vm_kern.c revision 125889
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65/*
66 *	Kernel memory management.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 125889 2004-02-16 21:36:59Z des $");
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/kernel.h>		/* for ticks and hz */
75#include <sys/lock.h>
76#include <sys/mutex.h>
77#include <sys/proc.h>
78#include <sys/malloc.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_extern.h>
88
89vm_map_t kernel_map=0;
90vm_map_t kmem_map=0;
91vm_map_t exec_map=0;
92vm_map_t pipe_map;
93vm_map_t buffer_map=0;
94
95/*
96 *	kmem_alloc_pageable:
97 *
98 *	Allocate pageable memory to the kernel's address map.
99 *	"map" must be kernel_map or a submap of kernel_map.
100 */
101vm_offset_t
102kmem_alloc_pageable(map, size)
103	vm_map_t map;
104	vm_size_t size;
105{
106	vm_offset_t addr;
107	int result;
108
109	size = round_page(size);
110	addr = vm_map_min(map);
111	result = vm_map_find(map, NULL, 0,
112	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
113	if (result != KERN_SUCCESS) {
114		return (0);
115	}
116	return (addr);
117}
118
119/*
120 *	kmem_alloc_nofault:
121 *
122 *	Allocate a virtual address range with no underlying object and
123 *	no initial mapping to physical memory.  Any mapping from this
124 *	range to physical memory must be explicitly created prior to
125 *	its use, typically with pmap_qenter().  Any attempt to create
126 *	a mapping on demand through vm_fault() will result in a panic.
127 */
128vm_offset_t
129kmem_alloc_nofault(map, size)
130	vm_map_t map;
131	vm_size_t size;
132{
133	vm_offset_t addr;
134	int result;
135
136	size = round_page(size);
137	addr = vm_map_min(map);
138	result = vm_map_find(map, NULL, 0,
139	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
140	if (result != KERN_SUCCESS) {
141		return (0);
142	}
143	return (addr);
144}
145
146/*
147 *	Allocate wired-down memory in the kernel's address map
148 *	or a submap.
149 */
150vm_offset_t
151kmem_alloc(map, size)
152	vm_map_t map;
153	vm_size_t size;
154{
155	vm_offset_t addr;
156	vm_offset_t offset;
157	vm_offset_t i;
158
159	size = round_page(size);
160
161	/*
162	 * Use the kernel object for wired-down kernel pages. Assume that no
163	 * region of the kernel object is referenced more than once.
164	 */
165
166	/*
167	 * Locate sufficient space in the map.  This will give us the final
168	 * virtual address for the new memory, and thus will tell us the
169	 * offset within the kernel map.
170	 */
171	vm_map_lock(map);
172	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
173		vm_map_unlock(map);
174		return (0);
175	}
176	offset = addr - VM_MIN_KERNEL_ADDRESS;
177	vm_object_reference(kernel_object);
178	vm_map_insert(map, kernel_object, offset, addr, addr + size,
179		VM_PROT_ALL, VM_PROT_ALL, 0);
180	vm_map_unlock(map);
181
182	/*
183	 * Guarantee that there are pages already in this object before
184	 * calling vm_map_wire.  This is to prevent the following
185	 * scenario:
186	 *
187	 * 1) Threads have swapped out, so that there is a pager for the
188	 * kernel_object. 2) The kmsg zone is empty, and so we are
189	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
190	 * there is no page, but there is a pager, so we call
191	 * pager_data_request.  But the kmsg zone is empty, so we must
192	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
193	 * we get the data back from the pager, it will be (very stale)
194	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
195	 *
196	 * We're intentionally not activating the pages we allocate to prevent a
197	 * race with page-out.  vm_map_wire will wire the pages.
198	 */
199	VM_OBJECT_LOCK(kernel_object);
200	for (i = 0; i < size; i += PAGE_SIZE) {
201		vm_page_t mem;
202
203		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
204				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
205		if ((mem->flags & PG_ZERO) == 0)
206			pmap_zero_page(mem);
207		mem->valid = VM_PAGE_BITS_ALL;
208		vm_page_lock_queues();
209		vm_page_unmanage(mem);
210		vm_page_wakeup(mem);
211		vm_page_unlock_queues();
212	}
213	VM_OBJECT_UNLOCK(kernel_object);
214
215	/*
216	 * And finally, mark the data as non-pageable.
217	 */
218	(void) vm_map_wire(map, addr, addr + size,
219	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
220
221	return (addr);
222}
223
224/*
225 *	kmem_free:
226 *
227 *	Release a region of kernel virtual memory allocated
228 *	with kmem_alloc, and return the physical pages
229 *	associated with that region.
230 *
231 *	This routine may not block on kernel maps.
232 */
233void
234kmem_free(map, addr, size)
235	vm_map_t map;
236	vm_offset_t addr;
237	vm_size_t size;
238{
239
240	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
241}
242
243/*
244 *	kmem_suballoc:
245 *
246 *	Allocates a map to manage a subrange
247 *	of the kernel virtual address space.
248 *
249 *	Arguments are as follows:
250 *
251 *	parent		Map to take range from
252 *	min, max	Returned endpoints of map
253 *	size		Size of range to find
254 */
255vm_map_t
256kmem_suballoc(parent, min, max, size)
257	vm_map_t parent;
258	vm_offset_t *min, *max;
259	vm_size_t size;
260{
261	int ret;
262	vm_map_t result;
263
264	size = round_page(size);
265
266	*min = (vm_offset_t) vm_map_min(parent);
267	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
268	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
269	if (ret != KERN_SUCCESS) {
270		printf("kmem_suballoc: bad status return of %d.\n", ret);
271		panic("kmem_suballoc");
272	}
273	*max = *min + size;
274	result = vm_map_create(vm_map_pmap(parent), *min, *max);
275	if (result == NULL)
276		panic("kmem_suballoc: cannot create submap");
277	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
278		panic("kmem_suballoc: unable to change range to submap");
279	return (result);
280}
281
282/*
283 *	kmem_malloc:
284 *
285 * 	Allocate wired-down memory in the kernel's address map for the higher
286 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
287 * 	kmem_alloc() because we may need to allocate memory at interrupt
288 * 	level where we cannot block (canwait == FALSE).
289 *
290 * 	This routine has its own private kernel submap (kmem_map) and object
291 * 	(kmem_object).  This, combined with the fact that only malloc uses
292 * 	this routine, ensures that we will never block in map or object waits.
293 *
294 * 	Note that this still only works in a uni-processor environment and
295 * 	when called at splhigh().
296 *
297 * 	We don't worry about expanding the map (adding entries) since entries
298 * 	for wired maps are statically allocated.
299 *
300 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
301 *	I have not verified that it actually does not block.
302 *
303 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
304 *	which we never free.
305 */
306vm_offset_t
307kmem_malloc(map, size, flags)
308	vm_map_t map;
309	vm_size_t size;
310	int flags;
311{
312	vm_offset_t offset, i;
313	vm_map_entry_t entry;
314	vm_offset_t addr;
315	vm_page_t m;
316	int pflags;
317
318	size = round_page(size);
319	addr = vm_map_min(map);
320
321	/*
322	 * Locate sufficient space in the map.  This will give us the final
323	 * virtual address for the new memory, and thus will tell us the
324	 * offset within the kernel map.
325	 */
326	vm_map_lock(map);
327	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
328		vm_map_unlock(map);
329		if (map != kmem_map) {
330			static int last_report; /* when we did it (in ticks) */
331			if (ticks < last_report ||
332			    (ticks - last_report) >= hz) {
333				last_report = ticks;
334				printf("Out of mbuf address space!\n");
335				printf("Consider increasing NMBCLUSTERS\n");
336			}
337			return (0);
338		}
339		if ((flags & M_NOWAIT) == 0)
340			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
341				(long)size, (long)map->size);
342		return (0);
343	}
344	offset = addr - VM_MIN_KERNEL_ADDRESS;
345	vm_object_reference(kmem_object);
346	vm_map_insert(map, kmem_object, offset, addr, addr + size,
347		VM_PROT_ALL, VM_PROT_ALL, 0);
348
349	/*
350	 * Note: if M_NOWAIT specified alone, allocate from
351	 * interrupt-safe queues only (just the free list).  If
352	 * M_USE_RESERVE is also specified, we can also
353	 * allocate from the cache.  Neither of the latter two
354	 * flags may be specified from an interrupt since interrupts
355	 * are not allowed to mess with the cache queue.
356	 */
357
358	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
359		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
360	else
361		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
362
363	if (flags & M_ZERO)
364		pflags |= VM_ALLOC_ZERO;
365
366	VM_OBJECT_LOCK(kmem_object);
367	for (i = 0; i < size; i += PAGE_SIZE) {
368retry:
369		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
370
371		/*
372		 * Ran out of space, free everything up and return. Don't need
373		 * to lock page queues here as we know that the pages we got
374		 * aren't on any queues.
375		 */
376		if (m == NULL) {
377			if ((flags & M_NOWAIT) == 0) {
378				VM_OBJECT_UNLOCK(kmem_object);
379				vm_map_unlock(map);
380				VM_WAIT;
381				vm_map_lock(map);
382				VM_OBJECT_LOCK(kmem_object);
383				goto retry;
384			}
385			/*
386			 * Free the pages before removing the map entry.
387			 * They are already marked busy.  Calling
388			 * vm_map_delete before the pages has been freed or
389			 * unbusied will cause a deadlock.
390			 */
391			while (i != 0) {
392				i -= PAGE_SIZE;
393				m = vm_page_lookup(kmem_object,
394						   OFF_TO_IDX(offset + i));
395				vm_page_lock_queues();
396				vm_page_unwire(m, 0);
397				vm_page_free(m);
398				vm_page_unlock_queues();
399			}
400			VM_OBJECT_UNLOCK(kmem_object);
401			vm_map_delete(map, addr, addr + size);
402			vm_map_unlock(map);
403			return (0);
404		}
405		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
406			pmap_zero_page(m);
407		m->valid = VM_PAGE_BITS_ALL;
408		vm_page_lock_queues();
409		vm_page_unmanage(m);
410		vm_page_unlock_queues();
411	}
412	VM_OBJECT_UNLOCK(kmem_object);
413
414	/*
415	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
416	 * be able to extend the previous entry so there will be a new entry
417	 * exactly corresponding to this address range and it will have
418	 * wired_count == 0.
419	 */
420	if (!vm_map_lookup_entry(map, addr, &entry) ||
421	    entry->start != addr || entry->end != addr + size ||
422	    entry->wired_count != 0)
423		panic("kmem_malloc: entry not found or misaligned");
424	entry->wired_count = 1;
425
426	/*
427	 * At this point, the kmem_object must be unlocked because
428	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
429	 * locks the kmem_object.
430	 */
431	vm_map_simplify_entry(map, entry);
432
433	/*
434	 * Loop thru pages, entering them in the pmap. (We cannot add them to
435	 * the wired count without wrapping the vm_page_queue_lock in
436	 * splimp...)
437	 */
438	VM_OBJECT_LOCK(kmem_object);
439	for (i = 0; i < size; i += PAGE_SIZE) {
440		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
441		/*
442		 * Because this is kernel_pmap, this call will not block.
443		 */
444		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
445		vm_page_lock_queues();
446		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
447		vm_page_wakeup(m);
448		vm_page_unlock_queues();
449	}
450	VM_OBJECT_UNLOCK(kmem_object);
451	vm_map_unlock(map);
452
453	return (addr);
454}
455
456/*
457 *	kmem_alloc_wait:
458 *
459 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
460 *	has no room, the caller sleeps waiting for more memory in the submap.
461 *
462 *	This routine may block.
463 */
464vm_offset_t
465kmem_alloc_wait(map, size)
466	vm_map_t map;
467	vm_size_t size;
468{
469	vm_offset_t addr;
470
471	size = round_page(size);
472
473	for (;;) {
474		/*
475		 * To make this work for more than one map, use the map's lock
476		 * to lock out sleepers/wakers.
477		 */
478		vm_map_lock(map);
479		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
480			break;
481		/* no space now; see if we can ever get space */
482		if (vm_map_max(map) - vm_map_min(map) < size) {
483			vm_map_unlock(map);
484			return (0);
485		}
486		map->needs_wakeup = TRUE;
487		vm_map_unlock_and_wait(map, FALSE);
488	}
489	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
490	vm_map_unlock(map);
491	return (addr);
492}
493
494/*
495 *	kmem_free_wakeup:
496 *
497 *	Returns memory to a submap of the kernel, and wakes up any processes
498 *	waiting for memory in that map.
499 */
500void
501kmem_free_wakeup(map, addr, size)
502	vm_map_t map;
503	vm_offset_t addr;
504	vm_size_t size;
505{
506
507	vm_map_lock(map);
508	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
509	if (map->needs_wakeup) {
510		map->needs_wakeup = FALSE;
511		vm_map_wakeup(map);
512	}
513	vm_map_unlock(map);
514}
515
516/*
517 * 	kmem_init:
518 *
519 *	Create the kernel map; insert a mapping covering kernel text,
520 *	data, bss, and all space allocated thus far (`boostrap' data).  The
521 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
522 *	`start' as allocated, and the range between `start' and `end' as free.
523 */
524void
525kmem_init(start, end)
526	vm_offset_t start, end;
527{
528	vm_map_t m;
529
530	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
531	m->system_map = 1;
532	vm_map_lock(m);
533	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
534	kernel_map = m;
535	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
536	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
537	/* ... and ending with the completion of the above `insert' */
538	vm_map_unlock(m);
539}
540