vm_kern.c revision 132638
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 132638 2004-07-25 20:08:59Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/lock.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82#include <vm/vm_pageout.h>
83#include <vm/vm_extern.h>
84
85vm_map_t kernel_map=0;
86vm_map_t kmem_map=0;
87vm_map_t exec_map=0;
88vm_map_t pipe_map;
89vm_map_t buffer_map=0;
90
91/*
92 *	kmem_alloc_nofault:
93 *
94 *	Allocate a virtual address range with no underlying object and
95 *	no initial mapping to physical memory.  Any mapping from this
96 *	range to physical memory must be explicitly created prior to
97 *	its use, typically with pmap_qenter().  Any attempt to create
98 *	a mapping on demand through vm_fault() will result in a panic.
99 */
100vm_offset_t
101kmem_alloc_nofault(map, size)
102	vm_map_t map;
103	vm_size_t size;
104{
105	vm_offset_t addr;
106	int result;
107
108	size = round_page(size);
109	addr = vm_map_min(map);
110	result = vm_map_find(map, NULL, 0,
111	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
112	if (result != KERN_SUCCESS) {
113		return (0);
114	}
115	return (addr);
116}
117
118/*
119 *	Allocate wired-down memory in the kernel's address map
120 *	or a submap.
121 */
122vm_offset_t
123kmem_alloc(map, size)
124	vm_map_t map;
125	vm_size_t size;
126{
127	vm_offset_t addr;
128	vm_offset_t offset;
129	vm_offset_t i;
130
131	size = round_page(size);
132
133	/*
134	 * Use the kernel object for wired-down kernel pages. Assume that no
135	 * region of the kernel object is referenced more than once.
136	 */
137
138	/*
139	 * Locate sufficient space in the map.  This will give us the final
140	 * virtual address for the new memory, and thus will tell us the
141	 * offset within the kernel map.
142	 */
143	vm_map_lock(map);
144	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
145		vm_map_unlock(map);
146		return (0);
147	}
148	offset = addr - VM_MIN_KERNEL_ADDRESS;
149	vm_object_reference(kernel_object);
150	vm_map_insert(map, kernel_object, offset, addr, addr + size,
151		VM_PROT_ALL, VM_PROT_ALL, 0);
152	vm_map_unlock(map);
153
154	/*
155	 * Guarantee that there are pages already in this object before
156	 * calling vm_map_wire.  This is to prevent the following
157	 * scenario:
158	 *
159	 * 1) Threads have swapped out, so that there is a pager for the
160	 * kernel_object. 2) The kmsg zone is empty, and so we are
161	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
162	 * there is no page, but there is a pager, so we call
163	 * pager_data_request.  But the kmsg zone is empty, so we must
164	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
165	 * we get the data back from the pager, it will be (very stale)
166	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
167	 *
168	 * We're intentionally not activating the pages we allocate to prevent a
169	 * race with page-out.  vm_map_wire will wire the pages.
170	 */
171	VM_OBJECT_LOCK(kernel_object);
172	for (i = 0; i < size; i += PAGE_SIZE) {
173		vm_page_t mem;
174
175		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
176				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
177		mem->valid = VM_PAGE_BITS_ALL;
178		vm_page_lock_queues();
179		vm_page_unmanage(mem);
180		vm_page_wakeup(mem);
181		vm_page_unlock_queues();
182	}
183	VM_OBJECT_UNLOCK(kernel_object);
184
185	/*
186	 * And finally, mark the data as non-pageable.
187	 */
188	(void) vm_map_wire(map, addr, addr + size,
189	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
190
191	return (addr);
192}
193
194/*
195 *	kmem_free:
196 *
197 *	Release a region of kernel virtual memory allocated
198 *	with kmem_alloc, and return the physical pages
199 *	associated with that region.
200 *
201 *	This routine may not block on kernel maps.
202 */
203void
204kmem_free(map, addr, size)
205	vm_map_t map;
206	vm_offset_t addr;
207	vm_size_t size;
208{
209
210	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
211}
212
213/*
214 *	kmem_suballoc:
215 *
216 *	Allocates a map to manage a subrange
217 *	of the kernel virtual address space.
218 *
219 *	Arguments are as follows:
220 *
221 *	parent		Map to take range from
222 *	min, max	Returned endpoints of map
223 *	size		Size of range to find
224 */
225vm_map_t
226kmem_suballoc(parent, min, max, size)
227	vm_map_t parent;
228	vm_offset_t *min, *max;
229	vm_size_t size;
230{
231	int ret;
232	vm_map_t result;
233
234	size = round_page(size);
235
236	*min = (vm_offset_t) vm_map_min(parent);
237	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
238	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
239	if (ret != KERN_SUCCESS) {
240		printf("kmem_suballoc: bad status return of %d.\n", ret);
241		panic("kmem_suballoc");
242	}
243	*max = *min + size;
244	result = vm_map_create(vm_map_pmap(parent), *min, *max);
245	if (result == NULL)
246		panic("kmem_suballoc: cannot create submap");
247	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
248		panic("kmem_suballoc: unable to change range to submap");
249	return (result);
250}
251
252/*
253 *	kmem_malloc:
254 *
255 * 	Allocate wired-down memory in the kernel's address map for the higher
256 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
257 * 	kmem_alloc() because we may need to allocate memory at interrupt
258 * 	level where we cannot block (canwait == FALSE).
259 *
260 * 	This routine has its own private kernel submap (kmem_map) and object
261 * 	(kmem_object).  This, combined with the fact that only malloc uses
262 * 	this routine, ensures that we will never block in map or object waits.
263 *
264 * 	Note that this still only works in a uni-processor environment and
265 * 	when called at splhigh().
266 *
267 * 	We don't worry about expanding the map (adding entries) since entries
268 * 	for wired maps are statically allocated.
269 *
270 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
271 *	I have not verified that it actually does not block.
272 *
273 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
274 *	which we never free.
275 */
276vm_offset_t
277kmem_malloc(map, size, flags)
278	vm_map_t map;
279	vm_size_t size;
280	int flags;
281{
282	vm_offset_t offset, i;
283	vm_map_entry_t entry;
284	vm_offset_t addr;
285	vm_page_t m;
286	int pflags;
287
288	size = round_page(size);
289	addr = vm_map_min(map);
290
291	/*
292	 * Locate sufficient space in the map.  This will give us the final
293	 * virtual address for the new memory, and thus will tell us the
294	 * offset within the kernel map.
295	 */
296	vm_map_lock(map);
297	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
298		vm_map_unlock(map);
299		if ((flags & M_NOWAIT) == 0)
300			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
301				(long)size, (long)map->size);
302		return (0);
303	}
304	offset = addr - VM_MIN_KERNEL_ADDRESS;
305	vm_object_reference(kmem_object);
306	vm_map_insert(map, kmem_object, offset, addr, addr + size,
307		VM_PROT_ALL, VM_PROT_ALL, 0);
308
309	/*
310	 * Note: if M_NOWAIT specified alone, allocate from
311	 * interrupt-safe queues only (just the free list).  If
312	 * M_USE_RESERVE is also specified, we can also
313	 * allocate from the cache.  Neither of the latter two
314	 * flags may be specified from an interrupt since interrupts
315	 * are not allowed to mess with the cache queue.
316	 */
317
318	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
319		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
320	else
321		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
322
323	if (flags & M_ZERO)
324		pflags |= VM_ALLOC_ZERO;
325
326	VM_OBJECT_LOCK(kmem_object);
327	for (i = 0; i < size; i += PAGE_SIZE) {
328retry:
329		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
330
331		/*
332		 * Ran out of space, free everything up and return. Don't need
333		 * to lock page queues here as we know that the pages we got
334		 * aren't on any queues.
335		 */
336		if (m == NULL) {
337			if ((flags & M_NOWAIT) == 0) {
338				VM_OBJECT_UNLOCK(kmem_object);
339				vm_map_unlock(map);
340				VM_WAIT;
341				vm_map_lock(map);
342				VM_OBJECT_LOCK(kmem_object);
343				goto retry;
344			}
345			/*
346			 * Free the pages before removing the map entry.
347			 * They are already marked busy.  Calling
348			 * vm_map_delete before the pages has been freed or
349			 * unbusied will cause a deadlock.
350			 */
351			while (i != 0) {
352				i -= PAGE_SIZE;
353				m = vm_page_lookup(kmem_object,
354						   OFF_TO_IDX(offset + i));
355				vm_page_lock_queues();
356				vm_page_unwire(m, 0);
357				vm_page_free(m);
358				vm_page_unlock_queues();
359			}
360			VM_OBJECT_UNLOCK(kmem_object);
361			vm_map_delete(map, addr, addr + size);
362			vm_map_unlock(map);
363			return (0);
364		}
365		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
366			pmap_zero_page(m);
367		m->valid = VM_PAGE_BITS_ALL;
368		vm_page_lock_queues();
369		vm_page_unmanage(m);
370		vm_page_unlock_queues();
371	}
372	VM_OBJECT_UNLOCK(kmem_object);
373
374	/*
375	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
376	 * be able to extend the previous entry so there will be a new entry
377	 * exactly corresponding to this address range and it will have
378	 * wired_count == 0.
379	 */
380	if (!vm_map_lookup_entry(map, addr, &entry) ||
381	    entry->start != addr || entry->end != addr + size ||
382	    entry->wired_count != 0)
383		panic("kmem_malloc: entry not found or misaligned");
384	entry->wired_count = 1;
385
386	/*
387	 * At this point, the kmem_object must be unlocked because
388	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
389	 * locks the kmem_object.
390	 */
391	vm_map_simplify_entry(map, entry);
392
393	/*
394	 * Loop thru pages, entering them in the pmap. (We cannot add them to
395	 * the wired count without wrapping the vm_page_queue_lock in
396	 * splimp...)
397	 */
398	VM_OBJECT_LOCK(kmem_object);
399	for (i = 0; i < size; i += PAGE_SIZE) {
400		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
401		/*
402		 * Because this is kernel_pmap, this call will not block.
403		 */
404		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
405		vm_page_lock_queues();
406		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
407		vm_page_wakeup(m);
408		vm_page_unlock_queues();
409	}
410	VM_OBJECT_UNLOCK(kmem_object);
411	vm_map_unlock(map);
412
413	return (addr);
414}
415
416/*
417 *	kmem_alloc_wait:
418 *
419 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
420 *	has no room, the caller sleeps waiting for more memory in the submap.
421 *
422 *	This routine may block.
423 */
424vm_offset_t
425kmem_alloc_wait(map, size)
426	vm_map_t map;
427	vm_size_t size;
428{
429	vm_offset_t addr;
430
431	size = round_page(size);
432
433	for (;;) {
434		/*
435		 * To make this work for more than one map, use the map's lock
436		 * to lock out sleepers/wakers.
437		 */
438		vm_map_lock(map);
439		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
440			break;
441		/* no space now; see if we can ever get space */
442		if (vm_map_max(map) - vm_map_min(map) < size) {
443			vm_map_unlock(map);
444			return (0);
445		}
446		map->needs_wakeup = TRUE;
447		vm_map_unlock_and_wait(map, FALSE);
448	}
449	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
450	vm_map_unlock(map);
451	return (addr);
452}
453
454/*
455 *	kmem_free_wakeup:
456 *
457 *	Returns memory to a submap of the kernel, and wakes up any processes
458 *	waiting for memory in that map.
459 */
460void
461kmem_free_wakeup(map, addr, size)
462	vm_map_t map;
463	vm_offset_t addr;
464	vm_size_t size;
465{
466
467	vm_map_lock(map);
468	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
469	if (map->needs_wakeup) {
470		map->needs_wakeup = FALSE;
471		vm_map_wakeup(map);
472	}
473	vm_map_unlock(map);
474}
475
476/*
477 * 	kmem_init:
478 *
479 *	Create the kernel map; insert a mapping covering kernel text,
480 *	data, bss, and all space allocated thus far (`boostrap' data).  The
481 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
482 *	`start' as allocated, and the range between `start' and `end' as free.
483 */
484void
485kmem_init(start, end)
486	vm_offset_t start, end;
487{
488	vm_map_t m;
489
490	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
491	m->system_map = 1;
492	vm_map_lock(m);
493	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
494	kernel_map = m;
495	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
496	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
497	/* ... and ending with the completion of the above `insert' */
498	vm_map_unlock(m);
499}
500