vm_kern.c revision 48409
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.55 1999/06/08 17:03:28 dt Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/vm_prot.h>
79#include <sys/lock.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t u_map=0;
92vm_map_t buffer_map=0;
93vm_map_t mb_map=0;
94int mb_map_full=0;
95vm_map_t io_map=0;
96vm_map_t phys_map=0;
97
98/*
99 *	kmem_alloc_pageable:
100 *
101 *	Allocate pageable memory to the kernel's address map.
102 *	"map" must be kernel_map or a submap of kernel_map.
103 */
104
105vm_offset_t
106kmem_alloc_pageable(map, size)
107	vm_map_t map;
108	register vm_size_t size;
109{
110	vm_offset_t addr;
111	register int result;
112
113	size = round_page(size);
114	addr = vm_map_min(map);
115	result = vm_map_find(map, NULL, (vm_offset_t) 0,
116	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
117	if (result != KERN_SUCCESS) {
118		return (0);
119	}
120	return (addr);
121}
122
123/*
124 *	kmem_alloc_nofault:
125 *
126 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
127 */
128
129vm_offset_t
130kmem_alloc_nofault(map, size)
131	vm_map_t map;
132	register vm_size_t size;
133{
134	vm_offset_t addr;
135	register int result;
136
137	size = round_page(size);
138	addr = vm_map_min(map);
139	result = vm_map_find(map, NULL, (vm_offset_t) 0,
140	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
141	if (result != KERN_SUCCESS) {
142		return (0);
143	}
144	return (addr);
145}
146
147/*
148 *	Allocate wired-down memory in the kernel's address map
149 *	or a submap.
150 */
151vm_offset_t
152kmem_alloc(map, size)
153	register vm_map_t map;
154	register vm_size_t size;
155{
156	vm_offset_t addr;
157	register vm_offset_t offset;
158	vm_offset_t i;
159
160	size = round_page(size);
161
162	/*
163	 * Use the kernel object for wired-down kernel pages. Assume that no
164	 * region of the kernel object is referenced more than once.
165	 */
166
167	/*
168	 * Locate sufficient space in the map.  This will give us the final
169	 * virtual address for the new memory, and thus will tell us the
170	 * offset within the kernel map.
171	 */
172	vm_map_lock(map);
173	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
174		vm_map_unlock(map);
175		return (0);
176	}
177	offset = addr - VM_MIN_KERNEL_ADDRESS;
178	vm_object_reference(kernel_object);
179	vm_map_insert(map, kernel_object, offset, addr, addr + size,
180		VM_PROT_ALL, VM_PROT_ALL, 0);
181	vm_map_unlock(map);
182
183	/*
184	 * Guarantee that there are pages already in this object before
185	 * calling vm_map_pageable.  This is to prevent the following
186	 * scenario:
187	 *
188	 * 1) Threads have swapped out, so that there is a pager for the
189	 * kernel_object. 2) The kmsg zone is empty, and so we are
190	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
191	 * there is no page, but there is a pager, so we call
192	 * pager_data_request.  But the kmsg zone is empty, so we must
193	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
194	 * we get the data back from the pager, it will be (very stale)
195	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
196	 *
197	 * We're intentionally not activating the pages we allocate to prevent a
198	 * race with page-out.  vm_map_pageable will wire the pages.
199	 */
200
201	for (i = 0; i < size; i += PAGE_SIZE) {
202		vm_page_t mem;
203
204		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
205				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
206		if ((mem->flags & PG_ZERO) == 0)
207			vm_page_zero_fill(mem);
208		mem->valid = VM_PAGE_BITS_ALL;
209		vm_page_flag_clear(mem, PG_ZERO);
210		vm_page_wakeup(mem);
211	}
212
213	/*
214	 * And finally, mark the data as non-pageable.
215	 */
216
217	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
218
219	return (addr);
220}
221
222/*
223 *	kmem_free:
224 *
225 *	Release a region of kernel virtual memory allocated
226 *	with kmem_alloc, and return the physical pages
227 *	associated with that region.
228 *
229 *	This routine may not block on kernel maps.
230 */
231void
232kmem_free(map, addr, size)
233	vm_map_t map;
234	register vm_offset_t addr;
235	vm_size_t size;
236{
237	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
238}
239
240/*
241 *	kmem_suballoc:
242 *
243 *	Allocates a map to manage a subrange
244 *	of the kernel virtual address space.
245 *
246 *	Arguments are as follows:
247 *
248 *	parent		Map to take range from
249 *	size		Size of range to find
250 *	min, max	Returned endpoints of map
251 *	pageable	Can the region be paged
252 */
253vm_map_t
254kmem_suballoc(parent, min, max, size)
255	register vm_map_t parent;
256	vm_offset_t *min, *max;
257	register vm_size_t size;
258{
259	register int ret;
260	vm_map_t result;
261
262	size = round_page(size);
263
264	*min = (vm_offset_t) vm_map_min(parent);
265	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
266	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
267	if (ret != KERN_SUCCESS) {
268		printf("kmem_suballoc: bad status return of %d.\n", ret);
269		panic("kmem_suballoc");
270	}
271	*max = *min + size;
272	pmap_reference(vm_map_pmap(parent));
273	result = vm_map_create(vm_map_pmap(parent), *min, *max);
274	if (result == NULL)
275		panic("kmem_suballoc: cannot create submap");
276	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
277		panic("kmem_suballoc: unable to change range to submap");
278	return (result);
279}
280
281/*
282 *	kmem_malloc:
283 *
284 * 	Allocate wired-down memory in the kernel's address map for the higher
285 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
286 * 	kmem_alloc() because we may need to allocate memory at interrupt
287 * 	level where we cannot block (canwait == FALSE).
288 *
289 * 	This routine has its own private kernel submap (kmem_map) and object
290 * 	(kmem_object).  This, combined with the fact that only malloc uses
291 * 	this routine, ensures that we will never block in map or object waits.
292 *
293 * 	Note that this still only works in a uni-processor environment and
294 * 	when called at splhigh().
295 *
296 * 	We don't worry about expanding the map (adding entries) since entries
297 * 	for wired maps are statically allocated.
298 *
299 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
300 *	I have not verified that it actually does not block.
301 */
302vm_offset_t
303kmem_malloc(map, size, flags)
304	register vm_map_t map;
305	register vm_size_t size;
306	int flags;
307{
308	register vm_offset_t offset, i;
309	vm_map_entry_t entry;
310	vm_offset_t addr;
311	vm_page_t m;
312
313	if (map != kmem_map && map != mb_map)
314		panic("kmem_malloc: map != {kmem,mb}_map");
315
316	size = round_page(size);
317	addr = vm_map_min(map);
318
319	/*
320	 * Locate sufficient space in the map.  This will give us the final
321	 * virtual address for the new memory, and thus will tell us the
322	 * offset within the kernel map.
323	 */
324	vm_map_lock(map);
325	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
326		vm_map_unlock(map);
327		if (map == mb_map) {
328			mb_map_full = TRUE;
329			printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
330			return (0);
331		}
332		if ((flags & M_NOWAIT) == 0)
333			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
334				(long)size, (long)map->size);
335		return (0);
336	}
337	offset = addr - VM_MIN_KERNEL_ADDRESS;
338	vm_object_reference(kmem_object);
339	vm_map_insert(map, kmem_object, offset, addr, addr + size,
340		VM_PROT_ALL, VM_PROT_ALL, 0);
341
342	for (i = 0; i < size; i += PAGE_SIZE) {
343		/*
344		 * Note: if M_NOWAIT specified alone, allocate from
345		 * interrupt-safe queues only (just the free list).  If
346		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
347		 * allocate from the cache.  Neither of the latter two
348		 * flags may be specified from an interrupt since interrupts
349		 * are not allowed to mess with the cache queue.
350		 */
351retry:
352		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
353		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
354			VM_ALLOC_INTERRUPT :
355			VM_ALLOC_SYSTEM);
356
357		/*
358		 * Ran out of space, free everything up and return. Don't need
359		 * to lock page queues here as we know that the pages we got
360		 * aren't on any queues.
361		 */
362		if (m == NULL) {
363			if ((flags & M_NOWAIT) == 0) {
364				vm_map_unlock(map);
365				VM_WAIT;
366				vm_map_lock(map);
367				goto retry;
368			}
369			vm_map_delete(map, addr, addr + size);
370			vm_map_unlock(map);
371			if (flags & M_ASLEEP) {
372				VM_AWAIT;
373			}
374			return (0);
375		}
376		vm_page_flag_clear(m, PG_ZERO);
377		m->valid = VM_PAGE_BITS_ALL;
378	}
379
380	/*
381	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
382	 * be able to extend the previous entry so there will be a new entry
383	 * exactly corresponding to this address range and it will have
384	 * wired_count == 0.
385	 */
386	if (!vm_map_lookup_entry(map, addr, &entry) ||
387	    entry->start != addr || entry->end != addr + size ||
388	    entry->wired_count != 0)
389		panic("kmem_malloc: entry not found or misaligned");
390	entry->wired_count = 1;
391
392	vm_map_simplify_entry(map, entry);
393
394	/*
395	 * Loop thru pages, entering them in the pmap. (We cannot add them to
396	 * the wired count without wrapping the vm_page_queue_lock in
397	 * splimp...)
398	 */
399	for (i = 0; i < size; i += PAGE_SIZE) {
400		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
401		vm_page_wire(m);
402		vm_page_wakeup(m);
403		/*
404		 * Because this is kernel_pmap, this call will not block.
405		 */
406		pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
407			VM_PROT_ALL, 1);
408		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
409	}
410	vm_map_unlock(map);
411
412	return (addr);
413}
414
415/*
416 *	kmem_alloc_wait:
417 *
418 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
419 *	has no room, the caller sleeps waiting for more memory in the submap.
420 *
421 *	This routine may block.
422 */
423
424vm_offset_t
425kmem_alloc_wait(map, size)
426	vm_map_t map;
427	vm_size_t size;
428{
429	vm_offset_t addr;
430
431	size = round_page(size);
432
433	for (;;) {
434		/*
435		 * To make this work for more than one map, use the map's lock
436		 * to lock out sleepers/wakers.
437		 */
438		vm_map_lock(map);
439		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
440			break;
441		/* no space now; see if we can ever get space */
442		if (vm_map_max(map) - vm_map_min(map) < size) {
443			vm_map_unlock(map);
444			return (0);
445		}
446		vm_map_unlock(map);
447		tsleep(map, PVM, "kmaw", 0);
448	}
449	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
450	vm_map_unlock(map);
451	return (addr);
452}
453
454/*
455 *	kmem_free_wakeup:
456 *
457 *	Returns memory to a submap of the kernel, and wakes up any processes
458 *	waiting for memory in that map.
459 */
460void
461kmem_free_wakeup(map, addr, size)
462	vm_map_t map;
463	vm_offset_t addr;
464	vm_size_t size;
465{
466	vm_map_lock(map);
467	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
468	wakeup(map);
469	vm_map_unlock(map);
470}
471
472/*
473 * 	kmem_init:
474 *
475 *	Create the kernel map; insert a mapping covering kernel text,
476 *	data, bss, and all space allocated thus far (`boostrap' data).  The
477 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
478 *	`start' as allocated, and the range between `start' and `end' as free.
479 */
480
481void
482kmem_init(start, end)
483	vm_offset_t start, end;
484{
485	register vm_map_t m;
486
487	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
488	vm_map_lock(m);
489	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
490	kernel_map = m;
491	kernel_map->system_map = 1;
492	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
493	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
494	/* ... and ending with the completion of the above `insert' */
495	vm_map_unlock(m);
496}
497
498