vm_kern.c revision 52617
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 52617 1999-10-29 05:17:20Z alc $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/vm_prot.h>
79#include <sys/lock.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t buffer_map=0;
92vm_map_t mb_map=0;
93int mb_map_full=0;
94
95/*
96 *	kmem_alloc_pageable:
97 *
98 *	Allocate pageable memory to the kernel's address map.
99 *	"map" must be kernel_map or a submap of kernel_map.
100 */
101
102vm_offset_t
103kmem_alloc_pageable(map, size)
104	vm_map_t map;
105	register vm_size_t size;
106{
107	vm_offset_t addr;
108	register int result;
109
110	size = round_page(size);
111	addr = vm_map_min(map);
112	result = vm_map_find(map, NULL, (vm_offset_t) 0,
113	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
114	if (result != KERN_SUCCESS) {
115		return (0);
116	}
117	return (addr);
118}
119
120/*
121 *	kmem_alloc_nofault:
122 *
123 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
124 */
125
126vm_offset_t
127kmem_alloc_nofault(map, size)
128	vm_map_t map;
129	register vm_size_t size;
130{
131	vm_offset_t addr;
132	register int result;
133
134	size = round_page(size);
135	addr = vm_map_min(map);
136	result = vm_map_find(map, NULL, (vm_offset_t) 0,
137	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
138	if (result != KERN_SUCCESS) {
139		return (0);
140	}
141	return (addr);
142}
143
144/*
145 *	Allocate wired-down memory in the kernel's address map
146 *	or a submap.
147 */
148vm_offset_t
149kmem_alloc(map, size)
150	register vm_map_t map;
151	register vm_size_t size;
152{
153	vm_offset_t addr;
154	register vm_offset_t offset;
155	vm_offset_t i;
156
157	size = round_page(size);
158
159	/*
160	 * Use the kernel object for wired-down kernel pages. Assume that no
161	 * region of the kernel object is referenced more than once.
162	 */
163
164	/*
165	 * Locate sufficient space in the map.  This will give us the final
166	 * virtual address for the new memory, and thus will tell us the
167	 * offset within the kernel map.
168	 */
169	vm_map_lock(map);
170	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
171		vm_map_unlock(map);
172		return (0);
173	}
174	offset = addr - VM_MIN_KERNEL_ADDRESS;
175	vm_object_reference(kernel_object);
176	vm_map_insert(map, kernel_object, offset, addr, addr + size,
177		VM_PROT_ALL, VM_PROT_ALL, 0);
178	vm_map_unlock(map);
179
180	/*
181	 * Guarantee that there are pages already in this object before
182	 * calling vm_map_pageable.  This is to prevent the following
183	 * scenario:
184	 *
185	 * 1) Threads have swapped out, so that there is a pager for the
186	 * kernel_object. 2) The kmsg zone is empty, and so we are
187	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
188	 * there is no page, but there is a pager, so we call
189	 * pager_data_request.  But the kmsg zone is empty, so we must
190	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
191	 * we get the data back from the pager, it will be (very stale)
192	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
193	 *
194	 * We're intentionally not activating the pages we allocate to prevent a
195	 * race with page-out.  vm_map_pageable will wire the pages.
196	 */
197
198	for (i = 0; i < size; i += PAGE_SIZE) {
199		vm_page_t mem;
200
201		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
202				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
203		if ((mem->flags & PG_ZERO) == 0)
204			vm_page_zero_fill(mem);
205		mem->valid = VM_PAGE_BITS_ALL;
206		vm_page_flag_clear(mem, PG_ZERO);
207		vm_page_wakeup(mem);
208	}
209
210	/*
211	 * And finally, mark the data as non-pageable.
212	 */
213
214	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
215
216	return (addr);
217}
218
219/*
220 *	kmem_free:
221 *
222 *	Release a region of kernel virtual memory allocated
223 *	with kmem_alloc, and return the physical pages
224 *	associated with that region.
225 *
226 *	This routine may not block on kernel maps.
227 */
228void
229kmem_free(map, addr, size)
230	vm_map_t map;
231	register vm_offset_t addr;
232	vm_size_t size;
233{
234	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
235}
236
237/*
238 *	kmem_suballoc:
239 *
240 *	Allocates a map to manage a subrange
241 *	of the kernel virtual address space.
242 *
243 *	Arguments are as follows:
244 *
245 *	parent		Map to take range from
246 *	size		Size of range to find
247 *	min, max	Returned endpoints of map
248 *	pageable	Can the region be paged
249 */
250vm_map_t
251kmem_suballoc(parent, min, max, size)
252	register vm_map_t parent;
253	vm_offset_t *min, *max;
254	register vm_size_t size;
255{
256	register int ret;
257	vm_map_t result;
258
259	size = round_page(size);
260
261	*min = (vm_offset_t) vm_map_min(parent);
262	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
263	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
264	if (ret != KERN_SUCCESS) {
265		printf("kmem_suballoc: bad status return of %d.\n", ret);
266		panic("kmem_suballoc");
267	}
268	*max = *min + size;
269	pmap_reference(vm_map_pmap(parent));
270	result = vm_map_create(vm_map_pmap(parent), *min, *max);
271	if (result == NULL)
272		panic("kmem_suballoc: cannot create submap");
273	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
274		panic("kmem_suballoc: unable to change range to submap");
275	return (result);
276}
277
278/*
279 *	kmem_malloc:
280 *
281 * 	Allocate wired-down memory in the kernel's address map for the higher
282 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
283 * 	kmem_alloc() because we may need to allocate memory at interrupt
284 * 	level where we cannot block (canwait == FALSE).
285 *
286 * 	This routine has its own private kernel submap (kmem_map) and object
287 * 	(kmem_object).  This, combined with the fact that only malloc uses
288 * 	this routine, ensures that we will never block in map or object waits.
289 *
290 * 	Note that this still only works in a uni-processor environment and
291 * 	when called at splhigh().
292 *
293 * 	We don't worry about expanding the map (adding entries) since entries
294 * 	for wired maps are statically allocated.
295 *
296 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
297 *	I have not verified that it actually does not block.
298 */
299vm_offset_t
300kmem_malloc(map, size, flags)
301	register vm_map_t map;
302	register vm_size_t size;
303	int flags;
304{
305	register vm_offset_t offset, i;
306	vm_map_entry_t entry;
307	vm_offset_t addr;
308	vm_page_t m;
309
310	if (map != kmem_map && map != mb_map)
311		panic("kmem_malloc: map != {kmem,mb}_map");
312
313	size = round_page(size);
314	addr = vm_map_min(map);
315
316	/*
317	 * Locate sufficient space in the map.  This will give us the final
318	 * virtual address for the new memory, and thus will tell us the
319	 * offset within the kernel map.
320	 */
321	vm_map_lock(map);
322	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
323		vm_map_unlock(map);
324		if (map == mb_map) {
325			mb_map_full = TRUE;
326			printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
327			return (0);
328		}
329		if ((flags & M_NOWAIT) == 0)
330			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
331				(long)size, (long)map->size);
332		return (0);
333	}
334	offset = addr - VM_MIN_KERNEL_ADDRESS;
335	vm_object_reference(kmem_object);
336	vm_map_insert(map, kmem_object, offset, addr, addr + size,
337		VM_PROT_ALL, VM_PROT_ALL, 0);
338
339	for (i = 0; i < size; i += PAGE_SIZE) {
340		/*
341		 * Note: if M_NOWAIT specified alone, allocate from
342		 * interrupt-safe queues only (just the free list).  If
343		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
344		 * allocate from the cache.  Neither of the latter two
345		 * flags may be specified from an interrupt since interrupts
346		 * are not allowed to mess with the cache queue.
347		 */
348retry:
349		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
350		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
351			VM_ALLOC_INTERRUPT :
352			VM_ALLOC_SYSTEM);
353
354		/*
355		 * Ran out of space, free everything up and return. Don't need
356		 * to lock page queues here as we know that the pages we got
357		 * aren't on any queues.
358		 */
359		if (m == NULL) {
360			if ((flags & M_NOWAIT) == 0) {
361				vm_map_unlock(map);
362				VM_WAIT;
363				vm_map_lock(map);
364				goto retry;
365			}
366			vm_map_delete(map, addr, addr + size);
367			vm_map_unlock(map);
368			if (flags & M_ASLEEP) {
369				VM_AWAIT;
370			}
371			return (0);
372		}
373		vm_page_flag_clear(m, PG_ZERO);
374		m->valid = VM_PAGE_BITS_ALL;
375	}
376
377	/*
378	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
379	 * be able to extend the previous entry so there will be a new entry
380	 * exactly corresponding to this address range and it will have
381	 * wired_count == 0.
382	 */
383	if (!vm_map_lookup_entry(map, addr, &entry) ||
384	    entry->start != addr || entry->end != addr + size ||
385	    entry->wired_count != 0)
386		panic("kmem_malloc: entry not found or misaligned");
387	entry->wired_count = 1;
388
389	vm_map_simplify_entry(map, entry);
390
391	/*
392	 * Loop thru pages, entering them in the pmap. (We cannot add them to
393	 * the wired count without wrapping the vm_page_queue_lock in
394	 * splimp...)
395	 */
396	for (i = 0; i < size; i += PAGE_SIZE) {
397		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
398		vm_page_wire(m);
399		vm_page_wakeup(m);
400		/*
401		 * Because this is kernel_pmap, this call will not block.
402		 */
403		pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
404			VM_PROT_ALL, 1);
405		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
406	}
407	vm_map_unlock(map);
408
409	return (addr);
410}
411
412/*
413 *	kmem_alloc_wait:
414 *
415 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
416 *	has no room, the caller sleeps waiting for more memory in the submap.
417 *
418 *	This routine may block.
419 */
420
421vm_offset_t
422kmem_alloc_wait(map, size)
423	vm_map_t map;
424	vm_size_t size;
425{
426	vm_offset_t addr;
427
428	size = round_page(size);
429
430	for (;;) {
431		/*
432		 * To make this work for more than one map, use the map's lock
433		 * to lock out sleepers/wakers.
434		 */
435		vm_map_lock(map);
436		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
437			break;
438		/* no space now; see if we can ever get space */
439		if (vm_map_max(map) - vm_map_min(map) < size) {
440			vm_map_unlock(map);
441			return (0);
442		}
443		vm_map_unlock(map);
444		tsleep(map, PVM, "kmaw", 0);
445	}
446	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
447	vm_map_unlock(map);
448	return (addr);
449}
450
451/*
452 *	kmem_free_wakeup:
453 *
454 *	Returns memory to a submap of the kernel, and wakes up any processes
455 *	waiting for memory in that map.
456 */
457void
458kmem_free_wakeup(map, addr, size)
459	vm_map_t map;
460	vm_offset_t addr;
461	vm_size_t size;
462{
463	vm_map_lock(map);
464	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
465	wakeup(map);
466	vm_map_unlock(map);
467}
468
469/*
470 * 	kmem_init:
471 *
472 *	Create the kernel map; insert a mapping covering kernel text,
473 *	data, bss, and all space allocated thus far (`boostrap' data).  The
474 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
475 *	`start' as allocated, and the range between `start' and `end' as free.
476 */
477
478void
479kmem_init(start, end)
480	vm_offset_t start, end;
481{
482	register vm_map_t m;
483
484	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
485	vm_map_lock(m);
486	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
487	kernel_map = m;
488	kernel_map->system_map = 1;
489	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
490	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
491	/* ... and ending with the completion of the above `insert' */
492	vm_map_unlock(m);
493}
494
495