vm_kern.c revision 12259
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $Id: vm_kern.c,v 1.16 1995/09/03 20:40:39 dyson Exp $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>
74#include <sys/proc.h>
75#include <sys/malloc.h>
76#include <sys/syslog.h>
77
78#include <vm/vm.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pageout.h>
81#include <vm/vm_kern.h>
82
83vm_map_t buffer_map;
84vm_map_t kernel_map;
85vm_map_t kmem_map;
86vm_map_t mb_map;
87int mb_map_full;
88vm_map_t io_map;
89vm_map_t clean_map;
90vm_map_t phys_map;
91vm_map_t exec_map;
92vm_map_t u_map;
93
94/*
95 *	kmem_alloc_pageable:
96 *
97 *	Allocate pageable memory to the kernel's address map.
98 *	"map" must be kernel_map or a submap of kernel_map.
99 */
100
101vm_offset_t
102kmem_alloc_pageable(map, size)
103	vm_map_t map;
104	register vm_size_t size;
105{
106	vm_offset_t addr;
107	register int result;
108
109	size = round_page(size);
110	addr = vm_map_min(map);
111	result = vm_map_find(map, NULL, (vm_offset_t) 0,
112	    &addr, size, TRUE);
113	if (result != KERN_SUCCESS) {
114		return (0);
115	}
116	return (addr);
117}
118
119/*
120 *	Allocate wired-down memory in the kernel's address map
121 *	or a submap.
122 */
123vm_offset_t
124kmem_alloc(map, size)
125	register vm_map_t map;
126	register vm_size_t size;
127{
128	vm_offset_t addr;
129	register vm_offset_t offset;
130	vm_offset_t i;
131
132	size = round_page(size);
133
134	/*
135	 * Use the kernel object for wired-down kernel pages. Assume that no
136	 * region of the kernel object is referenced more than once.
137	 */
138
139	/*
140	 * Locate sufficient space in the map.  This will give us the final
141	 * virtual address for the new memory, and thus will tell us the
142	 * offset within the kernel map.
143	 */
144	vm_map_lock(map);
145	if (vm_map_findspace(map, 0, size, &addr)) {
146		vm_map_unlock(map);
147		return (0);
148	}
149	offset = addr - VM_MIN_KERNEL_ADDRESS;
150	vm_object_reference(kernel_object);
151	vm_map_insert(map, kernel_object, offset, addr, addr + size);
152	vm_map_unlock(map);
153
154	/*
155	 * Guarantee that there are pages already in this object before
156	 * calling vm_map_pageable.  This is to prevent the following
157	 * scenario:
158	 *
159	 * 1) Threads have swapped out, so that there is a pager for the
160	 * kernel_object. 2) The kmsg zone is empty, and so we are
161	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
162	 * there is no page, but there is a pager, so we call
163	 * pager_data_request.  But the kmsg zone is empty, so we must
164	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
165	 * we get the data back from the pager, it will be (very stale)
166	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
167	 *
168	 * We're intentionally not activating the pages we allocate to prevent a
169	 * race with page-out.  vm_map_pageable will wire the pages.
170	 */
171
172	for (i = 0; i < size; i += PAGE_SIZE) {
173		vm_page_t mem;
174
175		while ((mem = vm_page_alloc(kernel_object, offset + i, (VM_ALLOC_NORMAL|VM_ALLOC_ZERO))) == NULL) {
176			VM_WAIT;
177		}
178		if ((mem->flags & PG_ZERO) == 0)
179			vm_page_zero_fill(mem);
180		mem->flags &= ~(PG_BUSY|PG_ZERO);
181		mem->valid = VM_PAGE_BITS_ALL;
182	}
183
184	/*
185	 * And finally, mark the data as non-pageable.
186	 */
187
188	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
189
190	/*
191	 * Try to coalesce the map
192	 */
193	vm_map_simplify(map, addr);
194
195	return (addr);
196}
197
198/*
199 *	kmem_free:
200 *
201 *	Release a region of kernel virtual memory allocated
202 *	with kmem_alloc, and return the physical pages
203 *	associated with that region.
204 */
205void
206kmem_free(map, addr, size)
207	vm_map_t map;
208	register vm_offset_t addr;
209	vm_size_t size;
210{
211	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
212}
213
214/*
215 *	kmem_suballoc:
216 *
217 *	Allocates a map to manage a subrange
218 *	of the kernel virtual address space.
219 *
220 *	Arguments are as follows:
221 *
222 *	parent		Map to take range from
223 *	size		Size of range to find
224 *	min, max	Returned endpoints of map
225 *	pageable	Can the region be paged
226 */
227vm_map_t
228kmem_suballoc(parent, min, max, size, pageable)
229	register vm_map_t parent;
230	vm_offset_t *min, *max;
231	register vm_size_t size;
232	boolean_t pageable;
233{
234	register int ret;
235	vm_map_t result;
236
237	size = round_page(size);
238
239	*min = (vm_offset_t) vm_map_min(parent);
240	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
241	    min, size, TRUE);
242	if (ret != KERN_SUCCESS) {
243		printf("kmem_suballoc: bad status return of %d.\n", ret);
244		panic("kmem_suballoc");
245	}
246	*max = *min + size;
247	pmap_reference(vm_map_pmap(parent));
248	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
249	if (result == NULL)
250		panic("kmem_suballoc: cannot create submap");
251	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
252		panic("kmem_suballoc: unable to change range to submap");
253	return (result);
254}
255
256/*
257 * Allocate wired-down memory in the kernel's address map for the higher
258 * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
259 * kmem_alloc() because we may need to allocate memory at interrupt
260 * level where we cannot block (canwait == FALSE).
261 *
262 * This routine has its own private kernel submap (kmem_map) and object
263 * (kmem_object).  This, combined with the fact that only malloc uses
264 * this routine, ensures that we will never block in map or object waits.
265 *
266 * Note that this still only works in a uni-processor environment and
267 * when called at splhigh().
268 *
269 * We don't worry about expanding the map (adding entries) since entries
270 * for wired maps are statically allocated.
271 */
272vm_offset_t
273kmem_malloc(map, size, waitflag)
274	register vm_map_t map;
275	register vm_size_t size;
276	boolean_t waitflag;
277{
278	register vm_offset_t offset, i;
279	vm_map_entry_t entry;
280	vm_offset_t addr;
281	vm_page_t m;
282
283	if (map != kmem_map && map != mb_map)
284		panic("kmem_malloc: map != {kmem,mb}_map");
285
286	size = round_page(size);
287	addr = vm_map_min(map);
288
289	/*
290	 * Locate sufficient space in the map.  This will give us the final
291	 * virtual address for the new memory, and thus will tell us the
292	 * offset within the kernel map.
293	 */
294	vm_map_lock(map);
295	if (vm_map_findspace(map, 0, size, &addr)) {
296		vm_map_unlock(map);
297		if (map == mb_map) {
298			mb_map_full = TRUE;
299			log(LOG_ERR, "mb_map full\n");
300			return (0);
301		}
302		if (waitflag == M_WAITOK)
303			panic("kmem_malloc: kmem_map too small");
304		return (0);
305	}
306	offset = addr - vm_map_min(kmem_map);
307	vm_object_reference(kmem_object);
308	vm_map_insert(map, kmem_object, offset, addr, addr + size);
309
310	/*
311	 * If we can wait, just mark the range as wired (will fault pages as
312	 * necessary).
313	 */
314	if (waitflag == M_WAITOK) {
315		vm_map_unlock(map);
316		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
317		    FALSE);
318		vm_map_simplify(map, addr);
319		return (addr);
320	}
321	/*
322	 * If we cannot wait then we must allocate all memory up front,
323	 * pulling it off the active queue to prevent pageout.
324	 */
325	for (i = 0; i < size; i += PAGE_SIZE) {
326		m = vm_page_alloc(kmem_object, offset + i,
327			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
328
329		/*
330		 * Ran out of space, free everything up and return. Don't need
331		 * to lock page queues here as we know that the pages we got
332		 * aren't on any queues.
333		 */
334		if (m == NULL) {
335			while (i != 0) {
336				i -= PAGE_SIZE;
337				m = vm_page_lookup(kmem_object, offset + i);
338				vm_page_free(m);
339			}
340			vm_map_delete(map, addr, addr + size);
341			vm_map_unlock(map);
342			return (0);
343		}
344		m->flags &= ~(PG_BUSY|PG_ZERO);
345		m->valid = VM_PAGE_BITS_ALL;
346	}
347
348	/*
349	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
350	 * be able to extend the previous entry so there will be a new entry
351	 * exactly corresponding to this address range and it will have
352	 * wired_count == 0.
353	 */
354	if (!vm_map_lookup_entry(map, addr, &entry) ||
355	    entry->start != addr || entry->end != addr + size ||
356	    entry->wired_count)
357		panic("kmem_malloc: entry not found or misaligned");
358	entry->wired_count++;
359
360	/*
361	 * Loop thru pages, entering them in the pmap. (We cannot add them to
362	 * the wired count without wrapping the vm_page_queue_lock in
363	 * splimp...)
364	 */
365	for (i = 0; i < size; i += PAGE_SIZE) {
366		m = vm_page_lookup(kmem_object, offset + i);
367		pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
368	}
369	vm_map_unlock(map);
370
371	vm_map_simplify(map, addr);
372	return (addr);
373}
374
375/*
376 *	kmem_alloc_wait
377 *
378 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
379 *	has no room, the caller sleeps waiting for more memory in the submap.
380 *
381 */
382vm_offset_t
383kmem_alloc_wait(map, size)
384	vm_map_t map;
385	vm_size_t size;
386{
387	vm_offset_t addr;
388
389	size = round_page(size);
390
391	for (;;) {
392		/*
393		 * To make this work for more than one map, use the map's lock
394		 * to lock out sleepers/wakers.
395		 */
396		vm_map_lock(map);
397		if (vm_map_findspace(map, 0, size, &addr) == 0)
398			break;
399		/* no space now; see if we can ever get space */
400		if (vm_map_max(map) - vm_map_min(map) < size) {
401			vm_map_unlock(map);
402			return (0);
403		}
404		vm_map_unlock(map);
405		tsleep(map, PVM, "kmaw", 0);
406	}
407	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size);
408	vm_map_unlock(map);
409	return (addr);
410}
411
412/*
413 *	kmem_free_wakeup
414 *
415 *	Returns memory to a submap of the kernel, and wakes up any processes
416 *	waiting for memory in that map.
417 */
418void
419kmem_free_wakeup(map, addr, size)
420	vm_map_t map;
421	vm_offset_t addr;
422	vm_size_t size;
423{
424	vm_map_lock(map);
425	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
426	wakeup(map);
427	vm_map_unlock(map);
428}
429
430/*
431 * Create the kernel map; insert a mapping covering kernel text, data, bss,
432 * and all space allocated thus far (`boostrap' data).  The new map will thus
433 * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
434 * the range between `start' and `end' as free.
435 */
436void
437kmem_init(start, end)
438	vm_offset_t start, end;
439{
440	register vm_map_t m;
441
442	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
443	vm_map_lock(m);
444	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
445	kernel_map = m;
446	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
447	    VM_MIN_KERNEL_ADDRESS, start);
448	/* ... and ending with the completion of the above `insert' */
449	vm_map_unlock(m);
450}
451