vm_kern.c revision 8876
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.12 1995/03/15 07:52:06 davidg Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76#include <sys/syslog.h>
77
78#include <vm/vm.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pageout.h>
81#include <vm/vm_kern.h>
82
83vm_map_t buffer_map;
84vm_map_t kernel_map;
85vm_map_t kmem_map;
86vm_map_t mb_map;
87vm_map_t io_map;
88vm_map_t clean_map;
89vm_map_t pager_map;
90vm_map_t phys_map;
91vm_map_t exec_map;
92vm_map_t u_map;
93extern int mb_map_full;
94
95/*
96 *	kmem_alloc_pageable:
97 *
98 *	Allocate pageable memory to the kernel's address map.
99 *	map must be "kernel_map" below.
100 */
101
102vm_offset_t
103kmem_alloc_pageable(map, size)
104	vm_map_t map;
105	register vm_size_t size;
106{
107	vm_offset_t addr;
108	register int result;
109
110#if	0
111	if (map != kernel_map)
112		panic("kmem_alloc_pageable: not called with kernel_map");
113#endif
114
115	size = round_page(size);
116
117	addr = vm_map_min(map);
118	result = vm_map_find(map, NULL, (vm_offset_t) 0,
119	    &addr, size, TRUE);
120	if (result != KERN_SUCCESS) {
121		return (0);
122	}
123	return (addr);
124}
125
126/*
127 *	Allocate wired-down memory in the kernel's address map
128 *	or a submap.
129 */
130vm_offset_t
131kmem_alloc(map, size)
132	register vm_map_t map;
133	register vm_size_t size;
134{
135	vm_offset_t addr;
136	register vm_offset_t offset;
137	vm_offset_t i;
138
139	size = round_page(size);
140
141	/*
142	 * Use the kernel object for wired-down kernel pages. Assume that no
143	 * region of the kernel object is referenced more than once.
144	 */
145
146	/*
147	 * Locate sufficient space in the map.  This will give us the final
148	 * virtual address for the new memory, and thus will tell us the
149	 * offset within the kernel map.
150	 */
151	vm_map_lock(map);
152	if (vm_map_findspace(map, 0, size, &addr)) {
153		vm_map_unlock(map);
154		return (0);
155	}
156	offset = addr - VM_MIN_KERNEL_ADDRESS;
157	vm_object_reference(kernel_object);
158	vm_map_insert(map, kernel_object, offset, addr, addr + size);
159	vm_map_unlock(map);
160
161	/*
162	 * Guarantee that there are pages already in this object before
163	 * calling vm_map_pageable.  This is to prevent the following
164	 * scenario:
165	 *
166	 * 1) Threads have swapped out, so that there is a pager for the
167	 * kernel_object. 2) The kmsg zone is empty, and so we are
168	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
169	 * there is no page, but there is a pager, so we call
170	 * pager_data_request.  But the kmsg zone is empty, so we must
171	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
172	 * we get the data back from the pager, it will be (very stale)
173	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
174	 *
175	 * We're intentionally not activating the pages we allocate to prevent a
176	 * race with page-out.  vm_map_pageable will wire the pages.
177	 */
178
179	vm_object_lock(kernel_object);
180	for (i = 0; i < size; i += PAGE_SIZE) {
181		vm_page_t mem;
182
183		while ((mem = vm_page_alloc(kernel_object, offset + i, VM_ALLOC_NORMAL)) == NULL) {
184			vm_object_unlock(kernel_object);
185			VM_WAIT;
186			vm_object_lock(kernel_object);
187		}
188		vm_page_zero_fill(mem);
189		mem->flags &= ~PG_BUSY;
190		mem->valid = VM_PAGE_BITS_ALL;
191	}
192	vm_object_unlock(kernel_object);
193
194	/*
195	 * And finally, mark the data as non-pageable.
196	 */
197
198	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
199
200	/*
201	 * Try to coalesce the map
202	 */
203	vm_map_simplify(map, addr);
204
205	return (addr);
206}
207
208/*
209 *	kmem_free:
210 *
211 *	Release a region of kernel virtual memory allocated
212 *	with kmem_alloc, and return the physical pages
213 *	associated with that region.
214 */
215void
216kmem_free(map, addr, size)
217	vm_map_t map;
218	register vm_offset_t addr;
219	vm_size_t size;
220{
221	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
222}
223
224/*
225 *	kmem_suballoc:
226 *
227 *	Allocates a map to manage a subrange
228 *	of the kernel virtual address space.
229 *
230 *	Arguments are as follows:
231 *
232 *	parent		Map to take range from
233 *	size		Size of range to find
234 *	min, max	Returned endpoints of map
235 *	pageable	Can the region be paged
236 */
237vm_map_t
238kmem_suballoc(parent, min, max, size, pageable)
239	register vm_map_t parent;
240	vm_offset_t *min, *max;
241	register vm_size_t size;
242	boolean_t pageable;
243{
244	register int ret;
245	vm_map_t result;
246
247	size = round_page(size);
248
249	*min = (vm_offset_t) vm_map_min(parent);
250	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
251	    min, size, TRUE);
252	if (ret != KERN_SUCCESS) {
253		printf("kmem_suballoc: bad status return of %d.\n", ret);
254		panic("kmem_suballoc");
255	}
256	*max = *min + size;
257	pmap_reference(vm_map_pmap(parent));
258	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
259	if (result == NULL)
260		panic("kmem_suballoc: cannot create submap");
261	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
262		panic("kmem_suballoc: unable to change range to submap");
263	return (result);
264}
265
266/*
267 * Allocate wired-down memory in the kernel's address map for the higher
268 * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
269 * kmem_alloc() because we may need to allocate memory at interrupt
270 * level where we cannot block (canwait == FALSE).
271 *
272 * This routine has its own private kernel submap (kmem_map) and object
273 * (kmem_object).  This, combined with the fact that only malloc uses
274 * this routine, ensures that we will never block in map or object waits.
275 *
276 * Note that this still only works in a uni-processor environment and
277 * when called at splhigh().
278 *
279 * We don't worry about expanding the map (adding entries) since entries
280 * for wired maps are statically allocated.
281 */
282vm_offset_t
283kmem_malloc(map, size, waitflag)
284	register vm_map_t map;
285	register vm_size_t size;
286	boolean_t waitflag;
287{
288	register vm_offset_t offset, i;
289	vm_map_entry_t entry;
290	vm_offset_t addr;
291	vm_page_t m;
292
293	if (map != kmem_map && map != mb_map)
294		panic("kmem_malloc: map != {kmem,mb}_map");
295
296	size = round_page(size);
297	addr = vm_map_min(map);
298
299	/*
300	 * Locate sufficient space in the map.  This will give us the final
301	 * virtual address for the new memory, and thus will tell us the
302	 * offset within the kernel map.
303	 */
304	vm_map_lock(map);
305	if (vm_map_findspace(map, 0, size, &addr)) {
306		vm_map_unlock(map);
307		if (map == mb_map) {
308			mb_map_full = TRUE;
309			log(LOG_ERR, "mb_map full\n");
310			return (0);
311		}
312		if (waitflag == M_WAITOK)
313			panic("kmem_malloc: kmem_map too small");
314		return (0);
315	}
316	offset = addr - vm_map_min(kmem_map);
317	vm_object_reference(kmem_object);
318	vm_map_insert(map, kmem_object, offset, addr, addr + size);
319
320	/*
321	 * If we can wait, just mark the range as wired (will fault pages as
322	 * necessary).
323	 */
324	if (waitflag == M_WAITOK) {
325		vm_map_unlock(map);
326		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
327		    FALSE);
328		vm_map_simplify(map, addr);
329		return (addr);
330	}
331	/*
332	 * If we cannot wait then we must allocate all memory up front,
333	 * pulling it off the active queue to prevent pageout.
334	 */
335	vm_object_lock(kmem_object);
336	for (i = 0; i < size; i += PAGE_SIZE) {
337		m = vm_page_alloc(kmem_object, offset + i,
338			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
339
340		/*
341		 * Ran out of space, free everything up and return. Don't need
342		 * to lock page queues here as we know that the pages we got
343		 * aren't on any queues.
344		 */
345		if (m == NULL) {
346			while (i != 0) {
347				i -= PAGE_SIZE;
348				m = vm_page_lookup(kmem_object, offset + i);
349				vm_page_free(m);
350			}
351			vm_object_unlock(kmem_object);
352			vm_map_delete(map, addr, addr + size);
353			vm_map_unlock(map);
354			return (0);
355		}
356#if 0
357		vm_page_zero_fill(m);
358#endif
359		m->flags &= ~PG_BUSY;
360		m->valid = VM_PAGE_BITS_ALL;
361	}
362	vm_object_unlock(kmem_object);
363
364	/*
365	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
366	 * be able to extend the previous entry so there will be a new entry
367	 * exactly corresponding to this address range and it will have
368	 * wired_count == 0.
369	 */
370	if (!vm_map_lookup_entry(map, addr, &entry) ||
371	    entry->start != addr || entry->end != addr + size ||
372	    entry->wired_count)
373		panic("kmem_malloc: entry not found or misaligned");
374	entry->wired_count++;
375
376	/*
377	 * Loop thru pages, entering them in the pmap. (We cannot add them to
378	 * the wired count without wrapping the vm_page_queue_lock in
379	 * splimp...)
380	 */
381	for (i = 0; i < size; i += PAGE_SIZE) {
382		vm_object_lock(kmem_object);
383		m = vm_page_lookup(kmem_object, offset + i);
384		vm_object_unlock(kmem_object);
385		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
386	}
387	vm_map_unlock(map);
388
389	vm_map_simplify(map, addr);
390	return (addr);
391}
392
393/*
394 *	kmem_alloc_wait
395 *
396 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
397 *	has no room, the caller sleeps waiting for more memory in the submap.
398 *
399 */
400vm_offset_t
401kmem_alloc_wait(map, size)
402	vm_map_t map;
403	vm_size_t size;
404{
405	vm_offset_t addr;
406
407	size = round_page(size);
408
409	for (;;) {
410		/*
411		 * To make this work for more than one map, use the map's lock
412		 * to lock out sleepers/wakers.
413		 */
414		vm_map_lock(map);
415		if (vm_map_findspace(map, 0, size, &addr) == 0)
416			break;
417		/* no space now; see if we can ever get space */
418		if (vm_map_max(map) - vm_map_min(map) < size) {
419			vm_map_unlock(map);
420			return (0);
421		}
422		assert_wait((int) map, TRUE);
423		vm_map_unlock(map);
424		thread_block("kmaw");
425	}
426	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size);
427	vm_map_unlock(map);
428	return (addr);
429}
430
431/*
432 *	kmem_free_wakeup
433 *
434 *	Returns memory to a submap of the kernel, and wakes up any threads
435 *	waiting for memory in that map.
436 */
437void
438kmem_free_wakeup(map, addr, size)
439	vm_map_t map;
440	vm_offset_t addr;
441	vm_size_t size;
442{
443	vm_map_lock(map);
444	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
445	thread_wakeup((int) map);
446	vm_map_unlock(map);
447}
448
449/*
450 * Create the kernel map; insert a mapping covering kernel text, data, bss,
451 * and all space allocated thus far (`boostrap' data).  The new map will thus
452 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
453 * the range between `start' and `end' as free.
454 */
455void
456kmem_init(start, end)
457	vm_offset_t start, end;
458{
459	register vm_map_t m;
460
461	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
462	vm_map_lock(m);
463	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
464	kernel_map = m;
465	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
466	    VM_MIN_KERNEL_ADDRESS, start);
467	/* ... and ending with the completion of the above `insert' */
468	vm_map_unlock(m);
469}
470