vm_kern.c revision 118096
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65/*
66 *	Kernel memory management.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 118096 2003-07-27 18:31:32Z alc $");
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/kernel.h>		/* for ticks and hz */
75#include <sys/lock.h>
76#include <sys/mutex.h>
77#include <sys/proc.h>
78#include <sys/malloc.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_extern.h>
88
89vm_map_t kernel_map=0;
90vm_map_t kmem_map=0;
91vm_map_t exec_map=0;
92vm_map_t clean_map=0;
93vm_map_t buffer_map=0;
94
95/*
96 *	kmem_alloc_pageable:
97 *
98 *	Allocate pageable memory to the kernel's address map.
99 *	"map" must be kernel_map or a submap of kernel_map.
100 */
101vm_offset_t
102kmem_alloc_pageable(map, size)
103	vm_map_t map;
104	vm_size_t size;
105{
106	vm_offset_t addr;
107	int result;
108
109	size = round_page(size);
110	addr = vm_map_min(map);
111	result = vm_map_find(map, NULL, 0,
112	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
113	if (result != KERN_SUCCESS) {
114		return (0);
115	}
116	return (addr);
117}
118
119/*
120 *	kmem_alloc_nofault:
121 *
122 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
123 */
124vm_offset_t
125kmem_alloc_nofault(map, size)
126	vm_map_t map;
127	vm_size_t size;
128{
129	vm_offset_t addr;
130	int result;
131
132	size = round_page(size);
133	addr = vm_map_min(map);
134	result = vm_map_find(map, NULL, 0,
135	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
136	if (result != KERN_SUCCESS) {
137		return (0);
138	}
139	return (addr);
140}
141
142/*
143 *	Allocate wired-down memory in the kernel's address map
144 *	or a submap.
145 */
146vm_offset_t
147kmem_alloc(map, size)
148	vm_map_t map;
149	vm_size_t size;
150{
151	vm_offset_t addr;
152	vm_offset_t offset;
153	vm_offset_t i;
154
155	size = round_page(size);
156
157	/*
158	 * Use the kernel object for wired-down kernel pages. Assume that no
159	 * region of the kernel object is referenced more than once.
160	 */
161
162	/*
163	 * Locate sufficient space in the map.  This will give us the final
164	 * virtual address for the new memory, and thus will tell us the
165	 * offset within the kernel map.
166	 */
167	vm_map_lock(map);
168	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
169		vm_map_unlock(map);
170		return (0);
171	}
172	offset = addr - VM_MIN_KERNEL_ADDRESS;
173	vm_object_reference(kernel_object);
174	vm_map_insert(map, kernel_object, offset, addr, addr + size,
175		VM_PROT_ALL, VM_PROT_ALL, 0);
176	vm_map_unlock(map);
177
178	/*
179	 * Guarantee that there are pages already in this object before
180	 * calling vm_map_pageable.  This is to prevent the following
181	 * scenario:
182	 *
183	 * 1) Threads have swapped out, so that there is a pager for the
184	 * kernel_object. 2) The kmsg zone is empty, and so we are
185	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
186	 * there is no page, but there is a pager, so we call
187	 * pager_data_request.  But the kmsg zone is empty, so we must
188	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
189	 * we get the data back from the pager, it will be (very stale)
190	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
191	 *
192	 * We're intentionally not activating the pages we allocate to prevent a
193	 * race with page-out.  vm_map_pageable will wire the pages.
194	 */
195	for (i = 0; i < size; i += PAGE_SIZE) {
196		vm_page_t mem;
197
198		VM_OBJECT_LOCK(kernel_object);
199		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
200				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
201		VM_OBJECT_UNLOCK(kernel_object);
202		if ((mem->flags & PG_ZERO) == 0)
203			pmap_zero_page(mem);
204		vm_page_lock_queues();
205		mem->valid = VM_PAGE_BITS_ALL;
206		vm_page_flag_clear(mem, PG_ZERO);
207		vm_page_wakeup(mem);
208		vm_page_unlock_queues();
209	}
210
211	/*
212	 * And finally, mark the data as non-pageable.
213	 */
214	(void) vm_map_wire(map, addr, addr + size, FALSE);
215
216	return (addr);
217}
218
219/*
220 *	kmem_free:
221 *
222 *	Release a region of kernel virtual memory allocated
223 *	with kmem_alloc, and return the physical pages
224 *	associated with that region.
225 *
226 *	This routine may not block on kernel maps.
227 */
228void
229kmem_free(map, addr, size)
230	vm_map_t map;
231	vm_offset_t addr;
232	vm_size_t size;
233{
234
235	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
236}
237
238/*
239 *	kmem_suballoc:
240 *
241 *	Allocates a map to manage a subrange
242 *	of the kernel virtual address space.
243 *
244 *	Arguments are as follows:
245 *
246 *	parent		Map to take range from
247 *	min, max	Returned endpoints of map
248 *	size		Size of range to find
249 */
250vm_map_t
251kmem_suballoc(parent, min, max, size)
252	vm_map_t parent;
253	vm_offset_t *min, *max;
254	vm_size_t size;
255{
256	int ret;
257	vm_map_t result;
258
259	GIANT_REQUIRED;
260
261	size = round_page(size);
262
263	*min = (vm_offset_t) vm_map_min(parent);
264	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
265	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
266	if (ret != KERN_SUCCESS) {
267		printf("kmem_suballoc: bad status return of %d.\n", ret);
268		panic("kmem_suballoc");
269	}
270	*max = *min + size;
271	result = vm_map_create(vm_map_pmap(parent), *min, *max);
272	if (result == NULL)
273		panic("kmem_suballoc: cannot create submap");
274	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
275		panic("kmem_suballoc: unable to change range to submap");
276	return (result);
277}
278
279/*
280 *	kmem_malloc:
281 *
282 * 	Allocate wired-down memory in the kernel's address map for the higher
283 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
284 * 	kmem_alloc() because we may need to allocate memory at interrupt
285 * 	level where we cannot block (canwait == FALSE).
286 *
287 * 	This routine has its own private kernel submap (kmem_map) and object
288 * 	(kmem_object).  This, combined with the fact that only malloc uses
289 * 	this routine, ensures that we will never block in map or object waits.
290 *
291 * 	Note that this still only works in a uni-processor environment and
292 * 	when called at splhigh().
293 *
294 * 	We don't worry about expanding the map (adding entries) since entries
295 * 	for wired maps are statically allocated.
296 *
297 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
298 *	I have not verified that it actually does not block.
299 *
300 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
301 *	which we never free.
302 */
303vm_offset_t
304kmem_malloc(map, size, flags)
305	vm_map_t map;
306	vm_size_t size;
307	int flags;
308{
309	vm_offset_t offset, i;
310	vm_map_entry_t entry;
311	vm_offset_t addr;
312	vm_page_t m;
313	int pflags;
314
315	size = round_page(size);
316	addr = vm_map_min(map);
317
318	/*
319	 * Locate sufficient space in the map.  This will give us the final
320	 * virtual address for the new memory, and thus will tell us the
321	 * offset within the kernel map.
322	 */
323	vm_map_lock(map);
324	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
325		vm_map_unlock(map);
326		if (map != kmem_map) {
327			static int last_report; /* when we did it (in ticks) */
328			if (ticks < last_report ||
329			    (ticks - last_report) >= hz) {
330				last_report = ticks;
331				printf("Out of mbuf address space!\n");
332				printf("Consider increasing NMBCLUSTERS\n");
333			}
334			return (0);
335		}
336		if ((flags & M_NOWAIT) == 0)
337			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
338				(long)size, (long)map->size);
339		return (0);
340	}
341	offset = addr - VM_MIN_KERNEL_ADDRESS;
342	vm_object_reference(kmem_object);
343	vm_map_insert(map, kmem_object, offset, addr, addr + size,
344		VM_PROT_ALL, VM_PROT_ALL, 0);
345
346	/*
347	 * Note: if M_NOWAIT specified alone, allocate from
348	 * interrupt-safe queues only (just the free list).  If
349	 * M_USE_RESERVE is also specified, we can also
350	 * allocate from the cache.  Neither of the latter two
351	 * flags may be specified from an interrupt since interrupts
352	 * are not allowed to mess with the cache queue.
353	 */
354
355	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
356		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
357	else
358		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
359
360	if (flags & M_ZERO)
361		pflags |= VM_ALLOC_ZERO;
362
363	VM_OBJECT_LOCK(kmem_object);
364	for (i = 0; i < size; i += PAGE_SIZE) {
365retry:
366		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
367
368		/*
369		 * Ran out of space, free everything up and return. Don't need
370		 * to lock page queues here as we know that the pages we got
371		 * aren't on any queues.
372		 */
373		if (m == NULL) {
374			if ((flags & M_NOWAIT) == 0) {
375				VM_OBJECT_UNLOCK(kmem_object);
376				vm_map_unlock(map);
377				VM_WAIT;
378				vm_map_lock(map);
379				VM_OBJECT_LOCK(kmem_object);
380				goto retry;
381			}
382			/*
383			 * Free the pages before removing the map entry.
384			 * They are already marked busy.  Calling
385			 * vm_map_delete before the pages has been freed or
386			 * unbusied will cause a deadlock.
387			 */
388			while (i != 0) {
389				i -= PAGE_SIZE;
390				m = vm_page_lookup(kmem_object,
391						   OFF_TO_IDX(offset + i));
392				vm_page_lock_queues();
393				vm_page_unwire(m, 0);
394				vm_page_free(m);
395				vm_page_unlock_queues();
396			}
397			VM_OBJECT_UNLOCK(kmem_object);
398			vm_map_delete(map, addr, addr + size);
399			vm_map_unlock(map);
400			return (0);
401		}
402		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
403			pmap_zero_page(m);
404		vm_page_lock_queues();
405		vm_page_flag_clear(m, PG_ZERO);
406		m->valid = VM_PAGE_BITS_ALL;
407		vm_page_unlock_queues();
408	}
409	VM_OBJECT_UNLOCK(kmem_object);
410
411	/*
412	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
413	 * be able to extend the previous entry so there will be a new entry
414	 * exactly corresponding to this address range and it will have
415	 * wired_count == 0.
416	 */
417	if (!vm_map_lookup_entry(map, addr, &entry) ||
418	    entry->start != addr || entry->end != addr + size ||
419	    entry->wired_count != 0)
420		panic("kmem_malloc: entry not found or misaligned");
421	entry->wired_count = 1;
422
423	vm_map_simplify_entry(map, entry);
424
425	/*
426	 * Loop thru pages, entering them in the pmap. (We cannot add them to
427	 * the wired count without wrapping the vm_page_queue_lock in
428	 * splimp...)
429	 */
430	for (i = 0; i < size; i += PAGE_SIZE) {
431		VM_OBJECT_LOCK(kmem_object);
432		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
433		VM_OBJECT_UNLOCK(kmem_object);
434		/*
435		 * Because this is kernel_pmap, this call will not block.
436		 */
437		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
438		vm_page_lock_queues();
439		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
440		vm_page_wakeup(m);
441		vm_page_unlock_queues();
442	}
443	vm_map_unlock(map);
444
445	return (addr);
446}
447
448/*
449 *	kmem_alloc_wait:
450 *
451 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
452 *	has no room, the caller sleeps waiting for more memory in the submap.
453 *
454 *	This routine may block.
455 */
456vm_offset_t
457kmem_alloc_wait(map, size)
458	vm_map_t map;
459	vm_size_t size;
460{
461	vm_offset_t addr;
462
463	size = round_page(size);
464
465	for (;;) {
466		/*
467		 * To make this work for more than one map, use the map's lock
468		 * to lock out sleepers/wakers.
469		 */
470		vm_map_lock(map);
471		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
472			break;
473		/* no space now; see if we can ever get space */
474		if (vm_map_max(map) - vm_map_min(map) < size) {
475			vm_map_unlock(map);
476			return (0);
477		}
478		map->needs_wakeup = TRUE;
479		vm_map_unlock_and_wait(map, FALSE);
480	}
481	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
482	vm_map_unlock(map);
483	return (addr);
484}
485
486/*
487 *	kmem_free_wakeup:
488 *
489 *	Returns memory to a submap of the kernel, and wakes up any processes
490 *	waiting for memory in that map.
491 */
492void
493kmem_free_wakeup(map, addr, size)
494	vm_map_t map;
495	vm_offset_t addr;
496	vm_size_t size;
497{
498
499	vm_map_lock(map);
500	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
501	if (map->needs_wakeup) {
502		map->needs_wakeup = FALSE;
503		vm_map_wakeup(map);
504	}
505	vm_map_unlock(map);
506}
507
508/*
509 * 	kmem_init:
510 *
511 *	Create the kernel map; insert a mapping covering kernel text,
512 *	data, bss, and all space allocated thus far (`boostrap' data).  The
513 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
514 *	`start' as allocated, and the range between `start' and `end' as free.
515 */
516void
517kmem_init(start, end)
518	vm_offset_t start, end;
519{
520	vm_map_t m;
521
522	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
523	m->system_map = 1;
524	vm_map_lock(m);
525	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
526	kernel_map = m;
527	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
528	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
529	/* ... and ending with the completion of the above `insert' */
530	vm_map_unlock(m);
531}
532