vm_kern.c revision 49858
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.57 1999/08/15 21:55:19 alc Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/vm_prot.h>
79#include <sys/lock.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t buffer_map=0;
92vm_map_t mb_map=0;
93int mb_map_full=0;
94vm_map_t phys_map=0;
95
96/*
97 *	kmem_alloc_pageable:
98 *
99 *	Allocate pageable memory to the kernel's address map.
100 *	"map" must be kernel_map or a submap of kernel_map.
101 */
102
103vm_offset_t
104kmem_alloc_pageable(map, size)
105	vm_map_t map;
106	register vm_size_t size;
107{
108	vm_offset_t addr;
109	register int result;
110
111	size = round_page(size);
112	addr = vm_map_min(map);
113	result = vm_map_find(map, NULL, (vm_offset_t) 0,
114	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
115	if (result != KERN_SUCCESS) {
116		return (0);
117	}
118	return (addr);
119}
120
121/*
122 *	kmem_alloc_nofault:
123 *
124 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
125 */
126
127vm_offset_t
128kmem_alloc_nofault(map, size)
129	vm_map_t map;
130	register vm_size_t size;
131{
132	vm_offset_t addr;
133	register int result;
134
135	size = round_page(size);
136	addr = vm_map_min(map);
137	result = vm_map_find(map, NULL, (vm_offset_t) 0,
138	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
139	if (result != KERN_SUCCESS) {
140		return (0);
141	}
142	return (addr);
143}
144
145/*
146 *	Allocate wired-down memory in the kernel's address map
147 *	or a submap.
148 */
149vm_offset_t
150kmem_alloc(map, size)
151	register vm_map_t map;
152	register vm_size_t size;
153{
154	vm_offset_t addr;
155	register vm_offset_t offset;
156	vm_offset_t i;
157
158	size = round_page(size);
159
160	/*
161	 * Use the kernel object for wired-down kernel pages. Assume that no
162	 * region of the kernel object is referenced more than once.
163	 */
164
165	/*
166	 * Locate sufficient space in the map.  This will give us the final
167	 * virtual address for the new memory, and thus will tell us the
168	 * offset within the kernel map.
169	 */
170	vm_map_lock(map);
171	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
172		vm_map_unlock(map);
173		return (0);
174	}
175	offset = addr - VM_MIN_KERNEL_ADDRESS;
176	vm_object_reference(kernel_object);
177	vm_map_insert(map, kernel_object, offset, addr, addr + size,
178		VM_PROT_ALL, VM_PROT_ALL, 0);
179	vm_map_unlock(map);
180
181	/*
182	 * Guarantee that there are pages already in this object before
183	 * calling vm_map_pageable.  This is to prevent the following
184	 * scenario:
185	 *
186	 * 1) Threads have swapped out, so that there is a pager for the
187	 * kernel_object. 2) The kmsg zone is empty, and so we are
188	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
189	 * there is no page, but there is a pager, so we call
190	 * pager_data_request.  But the kmsg zone is empty, so we must
191	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
192	 * we get the data back from the pager, it will be (very stale)
193	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
194	 *
195	 * We're intentionally not activating the pages we allocate to prevent a
196	 * race with page-out.  vm_map_pageable will wire the pages.
197	 */
198
199	for (i = 0; i < size; i += PAGE_SIZE) {
200		vm_page_t mem;
201
202		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
203				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
204		if ((mem->flags & PG_ZERO) == 0)
205			vm_page_zero_fill(mem);
206		mem->valid = VM_PAGE_BITS_ALL;
207		vm_page_flag_clear(mem, PG_ZERO);
208		vm_page_wakeup(mem);
209	}
210
211	/*
212	 * And finally, mark the data as non-pageable.
213	 */
214
215	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
216
217	return (addr);
218}
219
220/*
221 *	kmem_free:
222 *
223 *	Release a region of kernel virtual memory allocated
224 *	with kmem_alloc, and return the physical pages
225 *	associated with that region.
226 *
227 *	This routine may not block on kernel maps.
228 */
229void
230kmem_free(map, addr, size)
231	vm_map_t map;
232	register vm_offset_t addr;
233	vm_size_t size;
234{
235	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
236}
237
238/*
239 *	kmem_suballoc:
240 *
241 *	Allocates a map to manage a subrange
242 *	of the kernel virtual address space.
243 *
244 *	Arguments are as follows:
245 *
246 *	parent		Map to take range from
247 *	size		Size of range to find
248 *	min, max	Returned endpoints of map
249 *	pageable	Can the region be paged
250 */
251vm_map_t
252kmem_suballoc(parent, min, max, size)
253	register vm_map_t parent;
254	vm_offset_t *min, *max;
255	register vm_size_t size;
256{
257	register int ret;
258	vm_map_t result;
259
260	size = round_page(size);
261
262	*min = (vm_offset_t) vm_map_min(parent);
263	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
264	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
265	if (ret != KERN_SUCCESS) {
266		printf("kmem_suballoc: bad status return of %d.\n", ret);
267		panic("kmem_suballoc");
268	}
269	*max = *min + size;
270	pmap_reference(vm_map_pmap(parent));
271	result = vm_map_create(vm_map_pmap(parent), *min, *max);
272	if (result == NULL)
273		panic("kmem_suballoc: cannot create submap");
274	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
275		panic("kmem_suballoc: unable to change range to submap");
276	return (result);
277}
278
279/*
280 *	kmem_malloc:
281 *
282 * 	Allocate wired-down memory in the kernel's address map for the higher
283 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
284 * 	kmem_alloc() because we may need to allocate memory at interrupt
285 * 	level where we cannot block (canwait == FALSE).
286 *
287 * 	This routine has its own private kernel submap (kmem_map) and object
288 * 	(kmem_object).  This, combined with the fact that only malloc uses
289 * 	this routine, ensures that we will never block in map or object waits.
290 *
291 * 	Note that this still only works in a uni-processor environment and
292 * 	when called at splhigh().
293 *
294 * 	We don't worry about expanding the map (adding entries) since entries
295 * 	for wired maps are statically allocated.
296 *
297 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
298 *	I have not verified that it actually does not block.
299 */
300vm_offset_t
301kmem_malloc(map, size, flags)
302	register vm_map_t map;
303	register vm_size_t size;
304	int flags;
305{
306	register vm_offset_t offset, i;
307	vm_map_entry_t entry;
308	vm_offset_t addr;
309	vm_page_t m;
310
311	if (map != kmem_map && map != mb_map)
312		panic("kmem_malloc: map != {kmem,mb}_map");
313
314	size = round_page(size);
315	addr = vm_map_min(map);
316
317	/*
318	 * Locate sufficient space in the map.  This will give us the final
319	 * virtual address for the new memory, and thus will tell us the
320	 * offset within the kernel map.
321	 */
322	vm_map_lock(map);
323	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
324		vm_map_unlock(map);
325		if (map == mb_map) {
326			mb_map_full = TRUE;
327			printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
328			return (0);
329		}
330		if ((flags & M_NOWAIT) == 0)
331			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
332				(long)size, (long)map->size);
333		return (0);
334	}
335	offset = addr - VM_MIN_KERNEL_ADDRESS;
336	vm_object_reference(kmem_object);
337	vm_map_insert(map, kmem_object, offset, addr, addr + size,
338		VM_PROT_ALL, VM_PROT_ALL, 0);
339
340	for (i = 0; i < size; i += PAGE_SIZE) {
341		/*
342		 * Note: if M_NOWAIT specified alone, allocate from
343		 * interrupt-safe queues only (just the free list).  If
344		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
345		 * allocate from the cache.  Neither of the latter two
346		 * flags may be specified from an interrupt since interrupts
347		 * are not allowed to mess with the cache queue.
348		 */
349retry:
350		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
351		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
352			VM_ALLOC_INTERRUPT :
353			VM_ALLOC_SYSTEM);
354
355		/*
356		 * Ran out of space, free everything up and return. Don't need
357		 * to lock page queues here as we know that the pages we got
358		 * aren't on any queues.
359		 */
360		if (m == NULL) {
361			if ((flags & M_NOWAIT) == 0) {
362				vm_map_unlock(map);
363				VM_WAIT;
364				vm_map_lock(map);
365				goto retry;
366			}
367			vm_map_delete(map, addr, addr + size);
368			vm_map_unlock(map);
369			if (flags & M_ASLEEP) {
370				VM_AWAIT;
371			}
372			return (0);
373		}
374		vm_page_flag_clear(m, PG_ZERO);
375		m->valid = VM_PAGE_BITS_ALL;
376	}
377
378	/*
379	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
380	 * be able to extend the previous entry so there will be a new entry
381	 * exactly corresponding to this address range and it will have
382	 * wired_count == 0.
383	 */
384	if (!vm_map_lookup_entry(map, addr, &entry) ||
385	    entry->start != addr || entry->end != addr + size ||
386	    entry->wired_count != 0)
387		panic("kmem_malloc: entry not found or misaligned");
388	entry->wired_count = 1;
389
390	vm_map_simplify_entry(map, entry);
391
392	/*
393	 * Loop thru pages, entering them in the pmap. (We cannot add them to
394	 * the wired count without wrapping the vm_page_queue_lock in
395	 * splimp...)
396	 */
397	for (i = 0; i < size; i += PAGE_SIZE) {
398		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
399		vm_page_wire(m);
400		vm_page_wakeup(m);
401		/*
402		 * Because this is kernel_pmap, this call will not block.
403		 */
404		pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
405			VM_PROT_ALL, 1);
406		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
407	}
408	vm_map_unlock(map);
409
410	return (addr);
411}
412
413/*
414 *	kmem_alloc_wait:
415 *
416 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
417 *	has no room, the caller sleeps waiting for more memory in the submap.
418 *
419 *	This routine may block.
420 */
421
422vm_offset_t
423kmem_alloc_wait(map, size)
424	vm_map_t map;
425	vm_size_t size;
426{
427	vm_offset_t addr;
428
429	size = round_page(size);
430
431	for (;;) {
432		/*
433		 * To make this work for more than one map, use the map's lock
434		 * to lock out sleepers/wakers.
435		 */
436		vm_map_lock(map);
437		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
438			break;
439		/* no space now; see if we can ever get space */
440		if (vm_map_max(map) - vm_map_min(map) < size) {
441			vm_map_unlock(map);
442			return (0);
443		}
444		vm_map_unlock(map);
445		tsleep(map, PVM, "kmaw", 0);
446	}
447	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
448	vm_map_unlock(map);
449	return (addr);
450}
451
452/*
453 *	kmem_free_wakeup:
454 *
455 *	Returns memory to a submap of the kernel, and wakes up any processes
456 *	waiting for memory in that map.
457 */
458void
459kmem_free_wakeup(map, addr, size)
460	vm_map_t map;
461	vm_offset_t addr;
462	vm_size_t size;
463{
464	vm_map_lock(map);
465	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
466	wakeup(map);
467	vm_map_unlock(map);
468}
469
470/*
471 * 	kmem_init:
472 *
473 *	Create the kernel map; insert a mapping covering kernel text,
474 *	data, bss, and all space allocated thus far (`boostrap' data).  The
475 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
476 *	`start' as allocated, and the range between `start' and `end' as free.
477 */
478
479void
480kmem_init(start, end)
481	vm_offset_t start, end;
482{
483	register vm_map_t m;
484
485	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
486	vm_map_lock(m);
487	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
488	kernel_map = m;
489	kernel_map->system_map = 1;
490	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
491	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
492	/* ... and ending with the completion of the above `insert' */
493	vm_map_unlock(m);
494}
495
496