vm_kern.c revision 124195
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65/*
66 *	Kernel memory management.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 124195 2004-01-06 20:52:55Z alc $");
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/kernel.h>		/* for ticks and hz */
75#include <sys/lock.h>
76#include <sys/mutex.h>
77#include <sys/proc.h>
78#include <sys/malloc.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_extern.h>
88
89vm_map_t kernel_map=0;
90vm_map_t kmem_map=0;
91vm_map_t exec_map=0;
92vm_map_t pipe_map;
93vm_map_t buffer_map=0;
94
95/*
96 *	kmem_alloc_pageable:
97 *
98 *	Allocate pageable memory to the kernel's address map.
99 *	"map" must be kernel_map or a submap of kernel_map.
100 */
101vm_offset_t
102kmem_alloc_pageable(map, size)
103	vm_map_t map;
104	vm_size_t size;
105{
106	vm_offset_t addr;
107	int result;
108
109	size = round_page(size);
110	addr = vm_map_min(map);
111	result = vm_map_find(map, NULL, 0,
112	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
113	if (result != KERN_SUCCESS) {
114		return (0);
115	}
116	return (addr);
117}
118
119/*
120 *	kmem_alloc_nofault:
121 *
122 *	Allocate a virtual address range with no underlying object and
123 *	no initial mapping to physical memory.  Any mapping from this
124 *	range to physical memory must be explicitly created prior to
125 *	its use, typically with pmap_qenter().  Any attempt to create
126 *	a mapping on demand through vm_fault() will result in a panic.
127 */
128vm_offset_t
129kmem_alloc_nofault(map, size)
130	vm_map_t map;
131	vm_size_t size;
132{
133	vm_offset_t addr;
134	int result;
135
136	size = round_page(size);
137	addr = vm_map_min(map);
138	result = vm_map_find(map, NULL, 0,
139	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
140	if (result != KERN_SUCCESS) {
141		return (0);
142	}
143	return (addr);
144}
145
146/*
147 *	Allocate wired-down memory in the kernel's address map
148 *	or a submap.
149 */
150vm_offset_t
151kmem_alloc(map, size)
152	vm_map_t map;
153	vm_size_t size;
154{
155	vm_offset_t addr;
156	vm_offset_t offset;
157	vm_offset_t i;
158
159	size = round_page(size);
160
161	/*
162	 * Use the kernel object for wired-down kernel pages. Assume that no
163	 * region of the kernel object is referenced more than once.
164	 */
165
166	/*
167	 * Locate sufficient space in the map.  This will give us the final
168	 * virtual address for the new memory, and thus will tell us the
169	 * offset within the kernel map.
170	 */
171	vm_map_lock(map);
172	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
173		vm_map_unlock(map);
174		return (0);
175	}
176	offset = addr - VM_MIN_KERNEL_ADDRESS;
177	vm_object_reference(kernel_object);
178	vm_map_insert(map, kernel_object, offset, addr, addr + size,
179		VM_PROT_ALL, VM_PROT_ALL, 0);
180	vm_map_unlock(map);
181
182	/*
183	 * Guarantee that there are pages already in this object before
184	 * calling vm_map_wire.  This is to prevent the following
185	 * scenario:
186	 *
187	 * 1) Threads have swapped out, so that there is a pager for the
188	 * kernel_object. 2) The kmsg zone is empty, and so we are
189	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
190	 * there is no page, but there is a pager, so we call
191	 * pager_data_request.  But the kmsg zone is empty, so we must
192	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
193	 * we get the data back from the pager, it will be (very stale)
194	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
195	 *
196	 * We're intentionally not activating the pages we allocate to prevent a
197	 * race with page-out.  vm_map_wire will wire the pages.
198	 */
199	VM_OBJECT_LOCK(kernel_object);
200	for (i = 0; i < size; i += PAGE_SIZE) {
201		vm_page_t mem;
202
203		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
204				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
205		if ((mem->flags & PG_ZERO) == 0)
206			pmap_zero_page(mem);
207		mem->valid = VM_PAGE_BITS_ALL;
208		vm_page_lock_queues();
209		vm_page_wakeup(mem);
210		vm_page_unlock_queues();
211	}
212	VM_OBJECT_UNLOCK(kernel_object);
213
214	/*
215	 * And finally, mark the data as non-pageable.
216	 */
217	(void) vm_map_wire(map, addr, addr + size,
218	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
219
220	return (addr);
221}
222
223/*
224 *	kmem_free:
225 *
226 *	Release a region of kernel virtual memory allocated
227 *	with kmem_alloc, and return the physical pages
228 *	associated with that region.
229 *
230 *	This routine may not block on kernel maps.
231 */
232void
233kmem_free(map, addr, size)
234	vm_map_t map;
235	vm_offset_t addr;
236	vm_size_t size;
237{
238
239	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
240}
241
242/*
243 *	kmem_suballoc:
244 *
245 *	Allocates a map to manage a subrange
246 *	of the kernel virtual address space.
247 *
248 *	Arguments are as follows:
249 *
250 *	parent		Map to take range from
251 *	min, max	Returned endpoints of map
252 *	size		Size of range to find
253 */
254vm_map_t
255kmem_suballoc(parent, min, max, size)
256	vm_map_t parent;
257	vm_offset_t *min, *max;
258	vm_size_t size;
259{
260	int ret;
261	vm_map_t result;
262
263	size = round_page(size);
264
265	*min = (vm_offset_t) vm_map_min(parent);
266	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
267	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
268	if (ret != KERN_SUCCESS) {
269		printf("kmem_suballoc: bad status return of %d.\n", ret);
270		panic("kmem_suballoc");
271	}
272	*max = *min + size;
273	result = vm_map_create(vm_map_pmap(parent), *min, *max);
274	if (result == NULL)
275		panic("kmem_suballoc: cannot create submap");
276	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
277		panic("kmem_suballoc: unable to change range to submap");
278	return (result);
279}
280
281/*
282 *	kmem_malloc:
283 *
284 * 	Allocate wired-down memory in the kernel's address map for the higher
285 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
286 * 	kmem_alloc() because we may need to allocate memory at interrupt
287 * 	level where we cannot block (canwait == FALSE).
288 *
289 * 	This routine has its own private kernel submap (kmem_map) and object
290 * 	(kmem_object).  This, combined with the fact that only malloc uses
291 * 	this routine, ensures that we will never block in map or object waits.
292 *
293 * 	Note that this still only works in a uni-processor environment and
294 * 	when called at splhigh().
295 *
296 * 	We don't worry about expanding the map (adding entries) since entries
297 * 	for wired maps are statically allocated.
298 *
299 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
300 *	I have not verified that it actually does not block.
301 *
302 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
303 *	which we never free.
304 */
305vm_offset_t
306kmem_malloc(map, size, flags)
307	vm_map_t map;
308	vm_size_t size;
309	int flags;
310{
311	vm_offset_t offset, i;
312	vm_map_entry_t entry;
313	vm_offset_t addr;
314	vm_page_t m;
315	int pflags;
316
317	size = round_page(size);
318	addr = vm_map_min(map);
319
320	/*
321	 * Locate sufficient space in the map.  This will give us the final
322	 * virtual address for the new memory, and thus will tell us the
323	 * offset within the kernel map.
324	 */
325	vm_map_lock(map);
326	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
327		vm_map_unlock(map);
328		if (map != kmem_map) {
329			static int last_report; /* when we did it (in ticks) */
330			if (ticks < last_report ||
331			    (ticks - last_report) >= hz) {
332				last_report = ticks;
333				printf("Out of mbuf address space!\n");
334				printf("Consider increasing NMBCLUSTERS\n");
335			}
336			return (0);
337		}
338		if ((flags & M_NOWAIT) == 0)
339			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
340				(long)size, (long)map->size);
341		return (0);
342	}
343	offset = addr - VM_MIN_KERNEL_ADDRESS;
344	vm_object_reference(kmem_object);
345	vm_map_insert(map, kmem_object, offset, addr, addr + size,
346		VM_PROT_ALL, VM_PROT_ALL, 0);
347
348	/*
349	 * Note: if M_NOWAIT specified alone, allocate from
350	 * interrupt-safe queues only (just the free list).  If
351	 * M_USE_RESERVE is also specified, we can also
352	 * allocate from the cache.  Neither of the latter two
353	 * flags may be specified from an interrupt since interrupts
354	 * are not allowed to mess with the cache queue.
355	 */
356
357	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
358		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
359	else
360		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
361
362	if (flags & M_ZERO)
363		pflags |= VM_ALLOC_ZERO;
364
365	VM_OBJECT_LOCK(kmem_object);
366	for (i = 0; i < size; i += PAGE_SIZE) {
367retry:
368		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
369
370		/*
371		 * Ran out of space, free everything up and return. Don't need
372		 * to lock page queues here as we know that the pages we got
373		 * aren't on any queues.
374		 */
375		if (m == NULL) {
376			if ((flags & M_NOWAIT) == 0) {
377				VM_OBJECT_UNLOCK(kmem_object);
378				vm_map_unlock(map);
379				VM_WAIT;
380				vm_map_lock(map);
381				VM_OBJECT_LOCK(kmem_object);
382				goto retry;
383			}
384			/*
385			 * Free the pages before removing the map entry.
386			 * They are already marked busy.  Calling
387			 * vm_map_delete before the pages has been freed or
388			 * unbusied will cause a deadlock.
389			 */
390			while (i != 0) {
391				i -= PAGE_SIZE;
392				m = vm_page_lookup(kmem_object,
393						   OFF_TO_IDX(offset + i));
394				vm_page_lock_queues();
395				vm_page_unwire(m, 0);
396				vm_page_free(m);
397				vm_page_unlock_queues();
398			}
399			VM_OBJECT_UNLOCK(kmem_object);
400			vm_map_delete(map, addr, addr + size);
401			vm_map_unlock(map);
402			return (0);
403		}
404		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
405			pmap_zero_page(m);
406		m->valid = VM_PAGE_BITS_ALL;
407		vm_page_lock_queues();
408		vm_page_unmanage(m);
409		vm_page_unlock_queues();
410	}
411	VM_OBJECT_UNLOCK(kmem_object);
412
413	/*
414	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
415	 * be able to extend the previous entry so there will be a new entry
416	 * exactly corresponding to this address range and it will have
417	 * wired_count == 0.
418	 */
419	if (!vm_map_lookup_entry(map, addr, &entry) ||
420	    entry->start != addr || entry->end != addr + size ||
421	    entry->wired_count != 0)
422		panic("kmem_malloc: entry not found or misaligned");
423	entry->wired_count = 1;
424
425	/*
426	 * At this point, the kmem_object must be unlocked because
427	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
428	 * locks the kmem_object.
429	 */
430	vm_map_simplify_entry(map, entry);
431
432	/*
433	 * Loop thru pages, entering them in the pmap. (We cannot add them to
434	 * the wired count without wrapping the vm_page_queue_lock in
435	 * splimp...)
436	 */
437	VM_OBJECT_LOCK(kmem_object);
438	for (i = 0; i < size; i += PAGE_SIZE) {
439		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
440		/*
441		 * Because this is kernel_pmap, this call will not block.
442		 */
443		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
444		vm_page_lock_queues();
445		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
446		vm_page_wakeup(m);
447		vm_page_unlock_queues();
448	}
449	VM_OBJECT_UNLOCK(kmem_object);
450	vm_map_unlock(map);
451
452	return (addr);
453}
454
455/*
456 *	kmem_alloc_wait:
457 *
458 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
459 *	has no room, the caller sleeps waiting for more memory in the submap.
460 *
461 *	This routine may block.
462 */
463vm_offset_t
464kmem_alloc_wait(map, size)
465	vm_map_t map;
466	vm_size_t size;
467{
468	vm_offset_t addr;
469
470	size = round_page(size);
471
472	for (;;) {
473		/*
474		 * To make this work for more than one map, use the map's lock
475		 * to lock out sleepers/wakers.
476		 */
477		vm_map_lock(map);
478		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
479			break;
480		/* no space now; see if we can ever get space */
481		if (vm_map_max(map) - vm_map_min(map) < size) {
482			vm_map_unlock(map);
483			return (0);
484		}
485		map->needs_wakeup = TRUE;
486		vm_map_unlock_and_wait(map, FALSE);
487	}
488	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
489	vm_map_unlock(map);
490	return (addr);
491}
492
493/*
494 *	kmem_free_wakeup:
495 *
496 *	Returns memory to a submap of the kernel, and wakes up any processes
497 *	waiting for memory in that map.
498 */
499void
500kmem_free_wakeup(map, addr, size)
501	vm_map_t map;
502	vm_offset_t addr;
503	vm_size_t size;
504{
505
506	vm_map_lock(map);
507	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
508	if (map->needs_wakeup) {
509		map->needs_wakeup = FALSE;
510		vm_map_wakeup(map);
511	}
512	vm_map_unlock(map);
513}
514
515/*
516 * 	kmem_init:
517 *
518 *	Create the kernel map; insert a mapping covering kernel text,
519 *	data, bss, and all space allocated thus far (`boostrap' data).  The
520 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
521 *	`start' as allocated, and the range between `start' and `end' as free.
522 */
523void
524kmem_init(start, end)
525	vm_offset_t start, end;
526{
527	vm_map_t m;
528
529	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
530	m->system_map = 1;
531	vm_map_lock(m);
532	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
533	kernel_map = m;
534	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
535	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
536	/* ... and ending with the completion of the above `insert' */
537	vm_map_unlock(m);
538}
539