vm_kern.c revision 87157
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 87157 2001-12-01 00:21:30Z luigi $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>		/* for ticks and hz */
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/malloc.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t clean_map=0;
92vm_map_t buffer_map=0;
93
94/*
95 *	kmem_alloc_pageable:
96 *
97 *	Allocate pageable memory to the kernel's address map.
98 *	"map" must be kernel_map or a submap of kernel_map.
99 */
100
101vm_offset_t
102kmem_alloc_pageable(map, size)
103	vm_map_t map;
104	vm_size_t size;
105{
106	vm_offset_t addr;
107	int result;
108
109	GIANT_REQUIRED;
110
111	size = round_page(size);
112	addr = vm_map_min(map);
113	result = vm_map_find(map, NULL, (vm_offset_t) 0,
114	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
115	if (result != KERN_SUCCESS) {
116		return (0);
117	}
118	return (addr);
119}
120
121/*
122 *	kmem_alloc_nofault:
123 *
124 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
125 */
126
127vm_offset_t
128kmem_alloc_nofault(map, size)
129	vm_map_t map;
130	vm_size_t size;
131{
132	vm_offset_t addr;
133	int result;
134
135	GIANT_REQUIRED;
136
137	size = round_page(size);
138	addr = vm_map_min(map);
139	result = vm_map_find(map, NULL, (vm_offset_t) 0,
140	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
141	if (result != KERN_SUCCESS) {
142		return (0);
143	}
144	return (addr);
145}
146
147/*
148 *	Allocate wired-down memory in the kernel's address map
149 *	or a submap.
150 */
151vm_offset_t
152kmem_alloc(map, size)
153	vm_map_t map;
154	vm_size_t size;
155{
156	vm_offset_t addr;
157	vm_offset_t offset;
158	vm_offset_t i;
159
160	GIANT_REQUIRED;
161
162	size = round_page(size);
163
164	/*
165	 * Use the kernel object for wired-down kernel pages. Assume that no
166	 * region of the kernel object is referenced more than once.
167	 */
168
169	/*
170	 * Locate sufficient space in the map.  This will give us the final
171	 * virtual address for the new memory, and thus will tell us the
172	 * offset within the kernel map.
173	 */
174	vm_map_lock(map);
175	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
176		vm_map_unlock(map);
177		return (0);
178	}
179	offset = addr - VM_MIN_KERNEL_ADDRESS;
180	vm_object_reference(kernel_object);
181	vm_map_insert(map, kernel_object, offset, addr, addr + size,
182		VM_PROT_ALL, VM_PROT_ALL, 0);
183	vm_map_unlock(map);
184
185	/*
186	 * Guarantee that there are pages already in this object before
187	 * calling vm_map_pageable.  This is to prevent the following
188	 * scenario:
189	 *
190	 * 1) Threads have swapped out, so that there is a pager for the
191	 * kernel_object. 2) The kmsg zone is empty, and so we are
192	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
193	 * there is no page, but there is a pager, so we call
194	 * pager_data_request.  But the kmsg zone is empty, so we must
195	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
196	 * we get the data back from the pager, it will be (very stale)
197	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
198	 *
199	 * We're intentionally not activating the pages we allocate to prevent a
200	 * race with page-out.  vm_map_pageable will wire the pages.
201	 */
202
203	for (i = 0; i < size; i += PAGE_SIZE) {
204		vm_page_t mem;
205
206		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
207				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
208		if ((mem->flags & PG_ZERO) == 0)
209			vm_page_zero_fill(mem);
210		mem->valid = VM_PAGE_BITS_ALL;
211		vm_page_flag_clear(mem, PG_ZERO);
212		vm_page_wakeup(mem);
213	}
214
215	/*
216	 * And finally, mark the data as non-pageable.
217	 */
218
219	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
220
221	return (addr);
222}
223
224/*
225 *	kmem_free:
226 *
227 *	Release a region of kernel virtual memory allocated
228 *	with kmem_alloc, and return the physical pages
229 *	associated with that region.
230 *
231 *	This routine may not block on kernel maps.
232 */
233void
234kmem_free(map, addr, size)
235	vm_map_t map;
236	vm_offset_t addr;
237	vm_size_t size;
238{
239	GIANT_REQUIRED;
240
241	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
242}
243
244/*
245 *	kmem_suballoc:
246 *
247 *	Allocates a map to manage a subrange
248 *	of the kernel virtual address space.
249 *
250 *	Arguments are as follows:
251 *
252 *	parent		Map to take range from
253 *	min, max	Returned endpoints of map
254 *	size		Size of range to find
255 */
256vm_map_t
257kmem_suballoc(parent, min, max, size)
258	vm_map_t parent;
259	vm_offset_t *min, *max;
260	vm_size_t size;
261{
262	int ret;
263	vm_map_t result;
264
265	GIANT_REQUIRED;
266
267	size = round_page(size);
268
269	*min = (vm_offset_t) vm_map_min(parent);
270	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
271	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
272	if (ret != KERN_SUCCESS) {
273		printf("kmem_suballoc: bad status return of %d.\n", ret);
274		panic("kmem_suballoc");
275	}
276	*max = *min + size;
277	pmap_reference(vm_map_pmap(parent));
278	result = vm_map_create(vm_map_pmap(parent), *min, *max);
279	if (result == NULL)
280		panic("kmem_suballoc: cannot create submap");
281	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
282		panic("kmem_suballoc: unable to change range to submap");
283	return (result);
284}
285
286/*
287 *	kmem_malloc:
288 *
289 * 	Allocate wired-down memory in the kernel's address map for the higher
290 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
291 * 	kmem_alloc() because we may need to allocate memory at interrupt
292 * 	level where we cannot block (canwait == FALSE).
293 *
294 * 	This routine has its own private kernel submap (kmem_map) and object
295 * 	(kmem_object).  This, combined with the fact that only malloc uses
296 * 	this routine, ensures that we will never block in map or object waits.
297 *
298 * 	Note that this still only works in a uni-processor environment and
299 * 	when called at splhigh().
300 *
301 * 	We don't worry about expanding the map (adding entries) since entries
302 * 	for wired maps are statically allocated.
303 *
304 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
305 *	I have not verified that it actually does not block.
306 *
307 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
308 *	which we never free.
309 */
310vm_offset_t
311kmem_malloc(map, size, flags)
312	vm_map_t map;
313	vm_size_t size;
314	int flags;
315{
316	vm_offset_t offset, i;
317	vm_map_entry_t entry;
318	vm_offset_t addr;
319	vm_page_t m;
320
321	GIANT_REQUIRED;
322
323	size = round_page(size);
324	addr = vm_map_min(map);
325
326	/*
327	 * Locate sufficient space in the map.  This will give us the final
328	 * virtual address for the new memory, and thus will tell us the
329	 * offset within the kernel map.
330	 */
331	vm_map_lock(map);
332	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
333		vm_map_unlock(map);
334		if (map != kmem_map) {
335			static int last_report; /* when we did it (in ticks) */
336			if (ticks < last_report ||
337			    (ticks - last_report) >= hz) {
338				last_report = ticks;
339				printf("Out of mbuf address space!\n");
340				printf("Consider increasing NMBCLUSTERS\n");
341			}
342			goto bad;
343		}
344		if ((flags & M_NOWAIT) == 0)
345			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
346				(long)size, (long)map->size);
347		goto bad;
348	}
349	offset = addr - VM_MIN_KERNEL_ADDRESS;
350	vm_object_reference(kmem_object);
351	vm_map_insert(map, kmem_object, offset, addr, addr + size,
352		VM_PROT_ALL, VM_PROT_ALL, 0);
353
354	for (i = 0; i < size; i += PAGE_SIZE) {
355		/*
356		 * Note: if M_NOWAIT specified alone, allocate from
357		 * interrupt-safe queues only (just the free list).  If
358		 * M_USE_RESERVE is also specified, we can also
359		 * allocate from the cache.  Neither of the latter two
360		 * flags may be specified from an interrupt since interrupts
361		 * are not allowed to mess with the cache queue.
362		 */
363retry:
364		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
365		    ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ?
366			VM_ALLOC_INTERRUPT :
367			VM_ALLOC_SYSTEM);
368
369		/*
370		 * Ran out of space, free everything up and return. Don't need
371		 * to lock page queues here as we know that the pages we got
372		 * aren't on any queues.
373		 */
374		if (m == NULL) {
375			if ((flags & M_NOWAIT) == 0) {
376				vm_map_unlock(map);
377				VM_WAIT;
378				vm_map_lock(map);
379				goto retry;
380			}
381			vm_map_delete(map, addr, addr + size);
382			vm_map_unlock(map);
383			goto bad;
384		}
385		vm_page_flag_clear(m, PG_ZERO);
386		m->valid = VM_PAGE_BITS_ALL;
387	}
388
389	/*
390	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
391	 * be able to extend the previous entry so there will be a new entry
392	 * exactly corresponding to this address range and it will have
393	 * wired_count == 0.
394	 */
395	if (!vm_map_lookup_entry(map, addr, &entry) ||
396	    entry->start != addr || entry->end != addr + size ||
397	    entry->wired_count != 0)
398		panic("kmem_malloc: entry not found or misaligned");
399	entry->wired_count = 1;
400
401	vm_map_simplify_entry(map, entry);
402
403	/*
404	 * Loop thru pages, entering them in the pmap. (We cannot add them to
405	 * the wired count without wrapping the vm_page_queue_lock in
406	 * splimp...)
407	 */
408	for (i = 0; i < size; i += PAGE_SIZE) {
409		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
410		vm_page_wire(m);
411		vm_page_wakeup(m);
412		/*
413		 * Because this is kernel_pmap, this call will not block.
414		 */
415		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
416		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
417	}
418	vm_map_unlock(map);
419
420	return (addr);
421
422bad:
423	return (0);
424}
425
426/*
427 *	kmem_alloc_wait:
428 *
429 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
430 *	has no room, the caller sleeps waiting for more memory in the submap.
431 *
432 *	This routine may block.
433 */
434
435vm_offset_t
436kmem_alloc_wait(map, size)
437	vm_map_t map;
438	vm_size_t size;
439{
440	vm_offset_t addr;
441
442	GIANT_REQUIRED;
443
444	size = round_page(size);
445
446	for (;;) {
447		/*
448		 * To make this work for more than one map, use the map's lock
449		 * to lock out sleepers/wakers.
450		 */
451		vm_map_lock(map);
452		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
453			break;
454		/* no space now; see if we can ever get space */
455		if (vm_map_max(map) - vm_map_min(map) < size) {
456			vm_map_unlock(map);
457			return (0);
458		}
459		vm_map_unlock(map);
460		tsleep(map, PVM, "kmaw", 0);
461	}
462	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
463	vm_map_unlock(map);
464	return (addr);
465}
466
467/*
468 *	kmem_free_wakeup:
469 *
470 *	Returns memory to a submap of the kernel, and wakes up any processes
471 *	waiting for memory in that map.
472 */
473void
474kmem_free_wakeup(map, addr, size)
475	vm_map_t map;
476	vm_offset_t addr;
477	vm_size_t size;
478{
479	GIANT_REQUIRED;
480
481	vm_map_lock(map);
482	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
483	wakeup(map);
484	vm_map_unlock(map);
485}
486
487/*
488 * 	kmem_init:
489 *
490 *	Create the kernel map; insert a mapping covering kernel text,
491 *	data, bss, and all space allocated thus far (`boostrap' data).  The
492 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
493 *	`start' as allocated, and the range between `start' and `end' as free.
494 */
495
496void
497kmem_init(start, end)
498	vm_offset_t start, end;
499{
500	vm_map_t m;
501
502	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
503	vm_map_lock(m);
504	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
505	kernel_map = m;
506	kernel_map->system_map = 1;
507	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
508	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
509	/* ... and ending with the completion of the above `insert' */
510	vm_map_unlock(m);
511}
512