vm_kern.c revision 127961
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 127961 2004-04-06 20:15:37Z imp $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/lock.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75
76#include <vm/vm.h>
77#include <vm/vm_param.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82#include <vm/vm_pageout.h>
83#include <vm/vm_extern.h>
84
85vm_map_t kernel_map=0;
86vm_map_t kmem_map=0;
87vm_map_t exec_map=0;
88vm_map_t pipe_map;
89vm_map_t buffer_map=0;
90
91/*
92 *	kmem_alloc_pageable:
93 *
94 *	Allocate pageable memory to the kernel's address map.
95 *	"map" must be kernel_map or a submap of kernel_map.
96 */
97vm_offset_t
98kmem_alloc_pageable(map, size)
99	vm_map_t map;
100	vm_size_t size;
101{
102	vm_offset_t addr;
103	int result;
104
105	size = round_page(size);
106	addr = vm_map_min(map);
107	result = vm_map_find(map, NULL, 0,
108	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
109	if (result != KERN_SUCCESS) {
110		return (0);
111	}
112	return (addr);
113}
114
115/*
116 *	kmem_alloc_nofault:
117 *
118 *	Allocate a virtual address range with no underlying object and
119 *	no initial mapping to physical memory.  Any mapping from this
120 *	range to physical memory must be explicitly created prior to
121 *	its use, typically with pmap_qenter().  Any attempt to create
122 *	a mapping on demand through vm_fault() will result in a panic.
123 */
124vm_offset_t
125kmem_alloc_nofault(map, size)
126	vm_map_t map;
127	vm_size_t size;
128{
129	vm_offset_t addr;
130	int result;
131
132	size = round_page(size);
133	addr = vm_map_min(map);
134	result = vm_map_find(map, NULL, 0,
135	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
136	if (result != KERN_SUCCESS) {
137		return (0);
138	}
139	return (addr);
140}
141
142/*
143 *	Allocate wired-down memory in the kernel's address map
144 *	or a submap.
145 */
146vm_offset_t
147kmem_alloc(map, size)
148	vm_map_t map;
149	vm_size_t size;
150{
151	vm_offset_t addr;
152	vm_offset_t offset;
153	vm_offset_t i;
154
155	size = round_page(size);
156
157	/*
158	 * Use the kernel object for wired-down kernel pages. Assume that no
159	 * region of the kernel object is referenced more than once.
160	 */
161
162	/*
163	 * Locate sufficient space in the map.  This will give us the final
164	 * virtual address for the new memory, and thus will tell us the
165	 * offset within the kernel map.
166	 */
167	vm_map_lock(map);
168	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
169		vm_map_unlock(map);
170		return (0);
171	}
172	offset = addr - VM_MIN_KERNEL_ADDRESS;
173	vm_object_reference(kernel_object);
174	vm_map_insert(map, kernel_object, offset, addr, addr + size,
175		VM_PROT_ALL, VM_PROT_ALL, 0);
176	vm_map_unlock(map);
177
178	/*
179	 * Guarantee that there are pages already in this object before
180	 * calling vm_map_wire.  This is to prevent the following
181	 * scenario:
182	 *
183	 * 1) Threads have swapped out, so that there is a pager for the
184	 * kernel_object. 2) The kmsg zone is empty, and so we are
185	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
186	 * there is no page, but there is a pager, so we call
187	 * pager_data_request.  But the kmsg zone is empty, so we must
188	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
189	 * we get the data back from the pager, it will be (very stale)
190	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
191	 *
192	 * We're intentionally not activating the pages we allocate to prevent a
193	 * race with page-out.  vm_map_wire will wire the pages.
194	 */
195	VM_OBJECT_LOCK(kernel_object);
196	for (i = 0; i < size; i += PAGE_SIZE) {
197		vm_page_t mem;
198
199		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
200				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
201		if ((mem->flags & PG_ZERO) == 0)
202			pmap_zero_page(mem);
203		mem->valid = VM_PAGE_BITS_ALL;
204		vm_page_lock_queues();
205		vm_page_unmanage(mem);
206		vm_page_wakeup(mem);
207		vm_page_unlock_queues();
208	}
209	VM_OBJECT_UNLOCK(kernel_object);
210
211	/*
212	 * And finally, mark the data as non-pageable.
213	 */
214	(void) vm_map_wire(map, addr, addr + size,
215	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
216
217	return (addr);
218}
219
220/*
221 *	kmem_free:
222 *
223 *	Release a region of kernel virtual memory allocated
224 *	with kmem_alloc, and return the physical pages
225 *	associated with that region.
226 *
227 *	This routine may not block on kernel maps.
228 */
229void
230kmem_free(map, addr, size)
231	vm_map_t map;
232	vm_offset_t addr;
233	vm_size_t size;
234{
235
236	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
237}
238
239/*
240 *	kmem_suballoc:
241 *
242 *	Allocates a map to manage a subrange
243 *	of the kernel virtual address space.
244 *
245 *	Arguments are as follows:
246 *
247 *	parent		Map to take range from
248 *	min, max	Returned endpoints of map
249 *	size		Size of range to find
250 */
251vm_map_t
252kmem_suballoc(parent, min, max, size)
253	vm_map_t parent;
254	vm_offset_t *min, *max;
255	vm_size_t size;
256{
257	int ret;
258	vm_map_t result;
259
260	size = round_page(size);
261
262	*min = (vm_offset_t) vm_map_min(parent);
263	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
264	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
265	if (ret != KERN_SUCCESS) {
266		printf("kmem_suballoc: bad status return of %d.\n", ret);
267		panic("kmem_suballoc");
268	}
269	*max = *min + size;
270	result = vm_map_create(vm_map_pmap(parent), *min, *max);
271	if (result == NULL)
272		panic("kmem_suballoc: cannot create submap");
273	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
274		panic("kmem_suballoc: unable to change range to submap");
275	return (result);
276}
277
278/*
279 *	kmem_malloc:
280 *
281 * 	Allocate wired-down memory in the kernel's address map for the higher
282 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
283 * 	kmem_alloc() because we may need to allocate memory at interrupt
284 * 	level where we cannot block (canwait == FALSE).
285 *
286 * 	This routine has its own private kernel submap (kmem_map) and object
287 * 	(kmem_object).  This, combined with the fact that only malloc uses
288 * 	this routine, ensures that we will never block in map or object waits.
289 *
290 * 	Note that this still only works in a uni-processor environment and
291 * 	when called at splhigh().
292 *
293 * 	We don't worry about expanding the map (adding entries) since entries
294 * 	for wired maps are statically allocated.
295 *
296 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
297 *	I have not verified that it actually does not block.
298 *
299 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
300 *	which we never free.
301 */
302vm_offset_t
303kmem_malloc(map, size, flags)
304	vm_map_t map;
305	vm_size_t size;
306	int flags;
307{
308	vm_offset_t offset, i;
309	vm_map_entry_t entry;
310	vm_offset_t addr;
311	vm_page_t m;
312	int pflags;
313
314	size = round_page(size);
315	addr = vm_map_min(map);
316
317	/*
318	 * Locate sufficient space in the map.  This will give us the final
319	 * virtual address for the new memory, and thus will tell us the
320	 * offset within the kernel map.
321	 */
322	vm_map_lock(map);
323	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
324		vm_map_unlock(map);
325		if (map != kmem_map) {
326			static int last_report; /* when we did it (in ticks) */
327			if (ticks < last_report ||
328			    (ticks - last_report) >= hz) {
329				last_report = ticks;
330				printf("Out of mbuf address space!\n");
331				printf("Consider increasing NMBCLUSTERS\n");
332			}
333			return (0);
334		}
335		if ((flags & M_NOWAIT) == 0)
336			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
337				(long)size, (long)map->size);
338		return (0);
339	}
340	offset = addr - VM_MIN_KERNEL_ADDRESS;
341	vm_object_reference(kmem_object);
342	vm_map_insert(map, kmem_object, offset, addr, addr + size,
343		VM_PROT_ALL, VM_PROT_ALL, 0);
344
345	/*
346	 * Note: if M_NOWAIT specified alone, allocate from
347	 * interrupt-safe queues only (just the free list).  If
348	 * M_USE_RESERVE is also specified, we can also
349	 * allocate from the cache.  Neither of the latter two
350	 * flags may be specified from an interrupt since interrupts
351	 * are not allowed to mess with the cache queue.
352	 */
353
354	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
355		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
356	else
357		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
358
359	if (flags & M_ZERO)
360		pflags |= VM_ALLOC_ZERO;
361
362	VM_OBJECT_LOCK(kmem_object);
363	for (i = 0; i < size; i += PAGE_SIZE) {
364retry:
365		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
366
367		/*
368		 * Ran out of space, free everything up and return. Don't need
369		 * to lock page queues here as we know that the pages we got
370		 * aren't on any queues.
371		 */
372		if (m == NULL) {
373			if ((flags & M_NOWAIT) == 0) {
374				VM_OBJECT_UNLOCK(kmem_object);
375				vm_map_unlock(map);
376				VM_WAIT;
377				vm_map_lock(map);
378				VM_OBJECT_LOCK(kmem_object);
379				goto retry;
380			}
381			/*
382			 * Free the pages before removing the map entry.
383			 * They are already marked busy.  Calling
384			 * vm_map_delete before the pages has been freed or
385			 * unbusied will cause a deadlock.
386			 */
387			while (i != 0) {
388				i -= PAGE_SIZE;
389				m = vm_page_lookup(kmem_object,
390						   OFF_TO_IDX(offset + i));
391				vm_page_lock_queues();
392				vm_page_unwire(m, 0);
393				vm_page_free(m);
394				vm_page_unlock_queues();
395			}
396			VM_OBJECT_UNLOCK(kmem_object);
397			vm_map_delete(map, addr, addr + size);
398			vm_map_unlock(map);
399			return (0);
400		}
401		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
402			pmap_zero_page(m);
403		m->valid = VM_PAGE_BITS_ALL;
404		vm_page_lock_queues();
405		vm_page_unmanage(m);
406		vm_page_unlock_queues();
407	}
408	VM_OBJECT_UNLOCK(kmem_object);
409
410	/*
411	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
412	 * be able to extend the previous entry so there will be a new entry
413	 * exactly corresponding to this address range and it will have
414	 * wired_count == 0.
415	 */
416	if (!vm_map_lookup_entry(map, addr, &entry) ||
417	    entry->start != addr || entry->end != addr + size ||
418	    entry->wired_count != 0)
419		panic("kmem_malloc: entry not found or misaligned");
420	entry->wired_count = 1;
421
422	/*
423	 * At this point, the kmem_object must be unlocked because
424	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
425	 * locks the kmem_object.
426	 */
427	vm_map_simplify_entry(map, entry);
428
429	/*
430	 * Loop thru pages, entering them in the pmap. (We cannot add them to
431	 * the wired count without wrapping the vm_page_queue_lock in
432	 * splimp...)
433	 */
434	VM_OBJECT_LOCK(kmem_object);
435	for (i = 0; i < size; i += PAGE_SIZE) {
436		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
437		/*
438		 * Because this is kernel_pmap, this call will not block.
439		 */
440		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
441		vm_page_lock_queues();
442		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
443		vm_page_wakeup(m);
444		vm_page_unlock_queues();
445	}
446	VM_OBJECT_UNLOCK(kmem_object);
447	vm_map_unlock(map);
448
449	return (addr);
450}
451
452/*
453 *	kmem_alloc_wait:
454 *
455 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
456 *	has no room, the caller sleeps waiting for more memory in the submap.
457 *
458 *	This routine may block.
459 */
460vm_offset_t
461kmem_alloc_wait(map, size)
462	vm_map_t map;
463	vm_size_t size;
464{
465	vm_offset_t addr;
466
467	size = round_page(size);
468
469	for (;;) {
470		/*
471		 * To make this work for more than one map, use the map's lock
472		 * to lock out sleepers/wakers.
473		 */
474		vm_map_lock(map);
475		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
476			break;
477		/* no space now; see if we can ever get space */
478		if (vm_map_max(map) - vm_map_min(map) < size) {
479			vm_map_unlock(map);
480			return (0);
481		}
482		map->needs_wakeup = TRUE;
483		vm_map_unlock_and_wait(map, FALSE);
484	}
485	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
486	vm_map_unlock(map);
487	return (addr);
488}
489
490/*
491 *	kmem_free_wakeup:
492 *
493 *	Returns memory to a submap of the kernel, and wakes up any processes
494 *	waiting for memory in that map.
495 */
496void
497kmem_free_wakeup(map, addr, size)
498	vm_map_t map;
499	vm_offset_t addr;
500	vm_size_t size;
501{
502
503	vm_map_lock(map);
504	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
505	if (map->needs_wakeup) {
506		map->needs_wakeup = FALSE;
507		vm_map_wakeup(map);
508	}
509	vm_map_unlock(map);
510}
511
512/*
513 * 	kmem_init:
514 *
515 *	Create the kernel map; insert a mapping covering kernel text,
516 *	data, bss, and all space allocated thus far (`boostrap' data).  The
517 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
518 *	`start' as allocated, and the range between `start' and `end' as free.
519 */
520void
521kmem_init(start, end)
522	vm_offset_t start, end;
523{
524	vm_map_t m;
525
526	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
527	m->system_map = 1;
528	vm_map_lock(m);
529	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
530	kernel_map = m;
531	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
532	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
533	/* ... and ending with the completion of the above `insert' */
534	vm_map_unlock(m);
535}
536