vm_kern.c revision 163622
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 163622 2006-10-23 05:27:31Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/lock.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82#include <vm/vm_pageout.h>
83#include <vm/vm_extern.h>
84
85vm_map_t kernel_map=0;
86vm_map_t kmem_map=0;
87vm_map_t exec_map=0;
88vm_map_t pipe_map;
89vm_map_t buffer_map=0;
90
91/*
92 *	kmem_alloc_nofault:
93 *
94 *	Allocate a virtual address range with no underlying object and
95 *	no initial mapping to physical memory.  Any mapping from this
96 *	range to physical memory must be explicitly created prior to
97 *	its use, typically with pmap_qenter().  Any attempt to create
98 *	a mapping on demand through vm_fault() will result in a panic.
99 */
100vm_offset_t
101kmem_alloc_nofault(map, size)
102	vm_map_t map;
103	vm_size_t size;
104{
105	vm_offset_t addr;
106	int result;
107
108	size = round_page(size);
109	addr = vm_map_min(map);
110	result = vm_map_find(map, NULL, 0,
111	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
112	if (result != KERN_SUCCESS) {
113		return (0);
114	}
115	return (addr);
116}
117
118/*
119 *	Allocate wired-down memory in the kernel's address map
120 *	or a submap.
121 */
122vm_offset_t
123kmem_alloc(map, size)
124	vm_map_t map;
125	vm_size_t size;
126{
127	vm_offset_t addr;
128	vm_offset_t offset;
129	vm_offset_t i;
130
131	size = round_page(size);
132
133	/*
134	 * Use the kernel object for wired-down kernel pages. Assume that no
135	 * region of the kernel object is referenced more than once.
136	 */
137
138	/*
139	 * Locate sufficient space in the map.  This will give us the final
140	 * virtual address for the new memory, and thus will tell us the
141	 * offset within the kernel map.
142	 */
143	vm_map_lock(map);
144	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
145		vm_map_unlock(map);
146		return (0);
147	}
148	offset = addr - VM_MIN_KERNEL_ADDRESS;
149	vm_object_reference(kernel_object);
150	vm_map_insert(map, kernel_object, offset, addr, addr + size,
151		VM_PROT_ALL, VM_PROT_ALL, 0);
152	vm_map_unlock(map);
153
154	/*
155	 * Guarantee that there are pages already in this object before
156	 * calling vm_map_wire.  This is to prevent the following
157	 * scenario:
158	 *
159	 * 1) Threads have swapped out, so that there is a pager for the
160	 * kernel_object. 2) The kmsg zone is empty, and so we are
161	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
162	 * there is no page, but there is a pager, so we call
163	 * pager_data_request.  But the kmsg zone is empty, so we must
164	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
165	 * we get the data back from the pager, it will be (very stale)
166	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
167	 *
168	 * We're intentionally not activating the pages we allocate to prevent a
169	 * race with page-out.  vm_map_wire will wire the pages.
170	 */
171	VM_OBJECT_LOCK(kernel_object);
172	for (i = 0; i < size; i += PAGE_SIZE) {
173		vm_page_t mem;
174
175		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
176		    VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
177		mem->valid = VM_PAGE_BITS_ALL;
178		vm_page_lock_queues();
179		vm_page_unmanage(mem);
180		vm_page_unlock_queues();
181	}
182	VM_OBJECT_UNLOCK(kernel_object);
183
184	/*
185	 * And finally, mark the data as non-pageable.
186	 */
187	(void) vm_map_wire(map, addr, addr + size,
188	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
189
190	return (addr);
191}
192
193/*
194 *	kmem_free:
195 *
196 *	Release a region of kernel virtual memory allocated
197 *	with kmem_alloc, and return the physical pages
198 *	associated with that region.
199 *
200 *	This routine may not block on kernel maps.
201 */
202void
203kmem_free(map, addr, size)
204	vm_map_t map;
205	vm_offset_t addr;
206	vm_size_t size;
207{
208
209	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
210}
211
212/*
213 *	kmem_suballoc:
214 *
215 *	Allocates a map to manage a subrange
216 *	of the kernel virtual address space.
217 *
218 *	Arguments are as follows:
219 *
220 *	parent		Map to take range from
221 *	min, max	Returned endpoints of map
222 *	size		Size of range to find
223 */
224vm_map_t
225kmem_suballoc(parent, min, max, size)
226	vm_map_t parent;
227	vm_offset_t *min, *max;
228	vm_size_t size;
229{
230	int ret;
231	vm_map_t result;
232
233	size = round_page(size);
234
235	*min = (vm_offset_t) vm_map_min(parent);
236	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
237	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
238	if (ret != KERN_SUCCESS) {
239		printf("kmem_suballoc: bad status return of %d.\n", ret);
240		panic("kmem_suballoc");
241	}
242	*max = *min + size;
243	result = vm_map_create(vm_map_pmap(parent), *min, *max);
244	if (result == NULL)
245		panic("kmem_suballoc: cannot create submap");
246	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
247		panic("kmem_suballoc: unable to change range to submap");
248	return (result);
249}
250
251/*
252 *	kmem_malloc:
253 *
254 * 	Allocate wired-down memory in the kernel's address map for the higher
255 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
256 * 	kmem_alloc() because we may need to allocate memory at interrupt
257 * 	level where we cannot block (canwait == FALSE).
258 *
259 * 	This routine has its own private kernel submap (kmem_map) and object
260 * 	(kmem_object).  This, combined with the fact that only malloc uses
261 * 	this routine, ensures that we will never block in map or object waits.
262 *
263 * 	Note that this still only works in a uni-processor environment and
264 * 	when called at splhigh().
265 *
266 * 	We don't worry about expanding the map (adding entries) since entries
267 * 	for wired maps are statically allocated.
268 *
269 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
270 *	I have not verified that it actually does not block.
271 *
272 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
273 *	which we never free.
274 */
275vm_offset_t
276kmem_malloc(map, size, flags)
277	vm_map_t map;
278	vm_size_t size;
279	int flags;
280{
281	vm_offset_t offset, i;
282	vm_map_entry_t entry;
283	vm_offset_t addr;
284	vm_page_t m;
285	int pflags;
286
287	size = round_page(size);
288	addr = vm_map_min(map);
289
290	/*
291	 * Locate sufficient space in the map.  This will give us the final
292	 * virtual address for the new memory, and thus will tell us the
293	 * offset within the kernel map.
294	 */
295	vm_map_lock(map);
296	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
297		vm_map_unlock(map);
298		if ((flags & M_NOWAIT) == 0)
299			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
300				(long)size, (long)map->size);
301		return (0);
302	}
303	offset = addr - VM_MIN_KERNEL_ADDRESS;
304	vm_object_reference(kmem_object);
305	vm_map_insert(map, kmem_object, offset, addr, addr + size,
306		VM_PROT_ALL, VM_PROT_ALL, 0);
307
308	/*
309	 * Note: if M_NOWAIT specified alone, allocate from
310	 * interrupt-safe queues only (just the free list).  If
311	 * M_USE_RESERVE is also specified, we can also
312	 * allocate from the cache.  Neither of the latter two
313	 * flags may be specified from an interrupt since interrupts
314	 * are not allowed to mess with the cache queue.
315	 */
316
317	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
318		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
319	else
320		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
321
322	if (flags & M_ZERO)
323		pflags |= VM_ALLOC_ZERO;
324
325	VM_OBJECT_LOCK(kmem_object);
326	for (i = 0; i < size; i += PAGE_SIZE) {
327retry:
328		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
329
330		/*
331		 * Ran out of space, free everything up and return. Don't need
332		 * to lock page queues here as we know that the pages we got
333		 * aren't on any queues.
334		 */
335		if (m == NULL) {
336			if ((flags & M_NOWAIT) == 0) {
337				VM_OBJECT_UNLOCK(kmem_object);
338				vm_map_unlock(map);
339				VM_WAIT;
340				vm_map_lock(map);
341				VM_OBJECT_LOCK(kmem_object);
342				goto retry;
343			}
344			/*
345			 * Free the pages before removing the map entry.
346			 * They are already marked busy.  Calling
347			 * vm_map_delete before the pages has been freed or
348			 * unbusied will cause a deadlock.
349			 */
350			while (i != 0) {
351				i -= PAGE_SIZE;
352				m = vm_page_lookup(kmem_object,
353						   OFF_TO_IDX(offset + i));
354				vm_page_lock_queues();
355				vm_page_unwire(m, 0);
356				vm_page_free(m);
357				vm_page_unlock_queues();
358			}
359			VM_OBJECT_UNLOCK(kmem_object);
360			vm_map_delete(map, addr, addr + size);
361			vm_map_unlock(map);
362			return (0);
363		}
364		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
365			pmap_zero_page(m);
366		m->valid = VM_PAGE_BITS_ALL;
367		vm_page_lock_queues();
368		vm_page_unmanage(m);
369		vm_page_unlock_queues();
370	}
371	VM_OBJECT_UNLOCK(kmem_object);
372
373	/*
374	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
375	 * be able to extend the previous entry so there will be a new entry
376	 * exactly corresponding to this address range and it will have
377	 * wired_count == 0.
378	 */
379	if (!vm_map_lookup_entry(map, addr, &entry) ||
380	    entry->start != addr || entry->end != addr + size ||
381	    entry->wired_count != 0)
382		panic("kmem_malloc: entry not found or misaligned");
383	entry->wired_count = 1;
384
385	/*
386	 * At this point, the kmem_object must be unlocked because
387	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
388	 * locks the kmem_object.
389	 */
390	vm_map_simplify_entry(map, entry);
391
392	/*
393	 * Loop thru pages, entering them in the pmap. (We cannot add them to
394	 * the wired count without wrapping the vm_page_queue_lock in
395	 * splimp...)
396	 */
397	VM_OBJECT_LOCK(kmem_object);
398	for (i = 0; i < size; i += PAGE_SIZE) {
399		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
400		/*
401		 * Because this is kernel_pmap, this call will not block.
402		 */
403		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
404		vm_page_lock_queues();
405		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
406		vm_page_unlock_queues();
407		vm_page_wakeup(m);
408	}
409	VM_OBJECT_UNLOCK(kmem_object);
410	vm_map_unlock(map);
411
412	return (addr);
413}
414
415/*
416 *	kmem_alloc_wait:
417 *
418 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
419 *	has no room, the caller sleeps waiting for more memory in the submap.
420 *
421 *	This routine may block.
422 */
423vm_offset_t
424kmem_alloc_wait(map, size)
425	vm_map_t map;
426	vm_size_t size;
427{
428	vm_offset_t addr;
429
430	size = round_page(size);
431
432	for (;;) {
433		/*
434		 * To make this work for more than one map, use the map's lock
435		 * to lock out sleepers/wakers.
436		 */
437		vm_map_lock(map);
438		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
439			break;
440		/* no space now; see if we can ever get space */
441		if (vm_map_max(map) - vm_map_min(map) < size) {
442			vm_map_unlock(map);
443			return (0);
444		}
445		map->needs_wakeup = TRUE;
446		vm_map_unlock_and_wait(map, FALSE);
447	}
448	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
449	vm_map_unlock(map);
450	return (addr);
451}
452
453/*
454 *	kmem_free_wakeup:
455 *
456 *	Returns memory to a submap of the kernel, and wakes up any processes
457 *	waiting for memory in that map.
458 */
459void
460kmem_free_wakeup(map, addr, size)
461	vm_map_t map;
462	vm_offset_t addr;
463	vm_size_t size;
464{
465
466	vm_map_lock(map);
467	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
468	if (map->needs_wakeup) {
469		map->needs_wakeup = FALSE;
470		vm_map_wakeup(map);
471	}
472	vm_map_unlock(map);
473}
474
475/*
476 * 	kmem_init:
477 *
478 *	Create the kernel map; insert a mapping covering kernel text,
479 *	data, bss, and all space allocated thus far (`boostrap' data).  The
480 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
481 *	`start' as allocated, and the range between `start' and `end' as free.
482 */
483void
484kmem_init(start, end)
485	vm_offset_t start, end;
486{
487	vm_map_t m;
488
489	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
490	m->system_map = 1;
491	vm_map_lock(m);
492	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
493	kernel_map = m;
494	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
495	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
496	/* ... and ending with the completion of the above `insert' */
497	vm_map_unlock(m);
498}
499