vm_kern.c revision 44682
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.52 1999/01/21 09:38:20 dillon Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/vm_prot.h>
79#include <sys/lock.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86
87vm_map_t kernel_map=0;
88vm_map_t kmem_map=0;
89vm_map_t exec_map=0;
90vm_map_t clean_map=0;
91vm_map_t u_map=0;
92vm_map_t buffer_map=0;
93vm_map_t mb_map=0;
94int mb_map_full=0;
95vm_map_t io_map=0;
96vm_map_t phys_map=0;
97
98/*
99 *	kmem_alloc_pageable:
100 *
101 *	Allocate pageable memory to the kernel's address map.
102 *	"map" must be kernel_map or a submap of kernel_map.
103 */
104
105vm_offset_t
106kmem_alloc_pageable(map, size)
107	vm_map_t map;
108	register vm_size_t size;
109{
110	vm_offset_t addr;
111	register int result;
112
113	size = round_page(size);
114	addr = vm_map_min(map);
115	result = vm_map_find(map, NULL, (vm_offset_t) 0,
116	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
117	if (result != KERN_SUCCESS) {
118		return (0);
119	}
120	return (addr);
121}
122
123/*
124 *	Allocate wired-down memory in the kernel's address map
125 *	or a submap.
126 */
127vm_offset_t
128kmem_alloc(map, size)
129	register vm_map_t map;
130	register vm_size_t size;
131{
132	vm_offset_t addr;
133	register vm_offset_t offset;
134	vm_offset_t i;
135
136	size = round_page(size);
137
138	/*
139	 * Use the kernel object for wired-down kernel pages. Assume that no
140	 * region of the kernel object is referenced more than once.
141	 */
142
143	/*
144	 * Locate sufficient space in the map.  This will give us the final
145	 * virtual address for the new memory, and thus will tell us the
146	 * offset within the kernel map.
147	 */
148	vm_map_lock(map);
149	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
150		vm_map_unlock(map);
151		return (0);
152	}
153	offset = addr - VM_MIN_KERNEL_ADDRESS;
154	vm_object_reference(kernel_object);
155	vm_map_insert(map, kernel_object, offset, addr, addr + size,
156		VM_PROT_ALL, VM_PROT_ALL, 0);
157	vm_map_unlock(map);
158
159	/*
160	 * Guarantee that there are pages already in this object before
161	 * calling vm_map_pageable.  This is to prevent the following
162	 * scenario:
163	 *
164	 * 1) Threads have swapped out, so that there is a pager for the
165	 * kernel_object. 2) The kmsg zone is empty, and so we are
166	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
167	 * there is no page, but there is a pager, so we call
168	 * pager_data_request.  But the kmsg zone is empty, so we must
169	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
170	 * we get the data back from the pager, it will be (very stale)
171	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
172	 *
173	 * We're intentionally not activating the pages we allocate to prevent a
174	 * race with page-out.  vm_map_pageable will wire the pages.
175	 */
176
177	for (i = 0; i < size; i += PAGE_SIZE) {
178		vm_page_t mem;
179
180		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
181				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
182		if ((mem->flags & PG_ZERO) == 0)
183			vm_page_zero_fill(mem);
184		mem->valid = VM_PAGE_BITS_ALL;
185		vm_page_flag_clear(mem, PG_ZERO);
186		vm_page_wakeup(mem);
187	}
188
189	/*
190	 * And finally, mark the data as non-pageable.
191	 */
192
193	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
194
195	return (addr);
196}
197
198/*
199 *	kmem_free:
200 *
201 *	Release a region of kernel virtual memory allocated
202 *	with kmem_alloc, and return the physical pages
203 *	associated with that region.
204 *
205 *	This routine may not block on kernel maps.
206 */
207void
208kmem_free(map, addr, size)
209	vm_map_t map;
210	register vm_offset_t addr;
211	vm_size_t size;
212{
213	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
214}
215
216/*
217 *	kmem_suballoc:
218 *
219 *	Allocates a map to manage a subrange
220 *	of the kernel virtual address space.
221 *
222 *	Arguments are as follows:
223 *
224 *	parent		Map to take range from
225 *	size		Size of range to find
226 *	min, max	Returned endpoints of map
227 *	pageable	Can the region be paged
228 */
229vm_map_t
230kmem_suballoc(parent, min, max, size)
231	register vm_map_t parent;
232	vm_offset_t *min, *max;
233	register vm_size_t size;
234{
235	register int ret;
236	vm_map_t result;
237
238	size = round_page(size);
239
240	*min = (vm_offset_t) vm_map_min(parent);
241	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
242	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
243	if (ret != KERN_SUCCESS) {
244		printf("kmem_suballoc: bad status return of %d.\n", ret);
245		panic("kmem_suballoc");
246	}
247	*max = *min + size;
248	pmap_reference(vm_map_pmap(parent));
249	result = vm_map_create(vm_map_pmap(parent), *min, *max);
250	if (result == NULL)
251		panic("kmem_suballoc: cannot create submap");
252	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
253		panic("kmem_suballoc: unable to change range to submap");
254	return (result);
255}
256
257/*
258 *	kmem_malloc:
259 *
260 * 	Allocate wired-down memory in the kernel's address map for the higher
261 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
262 * 	kmem_alloc() because we may need to allocate memory at interrupt
263 * 	level where we cannot block (canwait == FALSE).
264 *
265 * 	This routine has its own private kernel submap (kmem_map) and object
266 * 	(kmem_object).  This, combined with the fact that only malloc uses
267 * 	this routine, ensures that we will never block in map or object waits.
268 *
269 * 	Note that this still only works in a uni-processor environment and
270 * 	when called at splhigh().
271 *
272 * 	We don't worry about expanding the map (adding entries) since entries
273 * 	for wired maps are statically allocated.
274 *
275 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
276 *	I have not verified that it actually does not block.
277 */
278vm_offset_t
279kmem_malloc(map, size, flags)
280	register vm_map_t map;
281	register vm_size_t size;
282	int flags;
283{
284	register vm_offset_t offset, i;
285	vm_map_entry_t entry;
286	vm_offset_t addr;
287	vm_page_t m;
288
289	if (map != kmem_map && map != mb_map)
290		panic("kmem_malloc: map != {kmem,mb}_map");
291
292	size = round_page(size);
293	addr = vm_map_min(map);
294
295	/*
296	 * Locate sufficient space in the map.  This will give us the final
297	 * virtual address for the new memory, and thus will tell us the
298	 * offset within the kernel map.
299	 */
300	vm_map_lock(map);
301	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
302		vm_map_unlock(map);
303		if (map == mb_map) {
304			mb_map_full = TRUE;
305			printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
306			return (0);
307		}
308		if ((flags & M_NOWAIT) == 0)
309			panic("kmem_malloc(%d): kmem_map too small: %d total allocated",
310				size, map->size);
311		return (0);
312	}
313	offset = addr - VM_MIN_KERNEL_ADDRESS;
314	vm_object_reference(kmem_object);
315	vm_map_insert(map, kmem_object, offset, addr, addr + size,
316		VM_PROT_ALL, VM_PROT_ALL, 0);
317
318	for (i = 0; i < size; i += PAGE_SIZE) {
319		/*
320		 * Note: if M_NOWAIT specified alone, allocate from
321		 * interrupt-safe queues only (just the free list).  If
322		 * M_ASLEEP or M_USE_RESERVE is also specified, we can also
323		 * allocate from the cache.  Neither of the latter two
324		 * flags may be specified from an interrupt since interrupts
325		 * are not allowed to mess with the cache queue.
326		 */
327retry:
328		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
329		    ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ?
330			VM_ALLOC_INTERRUPT :
331			VM_ALLOC_SYSTEM);
332
333		/*
334		 * Ran out of space, free everything up and return. Don't need
335		 * to lock page queues here as we know that the pages we got
336		 * aren't on any queues.
337		 */
338		if (m == NULL) {
339			if ((flags & M_NOWAIT) == 0) {
340				VM_WAIT;
341				goto retry;
342			}
343			vm_map_delete(map, addr, addr + size);
344			vm_map_unlock(map);
345			if (flags & M_ASLEEP) {
346				VM_AWAIT;
347			}
348			return (0);
349		}
350		vm_page_flag_clear(m, PG_ZERO);
351		m->valid = VM_PAGE_BITS_ALL;
352	}
353
354	/*
355	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
356	 * be able to extend the previous entry so there will be a new entry
357	 * exactly corresponding to this address range and it will have
358	 * wired_count == 0.
359	 */
360	if (!vm_map_lookup_entry(map, addr, &entry) ||
361	    entry->start != addr || entry->end != addr + size ||
362	    entry->wired_count)
363		panic("kmem_malloc: entry not found or misaligned");
364	entry->wired_count++;
365
366	vm_map_simplify_entry(map, entry);
367
368	/*
369	 * Loop thru pages, entering them in the pmap. (We cannot add them to
370	 * the wired count without wrapping the vm_page_queue_lock in
371	 * splimp...)
372	 */
373	for (i = 0; i < size; i += PAGE_SIZE) {
374		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
375		vm_page_wire(m);
376		vm_page_wakeup(m);
377		/*
378		 * Because this is kernel_pmap, this call will not block.
379		 */
380		pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
381			VM_PROT_ALL, 1);
382		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
383	}
384	vm_map_unlock(map);
385
386	return (addr);
387}
388
389/*
390 *	kmem_alloc_wait:
391 *
392 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
393 *	has no room, the caller sleeps waiting for more memory in the submap.
394 *
395 *	This routine may block.
396 */
397
398vm_offset_t
399kmem_alloc_wait(map, size)
400	vm_map_t map;
401	vm_size_t size;
402{
403	vm_offset_t addr;
404
405	size = round_page(size);
406
407	for (;;) {
408		/*
409		 * To make this work for more than one map, use the map's lock
410		 * to lock out sleepers/wakers.
411		 */
412		vm_map_lock(map);
413		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
414			break;
415		/* no space now; see if we can ever get space */
416		if (vm_map_max(map) - vm_map_min(map) < size) {
417			vm_map_unlock(map);
418			return (0);
419		}
420		vm_map_unlock(map);
421		tsleep(map, PVM, "kmaw", 0);
422	}
423	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
424	vm_map_unlock(map);
425	return (addr);
426}
427
428/*
429 *	kmem_free_wakeup:
430 *
431 *	Returns memory to a submap of the kernel, and wakes up any processes
432 *	waiting for memory in that map.
433 */
434void
435kmem_free_wakeup(map, addr, size)
436	vm_map_t map;
437	vm_offset_t addr;
438	vm_size_t size;
439{
440	vm_map_lock(map);
441	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
442	wakeup(map);
443	vm_map_unlock(map);
444}
445
446/*
447 * 	kmem_init:
448 *
449 *	Create the kernel map; insert a mapping covering kernel text,
450 *	data, bss, and all space allocated thus far (`boostrap' data).  The
451 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
452 *	`start' as allocated, and the range between `start' and `end' as free.
453 */
454
455void
456kmem_init(start, end)
457	vm_offset_t start, end;
458{
459	register vm_map_t m;
460
461	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
462	vm_map_lock(m);
463	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
464	kernel_map = m;
465	kernel_map->system_map = 1;
466	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
467	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
468	/* ... and ending with the completion of the above `insert' */
469	vm_map_unlock(m);
470}
471
472