vm_kern.c revision 95710
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 95710 2002-04-29 07:43:16Z peter $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>		/* for ticks and hz */
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/malloc.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t clean_map=0;
92vm_map_t buffer_map=0;
93
94/*
95 *	kmem_alloc_pageable:
96 *
97 *	Allocate pageable memory to the kernel's address map.
98 *	"map" must be kernel_map or a submap of kernel_map.
99 */
100vm_offset_t
101kmem_alloc_pageable(map, size)
102	vm_map_t map;
103	vm_size_t size;
104{
105	vm_offset_t addr;
106	int result;
107
108	GIANT_REQUIRED;
109
110	size = round_page(size);
111	addr = vm_map_min(map);
112	result = vm_map_find(map, NULL, (vm_offset_t) 0,
113	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
114	if (result != KERN_SUCCESS) {
115		return (0);
116	}
117	return (addr);
118}
119
120/*
121 *	kmem_alloc_nofault:
122 *
123 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
124 */
125vm_offset_t
126kmem_alloc_nofault(map, size)
127	vm_map_t map;
128	vm_size_t size;
129{
130	vm_offset_t addr;
131	int result;
132
133	GIANT_REQUIRED;
134
135	size = round_page(size);
136	addr = vm_map_min(map);
137	result = vm_map_find(map, NULL, (vm_offset_t) 0,
138	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
139	if (result != KERN_SUCCESS) {
140		return (0);
141	}
142	return (addr);
143}
144
145/*
146 *	Allocate wired-down memory in the kernel's address map
147 *	or a submap.
148 */
149vm_offset_t
150kmem_alloc(map, size)
151	vm_map_t map;
152	vm_size_t size;
153{
154	vm_offset_t addr;
155	vm_offset_t offset;
156	vm_offset_t i;
157
158	GIANT_REQUIRED;
159
160	size = round_page(size);
161
162	/*
163	 * Use the kernel object for wired-down kernel pages. Assume that no
164	 * region of the kernel object is referenced more than once.
165	 */
166
167	/*
168	 * Locate sufficient space in the map.  This will give us the final
169	 * virtual address for the new memory, and thus will tell us the
170	 * offset within the kernel map.
171	 */
172	vm_map_lock(map);
173	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
174		vm_map_unlock(map);
175		return (0);
176	}
177	offset = addr - VM_MIN_KERNEL_ADDRESS;
178	vm_object_reference(kernel_object);
179	vm_map_insert(map, kernel_object, offset, addr, addr + size,
180		VM_PROT_ALL, VM_PROT_ALL, 0);
181	vm_map_unlock(map);
182
183	/*
184	 * Guarantee that there are pages already in this object before
185	 * calling vm_map_pageable.  This is to prevent the following
186	 * scenario:
187	 *
188	 * 1) Threads have swapped out, so that there is a pager for the
189	 * kernel_object. 2) The kmsg zone is empty, and so we are
190	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
191	 * there is no page, but there is a pager, so we call
192	 * pager_data_request.  But the kmsg zone is empty, so we must
193	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
194	 * we get the data back from the pager, it will be (very stale)
195	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
196	 *
197	 * We're intentionally not activating the pages we allocate to prevent a
198	 * race with page-out.  vm_map_pageable will wire the pages.
199	 */
200	for (i = 0; i < size; i += PAGE_SIZE) {
201		vm_page_t mem;
202
203		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
204				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
205		if ((mem->flags & PG_ZERO) == 0)
206			vm_page_zero_fill(mem);
207		mem->valid = VM_PAGE_BITS_ALL;
208		vm_page_flag_clear(mem, PG_ZERO);
209		vm_page_wakeup(mem);
210	}
211
212	/*
213	 * And finally, mark the data as non-pageable.
214	 */
215	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
216
217	return (addr);
218}
219
220/*
221 *	kmem_free:
222 *
223 *	Release a region of kernel virtual memory allocated
224 *	with kmem_alloc, and return the physical pages
225 *	associated with that region.
226 *
227 *	This routine may not block on kernel maps.
228 */
229void
230kmem_free(map, addr, size)
231	vm_map_t map;
232	vm_offset_t addr;
233	vm_size_t size;
234{
235	GIANT_REQUIRED;
236
237	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
238}
239
240/*
241 *	kmem_suballoc:
242 *
243 *	Allocates a map to manage a subrange
244 *	of the kernel virtual address space.
245 *
246 *	Arguments are as follows:
247 *
248 *	parent		Map to take range from
249 *	min, max	Returned endpoints of map
250 *	size		Size of range to find
251 */
252vm_map_t
253kmem_suballoc(parent, min, max, size)
254	vm_map_t parent;
255	vm_offset_t *min, *max;
256	vm_size_t size;
257{
258	int ret;
259	vm_map_t result;
260
261	GIANT_REQUIRED;
262
263	size = round_page(size);
264
265	*min = (vm_offset_t) vm_map_min(parent);
266	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
267	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
268	if (ret != KERN_SUCCESS) {
269		printf("kmem_suballoc: bad status return of %d.\n", ret);
270		panic("kmem_suballoc");
271	}
272	*max = *min + size;
273	result = vm_map_create(vm_map_pmap(parent), *min, *max);
274	if (result == NULL)
275		panic("kmem_suballoc: cannot create submap");
276	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
277		panic("kmem_suballoc: unable to change range to submap");
278	return (result);
279}
280
281/*
282 *	kmem_malloc:
283 *
284 * 	Allocate wired-down memory in the kernel's address map for the higher
285 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
286 * 	kmem_alloc() because we may need to allocate memory at interrupt
287 * 	level where we cannot block (canwait == FALSE).
288 *
289 * 	This routine has its own private kernel submap (kmem_map) and object
290 * 	(kmem_object).  This, combined with the fact that only malloc uses
291 * 	this routine, ensures that we will never block in map or object waits.
292 *
293 * 	Note that this still only works in a uni-processor environment and
294 * 	when called at splhigh().
295 *
296 * 	We don't worry about expanding the map (adding entries) since entries
297 * 	for wired maps are statically allocated.
298 *
299 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
300 *	I have not verified that it actually does not block.
301 *
302 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
303 *	which we never free.
304 */
305vm_offset_t
306kmem_malloc(map, size, flags)
307	vm_map_t map;
308	vm_size_t size;
309	int flags;
310{
311	vm_offset_t offset, i;
312	vm_map_entry_t entry;
313	vm_offset_t addr;
314	vm_page_t m;
315
316	GIANT_REQUIRED;
317
318	size = round_page(size);
319	addr = vm_map_min(map);
320
321	/*
322	 * Locate sufficient space in the map.  This will give us the final
323	 * virtual address for the new memory, and thus will tell us the
324	 * offset within the kernel map.
325	 */
326	vm_map_lock(map);
327	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
328		vm_map_unlock(map);
329		if (map != kmem_map) {
330			static int last_report; /* when we did it (in ticks) */
331			if (ticks < last_report ||
332			    (ticks - last_report) >= hz) {
333				last_report = ticks;
334				printf("Out of mbuf address space!\n");
335				printf("Consider increasing NMBCLUSTERS\n");
336			}
337			goto bad;
338		}
339		if ((flags & M_NOWAIT) == 0)
340			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
341				(long)size, (long)map->size);
342		goto bad;
343	}
344	offset = addr - VM_MIN_KERNEL_ADDRESS;
345	vm_object_reference(kmem_object);
346	vm_map_insert(map, kmem_object, offset, addr, addr + size,
347		VM_PROT_ALL, VM_PROT_ALL, 0);
348
349	for (i = 0; i < size; i += PAGE_SIZE) {
350		/*
351		 * Note: if M_NOWAIT specified alone, allocate from
352		 * interrupt-safe queues only (just the free list).  If
353		 * M_USE_RESERVE is also specified, we can also
354		 * allocate from the cache.  Neither of the latter two
355		 * flags may be specified from an interrupt since interrupts
356		 * are not allowed to mess with the cache queue.
357		 */
358retry:
359		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
360		    ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ?
361			VM_ALLOC_INTERRUPT :
362			VM_ALLOC_SYSTEM);
363
364		/*
365		 * Ran out of space, free everything up and return. Don't need
366		 * to lock page queues here as we know that the pages we got
367		 * aren't on any queues.
368		 */
369		if (m == NULL) {
370			if ((flags & M_NOWAIT) == 0) {
371				vm_map_unlock(map);
372				VM_WAIT;
373				vm_map_lock(map);
374				goto retry;
375			}
376			/*
377			 * Free the pages before removing the map entry.
378			 * They are already marked busy.  Calling
379			 * vm_map_delete before the pages has been freed or
380			 * unbusied will cause a deadlock.
381			 */
382			while (i != 0) {
383				i -= PAGE_SIZE;
384				m = vm_page_lookup(kmem_object,
385						   OFF_TO_IDX(offset + i));
386				vm_page_free(m);
387			}
388			vm_map_delete(map, addr, addr + size);
389			vm_map_unlock(map);
390			goto bad;
391		}
392		vm_page_flag_clear(m, PG_ZERO);
393		m->valid = VM_PAGE_BITS_ALL;
394	}
395
396	/*
397	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
398	 * be able to extend the previous entry so there will be a new entry
399	 * exactly corresponding to this address range and it will have
400	 * wired_count == 0.
401	 */
402	if (!vm_map_lookup_entry(map, addr, &entry) ||
403	    entry->start != addr || entry->end != addr + size ||
404	    entry->wired_count != 0)
405		panic("kmem_malloc: entry not found or misaligned");
406	entry->wired_count = 1;
407
408	vm_map_simplify_entry(map, entry);
409
410	/*
411	 * Loop thru pages, entering them in the pmap. (We cannot add them to
412	 * the wired count without wrapping the vm_page_queue_lock in
413	 * splimp...)
414	 */
415	for (i = 0; i < size; i += PAGE_SIZE) {
416		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
417		vm_page_wire(m);
418		vm_page_wakeup(m);
419		/*
420		 * Because this is kernel_pmap, this call will not block.
421		 */
422		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
423		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
424	}
425	vm_map_unlock(map);
426
427	return (addr);
428
429bad:
430	return (0);
431}
432
433/*
434 *	kmem_alloc_wait:
435 *
436 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
437 *	has no room, the caller sleeps waiting for more memory in the submap.
438 *
439 *	This routine may block.
440 */
441vm_offset_t
442kmem_alloc_wait(map, size)
443	vm_map_t map;
444	vm_size_t size;
445{
446	vm_offset_t addr;
447
448	GIANT_REQUIRED;
449
450	size = round_page(size);
451
452	for (;;) {
453		/*
454		 * To make this work for more than one map, use the map's lock
455		 * to lock out sleepers/wakers.
456		 */
457		vm_map_lock(map);
458		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
459			break;
460		/* no space now; see if we can ever get space */
461		if (vm_map_max(map) - vm_map_min(map) < size) {
462			vm_map_unlock(map);
463			return (0);
464		}
465		vm_map_unlock(map);
466		tsleep(map, PVM, "kmaw", 0);
467	}
468	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
469	vm_map_unlock(map);
470	return (addr);
471}
472
473/*
474 *	kmem_free_wakeup:
475 *
476 *	Returns memory to a submap of the kernel, and wakes up any processes
477 *	waiting for memory in that map.
478 */
479void
480kmem_free_wakeup(map, addr, size)
481	vm_map_t map;
482	vm_offset_t addr;
483	vm_size_t size;
484{
485	GIANT_REQUIRED;
486
487	vm_map_lock(map);
488	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
489	wakeup(map);
490	vm_map_unlock(map);
491}
492
493/*
494 * 	kmem_init:
495 *
496 *	Create the kernel map; insert a mapping covering kernel text,
497 *	data, bss, and all space allocated thus far (`boostrap' data).  The
498 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
499 *	`start' as allocated, and the range between `start' and `end' as free.
500 */
501void
502kmem_init(start, end)
503	vm_offset_t start, end;
504{
505	vm_map_t m;
506
507	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
508	vm_map_lock(m);
509	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
510	kernel_map = m;
511	kernel_map->system_map = 1;
512	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
513	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
514	/* ... and ending with the completion of the above `insert' */
515	vm_map_unlock(m);
516}
517