vm_kern.c revision 76827
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 76827 2001-05-19 01:28:09Z alfred $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/malloc.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t buffer_map=0;
92vm_map_t mb_map=0;
93int mb_map_full=0;
94
95/*
96 *	kmem_alloc_pageable:
97 *
98 *	Allocate pageable memory to the kernel's address map.
99 *	"map" must be kernel_map or a submap of kernel_map.
100 */
101
102vm_offset_t
103kmem_alloc_pageable(map, size)
104	vm_map_t map;
105	vm_size_t size;
106{
107	vm_offset_t addr;
108	int result;
109	int hadvmlock;
110
111	hadvmlock = mtx_owned(&vm_mtx);
112	if (!hadvmlock)
113		mtx_lock(&vm_mtx);
114	size = round_page(size);
115	addr = vm_map_min(map);
116	result = vm_map_find(map, NULL, (vm_offset_t) 0,
117	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
118	if (!hadvmlock)
119		mtx_unlock(&vm_mtx);
120	if (result != KERN_SUCCESS) {
121		return (0);
122	}
123	return (addr);
124}
125
126/*
127 *	kmem_alloc_nofault:
128 *
129 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
130 */
131
132vm_offset_t
133kmem_alloc_nofault(map, size)
134	vm_map_t map;
135	vm_size_t size;
136{
137	vm_offset_t addr;
138	int result;
139
140	int hadvmlock;
141
142	hadvmlock = mtx_owned(&vm_mtx);
143	if (!hadvmlock)
144		mtx_lock(&vm_mtx);
145	size = round_page(size);
146	addr = vm_map_min(map);
147	result = vm_map_find(map, NULL, (vm_offset_t) 0,
148	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
149	if (!hadvmlock)
150		mtx_unlock(&vm_mtx);
151	if (result != KERN_SUCCESS) {
152		return (0);
153	}
154	return (addr);
155}
156
157/*
158 *	Allocate wired-down memory in the kernel's address map
159 *	or a submap.
160 */
161vm_offset_t
162kmem_alloc(map, size)
163	vm_map_t map;
164	vm_size_t size;
165{
166	vm_offset_t addr;
167	vm_offset_t offset;
168	vm_offset_t i;
169	int hadvmlock;
170
171	hadvmlock = mtx_owned(&vm_mtx);
172	if (!hadvmlock)
173		mtx_lock(&vm_mtx);
174	size = round_page(size);
175
176	/*
177	 * Use the kernel object for wired-down kernel pages. Assume that no
178	 * region of the kernel object is referenced more than once.
179	 */
180
181	/*
182	 * Locate sufficient space in the map.  This will give us the final
183	 * virtual address for the new memory, and thus will tell us the
184	 * offset within the kernel map.
185	 */
186	vm_map_lock(map);
187	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
188		vm_map_unlock(map);
189		if (!hadvmlock)
190			mtx_unlock(&vm_mtx);
191		return (0);
192	}
193	offset = addr - VM_MIN_KERNEL_ADDRESS;
194	vm_object_reference(kernel_object);
195	vm_map_insert(map, kernel_object, offset, addr, addr + size,
196		VM_PROT_ALL, VM_PROT_ALL, 0);
197	vm_map_unlock(map);
198
199	/*
200	 * Guarantee that there are pages already in this object before
201	 * calling vm_map_pageable.  This is to prevent the following
202	 * scenario:
203	 *
204	 * 1) Threads have swapped out, so that there is a pager for the
205	 * kernel_object. 2) The kmsg zone is empty, and so we are
206	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
207	 * there is no page, but there is a pager, so we call
208	 * pager_data_request.  But the kmsg zone is empty, so we must
209	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
210	 * we get the data back from the pager, it will be (very stale)
211	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
212	 *
213	 * We're intentionally not activating the pages we allocate to prevent a
214	 * race with page-out.  vm_map_pageable will wire the pages.
215	 */
216
217	for (i = 0; i < size; i += PAGE_SIZE) {
218		vm_page_t mem;
219
220		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
221				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
222		if ((mem->flags & PG_ZERO) == 0)
223			vm_page_zero_fill(mem);
224		mem->valid = VM_PAGE_BITS_ALL;
225		vm_page_flag_clear(mem, PG_ZERO);
226		vm_page_wakeup(mem);
227	}
228
229	/*
230	 * And finally, mark the data as non-pageable.
231	 */
232
233	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
234
235	if (!hadvmlock)
236		mtx_unlock(&vm_mtx);
237	return (addr);
238}
239
240/*
241 *	kmem_free:
242 *
243 *	Release a region of kernel virtual memory allocated
244 *	with kmem_alloc, and return the physical pages
245 *	associated with that region.
246 *
247 *	This routine may not block on kernel maps.
248 */
249void
250kmem_free(map, addr, size)
251	vm_map_t map;
252	vm_offset_t addr;
253	vm_size_t size;
254{
255	int hadvmlock;
256
257	hadvmlock = mtx_owned(&vm_mtx);
258	if (!hadvmlock)
259		mtx_lock(&vm_mtx);
260
261	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
262
263	if (!hadvmlock)
264		mtx_unlock(&vm_mtx);
265}
266
267/*
268 *	kmem_suballoc:
269 *
270 *	Allocates a map to manage a subrange
271 *	of the kernel virtual address space.
272 *
273 *	Arguments are as follows:
274 *
275 *	parent		Map to take range from
276 *	min, max	Returned endpoints of map
277 *	size		Size of range to find
278 */
279vm_map_t
280kmem_suballoc(parent, min, max, size)
281	vm_map_t parent;
282	vm_offset_t *min, *max;
283	vm_size_t size;
284{
285	int ret;
286	vm_map_t result;
287	int hadvmlock;
288
289	hadvmlock = mtx_owned(&vm_mtx);
290	if (!hadvmlock)
291		mtx_lock(&vm_mtx);
292
293	size = round_page(size);
294
295	*min = (vm_offset_t) vm_map_min(parent);
296	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
297	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
298	if (ret != KERN_SUCCESS) {
299		printf("kmem_suballoc: bad status return of %d.\n", ret);
300		panic("kmem_suballoc");
301	}
302	*max = *min + size;
303	pmap_reference(vm_map_pmap(parent));
304	result = vm_map_create(vm_map_pmap(parent), *min, *max);
305	if (result == NULL)
306		panic("kmem_suballoc: cannot create submap");
307	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
308		panic("kmem_suballoc: unable to change range to submap");
309	if (!hadvmlock)
310		mtx_unlock(&vm_mtx);
311	return (result);
312}
313
314/*
315 *	kmem_malloc:
316 *
317 * 	Allocate wired-down memory in the kernel's address map for the higher
318 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
319 * 	kmem_alloc() because we may need to allocate memory at interrupt
320 * 	level where we cannot block (canwait == FALSE).
321 *
322 * 	This routine has its own private kernel submap (kmem_map) and object
323 * 	(kmem_object).  This, combined with the fact that only malloc uses
324 * 	this routine, ensures that we will never block in map or object waits.
325 *
326 * 	Note that this still only works in a uni-processor environment and
327 * 	when called at splhigh().
328 *
329 * 	We don't worry about expanding the map (adding entries) since entries
330 * 	for wired maps are statically allocated.
331 *
332 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
333 *	I have not verified that it actually does not block.
334 */
335vm_offset_t
336kmem_malloc(map, size, flags)
337	vm_map_t map;
338	vm_size_t size;
339	int flags;
340{
341	vm_offset_t offset, i;
342	vm_map_entry_t entry;
343	vm_offset_t addr;
344	vm_page_t m;
345	int hadvmlock;
346
347	if (map != kmem_map && map != mb_map)
348		panic("kmem_malloc: map != {kmem,mb}_map");
349
350	hadvmlock = mtx_owned(&vm_mtx);
351	if (!hadvmlock)
352		mtx_lock(&vm_mtx);
353
354	size = round_page(size);
355	addr = vm_map_min(map);
356
357	/*
358	 * Locate sufficient space in the map.  This will give us the final
359	 * virtual address for the new memory, and thus will tell us the
360	 * offset within the kernel map.
361	 */
362	vm_map_lock(map);
363	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
364		vm_map_unlock(map);
365		if (map == mb_map) {
366			mb_map_full = TRUE;
367			printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
368			goto bad;
369		}
370		if ((flags & M_NOWAIT) == 0)
371			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
372				(long)size, (long)map->size);
373		goto bad;
374	}
375	offset = addr - VM_MIN_KERNEL_ADDRESS;
376	vm_object_reference(kmem_object);
377	vm_map_insert(map, kmem_object, offset, addr, addr + size,
378		VM_PROT_ALL, VM_PROT_ALL, 0);
379
380	for (i = 0; i < size; i += PAGE_SIZE) {
381		/*
382		 * Note: if M_NOWAIT specified alone, allocate from
383		 * interrupt-safe queues only (just the free list).  If
384		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
385		 * allocate from the cache.  Neither of the latter two
386		 * flags may be specified from an interrupt since interrupts
387		 * are not allowed to mess with the cache queue.
388		 */
389retry:
390		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
391		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
392			VM_ALLOC_INTERRUPT :
393			VM_ALLOC_SYSTEM);
394
395		/*
396		 * Ran out of space, free everything up and return. Don't need
397		 * to lock page queues here as we know that the pages we got
398		 * aren't on any queues.
399		 */
400		if (m == NULL) {
401			if ((flags & M_NOWAIT) == 0) {
402				vm_map_unlock(map);
403				VM_WAIT;
404				vm_map_lock(map);
405				goto retry;
406			}
407			vm_map_delete(map, addr, addr + size);
408			vm_map_unlock(map);
409			if (flags & M_ASLEEP) {
410				VM_AWAIT;
411			}
412			goto bad;
413		}
414		vm_page_flag_clear(m, PG_ZERO);
415		m->valid = VM_PAGE_BITS_ALL;
416	}
417
418	/*
419	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
420	 * be able to extend the previous entry so there will be a new entry
421	 * exactly corresponding to this address range and it will have
422	 * wired_count == 0.
423	 */
424	if (!vm_map_lookup_entry(map, addr, &entry) ||
425	    entry->start != addr || entry->end != addr + size ||
426	    entry->wired_count != 0)
427		panic("kmem_malloc: entry not found or misaligned");
428	entry->wired_count = 1;
429
430	vm_map_simplify_entry(map, entry);
431
432	/*
433	 * Loop thru pages, entering them in the pmap. (We cannot add them to
434	 * the wired count without wrapping the vm_page_queue_lock in
435	 * splimp...)
436	 */
437	for (i = 0; i < size; i += PAGE_SIZE) {
438		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
439		vm_page_wire(m);
440		vm_page_wakeup(m);
441		/*
442		 * Because this is kernel_pmap, this call will not block.
443		 */
444		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
445		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
446	}
447	vm_map_unlock(map);
448
449	if (!hadvmlock)
450		mtx_unlock(&vm_mtx);
451	return (addr);
452
453bad:
454	if (!hadvmlock)
455		mtx_unlock(&vm_mtx);
456	return (0);
457}
458
459/*
460 *	kmem_alloc_wait:
461 *
462 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
463 *	has no room, the caller sleeps waiting for more memory in the submap.
464 *
465 *	This routine may block.
466 */
467
468vm_offset_t
469kmem_alloc_wait(map, size)
470	vm_map_t map;
471	vm_size_t size;
472{
473	vm_offset_t addr;
474	int hadvmlock;
475
476	hadvmlock = mtx_owned(&vm_mtx);
477	if (!hadvmlock)
478		mtx_lock(&vm_mtx);
479
480	size = round_page(size);
481
482	for (;;) {
483		/*
484		 * To make this work for more than one map, use the map's lock
485		 * to lock out sleepers/wakers.
486		 */
487		vm_map_lock(map);
488		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
489			break;
490		/* no space now; see if we can ever get space */
491		if (vm_map_max(map) - vm_map_min(map) < size) {
492			vm_map_unlock(map);
493			if (!hadvmlock)
494				mtx_unlock(&vm_mtx);
495			return (0);
496		}
497		vm_map_unlock(map);
498		msleep(map, &vm_mtx, PVM, "kmaw", 0);
499	}
500	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
501	vm_map_unlock(map);
502	if (!hadvmlock)
503		mtx_unlock(&vm_mtx);
504	return (addr);
505}
506
507/*
508 *	kmem_free_wakeup:
509 *
510 *	Returns memory to a submap of the kernel, and wakes up any processes
511 *	waiting for memory in that map.
512 */
513void
514kmem_free_wakeup(map, addr, size)
515	vm_map_t map;
516	vm_offset_t addr;
517	vm_size_t size;
518{
519	int hadvmlock;
520
521	hadvmlock = mtx_owned(&vm_mtx);
522	if (!hadvmlock)
523		mtx_lock(&vm_mtx);
524	vm_map_lock(map);
525	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
526	wakeup(map);
527	vm_map_unlock(map);
528	if (!hadvmlock)
529		mtx_unlock(&vm_mtx);
530}
531
532/*
533 * 	kmem_init:
534 *
535 *	Create the kernel map; insert a mapping covering kernel text,
536 *	data, bss, and all space allocated thus far (`boostrap' data).  The
537 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
538 *	`start' as allocated, and the range between `start' and `end' as free.
539 */
540
541void
542kmem_init(start, end)
543	vm_offset_t start, end;
544{
545	vm_map_t m;
546
547	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
548	vm_map_lock(m);
549	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
550	kernel_map = m;
551	kernel_map->system_map = 1;
552	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
553	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
554	/* ... and ending with the completion of the above `insert' */
555	vm_map_unlock(m);
556}
557