vm_kern.c revision 207410
1282201Spfg/*-
2282201Spfg * Copyright (c) 1991, 1993
3282201Spfg *	The Regents of the University of California.  All rights reserved.
4282201Spfg *
5282201Spfg * This code is derived from software contributed to Berkeley by
6282201Spfg * The Mach Operating System project at Carnegie-Mellon University.
7282201Spfg *
8282201Spfg * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 207410 2010-04-30 00:46:43Z kmacy $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76#include <sys/sysctl.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_extern.h>
86#include <vm/uma.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t pipe_map;
92vm_map_t buffer_map=0;
93
94/*
95 *	kmem_alloc_nofault:
96 *
97 *	Allocate a virtual address range with no underlying object and
98 *	no initial mapping to physical memory.  Any mapping from this
99 *	range to physical memory must be explicitly created prior to
100 *	its use, typically with pmap_qenter().  Any attempt to create
101 *	a mapping on demand through vm_fault() will result in a panic.
102 */
103vm_offset_t
104kmem_alloc_nofault(map, size)
105	vm_map_t map;
106	vm_size_t size;
107{
108	vm_offset_t addr;
109	int result;
110
111	size = round_page(size);
112	addr = vm_map_min(map);
113	result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE,
114	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
115	if (result != KERN_SUCCESS) {
116		return (0);
117	}
118	return (addr);
119}
120
121/*
122 *	kmem_alloc_nofault_space:
123 *
124 *	Allocate a virtual address range with no underlying object and
125 *	no initial mapping to physical memory within the specified
126 *	address space.  Any mapping from this range to physical memory
127 *	must be explicitly created prior to its use, typically with
128 *	pmap_qenter().  Any attempt to create a mapping on demand
129 *	through vm_fault() will result in a panic.
130 */
131vm_offset_t
132kmem_alloc_nofault_space(map, size, find_space)
133	vm_map_t map;
134	vm_size_t size;
135	int find_space;
136{
137	vm_offset_t addr;
138	int result;
139
140	size = round_page(size);
141	addr = vm_map_min(map);
142	result = vm_map_find(map, NULL, 0, &addr, size, find_space,
143	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
144	if (result != KERN_SUCCESS) {
145		return (0);
146	}
147	return (addr);
148}
149
150/*
151 *	Allocate wired-down memory in the kernel's address map
152 *	or a submap.
153 */
154vm_offset_t
155kmem_alloc(map, size)
156	vm_map_t map;
157	vm_size_t size;
158{
159	vm_offset_t addr;
160	vm_offset_t offset;
161	vm_offset_t i;
162
163	size = round_page(size);
164
165	/*
166	 * Use the kernel object for wired-down kernel pages. Assume that no
167	 * region of the kernel object is referenced more than once.
168	 */
169
170	/*
171	 * Locate sufficient space in the map.  This will give us the final
172	 * virtual address for the new memory, and thus will tell us the
173	 * offset within the kernel map.
174	 */
175	vm_map_lock(map);
176	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
177		vm_map_unlock(map);
178		return (0);
179	}
180	offset = addr - VM_MIN_KERNEL_ADDRESS;
181	vm_object_reference(kernel_object);
182	vm_map_insert(map, kernel_object, offset, addr, addr + size,
183		VM_PROT_ALL, VM_PROT_ALL, 0);
184	vm_map_unlock(map);
185
186	/*
187	 * Guarantee that there are pages already in this object before
188	 * calling vm_map_wire.  This is to prevent the following
189	 * scenario:
190	 *
191	 * 1) Threads have swapped out, so that there is a pager for the
192	 * kernel_object. 2) The kmsg zone is empty, and so we are
193	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
194	 * there is no page, but there is a pager, so we call
195	 * pager_data_request.  But the kmsg zone is empty, so we must
196	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
197	 * we get the data back from the pager, it will be (very stale)
198	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
199	 *
200	 * We're intentionally not activating the pages we allocate to prevent a
201	 * race with page-out.  vm_map_wire will wire the pages.
202	 */
203	VM_OBJECT_LOCK(kernel_object);
204	for (i = 0; i < size; i += PAGE_SIZE) {
205		vm_page_t mem;
206
207		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
208		    VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
209		mem->valid = VM_PAGE_BITS_ALL;
210		KASSERT((mem->flags & PG_UNMANAGED) != 0,
211		    ("kmem_alloc: page %p is managed", mem));
212	}
213	VM_OBJECT_UNLOCK(kernel_object);
214
215	/*
216	 * And finally, mark the data as non-pageable.
217	 */
218	(void) vm_map_wire(map, addr, addr + size,
219	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
220
221	return (addr);
222}
223
224/*
225 *	kmem_free:
226 *
227 *	Release a region of kernel virtual memory allocated
228 *	with kmem_alloc, and return the physical pages
229 *	associated with that region.
230 *
231 *	This routine may not block on kernel maps.
232 */
233void
234kmem_free(map, addr, size)
235	vm_map_t map;
236	vm_offset_t addr;
237	vm_size_t size;
238{
239
240	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
241}
242
243/*
244 *	kmem_suballoc:
245 *
246 *	Allocates a map to manage a subrange
247 *	of the kernel virtual address space.
248 *
249 *	Arguments are as follows:
250 *
251 *	parent		Map to take range from
252 *	min, max	Returned endpoints of map
253 *	size		Size of range to find
254 *	superpage_align	Request that min is superpage aligned
255 */
256vm_map_t
257kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
258    vm_size_t size, boolean_t superpage_align)
259{
260	int ret;
261	vm_map_t result;
262
263	size = round_page(size);
264
265	*min = vm_map_min(parent);
266	ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
267	    VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
268	    MAP_ACC_NO_CHARGE);
269	if (ret != KERN_SUCCESS)
270		panic("kmem_suballoc: bad status return of %d", ret);
271	*max = *min + size;
272	result = vm_map_create(vm_map_pmap(parent), *min, *max);
273	if (result == NULL)
274		panic("kmem_suballoc: cannot create submap");
275	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
276		panic("kmem_suballoc: unable to change range to submap");
277	return (result);
278}
279
280/*
281 *	kmem_malloc:
282 *
283 * 	Allocate wired-down memory in the kernel's address map for the higher
284 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
285 * 	kmem_alloc() because we may need to allocate memory at interrupt
286 * 	level where we cannot block (canwait == FALSE).
287 *
288 * 	This routine has its own private kernel submap (kmem_map) and object
289 * 	(kmem_object).  This, combined with the fact that only malloc uses
290 * 	this routine, ensures that we will never block in map or object waits.
291 *
292 * 	We don't worry about expanding the map (adding entries) since entries
293 * 	for wired maps are statically allocated.
294 *
295 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
296 *	which we never free.
297 */
298vm_offset_t
299kmem_malloc(map, size, flags)
300	vm_map_t map;
301	vm_size_t size;
302	int flags;
303{
304	vm_offset_t offset, i;
305	vm_map_entry_t entry;
306	vm_offset_t addr;
307	vm_page_t m;
308	int pflags;
309
310	size = round_page(size);
311	addr = vm_map_min(map);
312
313	/*
314	 * Locate sufficient space in the map.  This will give us the final
315	 * virtual address for the new memory, and thus will tell us the
316	 * offset within the kernel map.
317	 */
318	vm_map_lock(map);
319	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
320		vm_map_unlock(map);
321                if ((flags & M_NOWAIT) == 0) {
322			for (i = 0; i < 8; i++) {
323				EVENTHANDLER_INVOKE(vm_lowmem, 0);
324				uma_reclaim();
325				vm_map_lock(map);
326				if (vm_map_findspace(map, vm_map_min(map),
327				    size, &addr) == 0) {
328					break;
329				}
330				vm_map_unlock(map);
331				tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
332			}
333			if (i == 8) {
334				panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
335				    (long)size, (long)map->size);
336			}
337		} else {
338			return (0);
339		}
340	}
341	offset = addr - VM_MIN_KERNEL_ADDRESS;
342	vm_object_reference(kmem_object);
343	vm_map_insert(map, kmem_object, offset, addr, addr + size,
344		VM_PROT_ALL, VM_PROT_ALL, 0);
345
346	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
347		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
348	else
349		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
350
351	if (flags & M_ZERO)
352		pflags |= VM_ALLOC_ZERO;
353
354	VM_OBJECT_LOCK(kmem_object);
355	for (i = 0; i < size; i += PAGE_SIZE) {
356retry:
357		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
358
359		/*
360		 * Ran out of space, free everything up and return. Don't need
361		 * to lock page queues here as we know that the pages we got
362		 * aren't on any queues.
363		 */
364		if (m == NULL) {
365			if ((flags & M_NOWAIT) == 0) {
366				VM_OBJECT_UNLOCK(kmem_object);
367				vm_map_unlock(map);
368				VM_WAIT;
369				vm_map_lock(map);
370				VM_OBJECT_LOCK(kmem_object);
371				goto retry;
372			}
373			/*
374			 * Free the pages before removing the map entry.
375			 * They are already marked busy.  Calling
376			 * vm_map_delete before the pages has been freed or
377			 * unbusied will cause a deadlock.
378			 */
379			while (i != 0) {
380				i -= PAGE_SIZE;
381				m = vm_page_lookup(kmem_object,
382						   OFF_TO_IDX(offset + i));
383				vm_page_lock(m);
384				vm_page_lock_queues();
385				vm_page_unwire(m, 0);
386				vm_page_free(m);
387				vm_page_unlock_queues();
388				vm_page_unlock(m);
389			}
390			VM_OBJECT_UNLOCK(kmem_object);
391			vm_map_delete(map, addr, addr + size);
392			vm_map_unlock(map);
393			return (0);
394		}
395		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
396			pmap_zero_page(m);
397		m->valid = VM_PAGE_BITS_ALL;
398		KASSERT((m->flags & PG_UNMANAGED) != 0,
399		    ("kmem_malloc: page %p is managed", m));
400	}
401	VM_OBJECT_UNLOCK(kmem_object);
402
403	/*
404	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
405	 * be able to extend the previous entry so there will be a new entry
406	 * exactly corresponding to this address range and it will have
407	 * wired_count == 0.
408	 */
409	if (!vm_map_lookup_entry(map, addr, &entry) ||
410	    entry->start != addr || entry->end != addr + size ||
411	    entry->wired_count != 0)
412		panic("kmem_malloc: entry not found or misaligned");
413	entry->wired_count = 1;
414
415	/*
416	 * At this point, the kmem_object must be unlocked because
417	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
418	 * locks the kmem_object.
419	 */
420	vm_map_simplify_entry(map, entry);
421
422	/*
423	 * Loop thru pages, entering them in the pmap.
424	 */
425	VM_OBJECT_LOCK(kmem_object);
426	for (i = 0; i < size; i += PAGE_SIZE) {
427		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
428		/*
429		 * Because this is kernel_pmap, this call will not block.
430		 */
431		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
432		    TRUE);
433		vm_page_wakeup(m);
434	}
435	VM_OBJECT_UNLOCK(kmem_object);
436	vm_map_unlock(map);
437
438	return (addr);
439}
440
441/*
442 *	kmem_alloc_wait:
443 *
444 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
445 *	has no room, the caller sleeps waiting for more memory in the submap.
446 *
447 *	This routine may block.
448 */
449vm_offset_t
450kmem_alloc_wait(map, size)
451	vm_map_t map;
452	vm_size_t size;
453{
454	vm_offset_t addr;
455
456	size = round_page(size);
457	if (!swap_reserve(size))
458		return (0);
459
460	for (;;) {
461		/*
462		 * To make this work for more than one map, use the map's lock
463		 * to lock out sleepers/wakers.
464		 */
465		vm_map_lock(map);
466		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
467			break;
468		/* no space now; see if we can ever get space */
469		if (vm_map_max(map) - vm_map_min(map) < size) {
470			vm_map_unlock(map);
471			swap_release(size);
472			return (0);
473		}
474		map->needs_wakeup = TRUE;
475		vm_map_unlock_and_wait(map, 0);
476	}
477	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
478	    VM_PROT_ALL, MAP_ACC_CHARGED);
479	vm_map_unlock(map);
480	return (addr);
481}
482
483/*
484 *	kmem_free_wakeup:
485 *
486 *	Returns memory to a submap of the kernel, and wakes up any processes
487 *	waiting for memory in that map.
488 */
489void
490kmem_free_wakeup(map, addr, size)
491	vm_map_t map;
492	vm_offset_t addr;
493	vm_size_t size;
494{
495
496	vm_map_lock(map);
497	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
498	if (map->needs_wakeup) {
499		map->needs_wakeup = FALSE;
500		vm_map_wakeup(map);
501	}
502	vm_map_unlock(map);
503}
504
505/*
506 * 	kmem_init:
507 *
508 *	Create the kernel map; insert a mapping covering kernel text,
509 *	data, bss, and all space allocated thus far (`boostrap' data).  The
510 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
511 *	`start' as allocated, and the range between `start' and `end' as free.
512 */
513void
514kmem_init(start, end)
515	vm_offset_t start, end;
516{
517	vm_map_t m;
518
519	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
520	m->system_map = 1;
521	vm_map_lock(m);
522	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
523	kernel_map = m;
524	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
525#ifdef __amd64__
526	    KERNBASE,
527#else
528	    VM_MIN_KERNEL_ADDRESS,
529#endif
530	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
531	/* ... and ending with the completion of the above `insert' */
532	vm_map_unlock(m);
533}
534
535#ifdef DIAGNOSTIC
536/*
537 * Allow userspace to directly trigger the VM drain routine for testing
538 * purposes.
539 */
540static int
541debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
542{
543	int error, i;
544
545	i = 0;
546	error = sysctl_handle_int(oidp, &i, 0, req);
547	if (error)
548		return (error);
549	if (i)
550		EVENTHANDLER_INVOKE(vm_lowmem, 0);
551	return (0);
552}
553
554SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
555    debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
556#endif
557