
460
461	size = round_page(size);
462
463	for (;;) {
464		/*
465		 * To make this work for more than one map, use the map's lock
466		 * to lock out sleepers/wakers.
467		 */
468		vm_map_lock(map);
469		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
470			break;
471		/* no space now; see if we can ever get space */
472		if (vm_map_max(map) - vm_map_min(map) < size) {
473			vm_map_unlock(map);
474			return (0);
475		}
476		vm_map_unlock(map);
477		tsleep(map, PVM, "kmaw", 0);
478	}
479	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
480	vm_map_unlock(map);
481	return (addr);
482}
483
484/*
485 *	kmem_free_wakeup:
486 *
487 *	Returns memory to a submap of the kernel, and wakes up any processes
488 *	waiting for memory in that map.
489 */
490void
491kmem_free_wakeup(map, addr, size)
492	vm_map_t map;
493	vm_offset_t addr;
494	vm_size_t size;
495{
496	GIANT_REQUIRED;
497
498	vm_map_lock(map);
499	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
500	wakeup(map);
501	vm_map_unlock(map);
502}
503
504/*
505 * 	kmem_init:
506 *
507 *	Create the kernel map; insert a mapping covering kernel text,
508 *	data, bss, and all space allocated thus far (`boostrap' data).  The
509 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
510 *	`start' as allocated, and the range between `start' and `end' as free.
511 */
512void
513kmem_init(start, end)
514	vm_offset_t start, end;
515{
516	vm_map_t m;
517
518	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
519	vm_map_lock(m);
520	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
521	kernel_map = m;
522	kernel_map->system_map = 1;
523	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
524	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
525	/* ... and ending with the completion of the above `insert' */
526	vm_map_unlock(m);
527}
528