vm_kern.c revision 78592
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 78592 2001-06-22 06:35:32Z bmilekic $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/malloc.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t buffer_map=0;
92
93/*
94 *	kmem_alloc_pageable:
95 *
96 *	Allocate pageable memory to the kernel's address map.
97 *	"map" must be kernel_map or a submap of kernel_map.
98 */
99
100vm_offset_t
101kmem_alloc_pageable(map, size)
102	vm_map_t map;
103	vm_size_t size;
104{
105	vm_offset_t addr;
106	int result;
107	int hadvmlock;
108
109	hadvmlock = mtx_owned(&vm_mtx);
110	if (!hadvmlock)
111		mtx_lock(&vm_mtx);
112	size = round_page(size);
113	addr = vm_map_min(map);
114	result = vm_map_find(map, NULL, (vm_offset_t) 0,
115	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
116	if (!hadvmlock)
117		mtx_unlock(&vm_mtx);
118	if (result != KERN_SUCCESS) {
119		return (0);
120	}
121	return (addr);
122}
123
124/*
125 *	kmem_alloc_nofault:
126 *
127 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
128 */
129
130vm_offset_t
131kmem_alloc_nofault(map, size)
132	vm_map_t map;
133	vm_size_t size;
134{
135	vm_offset_t addr;
136	int result;
137
138	int hadvmlock;
139
140	hadvmlock = mtx_owned(&vm_mtx);
141	if (!hadvmlock)
142		mtx_lock(&vm_mtx);
143	size = round_page(size);
144	addr = vm_map_min(map);
145	result = vm_map_find(map, NULL, (vm_offset_t) 0,
146	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
147	if (!hadvmlock)
148		mtx_unlock(&vm_mtx);
149	if (result != KERN_SUCCESS) {
150		return (0);
151	}
152	return (addr);
153}
154
155/*
156 *	Allocate wired-down memory in the kernel's address map
157 *	or a submap.
158 */
159vm_offset_t
160kmem_alloc(map, size)
161	vm_map_t map;
162	vm_size_t size;
163{
164	vm_offset_t addr;
165	vm_offset_t offset;
166	vm_offset_t i;
167	int hadvmlock;
168
169	hadvmlock = mtx_owned(&vm_mtx);
170	if (!hadvmlock)
171		mtx_lock(&vm_mtx);
172	size = round_page(size);
173
174	/*
175	 * Use the kernel object for wired-down kernel pages. Assume that no
176	 * region of the kernel object is referenced more than once.
177	 */
178
179	/*
180	 * Locate sufficient space in the map.  This will give us the final
181	 * virtual address for the new memory, and thus will tell us the
182	 * offset within the kernel map.
183	 */
184	vm_map_lock(map);
185	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
186		vm_map_unlock(map);
187		if (!hadvmlock)
188			mtx_unlock(&vm_mtx);
189		return (0);
190	}
191	offset = addr - VM_MIN_KERNEL_ADDRESS;
192	vm_object_reference(kernel_object);
193	vm_map_insert(map, kernel_object, offset, addr, addr + size,
194		VM_PROT_ALL, VM_PROT_ALL, 0);
195	vm_map_unlock(map);
196
197	/*
198	 * Guarantee that there are pages already in this object before
199	 * calling vm_map_pageable.  This is to prevent the following
200	 * scenario:
201	 *
202	 * 1) Threads have swapped out, so that there is a pager for the
203	 * kernel_object. 2) The kmsg zone is empty, and so we are
204	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
205	 * there is no page, but there is a pager, so we call
206	 * pager_data_request.  But the kmsg zone is empty, so we must
207	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
208	 * we get the data back from the pager, it will be (very stale)
209	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
210	 *
211	 * We're intentionally not activating the pages we allocate to prevent a
212	 * race with page-out.  vm_map_pageable will wire the pages.
213	 */
214
215	for (i = 0; i < size; i += PAGE_SIZE) {
216		vm_page_t mem;
217
218		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
219				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
220		if ((mem->flags & PG_ZERO) == 0)
221			vm_page_zero_fill(mem);
222		mem->valid = VM_PAGE_BITS_ALL;
223		vm_page_flag_clear(mem, PG_ZERO);
224		vm_page_wakeup(mem);
225	}
226
227	/*
228	 * And finally, mark the data as non-pageable.
229	 */
230
231	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
232
233	if (!hadvmlock)
234		mtx_unlock(&vm_mtx);
235	return (addr);
236}
237
238/*
239 *	kmem_free:
240 *
241 *	Release a region of kernel virtual memory allocated
242 *	with kmem_alloc, and return the physical pages
243 *	associated with that region.
244 *
245 *	This routine may not block on kernel maps.
246 */
247void
248kmem_free(map, addr, size)
249	vm_map_t map;
250	vm_offset_t addr;
251	vm_size_t size;
252{
253	int hadvmlock;
254
255	hadvmlock = mtx_owned(&vm_mtx);
256	if (!hadvmlock)
257		mtx_lock(&vm_mtx);
258
259	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
260
261	if (!hadvmlock)
262		mtx_unlock(&vm_mtx);
263}
264
265/*
266 *	kmem_suballoc:
267 *
268 *	Allocates a map to manage a subrange
269 *	of the kernel virtual address space.
270 *
271 *	Arguments are as follows:
272 *
273 *	parent		Map to take range from
274 *	min, max	Returned endpoints of map
275 *	size		Size of range to find
276 */
277vm_map_t
278kmem_suballoc(parent, min, max, size)
279	vm_map_t parent;
280	vm_offset_t *min, *max;
281	vm_size_t size;
282{
283	int ret;
284	vm_map_t result;
285	int hadvmlock;
286
287	hadvmlock = mtx_owned(&vm_mtx);
288	if (!hadvmlock)
289		mtx_lock(&vm_mtx);
290
291	size = round_page(size);
292
293	*min = (vm_offset_t) vm_map_min(parent);
294	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
295	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
296	if (ret != KERN_SUCCESS) {
297		printf("kmem_suballoc: bad status return of %d.\n", ret);
298		panic("kmem_suballoc");
299	}
300	*max = *min + size;
301	pmap_reference(vm_map_pmap(parent));
302	result = vm_map_create(vm_map_pmap(parent), *min, *max);
303	if (result == NULL)
304		panic("kmem_suballoc: cannot create submap");
305	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
306		panic("kmem_suballoc: unable to change range to submap");
307	if (!hadvmlock)
308		mtx_unlock(&vm_mtx);
309	return (result);
310}
311
312/*
313 *	kmem_malloc:
314 *
315 * 	Allocate wired-down memory in the kernel's address map for the higher
316 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
317 * 	kmem_alloc() because we may need to allocate memory at interrupt
318 * 	level where we cannot block (canwait == FALSE).
319 *
320 * 	This routine has its own private kernel submap (kmem_map) and object
321 * 	(kmem_object).  This, combined with the fact that only malloc uses
322 * 	this routine, ensures that we will never block in map or object waits.
323 *
324 * 	Note that this still only works in a uni-processor environment and
325 * 	when called at splhigh().
326 *
327 * 	We don't worry about expanding the map (adding entries) since entries
328 * 	for wired maps are statically allocated.
329 *
330 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
331 *	I have not verified that it actually does not block.
332 *
333 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
334 *	which we never free.
335 */
336vm_offset_t
337kmem_malloc(map, size, flags)
338	vm_map_t map;
339	vm_size_t size;
340	int flags;
341{
342	vm_offset_t offset, i;
343	vm_map_entry_t entry;
344	vm_offset_t addr;
345	vm_page_t m;
346	int hadvmlock;
347
348	hadvmlock = mtx_owned(&vm_mtx);
349	if (!hadvmlock)
350		mtx_lock(&vm_mtx);
351
352	size = round_page(size);
353	addr = vm_map_min(map);
354
355	/*
356	 * Locate sufficient space in the map.  This will give us the final
357	 * virtual address for the new memory, and thus will tell us the
358	 * offset within the kernel map.
359	 */
360	vm_map_lock(map);
361	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
362		vm_map_unlock(map);
363		if (map != kmem_map) {
364			printf("Out of mbuf address space!\n");
365			printf("Consider increasing NMBCLUSTERS\n");
366			goto bad;
367		}
368		if ((flags & M_NOWAIT) == 0)
369			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
370				(long)size, (long)map->size);
371		goto bad;
372	}
373	offset = addr - VM_MIN_KERNEL_ADDRESS;
374	vm_object_reference(kmem_object);
375	vm_map_insert(map, kmem_object, offset, addr, addr + size,
376		VM_PROT_ALL, VM_PROT_ALL, 0);
377
378	for (i = 0; i < size; i += PAGE_SIZE) {
379		/*
380		 * Note: if M_NOWAIT specified alone, allocate from
381		 * interrupt-safe queues only (just the free list).  If
382		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
383		 * allocate from the cache.  Neither of the latter two
384		 * flags may be specified from an interrupt since interrupts
385		 * are not allowed to mess with the cache queue.
386		 */
387retry:
388		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
389		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
390			VM_ALLOC_INTERRUPT :
391			VM_ALLOC_SYSTEM);
392
393		/*
394		 * Ran out of space, free everything up and return. Don't need
395		 * to lock page queues here as we know that the pages we got
396		 * aren't on any queues.
397		 */
398		if (m == NULL) {
399			if ((flags & M_NOWAIT) == 0) {
400				vm_map_unlock(map);
401				VM_WAIT;
402				vm_map_lock(map);
403				goto retry;
404			}
405			vm_map_delete(map, addr, addr + size);
406			vm_map_unlock(map);
407			if (flags & M_ASLEEP) {
408				VM_AWAIT;
409			}
410			goto bad;
411		}
412		vm_page_flag_clear(m, PG_ZERO);
413		m->valid = VM_PAGE_BITS_ALL;
414	}
415
416	/*
417	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
418	 * be able to extend the previous entry so there will be a new entry
419	 * exactly corresponding to this address range and it will have
420	 * wired_count == 0.
421	 */
422	if (!vm_map_lookup_entry(map, addr, &entry) ||
423	    entry->start != addr || entry->end != addr + size ||
424	    entry->wired_count != 0)
425		panic("kmem_malloc: entry not found or misaligned");
426	entry->wired_count = 1;
427
428	vm_map_simplify_entry(map, entry);
429
430	/*
431	 * Loop thru pages, entering them in the pmap. (We cannot add them to
432	 * the wired count without wrapping the vm_page_queue_lock in
433	 * splimp...)
434	 */
435	for (i = 0; i < size; i += PAGE_SIZE) {
436		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
437		vm_page_wire(m);
438		vm_page_wakeup(m);
439		/*
440		 * Because this is kernel_pmap, this call will not block.
441		 */
442		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
443		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
444	}
445	vm_map_unlock(map);
446
447	if (!hadvmlock)
448		mtx_unlock(&vm_mtx);
449	return (addr);
450
451bad:
452	if (!hadvmlock)
453		mtx_unlock(&vm_mtx);
454	return (0);
455}
456
457/*
458 *	kmem_alloc_wait:
459 *
460 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
461 *	has no room, the caller sleeps waiting for more memory in the submap.
462 *
463 *	This routine may block.
464 */
465
466vm_offset_t
467kmem_alloc_wait(map, size)
468	vm_map_t map;
469	vm_size_t size;
470{
471	vm_offset_t addr;
472	int hadvmlock;
473
474	hadvmlock = mtx_owned(&vm_mtx);
475	if (!hadvmlock)
476		mtx_lock(&vm_mtx);
477
478	size = round_page(size);
479
480	for (;;) {
481		/*
482		 * To make this work for more than one map, use the map's lock
483		 * to lock out sleepers/wakers.
484		 */
485		vm_map_lock(map);
486		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
487			break;
488		/* no space now; see if we can ever get space */
489		if (vm_map_max(map) - vm_map_min(map) < size) {
490			vm_map_unlock(map);
491			if (!hadvmlock)
492				mtx_unlock(&vm_mtx);
493			return (0);
494		}
495		vm_map_unlock(map);
496		msleep(map, &vm_mtx, PVM, "kmaw", 0);
497	}
498	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
499	vm_map_unlock(map);
500	if (!hadvmlock)
501		mtx_unlock(&vm_mtx);
502	return (addr);
503}
504
505/*
506 *	kmem_free_wakeup:
507 *
508 *	Returns memory to a submap of the kernel, and wakes up any processes
509 *	waiting for memory in that map.
510 */
511void
512kmem_free_wakeup(map, addr, size)
513	vm_map_t map;
514	vm_offset_t addr;
515	vm_size_t size;
516{
517	int hadvmlock;
518
519	hadvmlock = mtx_owned(&vm_mtx);
520	if (!hadvmlock)
521		mtx_lock(&vm_mtx);
522	vm_map_lock(map);
523	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
524	wakeup(map);
525	vm_map_unlock(map);
526	if (!hadvmlock)
527		mtx_unlock(&vm_mtx);
528}
529
530/*
531 * 	kmem_init:
532 *
533 *	Create the kernel map; insert a mapping covering kernel text,
534 *	data, bss, and all space allocated thus far (`boostrap' data).  The
535 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
536 *	`start' as allocated, and the range between `start' and `end' as free.
537 */
538
539void
540kmem_init(start, end)
541	vm_offset_t start, end;
542{
543	vm_map_t m;
544
545	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
546	vm_map_lock(m);
547	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
548	kernel_map = m;
549	kernel_map->system_map = 1;
550	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
551	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
552	/* ... and ending with the completion of the above `insert' */
553	vm_map_unlock(m);
554}
555