vm_kern.c revision 116226
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65/*
66 *	Kernel memory management.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/vm/vm_kern.c 116226 2003-06-11 23:50:51Z obrien $");
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/kernel.h>		/* for ticks and hz */
75#include <sys/lock.h>
76#include <sys/mutex.h>
77#include <sys/proc.h>
78#include <sys/malloc.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_extern.h>
88
89vm_map_t kernel_map=0;
90vm_map_t kmem_map=0;
91vm_map_t exec_map=0;
92vm_map_t clean_map=0;
93vm_map_t buffer_map=0;
94
95/*
96 *	kmem_alloc_pageable:
97 *
98 *	Allocate pageable memory to the kernel's address map.
99 *	"map" must be kernel_map or a submap of kernel_map.
100 */
101vm_offset_t
102kmem_alloc_pageable(map, size)
103	vm_map_t map;
104	vm_size_t size;
105{
106	vm_offset_t addr;
107	int result;
108
109	size = round_page(size);
110	addr = vm_map_min(map);
111	result = vm_map_find(map, NULL, 0,
112	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
113	if (result != KERN_SUCCESS) {
114		return (0);
115	}
116	return (addr);
117}
118
119/*
120 *	kmem_alloc_nofault:
121 *
122 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
123 */
124vm_offset_t
125kmem_alloc_nofault(map, size)
126	vm_map_t map;
127	vm_size_t size;
128{
129	vm_offset_t addr;
130	int result;
131
132	size = round_page(size);
133	addr = vm_map_min(map);
134	result = vm_map_find(map, NULL, 0,
135	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
136	if (result != KERN_SUCCESS) {
137		return (0);
138	}
139	return (addr);
140}
141
142/*
143 *	Allocate wired-down memory in the kernel's address map
144 *	or a submap.
145 */
146vm_offset_t
147kmem_alloc(map, size)
148	vm_map_t map;
149	vm_size_t size;
150{
151	vm_offset_t addr;
152	vm_offset_t offset;
153	vm_offset_t i;
154
155	GIANT_REQUIRED;
156
157	size = round_page(size);
158
159	/*
160	 * Use the kernel object for wired-down kernel pages. Assume that no
161	 * region of the kernel object is referenced more than once.
162	 */
163
164	/*
165	 * Locate sufficient space in the map.  This will give us the final
166	 * virtual address for the new memory, and thus will tell us the
167	 * offset within the kernel map.
168	 */
169	vm_map_lock(map);
170	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
171		vm_map_unlock(map);
172		return (0);
173	}
174	offset = addr - VM_MIN_KERNEL_ADDRESS;
175	vm_object_reference(kernel_object);
176	vm_map_insert(map, kernel_object, offset, addr, addr + size,
177		VM_PROT_ALL, VM_PROT_ALL, 0);
178	vm_map_unlock(map);
179
180	/*
181	 * Guarantee that there are pages already in this object before
182	 * calling vm_map_pageable.  This is to prevent the following
183	 * scenario:
184	 *
185	 * 1) Threads have swapped out, so that there is a pager for the
186	 * kernel_object. 2) The kmsg zone is empty, and so we are
187	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
188	 * there is no page, but there is a pager, so we call
189	 * pager_data_request.  But the kmsg zone is empty, so we must
190	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
191	 * we get the data back from the pager, it will be (very stale)
192	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
193	 *
194	 * We're intentionally not activating the pages we allocate to prevent a
195	 * race with page-out.  vm_map_pageable will wire the pages.
196	 */
197	for (i = 0; i < size; i += PAGE_SIZE) {
198		vm_page_t mem;
199
200		VM_OBJECT_LOCK(kernel_object);
201		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
202				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
203		VM_OBJECT_UNLOCK(kernel_object);
204		if ((mem->flags & PG_ZERO) == 0)
205			pmap_zero_page(mem);
206		vm_page_lock_queues();
207		mem->valid = VM_PAGE_BITS_ALL;
208		vm_page_flag_clear(mem, PG_ZERO);
209		vm_page_wakeup(mem);
210		vm_page_unlock_queues();
211	}
212
213	/*
214	 * And finally, mark the data as non-pageable.
215	 */
216	(void) vm_map_wire(map, addr, addr + size, FALSE);
217
218	return (addr);
219}
220
221/*
222 *	kmem_free:
223 *
224 *	Release a region of kernel virtual memory allocated
225 *	with kmem_alloc, and return the physical pages
226 *	associated with that region.
227 *
228 *	This routine may not block on kernel maps.
229 */
230void
231kmem_free(map, addr, size)
232	vm_map_t map;
233	vm_offset_t addr;
234	vm_size_t size;
235{
236
237	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
238}
239
240/*
241 *	kmem_suballoc:
242 *
243 *	Allocates a map to manage a subrange
244 *	of the kernel virtual address space.
245 *
246 *	Arguments are as follows:
247 *
248 *	parent		Map to take range from
249 *	min, max	Returned endpoints of map
250 *	size		Size of range to find
251 */
252vm_map_t
253kmem_suballoc(parent, min, max, size)
254	vm_map_t parent;
255	vm_offset_t *min, *max;
256	vm_size_t size;
257{
258	int ret;
259	vm_map_t result;
260
261	GIANT_REQUIRED;
262
263	size = round_page(size);
264
265	*min = (vm_offset_t) vm_map_min(parent);
266	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
267	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
268	if (ret != KERN_SUCCESS) {
269		printf("kmem_suballoc: bad status return of %d.\n", ret);
270		panic("kmem_suballoc");
271	}
272	*max = *min + size;
273	result = vm_map_create(vm_map_pmap(parent), *min, *max);
274	if (result == NULL)
275		panic("kmem_suballoc: cannot create submap");
276	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
277		panic("kmem_suballoc: unable to change range to submap");
278	return (result);
279}
280
281/*
282 *	kmem_malloc:
283 *
284 * 	Allocate wired-down memory in the kernel's address map for the higher
285 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
286 * 	kmem_alloc() because we may need to allocate memory at interrupt
287 * 	level where we cannot block (canwait == FALSE).
288 *
289 * 	This routine has its own private kernel submap (kmem_map) and object
290 * 	(kmem_object).  This, combined with the fact that only malloc uses
291 * 	this routine, ensures that we will never block in map or object waits.
292 *
293 * 	Note that this still only works in a uni-processor environment and
294 * 	when called at splhigh().
295 *
296 * 	We don't worry about expanding the map (adding entries) since entries
297 * 	for wired maps are statically allocated.
298 *
299 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
300 *	I have not verified that it actually does not block.
301 *
302 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
303 *	which we never free.
304 */
305vm_offset_t
306kmem_malloc(map, size, flags)
307	vm_map_t map;
308	vm_size_t size;
309	int flags;
310{
311	vm_offset_t offset, i;
312	vm_map_entry_t entry;
313	vm_offset_t addr;
314	vm_page_t m;
315	int pflags;
316
317	if ((flags & M_NOWAIT) == 0)
318		GIANT_REQUIRED;
319
320	size = round_page(size);
321	addr = vm_map_min(map);
322
323	/*
324	 * Locate sufficient space in the map.  This will give us the final
325	 * virtual address for the new memory, and thus will tell us the
326	 * offset within the kernel map.
327	 */
328	vm_map_lock(map);
329	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
330		vm_map_unlock(map);
331		if (map != kmem_map) {
332			static int last_report; /* when we did it (in ticks) */
333			if (ticks < last_report ||
334			    (ticks - last_report) >= hz) {
335				last_report = ticks;
336				printf("Out of mbuf address space!\n");
337				printf("Consider increasing NMBCLUSTERS\n");
338			}
339			return (0);
340		}
341		if ((flags & M_NOWAIT) == 0)
342			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
343				(long)size, (long)map->size);
344		return (0);
345	}
346	offset = addr - VM_MIN_KERNEL_ADDRESS;
347	vm_object_reference(kmem_object);
348	vm_map_insert(map, kmem_object, offset, addr, addr + size,
349		VM_PROT_ALL, VM_PROT_ALL, 0);
350
351	/*
352	 * Note: if M_NOWAIT specified alone, allocate from
353	 * interrupt-safe queues only (just the free list).  If
354	 * M_USE_RESERVE is also specified, we can also
355	 * allocate from the cache.  Neither of the latter two
356	 * flags may be specified from an interrupt since interrupts
357	 * are not allowed to mess with the cache queue.
358	 */
359
360	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
361		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
362	else
363		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
364
365	if (flags & M_ZERO)
366		pflags |= VM_ALLOC_ZERO;
367
368	VM_OBJECT_LOCK(kmem_object);
369	for (i = 0; i < size; i += PAGE_SIZE) {
370retry:
371		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
372
373		/*
374		 * Ran out of space, free everything up and return. Don't need
375		 * to lock page queues here as we know that the pages we got
376		 * aren't on any queues.
377		 */
378		if (m == NULL) {
379			if ((flags & M_NOWAIT) == 0) {
380				VM_OBJECT_UNLOCK(kmem_object);
381				vm_map_unlock(map);
382				VM_WAIT;
383				vm_map_lock(map);
384				VM_OBJECT_LOCK(kmem_object);
385				goto retry;
386			}
387			/*
388			 * Free the pages before removing the map entry.
389			 * They are already marked busy.  Calling
390			 * vm_map_delete before the pages has been freed or
391			 * unbusied will cause a deadlock.
392			 */
393			while (i != 0) {
394				i -= PAGE_SIZE;
395				m = vm_page_lookup(kmem_object,
396						   OFF_TO_IDX(offset + i));
397				vm_page_lock_queues();
398				vm_page_unwire(m, 0);
399				vm_page_free(m);
400				vm_page_unlock_queues();
401			}
402			VM_OBJECT_UNLOCK(kmem_object);
403			vm_map_delete(map, addr, addr + size);
404			vm_map_unlock(map);
405			return (0);
406		}
407		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
408			pmap_zero_page(m);
409		vm_page_lock_queues();
410		vm_page_flag_clear(m, PG_ZERO);
411		m->valid = VM_PAGE_BITS_ALL;
412		vm_page_unlock_queues();
413	}
414	VM_OBJECT_UNLOCK(kmem_object);
415
416	/*
417	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
418	 * be able to extend the previous entry so there will be a new entry
419	 * exactly corresponding to this address range and it will have
420	 * wired_count == 0.
421	 */
422	if (!vm_map_lookup_entry(map, addr, &entry) ||
423	    entry->start != addr || entry->end != addr + size ||
424	    entry->wired_count != 0)
425		panic("kmem_malloc: entry not found or misaligned");
426	entry->wired_count = 1;
427
428	vm_map_simplify_entry(map, entry);
429
430	/*
431	 * Loop thru pages, entering them in the pmap. (We cannot add them to
432	 * the wired count without wrapping the vm_page_queue_lock in
433	 * splimp...)
434	 */
435	for (i = 0; i < size; i += PAGE_SIZE) {
436		VM_OBJECT_LOCK(kmem_object);
437		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
438		VM_OBJECT_UNLOCK(kmem_object);
439		/*
440		 * Because this is kernel_pmap, this call will not block.
441		 */
442		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
443		vm_page_lock_queues();
444		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
445		vm_page_wakeup(m);
446		vm_page_unlock_queues();
447	}
448	vm_map_unlock(map);
449
450	return (addr);
451}
452
453/*
454 *	kmem_alloc_wait:
455 *
456 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
457 *	has no room, the caller sleeps waiting for more memory in the submap.
458 *
459 *	This routine may block.
460 */
461vm_offset_t
462kmem_alloc_wait(map, size)
463	vm_map_t map;
464	vm_size_t size;
465{
466	vm_offset_t addr;
467
468	size = round_page(size);
469
470	for (;;) {
471		/*
472		 * To make this work for more than one map, use the map's lock
473		 * to lock out sleepers/wakers.
474		 */
475		vm_map_lock(map);
476		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
477			break;
478		/* no space now; see if we can ever get space */
479		if (vm_map_max(map) - vm_map_min(map) < size) {
480			vm_map_unlock(map);
481			return (0);
482		}
483		map->needs_wakeup = TRUE;
484		vm_map_unlock_and_wait(map, FALSE);
485	}
486	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
487	vm_map_unlock(map);
488	return (addr);
489}
490
491/*
492 *	kmem_free_wakeup:
493 *
494 *	Returns memory to a submap of the kernel, and wakes up any processes
495 *	waiting for memory in that map.
496 */
497void
498kmem_free_wakeup(map, addr, size)
499	vm_map_t map;
500	vm_offset_t addr;
501	vm_size_t size;
502{
503
504	vm_map_lock(map);
505	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
506	if (map->needs_wakeup) {
507		map->needs_wakeup = FALSE;
508		vm_map_wakeup(map);
509	}
510	vm_map_unlock(map);
511}
512
513/*
514 * 	kmem_init:
515 *
516 *	Create the kernel map; insert a mapping covering kernel text,
517 *	data, bss, and all space allocated thus far (`boostrap' data).  The
518 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
519 *	`start' as allocated, and the range between `start' and `end' as free.
520 */
521void
522kmem_init(start, end)
523	vm_offset_t start, end;
524{
525	vm_map_t m;
526
527	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
528	m->system_map = 1;
529	vm_map_lock(m);
530	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
531	kernel_map = m;
532	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
533	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
534	/* ... and ending with the completion of the above `insert' */
535	vm_map_unlock(m);
536}
537