vm_kern.c revision 2112
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.6 1994/08/07 14:53:26 davidg Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>
74#include <sys/proc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_page.h>
78#include <vm/vm_pageout.h>
79#include <vm/vm_kern.h>
80
81vm_map_t	buffer_map;
82vm_map_t	kernel_map;
83vm_map_t	kmem_map;
84vm_map_t	mb_map;
85vm_map_t	io_map;
86vm_map_t	clean_map;
87vm_map_t	pager_map;
88vm_map_t	phys_map;
89
90/*
91 *	kmem_alloc_pageable:
92 *
93 *	Allocate pageable memory to the kernel's address map.
94 *	map must be "kernel_map" below.
95 */
96
97vm_offset_t kmem_alloc_pageable(map, size)
98	vm_map_t		map;
99	register vm_size_t	size;
100{
101	vm_offset_t		addr;
102	register int		result;
103
104#if	0
105	if (map != kernel_map)
106		panic("kmem_alloc_pageable: not called with kernel_map");
107#endif
108
109	size = round_page(size);
110
111	addr = vm_map_min(map);
112	result = vm_map_find(map, NULL, (vm_offset_t) 0,
113				&addr, size, TRUE);
114	if (result != KERN_SUCCESS) {
115		return(0);
116	}
117
118	return(addr);
119}
120
121/*
122 *	Allocate wired-down memory in the kernel's address map
123 *	or a submap.
124 */
125vm_offset_t kmem_alloc(map, size)
126	register vm_map_t	map;
127	register vm_size_t	size;
128{
129	vm_offset_t		addr;
130	register vm_offset_t	offset;
131	vm_offset_t		i;
132
133	size = round_page(size);
134
135	/*
136	 *	Use the kernel object for wired-down kernel pages.
137	 *	Assume that no region of the kernel object is
138	 *	referenced more than once.
139	 */
140
141	/*
142	 * Locate sufficient space in the map.  This will give us the
143	 * final virtual address for the new memory, and thus will tell
144	 * us the offset within the kernel map.
145	 */
146	vm_map_lock(map);
147	if (vm_map_findspace(map, 0, size, &addr)) {
148		vm_map_unlock(map);
149		return (0);
150	}
151	offset = addr - VM_MIN_KERNEL_ADDRESS;
152	vm_object_reference(kernel_object);
153	vm_map_insert(map, kernel_object, offset, addr, addr + size);
154	vm_map_unlock(map);
155
156	/*
157	 *	Guarantee that there are pages already in this object
158	 *	before calling vm_map_pageable.  This is to prevent the
159	 *	following scenario:
160	 *
161	 *		1) Threads have swapped out, so that there is a
162	 *		   pager for the kernel_object.
163	 *		2) The kmsg zone is empty, and so we are kmem_allocing
164	 *		   a new page for it.
165	 *		3) vm_map_pageable calls vm_fault; there is no page,
166	 *		   but there is a pager, so we call
167	 *		   pager_data_request.  But the kmsg zone is empty,
168	 *		   so we must kmem_alloc.
169	 *		4) goto 1
170	 *		5) Even if the kmsg zone is not empty: when we get
171	 *		   the data back from the pager, it will be (very
172	 *		   stale) non-zero data.  kmem_alloc is defined to
173	 *		   return zero-filled memory.
174	 *
175	 *	We're intentionally not activating the pages we allocate
176	 *	to prevent a race with page-out.  vm_map_pageable will wire
177	 *	the pages.
178	 */
179
180	vm_object_lock(kernel_object);
181	for (i = 0 ; i < size; i+= PAGE_SIZE) {
182		vm_page_t	mem;
183
184		while ((mem = vm_page_alloc(kernel_object, offset+i)) == NULL) {
185			vm_object_unlock(kernel_object);
186			VM_WAIT;
187			vm_object_lock(kernel_object);
188		}
189		vm_page_zero_fill(mem);
190		mem->flags &= ~PG_BUSY;
191	}
192	vm_object_unlock(kernel_object);
193
194	/*
195	 *	And finally, mark the data as non-pageable.
196	 */
197
198	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
199
200	/*
201	 *	Try to coalesce the map
202	 */
203
204	vm_map_simplify(map, addr);
205
206	return(addr);
207}
208
209/*
210 *	kmem_free:
211 *
212 *	Release a region of kernel virtual memory allocated
213 *	with kmem_alloc, and return the physical pages
214 *	associated with that region.
215 */
216void kmem_free(map, addr, size)
217	vm_map_t		map;
218	register vm_offset_t	addr;
219	vm_size_t		size;
220{
221	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
222}
223
224/*
225 *	kmem_suballoc:
226 *
227 *	Allocates a map to manage a subrange
228 *	of the kernel virtual address space.
229 *
230 *	Arguments are as follows:
231 *
232 *	parent		Map to take range from
233 *	size		Size of range to find
234 *	min, max	Returned endpoints of map
235 *	pageable	Can the region be paged
236 */
237vm_map_t kmem_suballoc(parent, min, max, size, pageable)
238	register vm_map_t	parent;
239	vm_offset_t		*min, *max;
240	register vm_size_t	size;
241	boolean_t		pageable;
242{
243	register int	ret;
244	vm_map_t	result;
245
246	size = round_page(size);
247
248	*min = (vm_offset_t) vm_map_min(parent);
249	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
250				min, size, TRUE);
251	if (ret != KERN_SUCCESS) {
252		printf("kmem_suballoc: bad status return of %d.\n", ret);
253		panic("kmem_suballoc");
254	}
255	*max = *min + size;
256	pmap_reference(vm_map_pmap(parent));
257	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
258	if (result == NULL)
259		panic("kmem_suballoc: cannot create submap");
260	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
261		panic("kmem_suballoc: unable to change range to submap");
262	return(result);
263}
264
265/*
266 * Allocate wired-down memory in the kernel's address map for the higher
267 * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
268 * kmem_alloc() because we may need to allocate memory at interrupt
269 * level where we cannot block (canwait == FALSE).
270 *
271 * This routine has its own private kernel submap (kmem_map) and object
272 * (kmem_object).  This, combined with the fact that only malloc uses
273 * this routine, ensures that we will never block in map or object waits.
274 *
275 * Note that this still only works in a uni-processor environment and
276 * when called at splhigh().
277 *
278 * We don't worry about expanding the map (adding entries) since entries
279 * for wired maps are statically allocated.
280 */
281vm_offset_t
282kmem_malloc(map, size, canwait)
283	register vm_map_t	map;
284	register vm_size_t	size;
285	boolean_t		canwait;
286{
287	register vm_offset_t	offset, i;
288	vm_map_entry_t		entry;
289	vm_offset_t		addr;
290	vm_page_t		m;
291
292	if (map != kmem_map && map != mb_map)
293		panic("kern_malloc_alloc: map != {kmem,mb}_map");
294
295	size = round_page(size);
296	addr = vm_map_min(map);
297
298	/*
299	 * Locate sufficient space in the map.  This will give us the
300	 * final virtual address for the new memory, and thus will tell
301	 * us the offset within the kernel map.
302	 */
303	vm_map_lock(map);
304	if (vm_map_findspace(map, 0, size, &addr)) {
305		vm_map_unlock(map);
306#if 0
307		if (canwait)		/* XXX  should wait */
308			panic("kmem_malloc: %s too small",
309			    map == kmem_map ? "kmem_map" : "mb_map");
310#endif
311		if (canwait)
312			panic("kmem_malloc: map too small");
313		return (0);
314	}
315	offset = addr - vm_map_min(kmem_map);
316	vm_object_reference(kmem_object);
317	vm_map_insert(map, kmem_object, offset, addr, addr + size);
318
319	/*
320	 * If we can wait, just mark the range as wired
321	 * (will fault pages as necessary).
322	 */
323	if (canwait) {
324		vm_map_unlock(map);
325		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
326				       FALSE);
327		vm_map_simplify(map, addr);
328		return(addr);
329	}
330
331	/*
332	 * If we cannot wait then we must allocate all memory up front,
333	 * pulling it off the active queue to prevent pageout.
334	 */
335	vm_object_lock(kmem_object);
336	for (i = 0; i < size; i += PAGE_SIZE) {
337		m = vm_page_alloc(kmem_object, offset + i);
338
339		/*
340		 * Ran out of space, free everything up and return.
341		 * Don't need to lock page queues here as we know
342		 * that the pages we got aren't on any queues.
343		 */
344		if (m == NULL) {
345			while (i != 0) {
346				i -= PAGE_SIZE;
347				m = vm_page_lookup(kmem_object, offset + i);
348				vm_page_free(m);
349			}
350			vm_object_unlock(kmem_object);
351			vm_map_delete(map, addr, addr + size);
352			vm_map_unlock(map);
353			return(0);
354		}
355#if 0
356		vm_page_zero_fill(m);
357#endif
358		m->flags &= ~PG_BUSY;
359	}
360	vm_object_unlock(kmem_object);
361
362	/*
363	 * Mark map entry as non-pageable.
364	 * Assert: vm_map_insert() will never be able to extend the previous
365	 * entry so there will be a new entry exactly corresponding to this
366	 * address range and it will have wired_count == 0.
367	 */
368	if (!vm_map_lookup_entry(map, addr, &entry) ||
369	    entry->start != addr || entry->end != addr + size ||
370	    entry->wired_count)
371		panic("kmem_malloc: entry not found or misaligned");
372	entry->wired_count++;
373
374	/*
375	 * Loop thru pages, entering them in the pmap.
376	 * (We cannot add them to the wired count without
377	 * wrapping the vm_page_queue_lock in splimp...)
378	 */
379	for (i = 0; i < size; i += PAGE_SIZE) {
380		vm_object_lock(kmem_object);
381		m = vm_page_lookup(kmem_object, offset + i);
382		vm_object_unlock(kmem_object);
383		pmap_kenter( addr + i, VM_PAGE_TO_PHYS(m));
384	}
385	vm_map_unlock(map);
386
387	vm_map_simplify(map, addr);
388	return(addr);
389}
390
391/*
392 *	kmem_alloc_wait
393 *
394 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
395 *	has no room, the caller sleeps waiting for more memory in the submap.
396 *
397 */
398vm_offset_t kmem_alloc_wait(map, size)
399	vm_map_t	map;
400	vm_size_t	size;
401{
402	vm_offset_t	addr;
403
404	size = round_page(size);
405
406	for (;;) {
407		/*
408		 * To make this work for more than one map,
409		 * use the map's lock to lock out sleepers/wakers.
410		 */
411		vm_map_lock(map);
412		if (vm_map_findspace(map, 0, size, &addr) == 0)
413			break;
414		/* no space now; see if we can ever get space */
415		if (vm_map_max(map) - vm_map_min(map) < size) {
416			vm_map_unlock(map);
417			return (0);
418		}
419		assert_wait((int)map, TRUE);
420		vm_map_unlock(map);
421		thread_block("kmaw");
422	}
423	vm_map_insert(map, NULL, (vm_offset_t)0, addr, addr + size);
424	vm_map_unlock(map);
425	return (addr);
426}
427
428/*
429 *	kmem_free_wakeup
430 *
431 *	Returns memory to a submap of the kernel, and wakes up any threads
432 *	waiting for memory in that map.
433 */
434void	kmem_free_wakeup(map, addr, size)
435	vm_map_t	map;
436	vm_offset_t	addr;
437	vm_size_t	size;
438{
439	vm_map_lock(map);
440	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
441	thread_wakeup((int)map);
442	vm_map_unlock(map);
443}
444
445/*
446 * Create the kernel map; insert a mapping covering kernel text, data, bss,
447 * and all space allocated thus far (`boostrap' data).  The new map will thus
448 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
449 * the range between `start' and `end' as free.
450 */
451void kmem_init(start, end)
452	vm_offset_t start, end;
453{
454	register vm_map_t m;
455
456	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
457	vm_map_lock(m);
458	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
459	kernel_map = m;
460	(void) vm_map_insert(m, NULL, (vm_offset_t)0,
461	    VM_MIN_KERNEL_ADDRESS, start);
462	/* ... and ending with the completion of the above `insert' */
463	vm_map_unlock(m);
464}
465