vm_kern.c revision 33134
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.43 1998/02/05 03:32:39 dyson Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75#include <sys/syslog.h>
76
77#include <vm/vm.h>
78#include <vm/vm_param.h>
79#include <vm/vm_prot.h>
80#include <sys/lock.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t clean_map=0;
92vm_map_t u_map=0;
93vm_map_t buffer_map=0;
94vm_map_t mb_map=0;
95int mb_map_full=0;
96vm_map_t io_map=0;
97vm_map_t phys_map=0;
98
99/*
100 *	kmem_alloc_pageable:
101 *
102 *	Allocate pageable memory to the kernel's address map.
103 *	"map" must be kernel_map or a submap of kernel_map.
104 */
105
106vm_offset_t
107kmem_alloc_pageable(map, size)
108	vm_map_t map;
109	register vm_size_t size;
110{
111	vm_offset_t addr;
112	register int result;
113
114	size = round_page(size);
115	addr = vm_map_min(map);
116	result = vm_map_find(map, NULL, (vm_offset_t) 0,
117	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
118	if (result != KERN_SUCCESS) {
119		return (0);
120	}
121	return (addr);
122}
123
124/*
125 *	Allocate wired-down memory in the kernel's address map
126 *	or a submap.
127 */
128vm_offset_t
129kmem_alloc(map, size)
130	register vm_map_t map;
131	register vm_size_t size;
132{
133	vm_offset_t addr;
134	register vm_offset_t offset;
135	vm_offset_t i;
136
137	size = round_page(size);
138
139	/*
140	 * Use the kernel object for wired-down kernel pages. Assume that no
141	 * region of the kernel object is referenced more than once.
142	 */
143
144	/*
145	 * Locate sufficient space in the map.  This will give us the final
146	 * virtual address for the new memory, and thus will tell us the
147	 * offset within the kernel map.
148	 */
149	vm_map_lock(map);
150	if (vm_map_findspace(map, 0, size, &addr)) {
151		vm_map_unlock(map);
152		return (0);
153	}
154	offset = addr - VM_MIN_KERNEL_ADDRESS;
155	vm_object_reference(kernel_object);
156	vm_map_insert(map, kernel_object, offset, addr, addr + size,
157		VM_PROT_ALL, VM_PROT_ALL, 0);
158	vm_map_unlock(map);
159
160	/*
161	 * Guarantee that there are pages already in this object before
162	 * calling vm_map_pageable.  This is to prevent the following
163	 * scenario:
164	 *
165	 * 1) Threads have swapped out, so that there is a pager for the
166	 * kernel_object. 2) The kmsg zone is empty, and so we are
167	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
168	 * there is no page, but there is a pager, so we call
169	 * pager_data_request.  But the kmsg zone is empty, so we must
170	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
171	 * we get the data back from the pager, it will be (very stale)
172	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
173	 *
174	 * We're intentionally not activating the pages we allocate to prevent a
175	 * race with page-out.  vm_map_pageable will wire the pages.
176	 */
177
178	for (i = 0; i < size; i += PAGE_SIZE) {
179		vm_page_t mem;
180
181		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
182				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
183		if ((mem->flags & PG_ZERO) == 0)
184			vm_page_zero_fill(mem);
185		mem->flags &= ~(PG_BUSY|PG_ZERO);
186		mem->valid = VM_PAGE_BITS_ALL;
187	}
188
189	/*
190	 * And finally, mark the data as non-pageable.
191	 */
192
193	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
194
195	return (addr);
196}
197
198/*
199 *	kmem_free:
200 *
201 *	Release a region of kernel virtual memory allocated
202 *	with kmem_alloc, and return the physical pages
203 *	associated with that region.
204 */
205void
206kmem_free(map, addr, size)
207	vm_map_t map;
208	register vm_offset_t addr;
209	vm_size_t size;
210{
211	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
212}
213
214/*
215 *	kmem_suballoc:
216 *
217 *	Allocates a map to manage a subrange
218 *	of the kernel virtual address space.
219 *
220 *	Arguments are as follows:
221 *
222 *	parent		Map to take range from
223 *	size		Size of range to find
224 *	min, max	Returned endpoints of map
225 *	pageable	Can the region be paged
226 */
227vm_map_t
228kmem_suballoc(parent, min, max, size)
229	register vm_map_t parent;
230	vm_offset_t *min, *max;
231	register vm_size_t size;
232{
233	register int ret;
234	vm_map_t result;
235
236	size = round_page(size);
237
238	*min = (vm_offset_t) vm_map_min(parent);
239	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
240	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
241	if (ret != KERN_SUCCESS) {
242		printf("kmem_suballoc: bad status return of %d.\n", ret);
243		panic("kmem_suballoc");
244	}
245	*max = *min + size;
246	pmap_reference(vm_map_pmap(parent));
247	result = vm_map_create(vm_map_pmap(parent), *min, *max);
248	if (result == NULL)
249		panic("kmem_suballoc: cannot create submap");
250	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
251		panic("kmem_suballoc: unable to change range to submap");
252	return (result);
253}
254
255/*
256 * Allocate wired-down memory in the kernel's address map for the higher
257 * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
258 * kmem_alloc() because we may need to allocate memory at interrupt
259 * level where we cannot block (canwait == FALSE).
260 *
261 * This routine has its own private kernel submap (kmem_map) and object
262 * (kmem_object).  This, combined with the fact that only malloc uses
263 * this routine, ensures that we will never block in map or object waits.
264 *
265 * Note that this still only works in a uni-processor environment and
266 * when called at splhigh().
267 *
268 * We don't worry about expanding the map (adding entries) since entries
269 * for wired maps are statically allocated.
270 */
271vm_offset_t
272kmem_malloc(map, size, waitflag)
273	register vm_map_t map;
274	register vm_size_t size;
275	boolean_t waitflag;
276{
277	register vm_offset_t offset, i;
278	vm_map_entry_t entry;
279	vm_offset_t addr;
280	vm_page_t m;
281
282	if (map != kmem_map && map != mb_map)
283		panic("kmem_malloc: map != {kmem,mb}_map");
284
285	size = round_page(size);
286	addr = vm_map_min(map);
287
288	/*
289	 * Locate sufficient space in the map.  This will give us the final
290	 * virtual address for the new memory, and thus will tell us the
291	 * offset within the kernel map.
292	 */
293	vm_map_lock(map);
294	if (vm_map_findspace(map, 0, size, &addr)) {
295		vm_map_unlock(map);
296		if (map == mb_map) {
297			mb_map_full = TRUE;
298			log(LOG_ERR, "Out of mbuf clusters - increase maxusers!\n");
299			return (0);
300		}
301		if (waitflag == M_WAITOK)
302			panic("kmem_malloc: kmem_map too small");
303		return (0);
304	}
305	offset = addr - VM_MIN_KERNEL_ADDRESS;
306	vm_object_reference(kmem_object);
307	vm_map_insert(map, kmem_object, offset, addr, addr + size,
308		VM_PROT_ALL, VM_PROT_ALL, 0);
309
310	for (i = 0; i < size; i += PAGE_SIZE) {
311retry:
312		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
313			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
314
315		/*
316		 * Ran out of space, free everything up and return. Don't need
317		 * to lock page queues here as we know that the pages we got
318		 * aren't on any queues.
319		 */
320		if (m == NULL) {
321			if (waitflag == M_WAITOK) {
322				VM_WAIT;
323				goto retry;
324			}
325			while (i != 0) {
326				i -= PAGE_SIZE;
327				m = vm_page_lookup(kmem_object,
328					OFF_TO_IDX(offset + i));
329				vm_page_free(m);
330			}
331			vm_map_delete(map, addr, addr + size);
332			vm_map_unlock(map);
333			return (0);
334		}
335		m->flags &= ~PG_ZERO;
336		m->valid = VM_PAGE_BITS_ALL;
337	}
338
339	/*
340	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
341	 * be able to extend the previous entry so there will be a new entry
342	 * exactly corresponding to this address range and it will have
343	 * wired_count == 0.
344	 */
345	if (!vm_map_lookup_entry(map, addr, &entry) ||
346	    entry->start != addr || entry->end != addr + size ||
347	    entry->wired_count)
348		panic("kmem_malloc: entry not found or misaligned");
349	entry->wired_count++;
350
351	vm_map_simplify_entry(map, entry);
352
353	/*
354	 * Loop thru pages, entering them in the pmap. (We cannot add them to
355	 * the wired count without wrapping the vm_page_queue_lock in
356	 * splimp...)
357	 */
358	for (i = 0; i < size; i += PAGE_SIZE) {
359		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
360		vm_page_wire(m);
361		PAGE_WAKEUP(m);
362		pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
363			VM_PROT_ALL, 1);
364		m->flags |= PG_MAPPED | PG_WRITEABLE | PG_REFERENCED;
365	}
366	vm_map_unlock(map);
367
368	return (addr);
369}
370
371/*
372 *	kmem_alloc_wait
373 *
374 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
375 *	has no room, the caller sleeps waiting for more memory in the submap.
376 *
377 */
378vm_offset_t
379kmem_alloc_wait(map, size)
380	vm_map_t map;
381	vm_size_t size;
382{
383	vm_offset_t addr;
384
385	size = round_page(size);
386
387	for (;;) {
388		/*
389		 * To make this work for more than one map, use the map's lock
390		 * to lock out sleepers/wakers.
391		 */
392		vm_map_lock(map);
393		if (vm_map_findspace(map, 0, size, &addr) == 0)
394			break;
395		/* no space now; see if we can ever get space */
396		if (vm_map_max(map) - vm_map_min(map) < size) {
397			vm_map_unlock(map);
398			return (0);
399		}
400		vm_map_unlock(map);
401		tsleep(map, PVM, "kmaw", 0);
402	}
403	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
404	vm_map_unlock(map);
405	return (addr);
406}
407
408/*
409 *	kmem_free_wakeup
410 *
411 *	Returns memory to a submap of the kernel, and wakes up any processes
412 *	waiting for memory in that map.
413 */
414void
415kmem_free_wakeup(map, addr, size)
416	vm_map_t map;
417	vm_offset_t addr;
418	vm_size_t size;
419{
420	vm_map_lock(map);
421	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
422	wakeup(map);
423	vm_map_unlock(map);
424}
425
426/*
427 * Create the kernel map; insert a mapping covering kernel text, data, bss,
428 * and all space allocated thus far (`boostrap' data).  The new map will thus
429 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
430 * the range between `start' and `end' as free.
431 */
432void
433kmem_init(start, end)
434	vm_offset_t start, end;
435{
436	register vm_map_t m;
437
438	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
439	vm_map_lock(m);
440	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
441	kernel_map = m;
442	kernel_map->system_map = 1;
443	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
444	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
445	/* ... and ending with the completion of the above `insert' */
446	vm_map_unlock(m);
447}
448