vm_kern.c revision 6129
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.9 1995/01/24 10:12:51 davidg Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76
77#include <vm/vm.h>
78#include <vm/vm_page.h>
79#include <vm/vm_pageout.h>
80#include <vm/vm_kern.h>
81
82vm_map_t buffer_map;
83vm_map_t kernel_map;
84vm_map_t kmem_map;
85vm_map_t mb_map;
86vm_map_t io_map;
87vm_map_t clean_map;
88vm_map_t pager_map;
89vm_map_t phys_map;
90vm_map_t exec_map;
91vm_map_t u_map;
92
93/*
94 *	kmem_alloc_pageable:
95 *
96 *	Allocate pageable memory to the kernel's address map.
97 *	map must be "kernel_map" below.
98 */
99
100vm_offset_t
101kmem_alloc_pageable(map, size)
102	vm_map_t map;
103	register vm_size_t size;
104{
105	vm_offset_t addr;
106	register int result;
107
108#if	0
109	if (map != kernel_map)
110		panic("kmem_alloc_pageable: not called with kernel_map");
111#endif
112
113	size = round_page(size);
114
115	addr = vm_map_min(map);
116	result = vm_map_find(map, NULL, (vm_offset_t) 0,
117	    &addr, size, TRUE);
118	if (result != KERN_SUCCESS) {
119		return (0);
120	}
121	return (addr);
122}
123
124/*
125 *	Allocate wired-down memory in the kernel's address map
126 *	or a submap.
127 */
128vm_offset_t
129kmem_alloc(map, size)
130	register vm_map_t map;
131	register vm_size_t size;
132{
133	vm_offset_t addr;
134	register vm_offset_t offset;
135	vm_offset_t i;
136
137	size = round_page(size);
138
139	/*
140	 * Use the kernel object for wired-down kernel pages. Assume that no
141	 * region of the kernel object is referenced more than once.
142	 */
143
144	/*
145	 * Locate sufficient space in the map.  This will give us the final
146	 * virtual address for the new memory, and thus will tell us the
147	 * offset within the kernel map.
148	 */
149	vm_map_lock(map);
150	if (vm_map_findspace(map, 0, size, &addr)) {
151		vm_map_unlock(map);
152		return (0);
153	}
154	offset = addr - VM_MIN_KERNEL_ADDRESS;
155	vm_object_reference(kernel_object);
156	vm_map_insert(map, kernel_object, offset, addr, addr + size);
157	vm_map_unlock(map);
158
159	/*
160	 * Guarantee that there are pages already in this object before
161	 * calling vm_map_pageable.  This is to prevent the following
162	 * scenario:
163	 *
164	 * 1) Threads have swapped out, so that there is a pager for the
165	 * kernel_object. 2) The kmsg zone is empty, and so we are
166	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
167	 * there is no page, but there is a pager, so we call
168	 * pager_data_request.  But the kmsg zone is empty, so we must
169	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
170	 * we get the data back from the pager, it will be (very stale)
171	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
172	 *
173	 * We're intentionally not activating the pages we allocate to prevent a
174	 * race with page-out.  vm_map_pageable will wire the pages.
175	 */
176
177	vm_object_lock(kernel_object);
178	for (i = 0; i < size; i += PAGE_SIZE) {
179		vm_page_t mem;
180
181		while ((mem = vm_page_alloc(kernel_object, offset + i, VM_ALLOC_NORMAL)) == NULL) {
182			vm_object_unlock(kernel_object);
183			VM_WAIT;
184			vm_object_lock(kernel_object);
185		}
186		vm_page_zero_fill(mem);
187		mem->flags &= ~PG_BUSY;
188		mem->valid |= VM_PAGE_BITS_ALL;
189	}
190	vm_object_unlock(kernel_object);
191
192	/*
193	 * And finally, mark the data as non-pageable.
194	 */
195
196	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
197
198	/*
199	 * Try to coalesce the map
200	 */
201	vm_map_simplify(map, addr);
202
203	return (addr);
204}
205
206/*
207 *	kmem_free:
208 *
209 *	Release a region of kernel virtual memory allocated
210 *	with kmem_alloc, and return the physical pages
211 *	associated with that region.
212 */
213void
214kmem_free(map, addr, size)
215	vm_map_t map;
216	register vm_offset_t addr;
217	vm_size_t size;
218{
219	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
220}
221
222/*
223 *	kmem_suballoc:
224 *
225 *	Allocates a map to manage a subrange
226 *	of the kernel virtual address space.
227 *
228 *	Arguments are as follows:
229 *
230 *	parent		Map to take range from
231 *	size		Size of range to find
232 *	min, max	Returned endpoints of map
233 *	pageable	Can the region be paged
234 */
235vm_map_t
236kmem_suballoc(parent, min, max, size, pageable)
237	register vm_map_t parent;
238	vm_offset_t *min, *max;
239	register vm_size_t size;
240	boolean_t pageable;
241{
242	register int ret;
243	vm_map_t result;
244
245	size = round_page(size);
246
247	*min = (vm_offset_t) vm_map_min(parent);
248	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
249	    min, size, TRUE);
250	if (ret != KERN_SUCCESS) {
251		printf("kmem_suballoc: bad status return of %d.\n", ret);
252		panic("kmem_suballoc");
253	}
254	*max = *min + size;
255	pmap_reference(vm_map_pmap(parent));
256	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
257	if (result == NULL)
258		panic("kmem_suballoc: cannot create submap");
259	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
260		panic("kmem_suballoc: unable to change range to submap");
261	return (result);
262}
263
264/*
265 * Allocate wired-down memory in the kernel's address map for the higher
266 * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
267 * kmem_alloc() because we may need to allocate memory at interrupt
268 * level where we cannot block (canwait == FALSE).
269 *
270 * This routine has its own private kernel submap (kmem_map) and object
271 * (kmem_object).  This, combined with the fact that only malloc uses
272 * this routine, ensures that we will never block in map or object waits.
273 *
274 * Note that this still only works in a uni-processor environment and
275 * when called at splhigh().
276 *
277 * We don't worry about expanding the map (adding entries) since entries
278 * for wired maps are statically allocated.
279 */
280vm_offset_t
281kmem_malloc(map, size, waitflag)
282	register vm_map_t map;
283	register vm_size_t size;
284	boolean_t waitflag;
285{
286	register vm_offset_t offset, i;
287	vm_map_entry_t entry;
288	vm_offset_t addr;
289	vm_page_t m;
290
291	if (map != kmem_map && map != mb_map)
292		panic("kern_malloc_alloc: map != {kmem,mb}_map");
293
294	size = round_page(size);
295	addr = vm_map_min(map);
296
297	/*
298	 * Locate sufficient space in the map.  This will give us the final
299	 * virtual address for the new memory, and thus will tell us the
300	 * offset within the kernel map.
301	 */
302	vm_map_lock(map);
303	if (vm_map_findspace(map, 0, size, &addr)) {
304		vm_map_unlock(map);
305#if 0
306		if (canwait)	/* XXX  should wait */
307			panic("kmem_malloc: %s too small",
308			    map == kmem_map ? "kmem_map" : "mb_map");
309#endif
310		if (waitflag == M_WAITOK)
311			panic("kmem_malloc: map too small");
312		return (0);
313	}
314	offset = addr - vm_map_min(kmem_map);
315	vm_object_reference(kmem_object);
316	vm_map_insert(map, kmem_object, offset, addr, addr + size);
317
318	/*
319	 * If we can wait, just mark the range as wired (will fault pages as
320	 * necessary).
321	 */
322	if (waitflag == M_WAITOK) {
323		vm_map_unlock(map);
324		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
325		    FALSE);
326		vm_map_simplify(map, addr);
327		return (addr);
328	}
329	/*
330	 * If we cannot wait then we must allocate all memory up front,
331	 * pulling it off the active queue to prevent pageout.
332	 */
333	vm_object_lock(kmem_object);
334	for (i = 0; i < size; i += PAGE_SIZE) {
335		m = vm_page_alloc(kmem_object, offset + i,
336			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
337
338		/*
339		 * Ran out of space, free everything up and return. Don't need
340		 * to lock page queues here as we know that the pages we got
341		 * aren't on any queues.
342		 */
343		if (m == NULL) {
344			while (i != 0) {
345				i -= PAGE_SIZE;
346				m = vm_page_lookup(kmem_object, offset + i);
347				vm_page_free(m);
348			}
349			vm_object_unlock(kmem_object);
350			vm_map_delete(map, addr, addr + size);
351			vm_map_unlock(map);
352			return (0);
353		}
354#if 0
355		vm_page_zero_fill(m);
356#endif
357		m->flags &= ~PG_BUSY;
358		m->valid |= VM_PAGE_BITS_ALL;
359	}
360	vm_object_unlock(kmem_object);
361
362	/*
363	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
364	 * be able to extend the previous entry so there will be a new entry
365	 * exactly corresponding to this address range and it will have
366	 * wired_count == 0.
367	 */
368	if (!vm_map_lookup_entry(map, addr, &entry) ||
369	    entry->start != addr || entry->end != addr + size ||
370	    entry->wired_count)
371		panic("kmem_malloc: entry not found or misaligned");
372	entry->wired_count++;
373
374	/*
375	 * Loop thru pages, entering them in the pmap. (We cannot add them to
376	 * the wired count without wrapping the vm_page_queue_lock in
377	 * splimp...)
378	 */
379	for (i = 0; i < size; i += PAGE_SIZE) {
380		vm_object_lock(kmem_object);
381		m = vm_page_lookup(kmem_object, offset + i);
382		vm_object_unlock(kmem_object);
383		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
384	}
385	vm_map_unlock(map);
386
387	vm_map_simplify(map, addr);
388	return (addr);
389}
390
391/*
392 *	kmem_alloc_wait
393 *
394 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
395 *	has no room, the caller sleeps waiting for more memory in the submap.
396 *
397 */
398vm_offset_t
399kmem_alloc_wait(map, size)
400	vm_map_t map;
401	vm_size_t size;
402{
403	vm_offset_t addr;
404
405	size = round_page(size);
406
407	for (;;) {
408		/*
409		 * To make this work for more than one map, use the map's lock
410		 * to lock out sleepers/wakers.
411		 */
412		vm_map_lock(map);
413		if (vm_map_findspace(map, 0, size, &addr) == 0)
414			break;
415		/* no space now; see if we can ever get space */
416		if (vm_map_max(map) - vm_map_min(map) < size) {
417			vm_map_unlock(map);
418			return (0);
419		}
420		assert_wait((int) map, TRUE);
421		vm_map_unlock(map);
422		thread_block("kmaw");
423	}
424	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size);
425	vm_map_unlock(map);
426	return (addr);
427}
428
429/*
430 *	kmem_free_wakeup
431 *
432 *	Returns memory to a submap of the kernel, and wakes up any threads
433 *	waiting for memory in that map.
434 */
435void
436kmem_free_wakeup(map, addr, size)
437	vm_map_t map;
438	vm_offset_t addr;
439	vm_size_t size;
440{
441	vm_map_lock(map);
442	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
443	thread_wakeup((int) map);
444	vm_map_unlock(map);
445}
446
447/*
448 * Create the kernel map; insert a mapping covering kernel text, data, bss,
449 * and all space allocated thus far (`boostrap' data).  The new map will thus
450 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
451 * the range between `start' and `end' as free.
452 */
453void
454kmem_init(start, end)
455	vm_offset_t start, end;
456{
457	register vm_map_t m;
458
459	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
460	vm_map_lock(m);
461	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
462	kernel_map = m;
463	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
464	    VM_MIN_KERNEL_ADDRESS, start);
465	/* ... and ending with the completion of the above `insert' */
466	vm_map_unlock(m);
467}
468