vm_kern.c revision 79224
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 79224 2001-07-04 16:20:28Z dillon $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/malloc.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t buffer_map=0;
92
93/*
94 *	kmem_alloc_pageable:
95 *
96 *	Allocate pageable memory to the kernel's address map.
97 *	"map" must be kernel_map or a submap of kernel_map.
98 */
99
100vm_offset_t
101kmem_alloc_pageable(map, size)
102	vm_map_t map;
103	vm_size_t size;
104{
105	vm_offset_t addr;
106	int result;
107
108	GIANT_REQUIRED;
109
110	size = round_page(size);
111	addr = vm_map_min(map);
112	result = vm_map_find(map, NULL, (vm_offset_t) 0,
113	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
114	if (result != KERN_SUCCESS) {
115		return (0);
116	}
117	return (addr);
118}
119
120/*
121 *	kmem_alloc_nofault:
122 *
123 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
124 */
125
126vm_offset_t
127kmem_alloc_nofault(map, size)
128	vm_map_t map;
129	vm_size_t size;
130{
131	vm_offset_t addr;
132	int result;
133
134	GIANT_REQUIRED;
135
136	size = round_page(size);
137	addr = vm_map_min(map);
138	result = vm_map_find(map, NULL, (vm_offset_t) 0,
139	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
140	if (result != KERN_SUCCESS) {
141		return (0);
142	}
143	return (addr);
144}
145
146/*
147 *	Allocate wired-down memory in the kernel's address map
148 *	or a submap.
149 */
150vm_offset_t
151kmem_alloc(map, size)
152	vm_map_t map;
153	vm_size_t size;
154{
155	vm_offset_t addr;
156	vm_offset_t offset;
157	vm_offset_t i;
158
159	GIANT_REQUIRED;
160
161	size = round_page(size);
162
163	/*
164	 * Use the kernel object for wired-down kernel pages. Assume that no
165	 * region of the kernel object is referenced more than once.
166	 */
167
168	/*
169	 * Locate sufficient space in the map.  This will give us the final
170	 * virtual address for the new memory, and thus will tell us the
171	 * offset within the kernel map.
172	 */
173	vm_map_lock(map);
174	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
175		vm_map_unlock(map);
176		return (0);
177	}
178	offset = addr - VM_MIN_KERNEL_ADDRESS;
179	vm_object_reference(kernel_object);
180	vm_map_insert(map, kernel_object, offset, addr, addr + size,
181		VM_PROT_ALL, VM_PROT_ALL, 0);
182	vm_map_unlock(map);
183
184	/*
185	 * Guarantee that there are pages already in this object before
186	 * calling vm_map_pageable.  This is to prevent the following
187	 * scenario:
188	 *
189	 * 1) Threads have swapped out, so that there is a pager for the
190	 * kernel_object. 2) The kmsg zone is empty, and so we are
191	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
192	 * there is no page, but there is a pager, so we call
193	 * pager_data_request.  But the kmsg zone is empty, so we must
194	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
195	 * we get the data back from the pager, it will be (very stale)
196	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
197	 *
198	 * We're intentionally not activating the pages we allocate to prevent a
199	 * race with page-out.  vm_map_pageable will wire the pages.
200	 */
201
202	for (i = 0; i < size; i += PAGE_SIZE) {
203		vm_page_t mem;
204
205		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
206				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
207		if ((mem->flags & PG_ZERO) == 0)
208			vm_page_zero_fill(mem);
209		mem->valid = VM_PAGE_BITS_ALL;
210		vm_page_flag_clear(mem, PG_ZERO);
211		vm_page_wakeup(mem);
212	}
213
214	/*
215	 * And finally, mark the data as non-pageable.
216	 */
217
218	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
219
220	return (addr);
221}
222
223/*
224 *	kmem_free:
225 *
226 *	Release a region of kernel virtual memory allocated
227 *	with kmem_alloc, and return the physical pages
228 *	associated with that region.
229 *
230 *	This routine may not block on kernel maps.
231 */
232void
233kmem_free(map, addr, size)
234	vm_map_t map;
235	vm_offset_t addr;
236	vm_size_t size;
237{
238	GIANT_REQUIRED;
239
240	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
241}
242
243/*
244 *	kmem_suballoc:
245 *
246 *	Allocates a map to manage a subrange
247 *	of the kernel virtual address space.
248 *
249 *	Arguments are as follows:
250 *
251 *	parent		Map to take range from
252 *	min, max	Returned endpoints of map
253 *	size		Size of range to find
254 */
255vm_map_t
256kmem_suballoc(parent, min, max, size)
257	vm_map_t parent;
258	vm_offset_t *min, *max;
259	vm_size_t size;
260{
261	int ret;
262	vm_map_t result;
263
264	GIANT_REQUIRED;
265
266	size = round_page(size);
267
268	*min = (vm_offset_t) vm_map_min(parent);
269	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
270	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
271	if (ret != KERN_SUCCESS) {
272		printf("kmem_suballoc: bad status return of %d.\n", ret);
273		panic("kmem_suballoc");
274	}
275	*max = *min + size;
276	pmap_reference(vm_map_pmap(parent));
277	result = vm_map_create(vm_map_pmap(parent), *min, *max);
278	if (result == NULL)
279		panic("kmem_suballoc: cannot create submap");
280	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
281		panic("kmem_suballoc: unable to change range to submap");
282	return (result);
283}
284
285/*
286 *	kmem_malloc:
287 *
288 * 	Allocate wired-down memory in the kernel's address map for the higher
289 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
290 * 	kmem_alloc() because we may need to allocate memory at interrupt
291 * 	level where we cannot block (canwait == FALSE).
292 *
293 * 	This routine has its own private kernel submap (kmem_map) and object
294 * 	(kmem_object).  This, combined with the fact that only malloc uses
295 * 	this routine, ensures that we will never block in map or object waits.
296 *
297 * 	Note that this still only works in a uni-processor environment and
298 * 	when called at splhigh().
299 *
300 * 	We don't worry about expanding the map (adding entries) since entries
301 * 	for wired maps are statically allocated.
302 *
303 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
304 *	I have not verified that it actually does not block.
305 *
306 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
307 *	which we never free.
308 */
309vm_offset_t
310kmem_malloc(map, size, flags)
311	vm_map_t map;
312	vm_size_t size;
313	int flags;
314{
315	vm_offset_t offset, i;
316	vm_map_entry_t entry;
317	vm_offset_t addr;
318	vm_page_t m;
319
320	GIANT_REQUIRED;
321
322	size = round_page(size);
323	addr = vm_map_min(map);
324
325	/*
326	 * Locate sufficient space in the map.  This will give us the final
327	 * virtual address for the new memory, and thus will tell us the
328	 * offset within the kernel map.
329	 */
330	vm_map_lock(map);
331	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
332		vm_map_unlock(map);
333		if (map != kmem_map) {
334			printf("Out of mbuf address space!\n");
335			printf("Consider increasing NMBCLUSTERS\n");
336			goto bad;
337		}
338		if ((flags & M_NOWAIT) == 0)
339			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
340				(long)size, (long)map->size);
341		goto bad;
342	}
343	offset = addr - VM_MIN_KERNEL_ADDRESS;
344	vm_object_reference(kmem_object);
345	vm_map_insert(map, kmem_object, offset, addr, addr + size,
346		VM_PROT_ALL, VM_PROT_ALL, 0);
347
348	for (i = 0; i < size; i += PAGE_SIZE) {
349		/*
350		 * Note: if M_NOWAIT specified alone, allocate from
351		 * interrupt-safe queues only (just the free list).  If
352		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
353		 * allocate from the cache.  Neither of the latter two
354		 * flags may be specified from an interrupt since interrupts
355		 * are not allowed to mess with the cache queue.
356		 */
357retry:
358		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
359		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
360			VM_ALLOC_INTERRUPT :
361			VM_ALLOC_SYSTEM);
362
363		/*
364		 * Ran out of space, free everything up and return. Don't need
365		 * to lock page queues here as we know that the pages we got
366		 * aren't on any queues.
367		 */
368		if (m == NULL) {
369			if ((flags & M_NOWAIT) == 0) {
370				vm_map_unlock(map);
371				VM_WAIT;
372				vm_map_lock(map);
373				goto retry;
374			}
375			vm_map_delete(map, addr, addr + size);
376			vm_map_unlock(map);
377			if (flags & M_ASLEEP) {
378				VM_AWAIT;
379			}
380			goto bad;
381		}
382		vm_page_flag_clear(m, PG_ZERO);
383		m->valid = VM_PAGE_BITS_ALL;
384	}
385
386	/*
387	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
388	 * be able to extend the previous entry so there will be a new entry
389	 * exactly corresponding to this address range and it will have
390	 * wired_count == 0.
391	 */
392	if (!vm_map_lookup_entry(map, addr, &entry) ||
393	    entry->start != addr || entry->end != addr + size ||
394	    entry->wired_count != 0)
395		panic("kmem_malloc: entry not found or misaligned");
396	entry->wired_count = 1;
397
398	vm_map_simplify_entry(map, entry);
399
400	/*
401	 * Loop thru pages, entering them in the pmap. (We cannot add them to
402	 * the wired count without wrapping the vm_page_queue_lock in
403	 * splimp...)
404	 */
405	for (i = 0; i < size; i += PAGE_SIZE) {
406		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
407		vm_page_wire(m);
408		vm_page_wakeup(m);
409		/*
410		 * Because this is kernel_pmap, this call will not block.
411		 */
412		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
413		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
414	}
415	vm_map_unlock(map);
416
417	return (addr);
418
419bad:
420	return (0);
421}
422
423/*
424 *	kmem_alloc_wait:
425 *
426 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
427 *	has no room, the caller sleeps waiting for more memory in the submap.
428 *
429 *	This routine may block.
430 */
431
432vm_offset_t
433kmem_alloc_wait(map, size)
434	vm_map_t map;
435	vm_size_t size;
436{
437	vm_offset_t addr;
438
439	GIANT_REQUIRED;
440
441	size = round_page(size);
442
443	for (;;) {
444		/*
445		 * To make this work for more than one map, use the map's lock
446		 * to lock out sleepers/wakers.
447		 */
448		vm_map_lock(map);
449		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
450			break;
451		/* no space now; see if we can ever get space */
452		if (vm_map_max(map) - vm_map_min(map) < size) {
453			vm_map_unlock(map);
454			return (0);
455		}
456		vm_map_unlock(map);
457		tsleep(map, PVM, "kmaw", 0);
458	}
459	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
460	vm_map_unlock(map);
461	return (addr);
462}
463
464/*
465 *	kmem_free_wakeup:
466 *
467 *	Returns memory to a submap of the kernel, and wakes up any processes
468 *	waiting for memory in that map.
469 */
470void
471kmem_free_wakeup(map, addr, size)
472	vm_map_t map;
473	vm_offset_t addr;
474	vm_size_t size;
475{
476	GIANT_REQUIRED;
477
478	vm_map_lock(map);
479	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
480	wakeup(map);
481	vm_map_unlock(map);
482}
483
484/*
485 * 	kmem_init:
486 *
487 *	Create the kernel map; insert a mapping covering kernel text,
488 *	data, bss, and all space allocated thus far (`boostrap' data).  The
489 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
490 *	`start' as allocated, and the range between `start' and `end' as free.
491 */
492
493void
494kmem_init(start, end)
495	vm_offset_t start, end;
496{
497	vm_map_t m;
498
499	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
500	vm_map_lock(m);
501	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
502	kernel_map = m;
503	kernel_map->system_map = 1;
504	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
505	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
506	/* ... and ending with the completion of the above `insert' */
507	vm_map_unlock(m);
508}
509