vm_kern.c revision 232288
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 232288 2012-02-29 05:41:29Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76#include <sys/sysctl.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86#include <vm/uma.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t pipe_map;
92vm_map_t buffer_map=0;
93
94const void *zero_region;
95CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
96
97/*
98 *	kmem_alloc_nofault:
99 *
100 *	Allocate a virtual address range with no underlying object and
101 *	no initial mapping to physical memory.  Any mapping from this
102 *	range to physical memory must be explicitly created prior to
103 *	its use, typically with pmap_qenter().  Any attempt to create
104 *	a mapping on demand through vm_fault() will result in a panic.
105 */
106vm_offset_t
107kmem_alloc_nofault(map, size)
108	vm_map_t map;
109	vm_size_t size;
110{
111	vm_offset_t addr;
112	int result;
113
114	size = round_page(size);
115	addr = vm_map_min(map);
116	result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE,
117	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
118	if (result != KERN_SUCCESS) {
119		return (0);
120	}
121	return (addr);
122}
123
124/*
125 *	kmem_alloc_nofault_space:
126 *
127 *	Allocate a virtual address range with no underlying object and
128 *	no initial mapping to physical memory within the specified
129 *	address space.  Any mapping from this range to physical memory
130 *	must be explicitly created prior to its use, typically with
131 *	pmap_qenter().  Any attempt to create a mapping on demand
132 *	through vm_fault() will result in a panic.
133 */
134vm_offset_t
135kmem_alloc_nofault_space(map, size, find_space)
136	vm_map_t map;
137	vm_size_t size;
138	int find_space;
139{
140	vm_offset_t addr;
141	int result;
142
143	size = round_page(size);
144	addr = vm_map_min(map);
145	result = vm_map_find(map, NULL, 0, &addr, size, find_space,
146	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
147	if (result != KERN_SUCCESS) {
148		return (0);
149	}
150	return (addr);
151}
152
153/*
154 *	Allocate wired-down memory in the kernel's address map
155 *	or a submap.
156 */
157vm_offset_t
158kmem_alloc(map, size)
159	vm_map_t map;
160	vm_size_t size;
161{
162	vm_offset_t addr;
163	vm_offset_t offset;
164
165	size = round_page(size);
166
167	/*
168	 * Use the kernel object for wired-down kernel pages. Assume that no
169	 * region of the kernel object is referenced more than once.
170	 */
171
172	/*
173	 * Locate sufficient space in the map.  This will give us the final
174	 * virtual address for the new memory, and thus will tell us the
175	 * offset within the kernel map.
176	 */
177	vm_map_lock(map);
178	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
179		vm_map_unlock(map);
180		return (0);
181	}
182	offset = addr - VM_MIN_KERNEL_ADDRESS;
183	vm_object_reference(kernel_object);
184	vm_map_insert(map, kernel_object, offset, addr, addr + size,
185		VM_PROT_ALL, VM_PROT_ALL, 0);
186	vm_map_unlock(map);
187
188	/*
189	 * And finally, mark the data as non-pageable.
190	 */
191	(void) vm_map_wire(map, addr, addr + size,
192	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
193
194	return (addr);
195}
196
197/*
198 *	kmem_free:
199 *
200 *	Release a region of kernel virtual memory allocated
201 *	with kmem_alloc, and return the physical pages
202 *	associated with that region.
203 *
204 *	This routine may not block on kernel maps.
205 */
206void
207kmem_free(map, addr, size)
208	vm_map_t map;
209	vm_offset_t addr;
210	vm_size_t size;
211{
212
213	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
214}
215
216/*
217 *	kmem_suballoc:
218 *
219 *	Allocates a map to manage a subrange
220 *	of the kernel virtual address space.
221 *
222 *	Arguments are as follows:
223 *
224 *	parent		Map to take range from
225 *	min, max	Returned endpoints of map
226 *	size		Size of range to find
227 *	superpage_align	Request that min is superpage aligned
228 */
229vm_map_t
230kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
231    vm_size_t size, boolean_t superpage_align)
232{
233	int ret;
234	vm_map_t result;
235
236	size = round_page(size);
237
238	*min = vm_map_min(parent);
239	ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
240	    VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
241	    MAP_ACC_NO_CHARGE);
242	if (ret != KERN_SUCCESS)
243		panic("kmem_suballoc: bad status return of %d", ret);
244	*max = *min + size;
245	result = vm_map_create(vm_map_pmap(parent), *min, *max);
246	if (result == NULL)
247		panic("kmem_suballoc: cannot create submap");
248	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
249		panic("kmem_suballoc: unable to change range to submap");
250	return (result);
251}
252
253/*
254 *	kmem_malloc:
255 *
256 * 	Allocate wired-down memory in the kernel's address map for the higher
257 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
258 * 	kmem_alloc() because we may need to allocate memory at interrupt
259 * 	level where we cannot block (canwait == FALSE).
260 *
261 * 	This routine has its own private kernel submap (kmem_map) and object
262 * 	(kmem_object).  This, combined with the fact that only malloc uses
263 * 	this routine, ensures that we will never block in map or object waits.
264 *
265 * 	We don't worry about expanding the map (adding entries) since entries
266 * 	for wired maps are statically allocated.
267 *
268 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
269 *	which we never free.
270 */
271vm_offset_t
272kmem_malloc(map, size, flags)
273	vm_map_t map;
274	vm_size_t size;
275	int flags;
276{
277	vm_offset_t addr;
278	int i, rv;
279
280	size = round_page(size);
281	addr = vm_map_min(map);
282
283	/*
284	 * Locate sufficient space in the map.  This will give us the final
285	 * virtual address for the new memory, and thus will tell us the
286	 * offset within the kernel map.
287	 */
288	vm_map_lock(map);
289	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
290		vm_map_unlock(map);
291                if ((flags & M_NOWAIT) == 0) {
292			for (i = 0; i < 8; i++) {
293				EVENTHANDLER_INVOKE(vm_lowmem, 0);
294				uma_reclaim();
295				vm_map_lock(map);
296				if (vm_map_findspace(map, vm_map_min(map),
297				    size, &addr) == 0) {
298					break;
299				}
300				vm_map_unlock(map);
301				tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
302			}
303			if (i == 8) {
304				panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
305				    (long)size, (long)map->size);
306			}
307		} else {
308			return (0);
309		}
310	}
311
312	rv = kmem_back(map, addr, size, flags);
313	vm_map_unlock(map);
314	return (rv == KERN_SUCCESS ? addr : 0);
315}
316
317/*
318 *	kmem_back:
319 *
320 *	Allocate physical pages for the specified virtual address range.
321 */
322int
323kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags)
324{
325	vm_offset_t offset, i;
326	vm_map_entry_t entry;
327	vm_page_t m;
328	int pflags;
329	boolean_t found;
330
331	KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map));
332	offset = addr - VM_MIN_KERNEL_ADDRESS;
333	vm_object_reference(kmem_object);
334	vm_map_insert(map, kmem_object, offset, addr, addr + size,
335	    VM_PROT_ALL, VM_PROT_ALL, 0);
336
337	/*
338	 * Assert: vm_map_insert() will never be able to extend the
339	 * previous entry so vm_map_lookup_entry() will find a new
340	 * entry exactly corresponding to this address range and it
341	 * will have wired_count == 0.
342	 */
343	found = vm_map_lookup_entry(map, addr, &entry);
344	KASSERT(found && entry->start == addr && entry->end == addr + size &&
345	    entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION)
346	    == 0, ("kmem_back: entry not found or misaligned"));
347
348	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
349		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
350	else
351		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
352
353	if (flags & M_ZERO)
354		pflags |= VM_ALLOC_ZERO;
355	if (flags & M_NODUMP)
356		pflags |= VM_ALLOC_NODUMP;
357
358	VM_OBJECT_LOCK(kmem_object);
359	for (i = 0; i < size; i += PAGE_SIZE) {
360retry:
361		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
362
363		/*
364		 * Ran out of space, free everything up and return. Don't need
365		 * to lock page queues here as we know that the pages we got
366		 * aren't on any queues.
367		 */
368		if (m == NULL) {
369			if ((flags & M_NOWAIT) == 0) {
370				VM_OBJECT_UNLOCK(kmem_object);
371				entry->eflags |= MAP_ENTRY_IN_TRANSITION;
372				vm_map_unlock(map);
373				VM_WAIT;
374				vm_map_lock(map);
375				KASSERT(
376(entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) ==
377				    MAP_ENTRY_IN_TRANSITION,
378				    ("kmem_back: volatile entry"));
379				entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
380				VM_OBJECT_LOCK(kmem_object);
381				goto retry;
382			}
383			/*
384			 * Free the pages before removing the map entry.
385			 * They are already marked busy.  Calling
386			 * vm_map_delete before the pages has been freed or
387			 * unbusied will cause a deadlock.
388			 */
389			while (i != 0) {
390				i -= PAGE_SIZE;
391				m = vm_page_lookup(kmem_object,
392						   OFF_TO_IDX(offset + i));
393				vm_page_unwire(m, 0);
394				vm_page_free(m);
395			}
396			VM_OBJECT_UNLOCK(kmem_object);
397			vm_map_delete(map, addr, addr + size);
398			return (KERN_NO_SPACE);
399		}
400		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
401			pmap_zero_page(m);
402		m->valid = VM_PAGE_BITS_ALL;
403		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
404		    ("kmem_malloc: page %p is managed", m));
405	}
406	VM_OBJECT_UNLOCK(kmem_object);
407
408	/*
409	 * Mark map entry as non-pageable.  Repeat the assert.
410	 */
411	KASSERT(entry->start == addr && entry->end == addr + size &&
412	    entry->wired_count == 0,
413	    ("kmem_back: entry not found or misaligned after allocation"));
414	entry->wired_count = 1;
415
416	/*
417	 * At this point, the kmem_object must be unlocked because
418	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
419	 * locks the kmem_object.
420	 */
421	vm_map_simplify_entry(map, entry);
422
423	/*
424	 * Loop thru pages, entering them in the pmap.
425	 */
426	VM_OBJECT_LOCK(kmem_object);
427	for (i = 0; i < size; i += PAGE_SIZE) {
428		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
429		/*
430		 * Because this is kernel_pmap, this call will not block.
431		 */
432		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
433		    TRUE);
434		vm_page_wakeup(m);
435	}
436	VM_OBJECT_UNLOCK(kmem_object);
437
438	return (KERN_SUCCESS);
439}
440
441/*
442 *	kmem_alloc_wait:
443 *
444 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
445 *	has no room, the caller sleeps waiting for more memory in the submap.
446 *
447 *	This routine may block.
448 */
449vm_offset_t
450kmem_alloc_wait(map, size)
451	vm_map_t map;
452	vm_size_t size;
453{
454	vm_offset_t addr;
455
456	size = round_page(size);
457	if (!swap_reserve(size))
458		return (0);
459
460	for (;;) {
461		/*
462		 * To make this work for more than one map, use the map's lock
463		 * to lock out sleepers/wakers.
464		 */
465		vm_map_lock(map);
466		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
467			break;
468		/* no space now; see if we can ever get space */
469		if (vm_map_max(map) - vm_map_min(map) < size) {
470			vm_map_unlock(map);
471			swap_release(size);
472			return (0);
473		}
474		map->needs_wakeup = TRUE;
475		vm_map_unlock_and_wait(map, 0);
476	}
477	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
478	    VM_PROT_ALL, MAP_ACC_CHARGED);
479	vm_map_unlock(map);
480	return (addr);
481}
482
483/*
484 *	kmem_free_wakeup:
485 *
486 *	Returns memory to a submap of the kernel, and wakes up any processes
487 *	waiting for memory in that map.
488 */
489void
490kmem_free_wakeup(map, addr, size)
491	vm_map_t map;
492	vm_offset_t addr;
493	vm_size_t size;
494{
495
496	vm_map_lock(map);
497	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
498	if (map->needs_wakeup) {
499		map->needs_wakeup = FALSE;
500		vm_map_wakeup(map);
501	}
502	vm_map_unlock(map);
503}
504
505static void
506kmem_init_zero_region(void)
507{
508	vm_offset_t addr, i;
509	vm_page_t m;
510	int error;
511
512	/*
513	 * Map a single physical page of zeros to a larger virtual range.
514	 * This requires less looping in places that want large amounts of
515	 * zeros, while not using much more physical resources.
516	 */
517	addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE);
518	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
519	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
520	if ((m->flags & PG_ZERO) == 0)
521		pmap_zero_page(m);
522	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
523		pmap_qenter(addr + i, &m, 1);
524	error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE,
525	    VM_PROT_READ, TRUE);
526	KASSERT(error == 0, ("error=%d", error));
527
528	zero_region = (const void *)addr;
529}
530
531/*
532 * 	kmem_init:
533 *
534 *	Create the kernel map; insert a mapping covering kernel text,
535 *	data, bss, and all space allocated thus far (`boostrap' data).  The
536 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
537 *	`start' as allocated, and the range between `start' and `end' as free.
538 */
539void
540kmem_init(start, end)
541	vm_offset_t start, end;
542{
543	vm_map_t m;
544
545	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
546	m->system_map = 1;
547	vm_map_lock(m);
548	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
549	kernel_map = m;
550	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
551#ifdef __amd64__
552	    KERNBASE,
553#else
554	    VM_MIN_KERNEL_ADDRESS,
555#endif
556	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
557	/* ... and ending with the completion of the above `insert' */
558	vm_map_unlock(m);
559
560	kmem_init_zero_region();
561}
562
563#ifdef DIAGNOSTIC
564/*
565 * Allow userspace to directly trigger the VM drain routine for testing
566 * purposes.
567 */
568static int
569debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
570{
571	int error, i;
572
573	i = 0;
574	error = sysctl_handle_int(oidp, &i, 0, req);
575	if (error)
576		return (error);
577	if (i)
578		EVENTHANDLER_INVOKE(vm_lowmem, 0);
579	return (0);
580}
581
582SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
583    debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
584#endif
585