vm_kern.c revision 108426
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_kern.c 108426 2002-12-30 05:55:41Z alc $
65 */
66
67/*
68 *	Kernel memory management.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/kernel.h>		/* for ticks and hz */
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/malloc.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88vm_map_t kernel_map=0;
89vm_map_t kmem_map=0;
90vm_map_t exec_map=0;
91vm_map_t clean_map=0;
92vm_map_t buffer_map=0;
93
94/*
95 *	kmem_alloc_pageable:
96 *
97 *	Allocate pageable memory to the kernel's address map.
98 *	"map" must be kernel_map or a submap of kernel_map.
99 */
100vm_offset_t
101kmem_alloc_pageable(map, size)
102	vm_map_t map;
103	vm_size_t size;
104{
105	vm_offset_t addr;
106	int result;
107
108	size = round_page(size);
109	addr = vm_map_min(map);
110	result = vm_map_find(map, NULL, 0,
111	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
112	if (result != KERN_SUCCESS) {
113		return (0);
114	}
115	return (addr);
116}
117
118/*
119 *	kmem_alloc_nofault:
120 *
121 *	Same as kmem_alloc_pageable, except that it create a nofault entry.
122 */
123vm_offset_t
124kmem_alloc_nofault(map, size)
125	vm_map_t map;
126	vm_size_t size;
127{
128	vm_offset_t addr;
129	int result;
130
131	size = round_page(size);
132	addr = vm_map_min(map);
133	result = vm_map_find(map, NULL, 0,
134	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
135	if (result != KERN_SUCCESS) {
136		return (0);
137	}
138	return (addr);
139}
140
141/*
142 *	Allocate wired-down memory in the kernel's address map
143 *	or a submap.
144 */
145vm_offset_t
146kmem_alloc(map, size)
147	vm_map_t map;
148	vm_size_t size;
149{
150	vm_offset_t addr;
151	vm_offset_t offset;
152	vm_offset_t i;
153
154	GIANT_REQUIRED;
155
156	size = round_page(size);
157
158	/*
159	 * Use the kernel object for wired-down kernel pages. Assume that no
160	 * region of the kernel object is referenced more than once.
161	 */
162
163	/*
164	 * Locate sufficient space in the map.  This will give us the final
165	 * virtual address for the new memory, and thus will tell us the
166	 * offset within the kernel map.
167	 */
168	vm_map_lock(map);
169	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
170		vm_map_unlock(map);
171		return (0);
172	}
173	offset = addr - VM_MIN_KERNEL_ADDRESS;
174	vm_object_reference(kernel_object);
175	vm_map_insert(map, kernel_object, offset, addr, addr + size,
176		VM_PROT_ALL, VM_PROT_ALL, 0);
177	vm_map_unlock(map);
178
179	/*
180	 * Guarantee that there are pages already in this object before
181	 * calling vm_map_pageable.  This is to prevent the following
182	 * scenario:
183	 *
184	 * 1) Threads have swapped out, so that there is a pager for the
185	 * kernel_object. 2) The kmsg zone is empty, and so we are
186	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
187	 * there is no page, but there is a pager, so we call
188	 * pager_data_request.  But the kmsg zone is empty, so we must
189	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
190	 * we get the data back from the pager, it will be (very stale)
191	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
192	 *
193	 * We're intentionally not activating the pages we allocate to prevent a
194	 * race with page-out.  vm_map_pageable will wire the pages.
195	 */
196	for (i = 0; i < size; i += PAGE_SIZE) {
197		vm_page_t mem;
198
199		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
200				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
201		if ((mem->flags & PG_ZERO) == 0)
202			pmap_zero_page(mem);
203		vm_page_lock_queues();
204		mem->valid = VM_PAGE_BITS_ALL;
205		vm_page_flag_clear(mem, PG_ZERO);
206		vm_page_wakeup(mem);
207		vm_page_unlock_queues();
208	}
209
210	/*
211	 * And finally, mark the data as non-pageable.
212	 */
213	(void) vm_map_wire(map, addr, addr + size, FALSE);
214
215	return (addr);
216}
217
218/*
219 *	kmem_free:
220 *
221 *	Release a region of kernel virtual memory allocated
222 *	with kmem_alloc, and return the physical pages
223 *	associated with that region.
224 *
225 *	This routine may not block on kernel maps.
226 */
227void
228kmem_free(map, addr, size)
229	vm_map_t map;
230	vm_offset_t addr;
231	vm_size_t size;
232{
233
234	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
235}
236
237/*
238 *	kmem_suballoc:
239 *
240 *	Allocates a map to manage a subrange
241 *	of the kernel virtual address space.
242 *
243 *	Arguments are as follows:
244 *
245 *	parent		Map to take range from
246 *	min, max	Returned endpoints of map
247 *	size		Size of range to find
248 */
249vm_map_t
250kmem_suballoc(parent, min, max, size)
251	vm_map_t parent;
252	vm_offset_t *min, *max;
253	vm_size_t size;
254{
255	int ret;
256	vm_map_t result;
257
258	GIANT_REQUIRED;
259
260	size = round_page(size);
261
262	*min = (vm_offset_t) vm_map_min(parent);
263	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
264	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
265	if (ret != KERN_SUCCESS) {
266		printf("kmem_suballoc: bad status return of %d.\n", ret);
267		panic("kmem_suballoc");
268	}
269	*max = *min + size;
270	result = vm_map_create(vm_map_pmap(parent), *min, *max);
271	if (result == NULL)
272		panic("kmem_suballoc: cannot create submap");
273	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
274		panic("kmem_suballoc: unable to change range to submap");
275	return (result);
276}
277
278/*
279 *	kmem_malloc:
280 *
281 * 	Allocate wired-down memory in the kernel's address map for the higher
282 * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
283 * 	kmem_alloc() because we may need to allocate memory at interrupt
284 * 	level where we cannot block (canwait == FALSE).
285 *
286 * 	This routine has its own private kernel submap (kmem_map) and object
287 * 	(kmem_object).  This, combined with the fact that only malloc uses
288 * 	this routine, ensures that we will never block in map or object waits.
289 *
290 * 	Note that this still only works in a uni-processor environment and
291 * 	when called at splhigh().
292 *
293 * 	We don't worry about expanding the map (adding entries) since entries
294 * 	for wired maps are statically allocated.
295 *
296 *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
297 *	I have not verified that it actually does not block.
298 *
299 *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
300 *	which we never free.
301 */
302vm_offset_t
303kmem_malloc(map, size, flags)
304	vm_map_t map;
305	vm_size_t size;
306	int flags;
307{
308	vm_offset_t offset, i;
309	vm_map_entry_t entry;
310	vm_offset_t addr;
311	vm_page_t m;
312	int pflags;
313
314	GIANT_REQUIRED;
315
316	size = round_page(size);
317	addr = vm_map_min(map);
318
319	/*
320	 * Locate sufficient space in the map.  This will give us the final
321	 * virtual address for the new memory, and thus will tell us the
322	 * offset within the kernel map.
323	 */
324	vm_map_lock(map);
325	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
326		vm_map_unlock(map);
327		if (map != kmem_map) {
328			static int last_report; /* when we did it (in ticks) */
329			if (ticks < last_report ||
330			    (ticks - last_report) >= hz) {
331				last_report = ticks;
332				printf("Out of mbuf address space!\n");
333				printf("Consider increasing NMBCLUSTERS\n");
334			}
335			goto bad;
336		}
337		if ((flags & M_NOWAIT) == 0)
338			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
339				(long)size, (long)map->size);
340		goto bad;
341	}
342	offset = addr - VM_MIN_KERNEL_ADDRESS;
343	vm_object_reference(kmem_object);
344	vm_map_insert(map, kmem_object, offset, addr, addr + size,
345		VM_PROT_ALL, VM_PROT_ALL, 0);
346
347	/*
348	 * Note: if M_NOWAIT specified alone, allocate from
349	 * interrupt-safe queues only (just the free list).  If
350	 * M_USE_RESERVE is also specified, we can also
351	 * allocate from the cache.  Neither of the latter two
352	 * flags may be specified from an interrupt since interrupts
353	 * are not allowed to mess with the cache queue.
354	 */
355
356	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
357		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
358	else
359		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
360
361	if (flags & M_ZERO)
362		pflags |= VM_ALLOC_ZERO;
363
364	vm_object_lock(kmem_object);
365	for (i = 0; i < size; i += PAGE_SIZE) {
366retry:
367		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
368
369		/*
370		 * Ran out of space, free everything up and return. Don't need
371		 * to lock page queues here as we know that the pages we got
372		 * aren't on any queues.
373		 */
374		if (m == NULL) {
375			if ((flags & M_NOWAIT) == 0) {
376				vm_object_unlock(kmem_object);
377				vm_map_unlock(map);
378				VM_WAIT;
379				vm_map_lock(map);
380				vm_object_lock(kmem_object);
381				goto retry;
382			}
383			/*
384			 * Free the pages before removing the map entry.
385			 * They are already marked busy.  Calling
386			 * vm_map_delete before the pages has been freed or
387			 * unbusied will cause a deadlock.
388			 */
389			while (i != 0) {
390				i -= PAGE_SIZE;
391				m = vm_page_lookup(kmem_object,
392						   OFF_TO_IDX(offset + i));
393				vm_page_lock_queues();
394				vm_page_unwire(m, 0);
395				vm_page_free(m);
396				vm_page_unlock_queues();
397			}
398			vm_object_unlock(kmem_object);
399			vm_map_delete(map, addr, addr + size);
400			vm_map_unlock(map);
401			goto bad;
402		}
403		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
404			pmap_zero_page(m);
405		vm_page_lock_queues();
406		vm_page_flag_clear(m, PG_ZERO);
407		m->valid = VM_PAGE_BITS_ALL;
408		vm_page_unlock_queues();
409	}
410	vm_object_unlock(kmem_object);
411
412	/*
413	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
414	 * be able to extend the previous entry so there will be a new entry
415	 * exactly corresponding to this address range and it will have
416	 * wired_count == 0.
417	 */
418	if (!vm_map_lookup_entry(map, addr, &entry) ||
419	    entry->start != addr || entry->end != addr + size ||
420	    entry->wired_count != 0)
421		panic("kmem_malloc: entry not found or misaligned");
422	entry->wired_count = 1;
423
424	vm_map_simplify_entry(map, entry);
425
426	/*
427	 * Loop thru pages, entering them in the pmap. (We cannot add them to
428	 * the wired count without wrapping the vm_page_queue_lock in
429	 * splimp...)
430	 */
431	for (i = 0; i < size; i += PAGE_SIZE) {
432		vm_object_lock(kmem_object);
433		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
434		vm_object_unlock(kmem_object);
435		/*
436		 * Because this is kernel_pmap, this call will not block.
437		 */
438		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
439		vm_page_lock_queues();
440		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
441		vm_page_wakeup(m);
442		vm_page_unlock_queues();
443	}
444	vm_map_unlock(map);
445
446	return (addr);
447
448bad:
449	return (0);
450}
451
452/*
453 *	kmem_alloc_wait:
454 *
455 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
456 *	has no room, the caller sleeps waiting for more memory in the submap.
457 *
458 *	This routine may block.
459 */
460vm_offset_t
461kmem_alloc_wait(map, size)
462	vm_map_t map;
463	vm_size_t size;
464{
465	vm_offset_t addr;
466
467	size = round_page(size);
468
469	for (;;) {
470		/*
471		 * To make this work for more than one map, use the map's lock
472		 * to lock out sleepers/wakers.
473		 */
474		vm_map_lock(map);
475		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
476			break;
477		/* no space now; see if we can ever get space */
478		if (vm_map_max(map) - vm_map_min(map) < size) {
479			vm_map_unlock(map);
480			return (0);
481		}
482		map->needs_wakeup = TRUE;
483		vm_map_unlock_and_wait(map, FALSE);
484	}
485	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
486	vm_map_unlock(map);
487	return (addr);
488}
489
490/*
491 *	kmem_free_wakeup:
492 *
493 *	Returns memory to a submap of the kernel, and wakes up any processes
494 *	waiting for memory in that map.
495 */
496void
497kmem_free_wakeup(map, addr, size)
498	vm_map_t map;
499	vm_offset_t addr;
500	vm_size_t size;
501{
502
503	vm_map_lock(map);
504	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
505	if (map->needs_wakeup) {
506		map->needs_wakeup = FALSE;
507		vm_map_wakeup(map);
508	}
509	vm_map_unlock(map);
510}
511
512/*
513 * 	kmem_init:
514 *
515 *	Create the kernel map; insert a mapping covering kernel text,
516 *	data, bss, and all space allocated thus far (`boostrap' data).  The
517 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
518 *	`start' as allocated, and the range between `start' and `end' as free.
519 */
520void
521kmem_init(start, end)
522	vm_offset_t start, end;
523{
524	vm_map_t m;
525
526	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
527	m->system_map = 1;
528	vm_map_lock(m);
529	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
530	kernel_map = m;
531	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
532	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
533	/* ... and ending with the completion of the above `insert' */
534	vm_map_unlock(m);
535}
536