vm_kern.c revision 238452
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 238452 2012-07-14 18:10:44Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76#include <sys/sysctl.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86#include <vm/uma.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t pipe_map;
92vm_map_t buffer_map=0;
93
94const void *zero_region;
95CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
96
97/*
98 *	kmem_alloc_nofault:
99 *
100 *	Allocate a virtual address range with no underlying object and
101 *	no initial mapping to physical memory.  Any mapping from this
102 *	range to physical memory must be explicitly created prior to
103 *	its use, typically with pmap_qenter().  Any attempt to create
104 *	a mapping on demand through vm_fault() will result in a panic.
105 */
106vm_offset_t
107kmem_alloc_nofault(map, size)
108	vm_map_t map;
109	vm_size_t size;
110{
111	vm_offset_t addr;
112	int result;
113
114	size = round_page(size);
115	addr = vm_map_min(map);
116	result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE,
117	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
118	if (result != KERN_SUCCESS) {
119		return (0);
120	}
121	return (addr);
122}
123
124/*
125 *	kmem_alloc_nofault_space:
126 *
127 *	Allocate a virtual address range with no underlying object and
128 *	no initial mapping to physical memory within the specified
129 *	address space.  Any mapping from this range to physical memory
130 *	must be explicitly created prior to its use, typically with
131 *	pmap_qenter().  Any attempt to create a mapping on demand
132 *	through vm_fault() will result in a panic.
133 */
134vm_offset_t
135kmem_alloc_nofault_space(map, size, find_space)
136	vm_map_t map;
137	vm_size_t size;
138	int find_space;
139{
140	vm_offset_t addr;
141	int result;
142
143	size = round_page(size);
144	addr = vm_map_min(map);
145	result = vm_map_find(map, NULL, 0, &addr, size, find_space,
146	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
147	if (result != KERN_SUCCESS) {
148		return (0);
149	}
150	return (addr);
151}
152
153/*
154 *	Allocate wired-down memory in the kernel's address map
155 *	or a submap.
156 */
157vm_offset_t
158kmem_alloc(map, size)
159	vm_map_t map;
160	vm_size_t size;
161{
162	vm_offset_t addr;
163	vm_offset_t offset;
164
165	size = round_page(size);
166
167	/*
168	 * Use the kernel object for wired-down kernel pages. Assume that no
169	 * region of the kernel object is referenced more than once.
170	 */
171
172	/*
173	 * Locate sufficient space in the map.  This will give us the final
174	 * virtual address for the new memory, and thus will tell us the
175	 * offset within the kernel map.
176	 */
177	vm_map_lock(map);
178	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
179		vm_map_unlock(map);
180		return (0);
181	}
182	offset = addr - VM_MIN_KERNEL_ADDRESS;
183	vm_object_reference(kernel_object);
184	vm_map_insert(map, kernel_object, offset, addr, addr + size,
185		VM_PROT_ALL, VM_PROT_ALL, 0);
186	vm_map_unlock(map);
187
188	/*
189	 * And finally, mark the data as non-pageable.
190	 */
191	(void) vm_map_wire(map, addr, addr + size,
192	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
193
194	return (addr);
195}
196
197/*
198 *	Allocates a region from the kernel address map and physical pages
199 *	within the specified address range to the kernel object.  Creates a
200 *	wired mapping from this region to these pages, and returns the
201 *	region's starting virtual address.  The allocated pages are not
202 *	necessarily physically contiguous.  If M_ZERO is specified through the
203 *	given flags, then the pages are zeroed before they are mapped.
204 */
205vm_offset_t
206kmem_alloc_attr(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low,
207    vm_paddr_t high, vm_memattr_t memattr)
208{
209	vm_object_t object = kernel_object;
210	vm_offset_t addr;
211	vm_ooffset_t end_offset, offset;
212	vm_page_t m;
213	int pflags, tries;
214
215	size = round_page(size);
216	vm_map_lock(map);
217	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
218		vm_map_unlock(map);
219		return (0);
220	}
221	offset = addr - VM_MIN_KERNEL_ADDRESS;
222	vm_object_reference(object);
223	vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL,
224	    VM_PROT_ALL, 0);
225	if ((flags & (M_NOWAIT | M_USE_RESERVE)) == M_NOWAIT)
226		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_NOBUSY;
227	else
228		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_NOBUSY;
229	if (flags & M_ZERO)
230		pflags |= VM_ALLOC_ZERO;
231	VM_OBJECT_LOCK(object);
232	end_offset = offset + size;
233	for (; offset < end_offset; offset += PAGE_SIZE) {
234		tries = 0;
235retry:
236		m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 1,
237		    low, high, PAGE_SIZE, 0, memattr);
238		if (m == NULL) {
239			VM_OBJECT_UNLOCK(object);
240			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
241				vm_map_unlock(map);
242				vm_contig_grow_cache(tries, low, high);
243				vm_map_lock(map);
244				VM_OBJECT_LOCK(object);
245				tries++;
246				goto retry;
247			}
248
249			/*
250			 * Since the pages that were allocated by any previous
251			 * iterations of this loop are not busy, they can be
252			 * freed by vm_object_page_remove(), which is called
253			 * by vm_map_delete().
254			 */
255			vm_map_delete(map, addr, addr + size);
256			vm_map_unlock(map);
257			return (0);
258		}
259		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
260			pmap_zero_page(m);
261		m->valid = VM_PAGE_BITS_ALL;
262	}
263	VM_OBJECT_UNLOCK(object);
264	vm_map_unlock(map);
265	vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM |
266	    VM_MAP_WIRE_NOHOLES);
267	return (addr);
268}
269
270/*
271 *	Allocates a region from the kernel address map and physically
272 *	contiguous pages within the specified address range to the kernel
273 *	object.  Creates a wired mapping from this region to these pages, and
274 *	returns the region's starting virtual address.  If M_ZERO is specified
275 *	through the given flags, then the pages are zeroed before they are
276 *	mapped.
277 */
278vm_offset_t
279kmem_alloc_contig(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low,
280    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
281    vm_memattr_t memattr)
282{
283	vm_object_t object = kernel_object;
284	vm_offset_t addr;
285	vm_ooffset_t offset;
286	vm_page_t end_m, m;
287	int pflags, tries;
288
289	size = round_page(size);
290	vm_map_lock(map);
291	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
292		vm_map_unlock(map);
293		return (0);
294	}
295	offset = addr - VM_MIN_KERNEL_ADDRESS;
296	vm_object_reference(object);
297	vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL,
298	    VM_PROT_ALL, 0);
299	if ((flags & (M_NOWAIT | M_USE_RESERVE)) == M_NOWAIT)
300		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_NOBUSY;
301	else
302		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_NOBUSY;
303	if (flags & M_ZERO)
304		pflags |= VM_ALLOC_ZERO;
305	if (flags & M_NODUMP)
306		pflags |= VM_ALLOC_NODUMP;
307	VM_OBJECT_LOCK(object);
308	tries = 0;
309retry:
310	m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
311	    atop(size), low, high, alignment, boundary, memattr);
312	if (m == NULL) {
313		VM_OBJECT_UNLOCK(object);
314		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
315			vm_map_unlock(map);
316			vm_contig_grow_cache(tries, low, high);
317			vm_map_lock(map);
318			VM_OBJECT_LOCK(object);
319			tries++;
320			goto retry;
321		}
322		vm_map_delete(map, addr, addr + size);
323		vm_map_unlock(map);
324		return (0);
325	}
326	end_m = m + atop(size);
327	for (; m < end_m; m++) {
328		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
329			pmap_zero_page(m);
330		m->valid = VM_PAGE_BITS_ALL;
331	}
332	VM_OBJECT_UNLOCK(object);
333	vm_map_unlock(map);
334	vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM |
335	    VM_MAP_WIRE_NOHOLES);
336	return (addr);
337}
338
339/*
340 *	kmem_free:
341 *
342 *	Release a region of kernel virtual memory allocated
343 *	with kmem_alloc, and return the physical pages
344 *	associated with that region.
345 *
346 *	This routine may not block on kernel maps.
347 */
348void
349kmem_free(map, addr, size)
350	vm_map_t map;
351	vm_offset_t addr;
352	vm_size_t size;
353{
354
355	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
356}
357
358/*
359 *	kmem_suballoc:
360 *
361 *	Allocates a map to manage a subrange
362 *	of the kernel virtual address space.
363 *
364 *	Arguments are as follows:
365 *
366 *	parent		Map to take range from
367 *	min, max	Returned endpoints of map
368 *	size		Size of range to find
369 *	superpage_align	Request that min is superpage aligned
370 */
371vm_map_t
372kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
373    vm_size_t size, boolean_t superpage_align)
374{
375	int ret;
376	vm_map_t result;
377
378	size = round_page(size);
379
380	*min = vm_map_min(parent);
381	ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
382	    VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
383	    MAP_ACC_NO_CHARGE);
384	if (ret != KERN_SUCCESS)
385		panic("kmem_suballoc: bad status return of %d", ret);
386	*max = *min + size;
387	result = vm_map_create(vm_map_pmap(parent), *min, *max);
388	if (result == NULL)
389		panic("kmem_suballoc: cannot create submap");
390	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
391		panic("kmem_suballoc: unable to change range to submap");
392	return (result);
393}
394
395/*
396 *	kmem_malloc:
397 *
398 * 	Allocate wired-down memory in the kernel's address map for the higher
399 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
400 * 	kmem_alloc() because we may need to allocate memory at interrupt
401 * 	level where we cannot block (canwait == FALSE).
402 *
403 * 	This routine has its own private kernel submap (kmem_map) and object
404 * 	(kmem_object).  This, combined with the fact that only malloc uses
405 * 	this routine, ensures that we will never block in map or object waits.
406 *
407 * 	We don't worry about expanding the map (adding entries) since entries
408 * 	for wired maps are statically allocated.
409 *
410 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
411 *	which we never free.
412 */
413vm_offset_t
414kmem_malloc(map, size, flags)
415	vm_map_t map;
416	vm_size_t size;
417	int flags;
418{
419	vm_offset_t addr;
420	int i, rv;
421
422	size = round_page(size);
423	addr = vm_map_min(map);
424
425	/*
426	 * Locate sufficient space in the map.  This will give us the final
427	 * virtual address for the new memory, and thus will tell us the
428	 * offset within the kernel map.
429	 */
430	vm_map_lock(map);
431	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
432		vm_map_unlock(map);
433                if ((flags & M_NOWAIT) == 0) {
434			for (i = 0; i < 8; i++) {
435				EVENTHANDLER_INVOKE(vm_lowmem, 0);
436				uma_reclaim();
437				vm_map_lock(map);
438				if (vm_map_findspace(map, vm_map_min(map),
439				    size, &addr) == 0) {
440					break;
441				}
442				vm_map_unlock(map);
443				tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
444			}
445			if (i == 8) {
446				panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
447				    (long)size, (long)map->size);
448			}
449		} else {
450			return (0);
451		}
452	}
453
454	rv = kmem_back(map, addr, size, flags);
455	vm_map_unlock(map);
456	return (rv == KERN_SUCCESS ? addr : 0);
457}
458
459/*
460 *	kmem_back:
461 *
462 *	Allocate physical pages for the specified virtual address range.
463 */
464int
465kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags)
466{
467	vm_offset_t offset, i;
468	vm_map_entry_t entry;
469	vm_page_t m;
470	int pflags;
471	boolean_t found;
472
473	KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map));
474	offset = addr - VM_MIN_KERNEL_ADDRESS;
475	vm_object_reference(kmem_object);
476	vm_map_insert(map, kmem_object, offset, addr, addr + size,
477	    VM_PROT_ALL, VM_PROT_ALL, 0);
478
479	/*
480	 * Assert: vm_map_insert() will never be able to extend the
481	 * previous entry so vm_map_lookup_entry() will find a new
482	 * entry exactly corresponding to this address range and it
483	 * will have wired_count == 0.
484	 */
485	found = vm_map_lookup_entry(map, addr, &entry);
486	KASSERT(found && entry->start == addr && entry->end == addr + size &&
487	    entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION)
488	    == 0, ("kmem_back: entry not found or misaligned"));
489
490	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
491		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
492	else
493		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
494
495	if (flags & M_ZERO)
496		pflags |= VM_ALLOC_ZERO;
497	if (flags & M_NODUMP)
498		pflags |= VM_ALLOC_NODUMP;
499
500	VM_OBJECT_LOCK(kmem_object);
501	for (i = 0; i < size; i += PAGE_SIZE) {
502retry:
503		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
504
505		/*
506		 * Ran out of space, free everything up and return. Don't need
507		 * to lock page queues here as we know that the pages we got
508		 * aren't on any queues.
509		 */
510		if (m == NULL) {
511			if ((flags & M_NOWAIT) == 0) {
512				VM_OBJECT_UNLOCK(kmem_object);
513				entry->eflags |= MAP_ENTRY_IN_TRANSITION;
514				vm_map_unlock(map);
515				VM_WAIT;
516				vm_map_lock(map);
517				KASSERT(
518(entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) ==
519				    MAP_ENTRY_IN_TRANSITION,
520				    ("kmem_back: volatile entry"));
521				entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
522				VM_OBJECT_LOCK(kmem_object);
523				goto retry;
524			}
525			/*
526			 * Free the pages before removing the map entry.
527			 * They are already marked busy.  Calling
528			 * vm_map_delete before the pages has been freed or
529			 * unbusied will cause a deadlock.
530			 */
531			while (i != 0) {
532				i -= PAGE_SIZE;
533				m = vm_page_lookup(kmem_object,
534						   OFF_TO_IDX(offset + i));
535				vm_page_unwire(m, 0);
536				vm_page_free(m);
537			}
538			VM_OBJECT_UNLOCK(kmem_object);
539			vm_map_delete(map, addr, addr + size);
540			return (KERN_NO_SPACE);
541		}
542		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
543			pmap_zero_page(m);
544		m->valid = VM_PAGE_BITS_ALL;
545		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
546		    ("kmem_malloc: page %p is managed", m));
547	}
548	VM_OBJECT_UNLOCK(kmem_object);
549
550	/*
551	 * Mark map entry as non-pageable.  Repeat the assert.
552	 */
553	KASSERT(entry->start == addr && entry->end == addr + size &&
554	    entry->wired_count == 0,
555	    ("kmem_back: entry not found or misaligned after allocation"));
556	entry->wired_count = 1;
557
558	/*
559	 * At this point, the kmem_object must be unlocked because
560	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
561	 * locks the kmem_object.
562	 */
563	vm_map_simplify_entry(map, entry);
564
565	/*
566	 * Loop thru pages, entering them in the pmap.
567	 */
568	VM_OBJECT_LOCK(kmem_object);
569	for (i = 0; i < size; i += PAGE_SIZE) {
570		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
571		/*
572		 * Because this is kernel_pmap, this call will not block.
573		 */
574		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
575		    TRUE);
576		vm_page_wakeup(m);
577	}
578	VM_OBJECT_UNLOCK(kmem_object);
579
580	return (KERN_SUCCESS);
581}
582
583/*
584 *	kmem_alloc_wait:
585 *
586 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
587 *	has no room, the caller sleeps waiting for more memory in the submap.
588 *
589 *	This routine may block.
590 */
591vm_offset_t
592kmem_alloc_wait(map, size)
593	vm_map_t map;
594	vm_size_t size;
595{
596	vm_offset_t addr;
597
598	size = round_page(size);
599	if (!swap_reserve(size))
600		return (0);
601
602	for (;;) {
603		/*
604		 * To make this work for more than one map, use the map's lock
605		 * to lock out sleepers/wakers.
606		 */
607		vm_map_lock(map);
608		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
609			break;
610		/* no space now; see if we can ever get space */
611		if (vm_map_max(map) - vm_map_min(map) < size) {
612			vm_map_unlock(map);
613			swap_release(size);
614			return (0);
615		}
616		map->needs_wakeup = TRUE;
617		vm_map_unlock_and_wait(map, 0);
618	}
619	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
620	    VM_PROT_ALL, MAP_ACC_CHARGED);
621	vm_map_unlock(map);
622	return (addr);
623}
624
625/*
626 *	kmem_free_wakeup:
627 *
628 *	Returns memory to a submap of the kernel, and wakes up any processes
629 *	waiting for memory in that map.
630 */
631void
632kmem_free_wakeup(map, addr, size)
633	vm_map_t map;
634	vm_offset_t addr;
635	vm_size_t size;
636{
637
638	vm_map_lock(map);
639	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
640	if (map->needs_wakeup) {
641		map->needs_wakeup = FALSE;
642		vm_map_wakeup(map);
643	}
644	vm_map_unlock(map);
645}
646
647static void
648kmem_init_zero_region(void)
649{
650	vm_offset_t addr, i;
651	vm_page_t m;
652	int error;
653
654	/*
655	 * Map a single physical page of zeros to a larger virtual range.
656	 * This requires less looping in places that want large amounts of
657	 * zeros, while not using much more physical resources.
658	 */
659	addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE);
660	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
661	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
662	if ((m->flags & PG_ZERO) == 0)
663		pmap_zero_page(m);
664	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
665		pmap_qenter(addr + i, &m, 1);
666	error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE,
667	    VM_PROT_READ, TRUE);
668	KASSERT(error == 0, ("error=%d", error));
669
670	zero_region = (const void *)addr;
671}
672
673/*
674 * 	kmem_init:
675 *
676 *	Create the kernel map; insert a mapping covering kernel text,
677 *	data, bss, and all space allocated thus far (`boostrap' data).  The
678 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
679 *	`start' as allocated, and the range between `start' and `end' as free.
680 */
681void
682kmem_init(start, end)
683	vm_offset_t start, end;
684{
685	vm_map_t m;
686
687	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
688	m->system_map = 1;
689	vm_map_lock(m);
690	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
691	kernel_map = m;
692	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
693#ifdef __amd64__
694	    KERNBASE,
695#else
696	    VM_MIN_KERNEL_ADDRESS,
697#endif
698	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
699	/* ... and ending with the completion of the above `insert' */
700	vm_map_unlock(m);
701
702	kmem_init_zero_region();
703}
704
705#ifdef DIAGNOSTIC
706/*
707 * Allow userspace to directly trigger the VM drain routine for testing
708 * purposes.
709 */
710static int
711debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
712{
713	int error, i;
714
715	i = 0;
716	error = sysctl_handle_int(oidp, &i, 0, req);
717	if (error)
718		return (error);
719	if (i)
720		EVENTHANDLER_INVOKE(vm_lowmem, 0);
721	return (0);
722}
723
724SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
725    debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
726#endif
727