vm_kern.c revision 70478
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 70478 2000-12-29 13:05:22Z alfred $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <sys/lock.h>
79#include <vm/pmap.h>
80#include <vm/vm_map.h>
81#include <vm/vm_object.h>
82#include <vm/vm_page.h>
83#include <vm/vm_pageout.h>
84#include <vm/vm_extern.h>
85
86vm_map_t kernel_map=0;
87vm_map_t kmem_map=0;
88vm_map_t exec_map=0;
89vm_map_t clean_map=0;
90vm_map_t buffer_map=0;
91vm_map_t mb_map=0;
92int mb_map_full=0;
93
94/*
95 *	kmem_alloc_pageable:
96 *
97 *	Allocate pageable memory to the kernel's address map.
98 *	"map" must be kernel_map or a submap of kernel_map.
99 */
100
101vm_offset_t
102kmem_alloc_pageable(map, size)
103	vm_map_t map;
104	register vm_size_t size;
105{
106	vm_offset_t addr;
107	register int result;
108
109	size = round_page(size);
110	addr = vm_map_min(map);
111	result = vm_map_find(map, NULL, (vm_offset_t) 0,
112	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
113	if (result != KERN_SUCCESS) {
114		return (0);
115	}
116	return (addr);
117}
118
119/*
120 *	kmem_alloc_nofault:
121 *
122 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
123 */
124
125vm_offset_t
126kmem_alloc_nofault(map, size)
127	vm_map_t map;
128	register vm_size_t size;
129{
130	vm_offset_t addr;
131	register int result;
132
133	size = round_page(size);
134	addr = vm_map_min(map);
135	result = vm_map_find(map, NULL, (vm_offset_t) 0,
136	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
137	if (result != KERN_SUCCESS) {
138		return (0);
139	}
140	return (addr);
141}
142
143/*
144 *	Allocate wired-down memory in the kernel's address map
145 *	or a submap.
146 */
147vm_offset_t
148kmem_alloc(map, size)
149	register vm_map_t map;
150	register vm_size_t size;
151{
152	vm_offset_t addr;
153	register vm_offset_t offset;
154	vm_offset_t i;
155
156	size = round_page(size);
157
158	/*
159	 * Use the kernel object for wired-down kernel pages. Assume that no
160	 * region of the kernel object is referenced more than once.
161	 */
162
163	/*
164	 * Locate sufficient space in the map.  This will give us the final
165	 * virtual address for the new memory, and thus will tell us the
166	 * offset within the kernel map.
167	 */
168	vm_map_lock(map);
169	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
170		vm_map_unlock(map);
171		return (0);
172	}
173	offset = addr - VM_MIN_KERNEL_ADDRESS;
174	vm_object_reference(kernel_object);
175	vm_map_insert(map, kernel_object, offset, addr, addr + size,
176		VM_PROT_ALL, VM_PROT_ALL, 0);
177	vm_map_unlock(map);
178
179	/*
180	 * Guarantee that there are pages already in this object before
181	 * calling vm_map_pageable.  This is to prevent the following
182	 * scenario:
183	 *
184	 * 1) Threads have swapped out, so that there is a pager for the
185	 * kernel_object. 2) The kmsg zone is empty, and so we are
186	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
187	 * there is no page, but there is a pager, so we call
188	 * pager_data_request.  But the kmsg zone is empty, so we must
189	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
190	 * we get the data back from the pager, it will be (very stale)
191	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
192	 *
193	 * We're intentionally not activating the pages we allocate to prevent a
194	 * race with page-out.  vm_map_pageable will wire the pages.
195	 */
196
197	for (i = 0; i < size; i += PAGE_SIZE) {
198		vm_page_t mem;
199
200		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
201				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
202		if ((mem->flags & PG_ZERO) == 0)
203			vm_page_zero_fill(mem);
204		mem->valid = VM_PAGE_BITS_ALL;
205		vm_page_flag_clear(mem, PG_ZERO);
206		vm_page_wakeup(mem);
207	}
208
209	/*
210	 * And finally, mark the data as non-pageable.
211	 */
212
213	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
214
215	return (addr);
216}
217
218/*
219 *	kmem_free:
220 *
221 *	Release a region of kernel virtual memory allocated
222 *	with kmem_alloc, and return the physical pages
223 *	associated with that region.
224 *
225 *	This routine may not block on kernel maps.
226 */
227void
228kmem_free(map, addr, size)
229	vm_map_t map;
230	register vm_offset_t addr;
231	vm_size_t size;
232{
233	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
234}
235
236/*
237 *	kmem_suballoc:
238 *
239 *	Allocates a map to manage a subrange
240 *	of the kernel virtual address space.
241 *
242 *	Arguments are as follows:
243 *
244 *	parent		Map to take range from
245 *	size		Size of range to find
246 *	min, max	Returned endpoints of map
247 *	pageable	Can the region be paged
248 */
249vm_map_t
250kmem_suballoc(parent, min, max, size)
251	vm_map_t parent;
252	vm_offset_t *min, *max;
253	vm_size_t size;
254{
255	int ret;
256	vm_map_t result;
257
258	size = round_page(size);
259
260	*min = (vm_offset_t) vm_map_min(parent);
261	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
262	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
263	if (ret != KERN_SUCCESS) {
264		printf("kmem_suballoc: bad status return of %d.\n", ret);
265		panic("kmem_suballoc");
266	}
267	*max = *min + size;
268	pmap_reference(vm_map_pmap(parent));
269	result = vm_map_create(vm_map_pmap(parent), *min, *max);
270	if (result == NULL)
271		panic("kmem_suballoc: cannot create submap");
272	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
273		panic("kmem_suballoc: unable to change range to submap");
274	return (result);
275}
276
277/*
278 *	kmem_malloc:
279 *
280 * 	Allocate wired-down memory in the kernel's address map for the higher
281 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
282 * 	kmem_alloc() because we may need to allocate memory at interrupt
283 * 	level where we cannot block (canwait == FALSE).
284 *
285 * 	This routine has its own private kernel submap (kmem_map) and object
286 * 	(kmem_object).  This, combined with the fact that only malloc uses
287 * 	this routine, ensures that we will never block in map or object waits.
288 *
289 * 	Note that this still only works in a uni-processor environment and
290 * 	when called at splhigh().
291 *
292 * 	We don't worry about expanding the map (adding entries) since entries
293 * 	for wired maps are statically allocated.
294 *
295 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
296 *	I have not verified that it actually does not block.
297 */
298vm_offset_t
299kmem_malloc(map, size, flags)
300	register vm_map_t map;
301	register vm_size_t size;
302	int flags;
303{
304	register vm_offset_t offset, i;
305	vm_map_entry_t entry;
306	vm_offset_t addr;
307	vm_page_t m;
308
309	if (map != kmem_map && map != mb_map)
310		panic("kmem_malloc: map != {kmem,mb}_map");
311
312	size = round_page(size);
313	addr = vm_map_min(map);
314
315	/*
316	 * Locate sufficient space in the map.  This will give us the final
317	 * virtual address for the new memory, and thus will tell us the
318	 * offset within the kernel map.
319	 */
320	vm_map_lock(map);
321	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
322		vm_map_unlock(map);
323		if (map == mb_map) {
324			mb_map_full = TRUE;
325			printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
326			return (0);
327		}
328		if ((flags & M_NOWAIT) == 0)
329			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
330				(long)size, (long)map->size);
331		return (0);
332	}
333	offset = addr - VM_MIN_KERNEL_ADDRESS;
334	vm_object_reference(kmem_object);
335	vm_map_insert(map, kmem_object, offset, addr, addr + size,
336		VM_PROT_ALL, VM_PROT_ALL, 0);
337
338	for (i = 0; i < size; i += PAGE_SIZE) {
339		/*
340		 * Note: if M_NOWAIT specified alone, allocate from
341		 * interrupt-safe queues only (just the free list).  If
342		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
343		 * allocate from the cache.  Neither of the latter two
344		 * flags may be specified from an interrupt since interrupts
345		 * are not allowed to mess with the cache queue.
346		 */
347retry:
348		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
349		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
350			VM_ALLOC_INTERRUPT :
351			VM_ALLOC_SYSTEM);
352
353		/*
354		 * Ran out of space, free everything up and return. Don't need
355		 * to lock page queues here as we know that the pages we got
356		 * aren't on any queues.
357		 */
358		if (m == NULL) {
359			if ((flags & M_NOWAIT) == 0) {
360				vm_map_unlock(map);
361				VM_WAIT;
362				vm_map_lock(map);
363				goto retry;
364			}
365			vm_map_delete(map, addr, addr + size);
366			vm_map_unlock(map);
367			if (flags & M_ASLEEP) {
368				VM_AWAIT;
369			}
370			return (0);
371		}
372		vm_page_flag_clear(m, PG_ZERO);
373		m->valid = VM_PAGE_BITS_ALL;
374	}
375
376	/*
377	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
378	 * be able to extend the previous entry so there will be a new entry
379	 * exactly corresponding to this address range and it will have
380	 * wired_count == 0.
381	 */
382	if (!vm_map_lookup_entry(map, addr, &entry) ||
383	    entry->start != addr || entry->end != addr + size ||
384	    entry->wired_count != 0)
385		panic("kmem_malloc: entry not found or misaligned");
386	entry->wired_count = 1;
387
388	vm_map_simplify_entry(map, entry);
389
390	/*
391	 * Loop thru pages, entering them in the pmap. (We cannot add them to
392	 * the wired count without wrapping the vm_page_queue_lock in
393	 * splimp...)
394	 */
395	for (i = 0; i < size; i += PAGE_SIZE) {
396		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
397		vm_page_wire(m);
398		vm_page_wakeup(m);
399		/*
400		 * Because this is kernel_pmap, this call will not block.
401		 */
402		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
403		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
404	}
405	vm_map_unlock(map);
406
407	return (addr);
408}
409
410/*
411 *	kmem_alloc_wait:
412 *
413 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
414 *	has no room, the caller sleeps waiting for more memory in the submap.
415 *
416 *	This routine may block.
417 */
418
419vm_offset_t
420kmem_alloc_wait(map, size)
421	vm_map_t map;
422	vm_size_t size;
423{
424	vm_offset_t addr;
425
426	size = round_page(size);
427
428	for (;;) {
429		/*
430		 * To make this work for more than one map, use the map's lock
431		 * to lock out sleepers/wakers.
432		 */
433		vm_map_lock(map);
434		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
435			break;
436		/* no space now; see if we can ever get space */
437		if (vm_map_max(map) - vm_map_min(map) < size) {
438			vm_map_unlock(map);
439			return (0);
440		}
441		vm_map_unlock(map);
442		tsleep(map, PVM, "kmaw", 0);
443	}
444	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
445	vm_map_unlock(map);
446	return (addr);
447}
448
449/*
450 *	kmem_free_wakeup:
451 *
452 *	Returns memory to a submap of the kernel, and wakes up any processes
453 *	waiting for memory in that map.
454 */
455void
456kmem_free_wakeup(map, addr, size)
457	vm_map_t map;
458	vm_offset_t addr;
459	vm_size_t size;
460{
461	vm_map_lock(map);
462	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
463	wakeup(map);
464	vm_map_unlock(map);
465}
466
467/*
468 * 	kmem_init:
469 *
470 *	Create the kernel map; insert a mapping covering kernel text,
471 *	data, bss, and all space allocated thus far (`boostrap' data).  The
472 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
473 *	`start' as allocated, and the range between `start' and `end' as free.
474 */
475
476void
477kmem_init(start, end)
478	vm_offset_t start, end;
479{
480	register vm_map_t m;
481
482	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
483	vm_map_lock(m);
484	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
485	kernel_map = m;
486	kernel_map->system_map = 1;
487	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
488	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
489	/* ... and ending with the completion of the above `insert' */
490	vm_map_unlock(m);
491}
492