vm_kern.c revision 9759
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.14 1995/07/13 08:48:25 davidg Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76#include <sys/syslog.h>
77
78#include <vm/vm.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pageout.h>
81#include <vm/vm_kern.h>
82
83vm_map_t buffer_map;
84vm_map_t kernel_map;
85vm_map_t kmem_map;
86vm_map_t mb_map;
87int mb_map_full;
88vm_map_t io_map;
89vm_map_t clean_map;
90vm_map_t phys_map;
91vm_map_t exec_map;
92vm_map_t u_map;
93
94/*
95 *	kmem_alloc_pageable:
96 *
97 *	Allocate pageable memory to the kernel's address map.
98 *	map must be "kernel_map" below.
99 */
100
101vm_offset_t
102kmem_alloc_pageable(map, size)
103	vm_map_t map;
104	register vm_size_t size;
105{
106	vm_offset_t addr;
107	register int result;
108
109#if	0
110	if (map != kernel_map)
111		panic("kmem_alloc_pageable: not called with kernel_map");
112#endif
113
114	size = round_page(size);
115
116	addr = vm_map_min(map);
117	result = vm_map_find(map, NULL, (vm_offset_t) 0,
118	    &addr, size, TRUE);
119	if (result != KERN_SUCCESS) {
120		return (0);
121	}
122	return (addr);
123}
124
125/*
126 *	Allocate wired-down memory in the kernel's address map
127 *	or a submap.
128 */
129vm_offset_t
130kmem_alloc(map, size)
131	register vm_map_t map;
132	register vm_size_t size;
133{
134	vm_offset_t addr;
135	register vm_offset_t offset;
136	vm_offset_t i;
137
138	size = round_page(size);
139
140	/*
141	 * Use the kernel object for wired-down kernel pages. Assume that no
142	 * region of the kernel object is referenced more than once.
143	 */
144
145	/*
146	 * Locate sufficient space in the map.  This will give us the final
147	 * virtual address for the new memory, and thus will tell us the
148	 * offset within the kernel map.
149	 */
150	vm_map_lock(map);
151	if (vm_map_findspace(map, 0, size, &addr)) {
152		vm_map_unlock(map);
153		return (0);
154	}
155	offset = addr - VM_MIN_KERNEL_ADDRESS;
156	vm_object_reference(kernel_object);
157	vm_map_insert(map, kernel_object, offset, addr, addr + size);
158	vm_map_unlock(map);
159
160	/*
161	 * Guarantee that there are pages already in this object before
162	 * calling vm_map_pageable.  This is to prevent the following
163	 * scenario:
164	 *
165	 * 1) Threads have swapped out, so that there is a pager for the
166	 * kernel_object. 2) The kmsg zone is empty, and so we are
167	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
168	 * there is no page, but there is a pager, so we call
169	 * pager_data_request.  But the kmsg zone is empty, so we must
170	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
171	 * we get the data back from the pager, it will be (very stale)
172	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
173	 *
174	 * We're intentionally not activating the pages we allocate to prevent a
175	 * race with page-out.  vm_map_pageable will wire the pages.
176	 */
177
178	for (i = 0; i < size; i += PAGE_SIZE) {
179		vm_page_t mem;
180
181		while ((mem = vm_page_alloc(kernel_object, offset + i, VM_ALLOC_NORMAL)) == NULL) {
182			VM_WAIT;
183		}
184		vm_page_zero_fill(mem);
185		mem->flags &= ~PG_BUSY;
186		mem->valid = VM_PAGE_BITS_ALL;
187	}
188
189	/*
190	 * And finally, mark the data as non-pageable.
191	 */
192
193	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
194
195	/*
196	 * Try to coalesce the map
197	 */
198	vm_map_simplify(map, addr);
199
200	return (addr);
201}
202
203/*
204 *	kmem_free:
205 *
206 *	Release a region of kernel virtual memory allocated
207 *	with kmem_alloc, and return the physical pages
208 *	associated with that region.
209 */
210void
211kmem_free(map, addr, size)
212	vm_map_t map;
213	register vm_offset_t addr;
214	vm_size_t size;
215{
216	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
217}
218
219/*
220 *	kmem_suballoc:
221 *
222 *	Allocates a map to manage a subrange
223 *	of the kernel virtual address space.
224 *
225 *	Arguments are as follows:
226 *
227 *	parent		Map to take range from
228 *	size		Size of range to find
229 *	min, max	Returned endpoints of map
230 *	pageable	Can the region be paged
231 */
232vm_map_t
233kmem_suballoc(parent, min, max, size, pageable)
234	register vm_map_t parent;
235	vm_offset_t *min, *max;
236	register vm_size_t size;
237	boolean_t pageable;
238{
239	register int ret;
240	vm_map_t result;
241
242	size = round_page(size);
243
244	*min = (vm_offset_t) vm_map_min(parent);
245	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
246	    min, size, TRUE);
247	if (ret != KERN_SUCCESS) {
248		printf("kmem_suballoc: bad status return of %d.\n", ret);
249		panic("kmem_suballoc");
250	}
251	*max = *min + size;
252	pmap_reference(vm_map_pmap(parent));
253	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
254	if (result == NULL)
255		panic("kmem_suballoc: cannot create submap");
256	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
257		panic("kmem_suballoc: unable to change range to submap");
258	return (result);
259}
260
261/*
262 * Allocate wired-down memory in the kernel's address map for the higher
263 * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
264 * kmem_alloc() because we may need to allocate memory at interrupt
265 * level where we cannot block (canwait == FALSE).
266 *
267 * This routine has its own private kernel submap (kmem_map) and object
268 * (kmem_object).  This, combined with the fact that only malloc uses
269 * this routine, ensures that we will never block in map or object waits.
270 *
271 * Note that this still only works in a uni-processor environment and
272 * when called at splhigh().
273 *
274 * We don't worry about expanding the map (adding entries) since entries
275 * for wired maps are statically allocated.
276 */
277vm_offset_t
278kmem_malloc(map, size, waitflag)
279	register vm_map_t map;
280	register vm_size_t size;
281	boolean_t waitflag;
282{
283	register vm_offset_t offset, i;
284	vm_map_entry_t entry;
285	vm_offset_t addr;
286	vm_page_t m;
287
288	if (map != kmem_map && map != mb_map)
289		panic("kmem_malloc: map != {kmem,mb}_map");
290
291	size = round_page(size);
292	addr = vm_map_min(map);
293
294	/*
295	 * Locate sufficient space in the map.  This will give us the final
296	 * virtual address for the new memory, and thus will tell us the
297	 * offset within the kernel map.
298	 */
299	vm_map_lock(map);
300	if (vm_map_findspace(map, 0, size, &addr)) {
301		vm_map_unlock(map);
302		if (map == mb_map) {
303			mb_map_full = TRUE;
304			log(LOG_ERR, "mb_map full\n");
305			return (0);
306		}
307		if (waitflag == M_WAITOK)
308			panic("kmem_malloc: kmem_map too small");
309		return (0);
310	}
311	offset = addr - vm_map_min(kmem_map);
312	vm_object_reference(kmem_object);
313	vm_map_insert(map, kmem_object, offset, addr, addr + size);
314
315	/*
316	 * If we can wait, just mark the range as wired (will fault pages as
317	 * necessary).
318	 */
319	if (waitflag == M_WAITOK) {
320		vm_map_unlock(map);
321		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
322		    FALSE);
323		vm_map_simplify(map, addr);
324		return (addr);
325	}
326	/*
327	 * If we cannot wait then we must allocate all memory up front,
328	 * pulling it off the active queue to prevent pageout.
329	 */
330	for (i = 0; i < size; i += PAGE_SIZE) {
331		m = vm_page_alloc(kmem_object, offset + i,
332			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
333
334		/*
335		 * Ran out of space, free everything up and return. Don't need
336		 * to lock page queues here as we know that the pages we got
337		 * aren't on any queues.
338		 */
339		if (m == NULL) {
340			while (i != 0) {
341				i -= PAGE_SIZE;
342				m = vm_page_lookup(kmem_object, offset + i);
343				vm_page_free(m);
344			}
345			vm_map_delete(map, addr, addr + size);
346			vm_map_unlock(map);
347			return (0);
348		}
349#if 0
350		vm_page_zero_fill(m);
351#endif
352		m->flags &= ~PG_BUSY;
353		m->valid = VM_PAGE_BITS_ALL;
354	}
355
356	/*
357	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
358	 * be able to extend the previous entry so there will be a new entry
359	 * exactly corresponding to this address range and it will have
360	 * wired_count == 0.
361	 */
362	if (!vm_map_lookup_entry(map, addr, &entry) ||
363	    entry->start != addr || entry->end != addr + size ||
364	    entry->wired_count)
365		panic("kmem_malloc: entry not found or misaligned");
366	entry->wired_count++;
367
368	/*
369	 * Loop thru pages, entering them in the pmap. (We cannot add them to
370	 * the wired count without wrapping the vm_page_queue_lock in
371	 * splimp...)
372	 */
373	for (i = 0; i < size; i += PAGE_SIZE) {
374		m = vm_page_lookup(kmem_object, offset + i);
375		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
376	}
377	vm_map_unlock(map);
378
379	vm_map_simplify(map, addr);
380	return (addr);
381}
382
383/*
384 *	kmem_alloc_wait
385 *
386 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
387 *	has no room, the caller sleeps waiting for more memory in the submap.
388 *
389 */
390vm_offset_t
391kmem_alloc_wait(map, size)
392	vm_map_t map;
393	vm_size_t size;
394{
395	vm_offset_t addr;
396
397	size = round_page(size);
398
399	for (;;) {
400		/*
401		 * To make this work for more than one map, use the map's lock
402		 * to lock out sleepers/wakers.
403		 */
404		vm_map_lock(map);
405		if (vm_map_findspace(map, 0, size, &addr) == 0)
406			break;
407		/* no space now; see if we can ever get space */
408		if (vm_map_max(map) - vm_map_min(map) < size) {
409			vm_map_unlock(map);
410			return (0);
411		}
412		vm_map_unlock(map);
413		tsleep(map, PVM, "kmaw", 0);
414	}
415	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size);
416	vm_map_unlock(map);
417	return (addr);
418}
419
420/*
421 *	kmem_free_wakeup
422 *
423 *	Returns memory to a submap of the kernel, and wakes up any processes
424 *	waiting for memory in that map.
425 */
426void
427kmem_free_wakeup(map, addr, size)
428	vm_map_t map;
429	vm_offset_t addr;
430	vm_size_t size;
431{
432	vm_map_lock(map);
433	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
434	wakeup(map);
435	vm_map_unlock(map);
436}
437
438/*
439 * Create the kernel map; insert a mapping covering kernel text, data, bss,
440 * and all space allocated thus far (`boostrap' data).  The new map will thus
441 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
442 * the range between `start' and `end' as free.
443 */
444void
445kmem_init(start, end)
446	vm_offset_t start, end;
447{
448	register vm_map_t m;
449
450	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
451	vm_map_lock(m);
452	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
453	kernel_map = m;
454	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
455	    VM_MIN_KERNEL_ADDRESS, start);
456	/* ... and ending with the completion of the above `insert' */
457	vm_map_unlock(m);
458}
459