vm_kern.c revision 81399
150476Speter/*
215903Swosch * Copyright (c) 1991, 1993
315903Swosch *	The Regents of the University of California.  All rights reserved.
431074Swosch *
515903Swosch * This code is derived from software contributed to Berkeley by
615903Swosch * The Mach Operating System project at Carnegie-Mellon University.
715903Swosch *
815903Swosch * Redistribution and use in source and binary forms, with or without
915903Swosch * modification, are permitted provided that the following conditions
1015903Swosch * are met:
1115903Swosch * 1. Redistributions of source code must retain the above copyright
1215903Swosch *    notice, this list of conditions and the following disclaimer.
1315903Swosch * 2. Redistributions in binary form must reproduce the above copyright
1415903Swosch *    notice, this list of conditions and the following disclaimer in the
1515903Swosch *    documentation and/or other materials provided with the distribution.
1615903Swosch * 3. All advertising materials mentioning features or use of this software
1715903Swosch *    must display the following acknowledgement:
1815903Swosch *	This product includes software developed by the University of
1915903Swosch *	California, Berkeley and its contributors.
2015903Swosch * 4. Neither the name of the University nor the names of its contributors
2115903Swosch *    may be used to endorse or promote products derived from this software
2274806Sru *    without specific prior written permission.
2315903Swosch *
2415903Swosch * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2523546Swosch * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2623546Swosch * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2715903Swosch * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
2815903Swosch * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2915903Swosch * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3015903Swosch * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3115903Swosch * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3215903Swosch * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3315903Swosch * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3415903Swosch * SUCH DAMAGE.
3515903Swosch *
3620935Swosch *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
3720935Swosch *
3860749Shoek *
3917511Speter * Copyright (c) 1987, 1990 Carnegie-Mellon University.
4015903Swosch * All rights reserved.
4127659Spst *
4227659Spst * Authors: Avadis Tevanian, Jr., Michael Wayne Young
4327659Spst *
4427659Spst * Permission to use, copy, modify and distribute this software and
4527659Spst * its documentation is hereby granted, provided that both the copyright
4615903Swosch * notice and this permission notice appear in all copies of the
4715903Swosch * software, derivative works or modified versions, and any portions
4815903Swosch * thereof, and that both notices appear in supporting documentation.
4915903Swosch *
5015903Swosch * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
511638Srgrimes * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
5294940Sru * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
5394940Sru *
5494940Sru * Carnegie Mellon requests users of this software to return to
5594940Sru *
5611468Sbde *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
571638Srgrimes *  School of Computer Science
5827659Spst *  Carnegie Mellon University
5927659Spst *  Pittsburgh PA 15213-3890
6079613Sru *
6127659Spst * any improvements or extensions that they make and grant Carnegie the
6223546Swosch * rights to redistribute these changes.
6323546Swosch *
6411468Sbde * $FreeBSD: head/sys/vm/vm_kern.c 81399 2001-08-10 06:56:12Z jhb $
6574939Sru */
6674939Sru
6711468Sbde/*
6874939Sru *	Kernel memory management.
6974939Sru */
7011623Sbde
7111623Sbde#include <sys/param.h>
7274806Sru#include <sys/systm.h>
7311623Sbde#include <sys/lock.h>
7411623Sbde#include <sys/mutex.h>
7574939Sru#include <sys/proc.h>
7611623Sbde#include <sys/malloc.h>
7796164Sru
7896164Sru#include <vm/vm.h>
7911468Sbde#include <vm/vm_param.h>
8011468Sbde#include <vm/pmap.h>
8111468Sbde#include <vm/vm_map.h>
8218314Speter#include <vm/vm_object.h>
8318314Speter#include <vm/vm_page.h>
8418314Speter#include <vm/vm_pageout.h>
8518314Speter#include <vm/vm_extern.h>
8618314Speter
8718314Spetervm_map_t kernel_map=0;
8818314Spetervm_map_t kmem_map=0;
8918314Spetervm_map_t exec_map=0;
901844Swollmanvm_map_t clean_map=0;
911638Srgrimesvm_map_t buffer_map=0;
9217511Speter
9374806Sru/*
9474806Sru *	kmem_alloc_pageable:
9574806Sru *
9674806Sru *	Allocate pageable memory to the kernel's address map.
9718314Speter *	"map" must be kernel_map or a submap of kernel_map.
9896164Sru */
9917511Speter
10017831Spetervm_offset_t
10117511Speterkmem_alloc_pageable(map, size)
10227673Sbde	vm_map_t map;
10327659Spst	vm_size_t size;
10496164Sru{
10527659Spst	vm_offset_t addr;
10627659Spst	int result;
10717511Speter
10817511Speter	GIANT_REQUIRED;
10917511Speter
11017511Speter	size = round_page(size);
11127659Spst	addr = vm_map_min(map);
11274806Sru	result = vm_map_find(map, NULL, (vm_offset_t) 0,
11374806Sru	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
11427673Sbde	if (result != KERN_SUCCESS) {
11574806Sru		return (0);
11627659Spst	}
11796164Sru	return (addr);
11827659Spst}
11927659Spst
12027659Spst/*
12127659Spst *	kmem_alloc_nofault:
12227659Spst *
12327659Spst *	Same as kmem_alloc_pageable, except that it create a nofault entry.
12427659Spst */
12517511Speter
12611468Sbdevm_offset_t
1271844Swollmankmem_alloc_nofault(map, size)
12823546Swosch	vm_map_t map;
12911136Swollman	vm_size_t size;
13074806Sru{
13174806Sru	vm_offset_t addr;
13274806Sru	int result;
13374806Sru
13423546Swosch	GIANT_REQUIRED;
13596164Sru
13611468Sbde	size = round_page(size);
13717831Speter	addr = vm_map_min(map);
13823546Swosch	result = vm_map_find(map, NULL, (vm_offset_t) 0,
13917511Speter	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
14023546Swosch	if (result != KERN_SUCCESS) {
14117511Speter		return (0);
14211136Swollman	}
14327673Sbde	return (addr);
14427659Spst}
14596164Sru
14627659Spst/*
14727659Spst *	Allocate wired-down memory in the kernel's address map
14827659Spst *	or a submap.
14927659Spst */
15027659Spstvm_offset_t
15127659Spstkmem_alloc(map, size)
15211136Swollman	vm_map_t map;
15311468Sbde	vm_size_t size;
15411136Swollman{
15527659Spst	vm_offset_t addr;
15611136Swollman	vm_offset_t offset;
1571638Srgrimes	vm_offset_t i;
1581844Swollman
15996164Sru	GIANT_REQUIRED;
16096164Sru
16174806Sru	size = round_page(size);
16296164Sru
16311136Swollman	/*
16418314Speter	 * Use the kernel object for wired-down kernel pages. Assume that no
16574806Sru	 * region of the kernel object is referenced more than once.
16627659Spst	 */
16774806Sru
16827673Sbde	/*
16927659Spst	 * Locate sufficient space in the map.  This will give us the final
17074806Sru	 * virtual address for the new memory, and thus will tell us the
17127659Spst	 * offset within the kernel map.
17218314Speter	 */
17318314Speter	vm_map_lock(map);
17474806Sru	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
17574806Sru		vm_map_unlock(map);
17674806Sru		return (0);
17774806Sru	}
17874806Sru	offset = addr - VM_MIN_KERNEL_ADDRESS;
17974806Sru	vm_object_reference(kernel_object);
18074806Sru	vm_map_insert(map, kernel_object, offset, addr, addr + size,
18174806Sru		VM_PROT_ALL, VM_PROT_ALL, 0);
18274806Sru	vm_map_unlock(map);
18374806Sru
18474806Sru	/*
18527673Sbde	 * Guarantee that there are pages already in this object before
18674806Sru	 * calling vm_map_pageable.  This is to prevent the following
18727659Spst	 * scenario:
18874806Sru	 *
18927659Spst	 * 1) Threads have swapped out, so that there is a pager for the
19018314Speter	 * kernel_object. 2) The kmsg zone is empty, and so we are
19127659Spst	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
1921844Swollman	 * there is no page, but there is a pager, so we call
19374806Sru	 * pager_data_request.  But the kmsg zone is empty, so we must
19474806Sru	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
19574806Sru	 * we get the data back from the pager, it will be (very stale)
19627673Sbde	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
19727659Spst	 *
19874806Sru	 * We're intentionally not activating the pages we allocate to prevent a
19974806Sru	 * race with page-out.  vm_map_pageable will wire the pages.
20027659Spst	 */
2011844Swollman
2021844Swollman	for (i = 0; i < size; i += PAGE_SIZE) {
20311468Sbde		vm_page_t mem;
20420935Swosch
20515902Swosch		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
20615902Swosch				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
20715902Swosch		if ((mem->flags & PG_ZERO) == 0)
20815902Swosch			vm_page_zero_fill(mem);
20915902Swosch		mem->valid = VM_PAGE_BITS_ALL;
21015902Swosch		vm_page_flag_clear(mem, PG_ZERO);
21115902Swosch		vm_page_wakeup(mem);
21215902Swosch	}
21315902Swosch
21415902Swosch	/*
2152353Sbde	 * And finally, mark the data as non-pageable.
21623546Swosch	 */
2171844Swollman
21815902Swosch	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
21927673Sbde
22027659Spst	return (addr);
22127659Spst}
22227659Spst
22327659Spst/*
22427659Spst *	kmem_free:
22527659Spst *
22627659Spst *	Release a region of kernel virtual memory allocated
22727659Spst *	with kmem_alloc, and return the physical pages
22827659Spst *	associated with that region.
22927659Spst *
23027659Spst *	This routine may not block on kernel maps.
23127659Spst */
23227659Spstvoid
23327659Spstkmem_free(map, addr, size)
2341638Srgrimes	vm_map_t map;
23527659Spst	vm_offset_t addr;
23683075Sru	vm_size_t size;
23783075Sru{
23883075Sru	GIANT_REQUIRED;
23983075Sru
24083075Sru	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
24183075Sru}
24283075Sru
24383080Sru/*
24483075Sru *	kmem_suballoc:
24583080Sru *
24683075Sru *	Allocates a map to manage a subrange
24783075Sru *	of the kernel virtual address space.
24883075Sru *
249 *	Arguments are as follows:
250 *
251 *	parent		Map to take range from
252 *	min, max	Returned endpoints of map
253 *	size		Size of range to find
254 */
255vm_map_t
256kmem_suballoc(parent, min, max, size)
257	vm_map_t parent;
258	vm_offset_t *min, *max;
259	vm_size_t size;
260{
261	int ret;
262	vm_map_t result;
263
264	GIANT_REQUIRED;
265
266	size = round_page(size);
267
268	*min = (vm_offset_t) vm_map_min(parent);
269	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
270	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
271	if (ret != KERN_SUCCESS) {
272		printf("kmem_suballoc: bad status return of %d.\n", ret);
273		panic("kmem_suballoc");
274	}
275	*max = *min + size;
276	pmap_reference(vm_map_pmap(parent));
277	result = vm_map_create(vm_map_pmap(parent), *min, *max);
278	if (result == NULL)
279		panic("kmem_suballoc: cannot create submap");
280	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
281		panic("kmem_suballoc: unable to change range to submap");
282	return (result);
283}
284
285/*
286 *	kmem_malloc:
287 *
288 * 	Allocate wired-down memory in the kernel's address map for the higher
289 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
290 * 	kmem_alloc() because we may need to allocate memory at interrupt
291 * 	level where we cannot block (canwait == FALSE).
292 *
293 * 	This routine has its own private kernel submap (kmem_map) and object
294 * 	(kmem_object).  This, combined with the fact that only malloc uses
295 * 	this routine, ensures that we will never block in map or object waits.
296 *
297 * 	Note that this still only works in a uni-processor environment and
298 * 	when called at splhigh().
299 *
300 * 	We don't worry about expanding the map (adding entries) since entries
301 * 	for wired maps are statically allocated.
302 *
303 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
304 *	I have not verified that it actually does not block.
305 *
306 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
307 *	which we never free.
308 */
309vm_offset_t
310kmem_malloc(map, size, flags)
311	vm_map_t map;
312	vm_size_t size;
313	int flags;
314{
315	vm_offset_t offset, i;
316	vm_map_entry_t entry;
317	vm_offset_t addr;
318	vm_page_t m;
319
320	GIANT_REQUIRED;
321
322	size = round_page(size);
323	addr = vm_map_min(map);
324
325	/*
326	 * Locate sufficient space in the map.  This will give us the final
327	 * virtual address for the new memory, and thus will tell us the
328	 * offset within the kernel map.
329	 */
330	vm_map_lock(map);
331	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
332		vm_map_unlock(map);
333		if (map != kmem_map) {
334			printf("Out of mbuf address space!\n");
335			printf("Consider increasing NMBCLUSTERS\n");
336			goto bad;
337		}
338		if ((flags & M_NOWAIT) == 0)
339			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
340				(long)size, (long)map->size);
341		goto bad;
342	}
343	offset = addr - VM_MIN_KERNEL_ADDRESS;
344	vm_object_reference(kmem_object);
345	vm_map_insert(map, kmem_object, offset, addr, addr + size,
346		VM_PROT_ALL, VM_PROT_ALL, 0);
347
348	for (i = 0; i < size; i += PAGE_SIZE) {
349		/*
350		 * Note: if M_NOWAIT specified alone, allocate from
351		 * interrupt-safe queues only (just the free list).  If
352		 * M_USE_RESERVE is also specified, we can also
353		 * allocate from the cache.  Neither of the latter two
354		 * flags may be specified from an interrupt since interrupts
355		 * are not allowed to mess with the cache queue.
356		 */
357retry:
358		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
359		    ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ?
360			VM_ALLOC_INTERRUPT :
361			VM_ALLOC_SYSTEM);
362
363		/*
364		 * Ran out of space, free everything up and return. Don't need
365		 * to lock page queues here as we know that the pages we got
366		 * aren't on any queues.
367		 */
368		if (m == NULL) {
369			if ((flags & M_NOWAIT) == 0) {
370				vm_map_unlock(map);
371				VM_WAIT;
372				vm_map_lock(map);
373				goto retry;
374			}
375			vm_map_delete(map, addr, addr + size);
376			vm_map_unlock(map);
377			goto bad;
378		}
379		vm_page_flag_clear(m, PG_ZERO);
380		m->valid = VM_PAGE_BITS_ALL;
381	}
382
383	/*
384	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
385	 * be able to extend the previous entry so there will be a new entry
386	 * exactly corresponding to this address range and it will have
387	 * wired_count == 0.
388	 */
389	if (!vm_map_lookup_entry(map, addr, &entry) ||
390	    entry->start != addr || entry->end != addr + size ||
391	    entry->wired_count != 0)
392		panic("kmem_malloc: entry not found or misaligned");
393	entry->wired_count = 1;
394
395	vm_map_simplify_entry(map, entry);
396
397	/*
398	 * Loop thru pages, entering them in the pmap. (We cannot add them to
399	 * the wired count without wrapping the vm_page_queue_lock in
400	 * splimp...)
401	 */
402	for (i = 0; i < size; i += PAGE_SIZE) {
403		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
404		vm_page_wire(m);
405		vm_page_wakeup(m);
406		/*
407		 * Because this is kernel_pmap, this call will not block.
408		 */
409		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
410		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
411	}
412	vm_map_unlock(map);
413
414	return (addr);
415
416bad:
417	return (0);
418}
419
420/*
421 *	kmem_alloc_wait:
422 *
423 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
424 *	has no room, the caller sleeps waiting for more memory in the submap.
425 *
426 *	This routine may block.
427 */
428
429vm_offset_t
430kmem_alloc_wait(map, size)
431	vm_map_t map;
432	vm_size_t size;
433{
434	vm_offset_t addr;
435
436	GIANT_REQUIRED;
437
438	size = round_page(size);
439
440	for (;;) {
441		/*
442		 * To make this work for more than one map, use the map's lock
443		 * to lock out sleepers/wakers.
444		 */
445		vm_map_lock(map);
446		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
447			break;
448		/* no space now; see if we can ever get space */
449		if (vm_map_max(map) - vm_map_min(map) < size) {
450			vm_map_unlock(map);
451			return (0);
452		}
453		vm_map_unlock(map);
454		tsleep(map, PVM, "kmaw", 0);
455	}
456	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
457	vm_map_unlock(map);
458	return (addr);
459}
460
461/*
462 *	kmem_free_wakeup:
463 *
464 *	Returns memory to a submap of the kernel, and wakes up any processes
465 *	waiting for memory in that map.
466 */
467void
468kmem_free_wakeup(map, addr, size)
469	vm_map_t map;
470	vm_offset_t addr;
471	vm_size_t size;
472{
473	GIANT_REQUIRED;
474
475	vm_map_lock(map);
476	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
477	wakeup(map);
478	vm_map_unlock(map);
479}
480
481/*
482 * 	kmem_init:
483 *
484 *	Create the kernel map; insert a mapping covering kernel text,
485 *	data, bss, and all space allocated thus far (`boostrap' data).  The
486 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
487 *	`start' as allocated, and the range between `start' and `end' as free.
488 */
489
490void
491kmem_init(start, end)
492	vm_offset_t start, end;
493{
494	vm_map_t m;
495
496	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
497	vm_map_lock(m);
498	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
499	kernel_map = m;
500	kernel_map->system_map = 1;
501	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
502	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
503	/* ... and ending with the completion of the above `insert' */
504	vm_map_unlock(m);
505}
506