vm_kern.c revision 115997
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 115997 2003-06-07 23:24:10Z alc $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>		/* for ticks and hz */
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/malloc.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t clean_map=0;
92vm_map_t buffer_map=0;
93
94/*
95 *	kmem_alloc_pageable:
96 *
97 *	Allocate pageable memory to the kernel's address map.
98 *	"map" must be kernel_map or a submap of kernel_map.
99 */
100vm_offset_t
101kmem_alloc_pageable(map, size)
102	vm_map_t map;
103	vm_size_t size;
104{
105	vm_offset_t addr;
106	int result;
107
108	size = round_page(size);
109	addr = vm_map_min(map);
110	result = vm_map_find(map, NULL, 0,
111	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
112	if (result != KERN_SUCCESS) {
113		return (0);
114	}
115	return (addr);
116}
117
118/*
119 *	kmem_alloc_nofault:
120 *
121 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
122 */
123vm_offset_t
124kmem_alloc_nofault(map, size)
125	vm_map_t map;
126	vm_size_t size;
127{
128	vm_offset_t addr;
129	int result;
130
131	size = round_page(size);
132	addr = vm_map_min(map);
133	result = vm_map_find(map, NULL, 0,
134	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
135	if (result != KERN_SUCCESS) {
136		return (0);
137	}
138	return (addr);
139}
140
141/*
142 *	Allocate wired-down memory in the kernel's address map
143 *	or a submap.
144 */
145vm_offset_t
146kmem_alloc(map, size)
147	vm_map_t map;
148	vm_size_t size;
149{
150	vm_offset_t addr;
151	vm_offset_t offset;
152	vm_offset_t i;
153
154	GIANT_REQUIRED;
155
156	size = round_page(size);
157
158	/*
159	 * Use the kernel object for wired-down kernel pages. Assume that no
160	 * region of the kernel object is referenced more than once.
161	 */
162
163	/*
164	 * Locate sufficient space in the map.  This will give us the final
165	 * virtual address for the new memory, and thus will tell us the
166	 * offset within the kernel map.
167	 */
168	vm_map_lock(map);
169	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
170		vm_map_unlock(map);
171		return (0);
172	}
173	offset = addr - VM_MIN_KERNEL_ADDRESS;
174	vm_object_reference(kernel_object);
175	vm_map_insert(map, kernel_object, offset, addr, addr + size,
176		VM_PROT_ALL, VM_PROT_ALL, 0);
177	vm_map_unlock(map);
178
179	/*
180	 * Guarantee that there are pages already in this object before
181	 * calling vm_map_pageable.  This is to prevent the following
182	 * scenario:
183	 *
184	 * 1) Threads have swapped out, so that there is a pager for the
185	 * kernel_object. 2) The kmsg zone is empty, and so we are
186	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
187	 * there is no page, but there is a pager, so we call
188	 * pager_data_request.  But the kmsg zone is empty, so we must
189	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
190	 * we get the data back from the pager, it will be (very stale)
191	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
192	 *
193	 * We're intentionally not activating the pages we allocate to prevent a
194	 * race with page-out.  vm_map_pageable will wire the pages.
195	 */
196	for (i = 0; i < size; i += PAGE_SIZE) {
197		vm_page_t mem;
198
199		VM_OBJECT_LOCK(kernel_object);
200		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
201				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
202		VM_OBJECT_UNLOCK(kernel_object);
203		if ((mem->flags & PG_ZERO) == 0)
204			pmap_zero_page(mem);
205		vm_page_lock_queues();
206		mem->valid = VM_PAGE_BITS_ALL;
207		vm_page_flag_clear(mem, PG_ZERO);
208		vm_page_wakeup(mem);
209		vm_page_unlock_queues();
210	}
211
212	/*
213	 * And finally, mark the data as non-pageable.
214	 */
215	(void) vm_map_wire(map, addr, addr + size, FALSE);
216
217	return (addr);
218}
219
220/*
221 *	kmem_free:
222 *
223 *	Release a region of kernel virtual memory allocated
224 *	with kmem_alloc, and return the physical pages
225 *	associated with that region.
226 *
227 *	This routine may not block on kernel maps.
228 */
229void
230kmem_free(map, addr, size)
231	vm_map_t map;
232	vm_offset_t addr;
233	vm_size_t size;
234{
235
236	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
237}
238
239/*
240 *	kmem_suballoc:
241 *
242 *	Allocates a map to manage a subrange
243 *	of the kernel virtual address space.
244 *
245 *	Arguments are as follows:
246 *
247 *	parent		Map to take range from
248 *	min, max	Returned endpoints of map
249 *	size		Size of range to find
250 */
251vm_map_t
252kmem_suballoc(parent, min, max, size)
253	vm_map_t parent;
254	vm_offset_t *min, *max;
255	vm_size_t size;
256{
257	int ret;
258	vm_map_t result;
259
260	GIANT_REQUIRED;
261
262	size = round_page(size);
263
264	*min = (vm_offset_t) vm_map_min(parent);
265	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
266	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
267	if (ret != KERN_SUCCESS) {
268		printf("kmem_suballoc: bad status return of %d.\n", ret);
269		panic("kmem_suballoc");
270	}
271	*max = *min + size;
272	result = vm_map_create(vm_map_pmap(parent), *min, *max);
273	if (result == NULL)
274		panic("kmem_suballoc: cannot create submap");
275	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
276		panic("kmem_suballoc: unable to change range to submap");
277	return (result);
278}
279
280/*
281 *	kmem_malloc:
282 *
283 * 	Allocate wired-down memory in the kernel's address map for the higher
284 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
285 * 	kmem_alloc() because we may need to allocate memory at interrupt
286 * 	level where we cannot block (canwait == FALSE).
287 *
288 * 	This routine has its own private kernel submap (kmem_map) and object
289 * 	(kmem_object).  This, combined with the fact that only malloc uses
290 * 	this routine, ensures that we will never block in map or object waits.
291 *
292 * 	Note that this still only works in a uni-processor environment and
293 * 	when called at splhigh().
294 *
295 * 	We don't worry about expanding the map (adding entries) since entries
296 * 	for wired maps are statically allocated.
297 *
298 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
299 *	I have not verified that it actually does not block.
300 *
301 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
302 *	which we never free.
303 */
304vm_offset_t
305kmem_malloc(map, size, flags)
306	vm_map_t map;
307	vm_size_t size;
308	int flags;
309{
310	vm_offset_t offset, i;
311	vm_map_entry_t entry;
312	vm_offset_t addr;
313	vm_page_t m;
314	int pflags;
315
316	if ((flags & M_NOWAIT) == 0)
317		GIANT_REQUIRED;
318
319	size = round_page(size);
320	addr = vm_map_min(map);
321
322	/*
323	 * Locate sufficient space in the map.  This will give us the final
324	 * virtual address for the new memory, and thus will tell us the
325	 * offset within the kernel map.
326	 */
327	vm_map_lock(map);
328	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
329		vm_map_unlock(map);
330		if (map != kmem_map) {
331			static int last_report; /* when we did it (in ticks) */
332			if (ticks < last_report ||
333			    (ticks - last_report) >= hz) {
334				last_report = ticks;
335				printf("Out of mbuf address space!\n");
336				printf("Consider increasing NMBCLUSTERS\n");
337			}
338			return (0);
339		}
340		if ((flags & M_NOWAIT) == 0)
341			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
342				(long)size, (long)map->size);
343		return (0);
344	}
345	offset = addr - VM_MIN_KERNEL_ADDRESS;
346	vm_object_reference(kmem_object);
347	vm_map_insert(map, kmem_object, offset, addr, addr + size,
348		VM_PROT_ALL, VM_PROT_ALL, 0);
349
350	/*
351	 * Note: if M_NOWAIT specified alone, allocate from
352	 * interrupt-safe queues only (just the free list).  If
353	 * M_USE_RESERVE is also specified, we can also
354	 * allocate from the cache.  Neither of the latter two
355	 * flags may be specified from an interrupt since interrupts
356	 * are not allowed to mess with the cache queue.
357	 */
358
359	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
360		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
361	else
362		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
363
364	if (flags & M_ZERO)
365		pflags |= VM_ALLOC_ZERO;
366
367	VM_OBJECT_LOCK(kmem_object);
368	for (i = 0; i < size; i += PAGE_SIZE) {
369retry:
370		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
371
372		/*
373		 * Ran out of space, free everything up and return. Don't need
374		 * to lock page queues here as we know that the pages we got
375		 * aren't on any queues.
376		 */
377		if (m == NULL) {
378			if ((flags & M_NOWAIT) == 0) {
379				VM_OBJECT_UNLOCK(kmem_object);
380				vm_map_unlock(map);
381				VM_WAIT;
382				vm_map_lock(map);
383				VM_OBJECT_LOCK(kmem_object);
384				goto retry;
385			}
386			/*
387			 * Free the pages before removing the map entry.
388			 * They are already marked busy.  Calling
389			 * vm_map_delete before the pages has been freed or
390			 * unbusied will cause a deadlock.
391			 */
392			while (i != 0) {
393				i -= PAGE_SIZE;
394				m = vm_page_lookup(kmem_object,
395						   OFF_TO_IDX(offset + i));
396				vm_page_lock_queues();
397				vm_page_unwire(m, 0);
398				vm_page_free(m);
399				vm_page_unlock_queues();
400			}
401			VM_OBJECT_UNLOCK(kmem_object);
402			vm_map_delete(map, addr, addr + size);
403			vm_map_unlock(map);
404			return (0);
405		}
406		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
407			pmap_zero_page(m);
408		vm_page_lock_queues();
409		vm_page_flag_clear(m, PG_ZERO);
410		m->valid = VM_PAGE_BITS_ALL;
411		vm_page_unlock_queues();
412	}
413	VM_OBJECT_UNLOCK(kmem_object);
414
415	/*
416	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
417	 * be able to extend the previous entry so there will be a new entry
418	 * exactly corresponding to this address range and it will have
419	 * wired_count == 0.
420	 */
421	if (!vm_map_lookup_entry(map, addr, &entry) ||
422	    entry->start != addr || entry->end != addr + size ||
423	    entry->wired_count != 0)
424		panic("kmem_malloc: entry not found or misaligned");
425	entry->wired_count = 1;
426
427	vm_map_simplify_entry(map, entry);
428
429	/*
430	 * Loop thru pages, entering them in the pmap. (We cannot add them to
431	 * the wired count without wrapping the vm_page_queue_lock in
432	 * splimp...)
433	 */
434	for (i = 0; i < size; i += PAGE_SIZE) {
435		VM_OBJECT_LOCK(kmem_object);
436		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
437		VM_OBJECT_UNLOCK(kmem_object);
438		/*
439		 * Because this is kernel_pmap, this call will not block.
440		 */
441		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
442		vm_page_lock_queues();
443		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
444		vm_page_wakeup(m);
445		vm_page_unlock_queues();
446	}
447	vm_map_unlock(map);
448
449	return (addr);
450}
451
452/*
453 *	kmem_alloc_wait:
454 *
455 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
456 *	has no room, the caller sleeps waiting for more memory in the submap.
457 *
458 *	This routine may block.
459 */
460vm_offset_t
461kmem_alloc_wait(map, size)
462	vm_map_t map;
463	vm_size_t size;
464{
465	vm_offset_t addr;
466
467	size = round_page(size);
468
469	for (;;) {
470		/*
471		 * To make this work for more than one map, use the map's lock
472		 * to lock out sleepers/wakers.
473		 */
474		vm_map_lock(map);
475		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
476			break;
477		/* no space now; see if we can ever get space */
478		if (vm_map_max(map) - vm_map_min(map) < size) {
479			vm_map_unlock(map);
480			return (0);
481		}
482		map->needs_wakeup = TRUE;
483		vm_map_unlock_and_wait(map, FALSE);
484	}
485	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
486	vm_map_unlock(map);
487	return (addr);
488}
489
490/*
491 *	kmem_free_wakeup:
492 *
493 *	Returns memory to a submap of the kernel, and wakes up any processes
494 *	waiting for memory in that map.
495 */
496void
497kmem_free_wakeup(map, addr, size)
498	vm_map_t map;
499	vm_offset_t addr;
500	vm_size_t size;
501{
502
503	vm_map_lock(map);
504	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
505	if (map->needs_wakeup) {
506		map->needs_wakeup = FALSE;
507		vm_map_wakeup(map);
508	}
509	vm_map_unlock(map);
510}
511
512/*
513 * 	kmem_init:
514 *
515 *	Create the kernel map; insert a mapping covering kernel text,
516 *	data, bss, and all space allocated thus far (`boostrap' data).  The
517 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
518 *	`start' as allocated, and the range between `start' and `end' as free.
519 */
520void
521kmem_init(start, end)
522	vm_offset_t start, end;
523{
524	vm_map_t m;
525
526	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
527	m->system_map = 1;
528	vm_map_lock(m);
529	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
530	kernel_map = m;
531	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
532	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
533	/* ... and ending with the completion of the above `insert' */
534	vm_map_unlock(m);
535}
536