vm_kern.c revision 49852
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.56 1999/07/01 19:53:40 peter Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/vm_prot.h>
79#include <sys/lock.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t buffer_map=0;
92vm_map_t mb_map=0;
93int mb_map_full=0;
94vm_map_t io_map=0;
95vm_map_t phys_map=0;
96
97/*
98 *	kmem_alloc_pageable:
99 *
100 *	Allocate pageable memory to the kernel's address map.
101 *	"map" must be kernel_map or a submap of kernel_map.
102 */
103
104vm_offset_t
105kmem_alloc_pageable(map, size)
106	vm_map_t map;
107	register vm_size_t size;
108{
109	vm_offset_t addr;
110	register int result;
111
112	size = round_page(size);
113	addr = vm_map_min(map);
114	result = vm_map_find(map, NULL, (vm_offset_t) 0,
115	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
116	if (result != KERN_SUCCESS) {
117		return (0);
118	}
119	return (addr);
120}
121
122/*
123 *	kmem_alloc_nofault:
124 *
125 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
126 */
127
128vm_offset_t
129kmem_alloc_nofault(map, size)
130	vm_map_t map;
131	register vm_size_t size;
132{
133	vm_offset_t addr;
134	register int result;
135
136	size = round_page(size);
137	addr = vm_map_min(map);
138	result = vm_map_find(map, NULL, (vm_offset_t) 0,
139	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
140	if (result != KERN_SUCCESS) {
141		return (0);
142	}
143	return (addr);
144}
145
146/*
147 *	Allocate wired-down memory in the kernel's address map
148 *	or a submap.
149 */
150vm_offset_t
151kmem_alloc(map, size)
152	register vm_map_t map;
153	register vm_size_t size;
154{
155	vm_offset_t addr;
156	register vm_offset_t offset;
157	vm_offset_t i;
158
159	size = round_page(size);
160
161	/*
162	 * Use the kernel object for wired-down kernel pages. Assume that no
163	 * region of the kernel object is referenced more than once.
164	 */
165
166	/*
167	 * Locate sufficient space in the map.  This will give us the final
168	 * virtual address for the new memory, and thus will tell us the
169	 * offset within the kernel map.
170	 */
171	vm_map_lock(map);
172	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
173		vm_map_unlock(map);
174		return (0);
175	}
176	offset = addr - VM_MIN_KERNEL_ADDRESS;
177	vm_object_reference(kernel_object);
178	vm_map_insert(map, kernel_object, offset, addr, addr + size,
179		VM_PROT_ALL, VM_PROT_ALL, 0);
180	vm_map_unlock(map);
181
182	/*
183	 * Guarantee that there are pages already in this object before
184	 * calling vm_map_pageable.  This is to prevent the following
185	 * scenario:
186	 *
187	 * 1) Threads have swapped out, so that there is a pager for the
188	 * kernel_object. 2) The kmsg zone is empty, and so we are
189	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
190	 * there is no page, but there is a pager, so we call
191	 * pager_data_request.  But the kmsg zone is empty, so we must
192	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
193	 * we get the data back from the pager, it will be (very stale)
194	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
195	 *
196	 * We're intentionally not activating the pages we allocate to prevent a
197	 * race with page-out.  vm_map_pageable will wire the pages.
198	 */
199
200	for (i = 0; i < size; i += PAGE_SIZE) {
201		vm_page_t mem;
202
203		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
204				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
205		if ((mem->flags & PG_ZERO) == 0)
206			vm_page_zero_fill(mem);
207		mem->valid = VM_PAGE_BITS_ALL;
208		vm_page_flag_clear(mem, PG_ZERO);
209		vm_page_wakeup(mem);
210	}
211
212	/*
213	 * And finally, mark the data as non-pageable.
214	 */
215
216	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
217
218	return (addr);
219}
220
221/*
222 *	kmem_free:
223 *
224 *	Release a region of kernel virtual memory allocated
225 *	with kmem_alloc, and return the physical pages
226 *	associated with that region.
227 *
228 *	This routine may not block on kernel maps.
229 */
230void
231kmem_free(map, addr, size)
232	vm_map_t map;
233	register vm_offset_t addr;
234	vm_size_t size;
235{
236	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
237}
238
239/*
240 *	kmem_suballoc:
241 *
242 *	Allocates a map to manage a subrange
243 *	of the kernel virtual address space.
244 *
245 *	Arguments are as follows:
246 *
247 *	parent		Map to take range from
248 *	size		Size of range to find
249 *	min, max	Returned endpoints of map
250 *	pageable	Can the region be paged
251 */
252vm_map_t
253kmem_suballoc(parent, min, max, size)
254	register vm_map_t parent;
255	vm_offset_t *min, *max;
256	register vm_size_t size;
257{
258	register int ret;
259	vm_map_t result;
260
261	size = round_page(size);
262
263	*min = (vm_offset_t) vm_map_min(parent);
264	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
265	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
266	if (ret != KERN_SUCCESS) {
267		printf("kmem_suballoc: bad status return of %d.\n", ret);
268		panic("kmem_suballoc");
269	}
270	*max = *min + size;
271	pmap_reference(vm_map_pmap(parent));
272	result = vm_map_create(vm_map_pmap(parent), *min, *max);
273	if (result == NULL)
274		panic("kmem_suballoc: cannot create submap");
275	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
276		panic("kmem_suballoc: unable to change range to submap");
277	return (result);
278}
279
280/*
281 *	kmem_malloc:
282 *
283 * 	Allocate wired-down memory in the kernel's address map for the higher
284 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
285 * 	kmem_alloc() because we may need to allocate memory at interrupt
286 * 	level where we cannot block (canwait == FALSE).
287 *
288 * 	This routine has its own private kernel submap (kmem_map) and object
289 * 	(kmem_object).  This, combined with the fact that only malloc uses
290 * 	this routine, ensures that we will never block in map or object waits.
291 *
292 * 	Note that this still only works in a uni-processor environment and
293 * 	when called at splhigh().
294 *
295 * 	We don't worry about expanding the map (adding entries) since entries
296 * 	for wired maps are statically allocated.
297 *
298 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
299 *	I have not verified that it actually does not block.
300 */
301vm_offset_t
302kmem_malloc(map, size, flags)
303	register vm_map_t map;
304	register vm_size_t size;
305	int flags;
306{
307	register vm_offset_t offset, i;
308	vm_map_entry_t entry;
309	vm_offset_t addr;
310	vm_page_t m;
311
312	if (map != kmem_map && map != mb_map)
313		panic("kmem_malloc: map != {kmem,mb}_map");
314
315	size = round_page(size);
316	addr = vm_map_min(map);
317
318	/*
319	 * Locate sufficient space in the map.  This will give us the final
320	 * virtual address for the new memory, and thus will tell us the
321	 * offset within the kernel map.
322	 */
323	vm_map_lock(map);
324	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
325		vm_map_unlock(map);
326		if (map == mb_map) {
327			mb_map_full = TRUE;
328			printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
329			return (0);
330		}
331		if ((flags & M_NOWAIT) == 0)
332			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
333				(long)size, (long)map->size);
334		return (0);
335	}
336	offset = addr - VM_MIN_KERNEL_ADDRESS;
337	vm_object_reference(kmem_object);
338	vm_map_insert(map, kmem_object, offset, addr, addr + size,
339		VM_PROT_ALL, VM_PROT_ALL, 0);
340
341	for (i = 0; i < size; i += PAGE_SIZE) {
342		/*
343		 * Note: if M_NOWAIT specified alone, allocate from
344		 * interrupt-safe queues only (just the free list).  If
345		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
346		 * allocate from the cache.  Neither of the latter two
347		 * flags may be specified from an interrupt since interrupts
348		 * are not allowed to mess with the cache queue.
349		 */
350retry:
351		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
352		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
353			VM_ALLOC_INTERRUPT :
354			VM_ALLOC_SYSTEM);
355
356		/*
357		 * Ran out of space, free everything up and return. Don't need
358		 * to lock page queues here as we know that the pages we got
359		 * aren't on any queues.
360		 */
361		if (m == NULL) {
362			if ((flags & M_NOWAIT) == 0) {
363				vm_map_unlock(map);
364				VM_WAIT;
365				vm_map_lock(map);
366				goto retry;
367			}
368			vm_map_delete(map, addr, addr + size);
369			vm_map_unlock(map);
370			if (flags & M_ASLEEP) {
371				VM_AWAIT;
372			}
373			return (0);
374		}
375		vm_page_flag_clear(m, PG_ZERO);
376		m->valid = VM_PAGE_BITS_ALL;
377	}
378
379	/*
380	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
381	 * be able to extend the previous entry so there will be a new entry
382	 * exactly corresponding to this address range and it will have
383	 * wired_count == 0.
384	 */
385	if (!vm_map_lookup_entry(map, addr, &entry) ||
386	    entry->start != addr || entry->end != addr + size ||
387	    entry->wired_count != 0)
388		panic("kmem_malloc: entry not found or misaligned");
389	entry->wired_count = 1;
390
391	vm_map_simplify_entry(map, entry);
392
393	/*
394	 * Loop thru pages, entering them in the pmap. (We cannot add them to
395	 * the wired count without wrapping the vm_page_queue_lock in
396	 * splimp...)
397	 */
398	for (i = 0; i < size; i += PAGE_SIZE) {
399		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
400		vm_page_wire(m);
401		vm_page_wakeup(m);
402		/*
403		 * Because this is kernel_pmap, this call will not block.
404		 */
405		pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
406			VM_PROT_ALL, 1);
407		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
408	}
409	vm_map_unlock(map);
410
411	return (addr);
412}
413
414/*
415 *	kmem_alloc_wait:
416 *
417 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
418 *	has no room, the caller sleeps waiting for more memory in the submap.
419 *
420 *	This routine may block.
421 */
422
423vm_offset_t
424kmem_alloc_wait(map, size)
425	vm_map_t map;
426	vm_size_t size;
427{
428	vm_offset_t addr;
429
430	size = round_page(size);
431
432	for (;;) {
433		/*
434		 * To make this work for more than one map, use the map's lock
435		 * to lock out sleepers/wakers.
436		 */
437		vm_map_lock(map);
438		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
439			break;
440		/* no space now; see if we can ever get space */
441		if (vm_map_max(map) - vm_map_min(map) < size) {
442			vm_map_unlock(map);
443			return (0);
444		}
445		vm_map_unlock(map);
446		tsleep(map, PVM, "kmaw", 0);
447	}
448	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
449	vm_map_unlock(map);
450	return (addr);
451}
452
453/*
454 *	kmem_free_wakeup:
455 *
456 *	Returns memory to a submap of the kernel, and wakes up any processes
457 *	waiting for memory in that map.
458 */
459void
460kmem_free_wakeup(map, addr, size)
461	vm_map_t map;
462	vm_offset_t addr;
463	vm_size_t size;
464{
465	vm_map_lock(map);
466	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
467	wakeup(map);
468	vm_map_unlock(map);
469}
470
471/*
472 * 	kmem_init:
473 *
474 *	Create the kernel map; insert a mapping covering kernel text,
475 *	data, bss, and all space allocated thus far (`boostrap' data).  The
476 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
477 *	`start' as allocated, and the range between `start' and `end' as free.
478 */
479
480void
481kmem_init(start, end)
482	vm_offset_t start, end;
483{
484	register vm_map_t m;
485
486	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
487	vm_map_lock(m);
488	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
489	kernel_map = m;
490	kernel_map->system_map = 1;
491	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
492	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
493	/* ... and ending with the completion of the above `insert' */
494	vm_map_unlock(m);
495}
496
497