ffs_softdep.c revision 89270
1/*
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12 *	1614 Oxford Street		mckusick@mckusick.com
13 *	Berkeley, CA 94709-1608		+1-510-843-9542
14 *	USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39 * $FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 89270 2002-01-11 19:59:27Z mckusick $
40 */
41
42/*
43 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
44 */
45#ifndef DIAGNOSTIC
46#define DIAGNOSTIC
47#endif
48#ifndef DEBUG
49#define DEBUG
50#endif
51
52#include <sys/param.h>
53#include <sys/kernel.h>
54#include <sys/systm.h>
55#include <sys/bio.h>
56#include <sys/buf.h>
57#include <sys/malloc.h>
58#include <sys/mount.h>
59#include <sys/proc.h>
60#include <sys/stat.h>
61#include <sys/syslog.h>
62#include <sys/vnode.h>
63#include <sys/conf.h>
64#include <ufs/ufs/dir.h>
65#include <ufs/ufs/extattr.h>
66#include <ufs/ufs/quota.h>
67#include <ufs/ufs/inode.h>
68#include <ufs/ufs/ufsmount.h>
69#include <ufs/ffs/fs.h>
70#include <ufs/ffs/softdep.h>
71#include <ufs/ffs/ffs_extern.h>
72#include <ufs/ufs/ufs_extern.h>
73
74/*
75 * These definitions need to be adapted to the system to which
76 * this file is being ported.
77 */
78/*
79 * malloc types defined for the softdep system.
80 */
81static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
82static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
83static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
84static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
85static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
86static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
87static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
88static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
89static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
90static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
91static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
92static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
93static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
94static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block");
95
96#define M_SOFTDEP_FLAGS	(M_WAITOK | M_USE_RESERVE)
97
98#define	D_PAGEDEP	0
99#define	D_INODEDEP	1
100#define	D_NEWBLK	2
101#define	D_BMSAFEMAP	3
102#define	D_ALLOCDIRECT	4
103#define	D_INDIRDEP	5
104#define	D_ALLOCINDIR	6
105#define	D_FREEFRAG	7
106#define	D_FREEBLKS	8
107#define	D_FREEFILE	9
108#define	D_DIRADD	10
109#define	D_MKDIR		11
110#define	D_DIRREM	12
111#define	D_NEWDIRBLK	13
112#define	D_LAST		D_NEWDIRBLK
113
114/*
115 * translate from workitem type to memory type
116 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
117 */
118static struct malloc_type *memtype[] = {
119	M_PAGEDEP,
120	M_INODEDEP,
121	M_NEWBLK,
122	M_BMSAFEMAP,
123	M_ALLOCDIRECT,
124	M_INDIRDEP,
125	M_ALLOCINDIR,
126	M_FREEFRAG,
127	M_FREEBLKS,
128	M_FREEFILE,
129	M_DIRADD,
130	M_MKDIR,
131	M_DIRREM,
132	M_NEWDIRBLK
133};
134
135#define DtoM(type) (memtype[type])
136
137/*
138 * Names of malloc types.
139 */
140#define TYPENAME(type)  \
141	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
142/*
143 * End system adaptaion definitions.
144 */
145
146/*
147 * Internal function prototypes.
148 */
149static	void softdep_error __P((char *, int));
150static	void drain_output __P((struct vnode *, int));
151static	int getdirtybuf __P((struct buf **, int));
152static	void clear_remove __P((struct thread *));
153static	void clear_inodedeps __P((struct thread *));
154static	int flush_pagedep_deps __P((struct vnode *, struct mount *,
155	    struct diraddhd *));
156static	int flush_inodedep_deps __P((struct fs *, ino_t));
157static	int handle_written_filepage __P((struct pagedep *, struct buf *));
158static  void diradd_inode_written __P((struct diradd *, struct inodedep *));
159static	int handle_written_inodeblock __P((struct inodedep *, struct buf *));
160static	void handle_allocdirect_partdone __P((struct allocdirect *));
161static	void handle_allocindir_partdone __P((struct allocindir *));
162static	void initiate_write_filepage __P((struct pagedep *, struct buf *));
163static	void handle_written_mkdir __P((struct mkdir *, int));
164static	void initiate_write_inodeblock __P((struct inodedep *, struct buf *));
165static	void handle_workitem_freefile __P((struct freefile *));
166static	void handle_workitem_remove __P((struct dirrem *));
167static	struct dirrem *newdirrem __P((struct buf *, struct inode *,
168	    struct inode *, int, struct dirrem **));
169static	void free_diradd __P((struct diradd *));
170static	void free_allocindir __P((struct allocindir *, struct inodedep *));
171static	void free_newdirblk __P((struct newdirblk *));
172static	int indir_trunc __P((struct inode *, ufs_daddr_t, int, ufs_lbn_t,
173	    long *));
174static	void deallocate_dependencies __P((struct buf *, struct inodedep *));
175static	void free_allocdirect __P((struct allocdirectlst *,
176	    struct allocdirect *, int));
177static	int check_inode_unwritten __P((struct inodedep *));
178static	int free_inodedep __P((struct inodedep *));
179static	void handle_workitem_freeblocks __P((struct freeblks *, int));
180static	void merge_inode_lists __P((struct inodedep *));
181static	void setup_allocindir_phase2 __P((struct buf *, struct inode *,
182	    struct allocindir *));
183static	struct allocindir *newallocindir __P((struct inode *, int, ufs_daddr_t,
184	    ufs_daddr_t));
185static	void handle_workitem_freefrag __P((struct freefrag *));
186static	struct freefrag *newfreefrag __P((struct inode *, ufs_daddr_t, long));
187static	void allocdirect_merge __P((struct allocdirectlst *,
188	    struct allocdirect *, struct allocdirect *));
189static	struct bmsafemap *bmsafemap_lookup __P((struct buf *));
190static	int newblk_lookup __P((struct fs *, ufs_daddr_t, int,
191	    struct newblk **));
192static	int inodedep_lookup __P((struct fs *, ino_t, int, struct inodedep **));
193static	int pagedep_lookup __P((struct inode *, ufs_lbn_t, int,
194	    struct pagedep **));
195static	void pause_timer __P((void *));
196static	int request_cleanup __P((int, int));
197static	int process_worklist_item __P((struct mount *, int));
198static	void add_to_worklist __P((struct worklist *));
199
200/*
201 * Exported softdep operations.
202 */
203static	void softdep_disk_io_initiation __P((struct buf *));
204static	void softdep_disk_write_complete __P((struct buf *));
205static	void softdep_deallocate_dependencies __P((struct buf *));
206static	void softdep_move_dependencies __P((struct buf *, struct buf *));
207static	int softdep_count_dependencies __P((struct buf *bp, int));
208
209/*
210 * Locking primitives.
211 *
212 * For a uniprocessor, all we need to do is protect against disk
213 * interrupts. For a multiprocessor, this lock would have to be
214 * a mutex. A single mutex is used throughout this file, though
215 * finer grain locking could be used if contention warranted it.
216 *
217 * For a multiprocessor, the sleep call would accept a lock and
218 * release it after the sleep processing was complete. In a uniprocessor
219 * implementation there is no such interlock, so we simple mark
220 * the places where it needs to be done with the `interlocked' form
221 * of the lock calls. Since the uniprocessor sleep already interlocks
222 * the spl, there is nothing that really needs to be done.
223 */
224#ifndef /* NOT */ DEBUG
225static struct lockit {
226	int	lkt_spl;
227} lk = { 0 };
228#define ACQUIRE_LOCK(lk)		(lk)->lkt_spl = splbio()
229#define FREE_LOCK(lk)			splx((lk)->lkt_spl)
230#define ACQUIRE_LOCK_INTERLOCKED(lk)
231#define FREE_LOCK_INTERLOCKED(lk)
232
233#else /* DEBUG */
234#define NOHOLDER	((struct thread *)-1)
235#define SPECIAL_FLAG	((struct thread *)-2)
236static struct lockit {
237	int	lkt_spl;
238	struct	thread *lkt_held;
239} lk = { 0, NOHOLDER };
240static int lockcnt;
241
242static	void acquire_lock __P((struct lockit *));
243static	void free_lock __P((struct lockit *));
244static	void acquire_lock_interlocked __P((struct lockit *));
245static	void free_lock_interlocked __P((struct lockit *));
246
247#define ACQUIRE_LOCK(lk)		acquire_lock(lk)
248#define FREE_LOCK(lk)			free_lock(lk)
249#define ACQUIRE_LOCK_INTERLOCKED(lk)	acquire_lock_interlocked(lk)
250#define FREE_LOCK_INTERLOCKED(lk)	free_lock_interlocked(lk)
251
252static void
253acquire_lock(lk)
254	struct lockit *lk;
255{
256	struct thread *holder;
257
258	if (lk->lkt_held != NOHOLDER) {
259		holder = lk->lkt_held;
260		FREE_LOCK(lk);
261		if (holder == curthread)
262			panic("softdep_lock: locking against myself");
263		else
264			panic("softdep_lock: lock held by %p", holder);
265	}
266	lk->lkt_spl = splbio();
267	lk->lkt_held = curthread;
268	lockcnt++;
269}
270
271static void
272free_lock(lk)
273	struct lockit *lk;
274{
275
276	if (lk->lkt_held == NOHOLDER)
277		panic("softdep_unlock: lock not held");
278	lk->lkt_held = NOHOLDER;
279	splx(lk->lkt_spl);
280}
281
282static void
283acquire_lock_interlocked(lk)
284	struct lockit *lk;
285{
286	struct thread *holder;
287
288	if (lk->lkt_held != NOHOLDER) {
289		holder = lk->lkt_held;
290		FREE_LOCK(lk);
291		if (holder == curthread)
292			panic("softdep_lock_interlocked: locking against self");
293		else
294			panic("softdep_lock_interlocked: lock held by %p",
295			    holder);
296	}
297	lk->lkt_held = curthread;
298	lockcnt++;
299}
300
301static void
302free_lock_interlocked(lk)
303	struct lockit *lk;
304{
305
306	if (lk->lkt_held == NOHOLDER)
307		panic("softdep_unlock_interlocked: lock not held");
308	lk->lkt_held = NOHOLDER;
309}
310#endif /* DEBUG */
311
312/*
313 * Place holder for real semaphores.
314 */
315struct sema {
316	int	value;
317	struct	thread *holder;
318	char	*name;
319	int	prio;
320	int	timo;
321};
322static	void sema_init __P((struct sema *, char *, int, int));
323static	int sema_get __P((struct sema *, struct lockit *));
324static	void sema_release __P((struct sema *));
325
326static void
327sema_init(semap, name, prio, timo)
328	struct sema *semap;
329	char *name;
330	int prio, timo;
331{
332
333	semap->holder = NOHOLDER;
334	semap->value = 0;
335	semap->name = name;
336	semap->prio = prio;
337	semap->timo = timo;
338}
339
340static int
341sema_get(semap, interlock)
342	struct sema *semap;
343	struct lockit *interlock;
344{
345
346	if (semap->value++ > 0) {
347		if (interlock != NULL)
348			FREE_LOCK_INTERLOCKED(interlock);
349		tsleep((caddr_t)semap, semap->prio, semap->name, semap->timo);
350		if (interlock != NULL) {
351			ACQUIRE_LOCK_INTERLOCKED(interlock);
352			FREE_LOCK(interlock);
353		}
354		return (0);
355	}
356	semap->holder = curthread;
357	if (interlock != NULL)
358		FREE_LOCK(interlock);
359	return (1);
360}
361
362static void
363sema_release(semap)
364	struct sema *semap;
365{
366
367	if (semap->value <= 0 || semap->holder != curthread) {
368		if (lk.lkt_held != NOHOLDER)
369			FREE_LOCK(&lk);
370		panic("sema_release: not held");
371	}
372	if (--semap->value > 0) {
373		semap->value = 0;
374		wakeup(semap);
375	}
376	semap->holder = NOHOLDER;
377}
378
379/*
380 * Worklist queue management.
381 * These routines require that the lock be held.
382 */
383#ifndef /* NOT */ DEBUG
384#define WORKLIST_INSERT(head, item) do {	\
385	(item)->wk_state |= ONWORKLIST;		\
386	LIST_INSERT_HEAD(head, item, wk_list);	\
387} while (0)
388#define WORKLIST_REMOVE(item) do {		\
389	(item)->wk_state &= ~ONWORKLIST;	\
390	LIST_REMOVE(item, wk_list);		\
391} while (0)
392#define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
393
394#else /* DEBUG */
395static	void worklist_insert __P((struct workhead *, struct worklist *));
396static	void worklist_remove __P((struct worklist *));
397static	void workitem_free __P((struct worklist *, int));
398
399#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
400#define WORKLIST_REMOVE(item) worklist_remove(item)
401#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
402
403static void
404worklist_insert(head, item)
405	struct workhead *head;
406	struct worklist *item;
407{
408
409	if (lk.lkt_held == NOHOLDER)
410		panic("worklist_insert: lock not held");
411	if (item->wk_state & ONWORKLIST) {
412		FREE_LOCK(&lk);
413		panic("worklist_insert: already on list");
414	}
415	item->wk_state |= ONWORKLIST;
416	LIST_INSERT_HEAD(head, item, wk_list);
417}
418
419static void
420worklist_remove(item)
421	struct worklist *item;
422{
423
424	if (lk.lkt_held == NOHOLDER)
425		panic("worklist_remove: lock not held");
426	if ((item->wk_state & ONWORKLIST) == 0) {
427		FREE_LOCK(&lk);
428		panic("worklist_remove: not on list");
429	}
430	item->wk_state &= ~ONWORKLIST;
431	LIST_REMOVE(item, wk_list);
432}
433
434static void
435workitem_free(item, type)
436	struct worklist *item;
437	int type;
438{
439
440	if (item->wk_state & ONWORKLIST) {
441		if (lk.lkt_held != NOHOLDER)
442			FREE_LOCK(&lk);
443		panic("workitem_free: still on list");
444	}
445	if (item->wk_type != type) {
446		if (lk.lkt_held != NOHOLDER)
447			FREE_LOCK(&lk);
448		panic("workitem_free: type mismatch");
449	}
450	FREE(item, DtoM(type));
451}
452#endif /* DEBUG */
453
454/*
455 * Workitem queue management
456 */
457static struct workhead softdep_workitem_pending;
458static int num_on_worklist;	/* number of worklist items to be processed */
459static int softdep_worklist_busy; /* 1 => trying to do unmount */
460static int softdep_worklist_req; /* serialized waiters */
461static int max_softdeps;	/* maximum number of structs before slowdown */
462static int tickdelay = 2;	/* number of ticks to pause during slowdown */
463static int proc_waiting;	/* tracks whether we have a timeout posted */
464static int *stat_countp;	/* statistic to count in proc_waiting timeout */
465static struct callout_handle handle; /* handle on posted proc_waiting timeout */
466static struct thread *filesys_syncer; /* proc of filesystem syncer process */
467static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
468#define FLUSH_INODES	1
469static int req_clear_remove;	/* syncer process flush some freeblks */
470#define FLUSH_REMOVE	2
471/*
472 * runtime statistics
473 */
474static int stat_worklist_push;	/* number of worklist cleanups */
475static int stat_blk_limit_push;	/* number of times block limit neared */
476static int stat_ino_limit_push;	/* number of times inode limit neared */
477static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
478static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
479static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
480static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
481static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
482static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
483static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
484#ifdef DEBUG
485#include <vm/vm.h>
486#include <sys/sysctl.h>
487SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
488SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
489SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
490SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
491SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
492SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
493SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
494SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
495SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
496SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
497SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
498SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
499#endif /* DEBUG */
500
501/*
502 * Add an item to the end of the work queue.
503 * This routine requires that the lock be held.
504 * This is the only routine that adds items to the list.
505 * The following routine is the only one that removes items
506 * and does so in order from first to last.
507 */
508static void
509add_to_worklist(wk)
510	struct worklist *wk;
511{
512	static struct worklist *worklist_tail;
513
514	if (wk->wk_state & ONWORKLIST) {
515		if (lk.lkt_held != NOHOLDER)
516			FREE_LOCK(&lk);
517		panic("add_to_worklist: already on list");
518	}
519	wk->wk_state |= ONWORKLIST;
520	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
521		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
522	else
523		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
524	worklist_tail = wk;
525	num_on_worklist += 1;
526}
527
528/*
529 * Process that runs once per second to handle items in the background queue.
530 *
531 * Note that we ensure that everything is done in the order in which they
532 * appear in the queue. The code below depends on this property to ensure
533 * that blocks of a file are freed before the inode itself is freed. This
534 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
535 * until all the old ones have been purged from the dependency lists.
536 */
537int
538softdep_process_worklist(matchmnt)
539	struct mount *matchmnt;
540{
541	struct thread *td = curthread;
542	int matchcnt, loopcount;
543	long starttime;
544
545	/*
546	 * Record the process identifier of our caller so that we can give
547	 * this process preferential treatment in request_cleanup below.
548	 */
549	filesys_syncer = td;
550	matchcnt = 0;
551
552	/*
553	 * There is no danger of having multiple processes run this
554	 * code, but we have to single-thread it when softdep_flushfiles()
555	 * is in operation to get an accurate count of the number of items
556	 * related to its mount point that are in the list.
557	 */
558	if (matchmnt == NULL) {
559		if (softdep_worklist_busy < 0)
560			return(-1);
561		softdep_worklist_busy += 1;
562	}
563
564	/*
565	 * If requested, try removing inode or removal dependencies.
566	 */
567	if (req_clear_inodedeps) {
568		clear_inodedeps(td);
569		req_clear_inodedeps -= 1;
570		wakeup_one(&proc_waiting);
571	}
572	if (req_clear_remove) {
573		clear_remove(td);
574		req_clear_remove -= 1;
575		wakeup_one(&proc_waiting);
576	}
577	loopcount = 1;
578	starttime = time_second;
579	while (num_on_worklist > 0) {
580		matchcnt += process_worklist_item(matchmnt, 0);
581
582		/*
583		 * If a umount operation wants to run the worklist
584		 * accurately, abort.
585		 */
586		if (softdep_worklist_req && matchmnt == NULL) {
587			matchcnt = -1;
588			break;
589		}
590
591		/*
592		 * If requested, try removing inode or removal dependencies.
593		 */
594		if (req_clear_inodedeps) {
595			clear_inodedeps(td);
596			req_clear_inodedeps -= 1;
597			wakeup_one(&proc_waiting);
598		}
599		if (req_clear_remove) {
600			clear_remove(td);
601			req_clear_remove -= 1;
602			wakeup_one(&proc_waiting);
603		}
604		/*
605		 * We do not generally want to stop for buffer space, but if
606		 * we are really being a buffer hog, we will stop and wait.
607		 */
608		if (loopcount++ % 128 == 0)
609			bwillwrite();
610		/*
611		 * Never allow processing to run for more than one
612		 * second. Otherwise the other syncer tasks may get
613		 * excessively backlogged.
614		 */
615		if (starttime != time_second && matchmnt == NULL) {
616			matchcnt = -1;
617			break;
618		}
619	}
620	if (matchmnt == NULL) {
621		softdep_worklist_busy -= 1;
622		if (softdep_worklist_req && softdep_worklist_busy == 0)
623			wakeup(&softdep_worklist_req);
624	}
625	return (matchcnt);
626}
627
628/*
629 * Process one item on the worklist.
630 */
631static int
632process_worklist_item(matchmnt, flags)
633	struct mount *matchmnt;
634	int flags;
635{
636	struct worklist *wk;
637	struct dirrem *dirrem;
638	struct mount *mp;
639	struct vnode *vp;
640	int matchcnt = 0;
641
642	ACQUIRE_LOCK(&lk);
643	/*
644	 * Normally we just process each item on the worklist in order.
645	 * However, if we are in a situation where we cannot lock any
646	 * inodes, we have to skip over any dirrem requests whose
647	 * vnodes are resident and locked.
648	 */
649	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
650		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
651			break;
652		dirrem = WK_DIRREM(wk);
653		vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
654		    dirrem->dm_oldinum);
655		if (vp == NULL || !VOP_ISLOCKED(vp, curthread))
656			break;
657	}
658	if (wk == 0) {
659		FREE_LOCK(&lk);
660		return (0);
661	}
662	WORKLIST_REMOVE(wk);
663	num_on_worklist -= 1;
664	FREE_LOCK(&lk);
665	switch (wk->wk_type) {
666
667	case D_DIRREM:
668		/* removal of a directory entry */
669		mp = WK_DIRREM(wk)->dm_mnt;
670		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
671			panic("%s: dirrem on suspended filesystem",
672				"process_worklist_item");
673		if (mp == matchmnt)
674			matchcnt += 1;
675		handle_workitem_remove(WK_DIRREM(wk));
676		break;
677
678	case D_FREEBLKS:
679		/* releasing blocks and/or fragments from a file */
680		mp = WK_FREEBLKS(wk)->fb_mnt;
681		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
682			panic("%s: freeblks on suspended filesystem",
683				"process_worklist_item");
684		if (mp == matchmnt)
685			matchcnt += 1;
686		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
687		break;
688
689	case D_FREEFRAG:
690		/* releasing a fragment when replaced as a file grows */
691		mp = WK_FREEFRAG(wk)->ff_mnt;
692		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
693			panic("%s: freefrag on suspended filesystem",
694				"process_worklist_item");
695		if (mp == matchmnt)
696			matchcnt += 1;
697		handle_workitem_freefrag(WK_FREEFRAG(wk));
698		break;
699
700	case D_FREEFILE:
701		/* releasing an inode when its link count drops to 0 */
702		mp = WK_FREEFILE(wk)->fx_mnt;
703		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
704			panic("%s: freefile on suspended filesystem",
705				"process_worklist_item");
706		if (mp == matchmnt)
707			matchcnt += 1;
708		handle_workitem_freefile(WK_FREEFILE(wk));
709		break;
710
711	default:
712		panic("%s_process_worklist: Unknown type %s",
713		    "softdep", TYPENAME(wk->wk_type));
714		/* NOTREACHED */
715	}
716	return (matchcnt);
717}
718
719/*
720 * Move dependencies from one buffer to another.
721 */
722static void
723softdep_move_dependencies(oldbp, newbp)
724	struct buf *oldbp;
725	struct buf *newbp;
726{
727	struct worklist *wk, *wktail;
728
729	if (LIST_FIRST(&newbp->b_dep) != NULL)
730		panic("softdep_move_dependencies: need merge code");
731	wktail = 0;
732	ACQUIRE_LOCK(&lk);
733	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
734		LIST_REMOVE(wk, wk_list);
735		if (wktail == 0)
736			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
737		else
738			LIST_INSERT_AFTER(wktail, wk, wk_list);
739		wktail = wk;
740	}
741	FREE_LOCK(&lk);
742}
743
744/*
745 * Purge the work list of all items associated with a particular mount point.
746 */
747int
748softdep_flushworklist(oldmnt, countp, td)
749	struct mount *oldmnt;
750	int *countp;
751	struct thread *td;
752{
753	struct vnode *devvp;
754	int count, error = 0;
755
756	/*
757	 * Await our turn to clear out the queue, then serialize access.
758	 */
759	while (softdep_worklist_busy) {
760		softdep_worklist_req += 1;
761		tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0);
762		softdep_worklist_req -= 1;
763	}
764	softdep_worklist_busy = -1;
765	/*
766	 * Alternately flush the block device associated with the mount
767	 * point and process any dependencies that the flushing
768	 * creates. We continue until no more worklist dependencies
769	 * are found.
770	 */
771	*countp = 0;
772	devvp = VFSTOUFS(oldmnt)->um_devvp;
773	while ((count = softdep_process_worklist(oldmnt)) > 0) {
774		*countp += count;
775		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td);
776		error = VOP_FSYNC(devvp, td->td_proc->p_ucred, MNT_WAIT, td);
777		VOP_UNLOCK(devvp, 0, td);
778		if (error)
779			break;
780	}
781	softdep_worklist_busy = 0;
782	if (softdep_worklist_req)
783		wakeup(&softdep_worklist_req);
784	return (error);
785}
786
787/*
788 * Flush all vnodes and worklist items associated with a specified mount point.
789 */
790int
791softdep_flushfiles(oldmnt, flags, td)
792	struct mount *oldmnt;
793	int flags;
794	struct thread *td;
795{
796	int error, count, loopcnt;
797
798	/*
799	 * Alternately flush the vnodes associated with the mount
800	 * point and process any dependencies that the flushing
801	 * creates. In theory, this loop can happen at most twice,
802	 * but we give it a few extra just to be sure.
803	 */
804	for (loopcnt = 10; loopcnt > 0; loopcnt--) {
805		/*
806		 * Do another flush in case any vnodes were brought in
807		 * as part of the cleanup operations.
808		 */
809		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
810			break;
811		if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 ||
812		    count == 0)
813			break;
814	}
815	/*
816	 * If we are unmounting then it is an error to fail. If we
817	 * are simply trying to downgrade to read-only, then filesystem
818	 * activity can keep us busy forever, so we just fail with EBUSY.
819	 */
820	if (loopcnt == 0) {
821		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
822			panic("softdep_flushfiles: looping");
823		error = EBUSY;
824	}
825	return (error);
826}
827
828/*
829 * Structure hashing.
830 *
831 * There are three types of structures that can be looked up:
832 *	1) pagedep structures identified by mount point, inode number,
833 *	   and logical block.
834 *	2) inodedep structures identified by mount point and inode number.
835 *	3) newblk structures identified by mount point and
836 *	   physical block number.
837 *
838 * The "pagedep" and "inodedep" dependency structures are hashed
839 * separately from the file blocks and inodes to which they correspond.
840 * This separation helps when the in-memory copy of an inode or
841 * file block must be replaced. It also obviates the need to access
842 * an inode or file page when simply updating (or de-allocating)
843 * dependency structures. Lookup of newblk structures is needed to
844 * find newly allocated blocks when trying to associate them with
845 * their allocdirect or allocindir structure.
846 *
847 * The lookup routines optionally create and hash a new instance when
848 * an existing entry is not found.
849 */
850#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
851#define NODELAY		0x0002	/* cannot do background work */
852
853/*
854 * Structures and routines associated with pagedep caching.
855 */
856LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
857u_long	pagedep_hash;		/* size of hash table - 1 */
858#define	PAGEDEP_HASH(mp, inum, lbn) \
859	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
860	    pagedep_hash])
861static struct sema pagedep_in_progress;
862
863/*
864 * Look up a pagedep. Return 1 if found, 0 if not found.
865 * If not found, allocate if DEPALLOC flag is passed.
866 * Found or allocated entry is returned in pagedeppp.
867 * This routine must be called with splbio interrupts blocked.
868 */
869static int
870pagedep_lookup(ip, lbn, flags, pagedeppp)
871	struct inode *ip;
872	ufs_lbn_t lbn;
873	int flags;
874	struct pagedep **pagedeppp;
875{
876	struct pagedep *pagedep;
877	struct pagedep_hashhead *pagedephd;
878	struct mount *mp;
879	int i;
880
881#ifdef DEBUG
882	if (lk.lkt_held == NOHOLDER)
883		panic("pagedep_lookup: lock not held");
884#endif
885	mp = ITOV(ip)->v_mount;
886	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
887top:
888	LIST_FOREACH(pagedep, pagedephd, pd_hash)
889		if (ip->i_number == pagedep->pd_ino &&
890		    lbn == pagedep->pd_lbn &&
891		    mp == pagedep->pd_mnt)
892			break;
893	if (pagedep) {
894		*pagedeppp = pagedep;
895		return (1);
896	}
897	if ((flags & DEPALLOC) == 0) {
898		*pagedeppp = NULL;
899		return (0);
900	}
901	if (sema_get(&pagedep_in_progress, &lk) == 0) {
902		ACQUIRE_LOCK(&lk);
903		goto top;
904	}
905	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
906		M_SOFTDEP_FLAGS|M_ZERO);
907	pagedep->pd_list.wk_type = D_PAGEDEP;
908	pagedep->pd_mnt = mp;
909	pagedep->pd_ino = ip->i_number;
910	pagedep->pd_lbn = lbn;
911	LIST_INIT(&pagedep->pd_dirremhd);
912	LIST_INIT(&pagedep->pd_pendinghd);
913	for (i = 0; i < DAHASHSZ; i++)
914		LIST_INIT(&pagedep->pd_diraddhd[i]);
915	ACQUIRE_LOCK(&lk);
916	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
917	sema_release(&pagedep_in_progress);
918	*pagedeppp = pagedep;
919	return (0);
920}
921
922/*
923 * Structures and routines associated with inodedep caching.
924 */
925LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
926static u_long	inodedep_hash;	/* size of hash table - 1 */
927static long	num_inodedep;	/* number of inodedep allocated */
928#define	INODEDEP_HASH(fs, inum) \
929      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
930static struct sema inodedep_in_progress;
931
932/*
933 * Look up a inodedep. Return 1 if found, 0 if not found.
934 * If not found, allocate if DEPALLOC flag is passed.
935 * Found or allocated entry is returned in inodedeppp.
936 * This routine must be called with splbio interrupts blocked.
937 */
938static int
939inodedep_lookup(fs, inum, flags, inodedeppp)
940	struct fs *fs;
941	ino_t inum;
942	int flags;
943	struct inodedep **inodedeppp;
944{
945	struct inodedep *inodedep;
946	struct inodedep_hashhead *inodedephd;
947	int firsttry;
948
949#ifdef DEBUG
950	if (lk.lkt_held == NOHOLDER)
951		panic("inodedep_lookup: lock not held");
952#endif
953	firsttry = 1;
954	inodedephd = INODEDEP_HASH(fs, inum);
955top:
956	LIST_FOREACH(inodedep, inodedephd, id_hash)
957		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
958			break;
959	if (inodedep) {
960		*inodedeppp = inodedep;
961		return (1);
962	}
963	if ((flags & DEPALLOC) == 0) {
964		*inodedeppp = NULL;
965		return (0);
966	}
967	/*
968	 * If we are over our limit, try to improve the situation.
969	 */
970	if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 &&
971	    request_cleanup(FLUSH_INODES, 1)) {
972		firsttry = 0;
973		goto top;
974	}
975	if (sema_get(&inodedep_in_progress, &lk) == 0) {
976		ACQUIRE_LOCK(&lk);
977		goto top;
978	}
979	num_inodedep += 1;
980	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
981		M_INODEDEP, M_SOFTDEP_FLAGS);
982	inodedep->id_list.wk_type = D_INODEDEP;
983	inodedep->id_fs = fs;
984	inodedep->id_ino = inum;
985	inodedep->id_state = ALLCOMPLETE;
986	inodedep->id_nlinkdelta = 0;
987	inodedep->id_savedino = NULL;
988	inodedep->id_savedsize = -1;
989	inodedep->id_buf = NULL;
990	LIST_INIT(&inodedep->id_pendinghd);
991	LIST_INIT(&inodedep->id_inowait);
992	LIST_INIT(&inodedep->id_bufwait);
993	TAILQ_INIT(&inodedep->id_inoupdt);
994	TAILQ_INIT(&inodedep->id_newinoupdt);
995	ACQUIRE_LOCK(&lk);
996	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
997	sema_release(&inodedep_in_progress);
998	*inodedeppp = inodedep;
999	return (0);
1000}
1001
1002/*
1003 * Structures and routines associated with newblk caching.
1004 */
1005LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1006u_long	newblk_hash;		/* size of hash table - 1 */
1007#define	NEWBLK_HASH(fs, inum) \
1008	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1009static struct sema newblk_in_progress;
1010
1011/*
1012 * Look up a newblk. Return 1 if found, 0 if not found.
1013 * If not found, allocate if DEPALLOC flag is passed.
1014 * Found or allocated entry is returned in newblkpp.
1015 */
1016static int
1017newblk_lookup(fs, newblkno, flags, newblkpp)
1018	struct fs *fs;
1019	ufs_daddr_t newblkno;
1020	int flags;
1021	struct newblk **newblkpp;
1022{
1023	struct newblk *newblk;
1024	struct newblk_hashhead *newblkhd;
1025
1026	newblkhd = NEWBLK_HASH(fs, newblkno);
1027top:
1028	LIST_FOREACH(newblk, newblkhd, nb_hash)
1029		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1030			break;
1031	if (newblk) {
1032		*newblkpp = newblk;
1033		return (1);
1034	}
1035	if ((flags & DEPALLOC) == 0) {
1036		*newblkpp = NULL;
1037		return (0);
1038	}
1039	if (sema_get(&newblk_in_progress, 0) == 0)
1040		goto top;
1041	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1042		M_NEWBLK, M_SOFTDEP_FLAGS);
1043	newblk->nb_state = 0;
1044	newblk->nb_fs = fs;
1045	newblk->nb_newblkno = newblkno;
1046	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1047	sema_release(&newblk_in_progress);
1048	*newblkpp = newblk;
1049	return (0);
1050}
1051
1052/*
1053 * Executed during filesystem system initialization before
1054 * mounting any file systems.
1055 */
1056void
1057softdep_initialize()
1058{
1059
1060	LIST_INIT(&mkdirlisthd);
1061	LIST_INIT(&softdep_workitem_pending);
1062	max_softdeps = min(desiredvnodes * 8,
1063		M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1064	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1065	    &pagedep_hash);
1066	sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0);
1067	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1068	sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0);
1069	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1070	sema_init(&newblk_in_progress, "newblk", PRIBIO, 0);
1071
1072	/* initialise bioops hack */
1073	bioops.io_start = softdep_disk_io_initiation;
1074	bioops.io_complete = softdep_disk_write_complete;
1075	bioops.io_deallocate = softdep_deallocate_dependencies;
1076	bioops.io_movedeps = softdep_move_dependencies;
1077	bioops.io_countdeps = softdep_count_dependencies;
1078}
1079
1080/*
1081 * Called at mount time to notify the dependency code that a
1082 * filesystem wishes to use it.
1083 */
1084int
1085softdep_mount(devvp, mp, fs, cred)
1086	struct vnode *devvp;
1087	struct mount *mp;
1088	struct fs *fs;
1089	struct ucred *cred;
1090{
1091	struct csum cstotal;
1092	struct cg *cgp;
1093	struct buf *bp;
1094	int error, cyl;
1095
1096	mp->mnt_flag &= ~MNT_ASYNC;
1097	mp->mnt_flag |= MNT_SOFTDEP;
1098	/*
1099	 * When doing soft updates, the counters in the
1100	 * superblock may have gotten out of sync, so we have
1101	 * to scan the cylinder groups and recalculate them.
1102	 */
1103	if (fs->fs_clean != 0)
1104		return (0);
1105	bzero(&cstotal, sizeof cstotal);
1106	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1107		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1108		    fs->fs_cgsize, cred, &bp)) != 0) {
1109			brelse(bp);
1110			return (error);
1111		}
1112		cgp = (struct cg *)bp->b_data;
1113		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1114		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1115		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1116		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1117		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1118		brelse(bp);
1119	}
1120#ifdef DEBUG
1121	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1122		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
1123#endif
1124	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1125	return (0);
1126}
1127
1128/*
1129 * Protecting the freemaps (or bitmaps).
1130 *
1131 * To eliminate the need to execute fsck before mounting a file system
1132 * after a power failure, one must (conservatively) guarantee that the
1133 * on-disk copy of the bitmaps never indicate that a live inode or block is
1134 * free.  So, when a block or inode is allocated, the bitmap should be
1135 * updated (on disk) before any new pointers.  When a block or inode is
1136 * freed, the bitmap should not be updated until all pointers have been
1137 * reset.  The latter dependency is handled by the delayed de-allocation
1138 * approach described below for block and inode de-allocation.  The former
1139 * dependency is handled by calling the following procedure when a block or
1140 * inode is allocated. When an inode is allocated an "inodedep" is created
1141 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1142 * Each "inodedep" is also inserted into the hash indexing structure so
1143 * that any additional link additions can be made dependent on the inode
1144 * allocation.
1145 *
1146 * The ufs file system maintains a number of free block counts (e.g., per
1147 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1148 * in addition to the bitmaps.  These counts are used to improve efficiency
1149 * during allocation and therefore must be consistent with the bitmaps.
1150 * There is no convenient way to guarantee post-crash consistency of these
1151 * counts with simple update ordering, for two main reasons: (1) The counts
1152 * and bitmaps for a single cylinder group block are not in the same disk
1153 * sector.  If a disk write is interrupted (e.g., by power failure), one may
1154 * be written and the other not.  (2) Some of the counts are located in the
1155 * superblock rather than the cylinder group block. So, we focus our soft
1156 * updates implementation on protecting the bitmaps. When mounting a
1157 * filesystem, we recompute the auxiliary counts from the bitmaps.
1158 */
1159
1160/*
1161 * Called just after updating the cylinder group block to allocate an inode.
1162 */
1163void
1164softdep_setup_inomapdep(bp, ip, newinum)
1165	struct buf *bp;		/* buffer for cylgroup block with inode map */
1166	struct inode *ip;	/* inode related to allocation */
1167	ino_t newinum;		/* new inode number being allocated */
1168{
1169	struct inodedep *inodedep;
1170	struct bmsafemap *bmsafemap;
1171
1172	/*
1173	 * Create a dependency for the newly allocated inode.
1174	 * Panic if it already exists as something is seriously wrong.
1175	 * Otherwise add it to the dependency list for the buffer holding
1176	 * the cylinder group map from which it was allocated.
1177	 */
1178	ACQUIRE_LOCK(&lk);
1179	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1180		FREE_LOCK(&lk);
1181		panic("softdep_setup_inomapdep: found inode");
1182	}
1183	inodedep->id_buf = bp;
1184	inodedep->id_state &= ~DEPCOMPLETE;
1185	bmsafemap = bmsafemap_lookup(bp);
1186	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1187	FREE_LOCK(&lk);
1188}
1189
1190/*
1191 * Called just after updating the cylinder group block to
1192 * allocate block or fragment.
1193 */
1194void
1195softdep_setup_blkmapdep(bp, fs, newblkno)
1196	struct buf *bp;		/* buffer for cylgroup block with block map */
1197	struct fs *fs;		/* filesystem doing allocation */
1198	ufs_daddr_t newblkno;	/* number of newly allocated block */
1199{
1200	struct newblk *newblk;
1201	struct bmsafemap *bmsafemap;
1202
1203	/*
1204	 * Create a dependency for the newly allocated block.
1205	 * Add it to the dependency list for the buffer holding
1206	 * the cylinder group map from which it was allocated.
1207	 */
1208	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1209		panic("softdep_setup_blkmapdep: found block");
1210	ACQUIRE_LOCK(&lk);
1211	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1212	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1213	FREE_LOCK(&lk);
1214}
1215
1216/*
1217 * Find the bmsafemap associated with a cylinder group buffer.
1218 * If none exists, create one. The buffer must be locked when
1219 * this routine is called and this routine must be called with
1220 * splbio interrupts blocked.
1221 */
1222static struct bmsafemap *
1223bmsafemap_lookup(bp)
1224	struct buf *bp;
1225{
1226	struct bmsafemap *bmsafemap;
1227	struct worklist *wk;
1228
1229#ifdef DEBUG
1230	if (lk.lkt_held == NOHOLDER)
1231		panic("bmsafemap_lookup: lock not held");
1232#endif
1233	LIST_FOREACH(wk, &bp->b_dep, wk_list)
1234		if (wk->wk_type == D_BMSAFEMAP)
1235			return (WK_BMSAFEMAP(wk));
1236	FREE_LOCK(&lk);
1237	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1238		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1239	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1240	bmsafemap->sm_list.wk_state = 0;
1241	bmsafemap->sm_buf = bp;
1242	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1243	LIST_INIT(&bmsafemap->sm_allocindirhd);
1244	LIST_INIT(&bmsafemap->sm_inodedephd);
1245	LIST_INIT(&bmsafemap->sm_newblkhd);
1246	ACQUIRE_LOCK(&lk);
1247	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1248	return (bmsafemap);
1249}
1250
1251/*
1252 * Direct block allocation dependencies.
1253 *
1254 * When a new block is allocated, the corresponding disk locations must be
1255 * initialized (with zeros or new data) before the on-disk inode points to
1256 * them.  Also, the freemap from which the block was allocated must be
1257 * updated (on disk) before the inode's pointer. These two dependencies are
1258 * independent of each other and are needed for all file blocks and indirect
1259 * blocks that are pointed to directly by the inode.  Just before the
1260 * "in-core" version of the inode is updated with a newly allocated block
1261 * number, a procedure (below) is called to setup allocation dependency
1262 * structures.  These structures are removed when the corresponding
1263 * dependencies are satisfied or when the block allocation becomes obsolete
1264 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1265 * fragment that gets upgraded).  All of these cases are handled in
1266 * procedures described later.
1267 *
1268 * When a file extension causes a fragment to be upgraded, either to a larger
1269 * fragment or to a full block, the on-disk location may change (if the
1270 * previous fragment could not simply be extended). In this case, the old
1271 * fragment must be de-allocated, but not until after the inode's pointer has
1272 * been updated. In most cases, this is handled by later procedures, which
1273 * will construct a "freefrag" structure to be added to the workitem queue
1274 * when the inode update is complete (or obsolete).  The main exception to
1275 * this is when an allocation occurs while a pending allocation dependency
1276 * (for the same block pointer) remains.  This case is handled in the main
1277 * allocation dependency setup procedure by immediately freeing the
1278 * unreferenced fragments.
1279 */
1280void
1281softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1282	struct inode *ip;	/* inode to which block is being added */
1283	ufs_lbn_t lbn;		/* block pointer within inode */
1284	ufs_daddr_t newblkno;	/* disk block number being added */
1285	ufs_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1286	long newsize;		/* size of new block */
1287	long oldsize;		/* size of new block */
1288	struct buf *bp;		/* bp for allocated block */
1289{
1290	struct allocdirect *adp, *oldadp;
1291	struct allocdirectlst *adphead;
1292	struct bmsafemap *bmsafemap;
1293	struct inodedep *inodedep;
1294	struct pagedep *pagedep;
1295	struct newblk *newblk;
1296
1297	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1298		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1299	adp->ad_list.wk_type = D_ALLOCDIRECT;
1300	adp->ad_lbn = lbn;
1301	adp->ad_newblkno = newblkno;
1302	adp->ad_oldblkno = oldblkno;
1303	adp->ad_newsize = newsize;
1304	adp->ad_oldsize = oldsize;
1305	adp->ad_state = ATTACHED;
1306	LIST_INIT(&adp->ad_newdirblk);
1307	if (newblkno == oldblkno)
1308		adp->ad_freefrag = NULL;
1309	else
1310		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1311
1312	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1313		panic("softdep_setup_allocdirect: lost block");
1314
1315	ACQUIRE_LOCK(&lk);
1316	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1317	adp->ad_inodedep = inodedep;
1318
1319	if (newblk->nb_state == DEPCOMPLETE) {
1320		adp->ad_state |= DEPCOMPLETE;
1321		adp->ad_buf = NULL;
1322	} else {
1323		bmsafemap = newblk->nb_bmsafemap;
1324		adp->ad_buf = bmsafemap->sm_buf;
1325		LIST_REMOVE(newblk, nb_deps);
1326		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1327	}
1328	LIST_REMOVE(newblk, nb_hash);
1329	FREE(newblk, M_NEWBLK);
1330
1331	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1332	if (lbn >= NDADDR) {
1333		/* allocating an indirect block */
1334		if (oldblkno != 0) {
1335			FREE_LOCK(&lk);
1336			panic("softdep_setup_allocdirect: non-zero indir");
1337		}
1338	} else {
1339		/*
1340		 * Allocating a direct block.
1341		 *
1342		 * If we are allocating a directory block, then we must
1343		 * allocate an associated pagedep to track additions and
1344		 * deletions.
1345		 */
1346		if ((ip->i_mode & IFMT) == IFDIR &&
1347		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1348			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1349	}
1350	/*
1351	 * The list of allocdirects must be kept in sorted and ascending
1352	 * order so that the rollback routines can quickly determine the
1353	 * first uncommitted block (the size of the file stored on disk
1354	 * ends at the end of the lowest committed fragment, or if there
1355	 * are no fragments, at the end of the highest committed block).
1356	 * Since files generally grow, the typical case is that the new
1357	 * block is to be added at the end of the list. We speed this
1358	 * special case by checking against the last allocdirect in the
1359	 * list before laboriously traversing the list looking for the
1360	 * insertion point.
1361	 */
1362	adphead = &inodedep->id_newinoupdt;
1363	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1364	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1365		/* insert at end of list */
1366		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1367		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1368			allocdirect_merge(adphead, adp, oldadp);
1369		FREE_LOCK(&lk);
1370		return;
1371	}
1372	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1373		if (oldadp->ad_lbn >= lbn)
1374			break;
1375	}
1376	if (oldadp == NULL) {
1377		FREE_LOCK(&lk);
1378		panic("softdep_setup_allocdirect: lost entry");
1379	}
1380	/* insert in middle of list */
1381	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1382	if (oldadp->ad_lbn == lbn)
1383		allocdirect_merge(adphead, adp, oldadp);
1384	FREE_LOCK(&lk);
1385}
1386
1387/*
1388 * Replace an old allocdirect dependency with a newer one.
1389 * This routine must be called with splbio interrupts blocked.
1390 */
1391static void
1392allocdirect_merge(adphead, newadp, oldadp)
1393	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1394	struct allocdirect *newadp;	/* allocdirect being added */
1395	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1396{
1397	struct worklist *wk;
1398	struct freefrag *freefrag;
1399	struct newdirblk *newdirblk;
1400
1401#ifdef DEBUG
1402	if (lk.lkt_held == NOHOLDER)
1403		panic("allocdirect_merge: lock not held");
1404#endif
1405	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1406	    newadp->ad_oldsize != oldadp->ad_newsize ||
1407	    newadp->ad_lbn >= NDADDR) {
1408		FREE_LOCK(&lk);
1409		panic("allocdirect_merge: old %d != new %d || lbn %ld >= %d",
1410		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1411		    NDADDR);
1412	}
1413	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1414	newadp->ad_oldsize = oldadp->ad_oldsize;
1415	/*
1416	 * If the old dependency had a fragment to free or had never
1417	 * previously had a block allocated, then the new dependency
1418	 * can immediately post its freefrag and adopt the old freefrag.
1419	 * This action is done by swapping the freefrag dependencies.
1420	 * The new dependency gains the old one's freefrag, and the
1421	 * old one gets the new one and then immediately puts it on
1422	 * the worklist when it is freed by free_allocdirect. It is
1423	 * not possible to do this swap when the old dependency had a
1424	 * non-zero size but no previous fragment to free. This condition
1425	 * arises when the new block is an extension of the old block.
1426	 * Here, the first part of the fragment allocated to the new
1427	 * dependency is part of the block currently claimed on disk by
1428	 * the old dependency, so cannot legitimately be freed until the
1429	 * conditions for the new dependency are fulfilled.
1430	 */
1431	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1432		freefrag = newadp->ad_freefrag;
1433		newadp->ad_freefrag = oldadp->ad_freefrag;
1434		oldadp->ad_freefrag = freefrag;
1435	}
1436	/*
1437	 * If we are tracking a new directory-block allocation,
1438	 * move it from the old allocdirect to the new allocdirect.
1439	 */
1440	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
1441		newdirblk = WK_NEWDIRBLK(wk);
1442		WORKLIST_REMOVE(&newdirblk->db_list);
1443		if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL)
1444			panic("allocdirect_merge: extra newdirblk");
1445		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
1446	}
1447	free_allocdirect(adphead, oldadp, 0);
1448}
1449
1450/*
1451 * Allocate a new freefrag structure if needed.
1452 */
1453static struct freefrag *
1454newfreefrag(ip, blkno, size)
1455	struct inode *ip;
1456	ufs_daddr_t blkno;
1457	long size;
1458{
1459	struct freefrag *freefrag;
1460	struct fs *fs;
1461
1462	if (blkno == 0)
1463		return (NULL);
1464	fs = ip->i_fs;
1465	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1466		panic("newfreefrag: frag size");
1467	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1468		M_FREEFRAG, M_SOFTDEP_FLAGS);
1469	freefrag->ff_list.wk_type = D_FREEFRAG;
1470	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1471	freefrag->ff_inum = ip->i_number;
1472	freefrag->ff_mnt = ITOV(ip)->v_mount;
1473	freefrag->ff_devvp = ip->i_devvp;
1474	freefrag->ff_blkno = blkno;
1475	freefrag->ff_fragsize = size;
1476	return (freefrag);
1477}
1478
1479/*
1480 * This workitem de-allocates fragments that were replaced during
1481 * file block allocation.
1482 */
1483static void
1484handle_workitem_freefrag(freefrag)
1485	struct freefrag *freefrag;
1486{
1487	struct inode tip;
1488
1489	tip.i_vnode = NULL;
1490	tip.i_fs = VFSTOUFS(freefrag->ff_mnt)->um_fs;
1491	tip.i_devvp = freefrag->ff_devvp;
1492	tip.i_dev = freefrag->ff_devvp->v_rdev;
1493	tip.i_number = freefrag->ff_inum;
1494	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1495	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1496	FREE(freefrag, M_FREEFRAG);
1497}
1498
1499/*
1500 * Indirect block allocation dependencies.
1501 *
1502 * The same dependencies that exist for a direct block also exist when
1503 * a new block is allocated and pointed to by an entry in a block of
1504 * indirect pointers. The undo/redo states described above are also
1505 * used here. Because an indirect block contains many pointers that
1506 * may have dependencies, a second copy of the entire in-memory indirect
1507 * block is kept. The buffer cache copy is always completely up-to-date.
1508 * The second copy, which is used only as a source for disk writes,
1509 * contains only the safe pointers (i.e., those that have no remaining
1510 * update dependencies). The second copy is freed when all pointers
1511 * are safe. The cache is not allowed to replace indirect blocks with
1512 * pending update dependencies. If a buffer containing an indirect
1513 * block with dependencies is written, these routines will mark it
1514 * dirty again. It can only be successfully written once all the
1515 * dependencies are removed. The ffs_fsync routine in conjunction with
1516 * softdep_sync_metadata work together to get all the dependencies
1517 * removed so that a file can be successfully written to disk. Three
1518 * procedures are used when setting up indirect block pointer
1519 * dependencies. The division is necessary because of the organization
1520 * of the "balloc" routine and because of the distinction between file
1521 * pages and file metadata blocks.
1522 */
1523
1524/*
1525 * Allocate a new allocindir structure.
1526 */
1527static struct allocindir *
1528newallocindir(ip, ptrno, newblkno, oldblkno)
1529	struct inode *ip;	/* inode for file being extended */
1530	int ptrno;		/* offset of pointer in indirect block */
1531	ufs_daddr_t newblkno;	/* disk block number being added */
1532	ufs_daddr_t oldblkno;	/* previous block number, 0 if none */
1533{
1534	struct allocindir *aip;
1535
1536	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1537		M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO);
1538	aip->ai_list.wk_type = D_ALLOCINDIR;
1539	aip->ai_state = ATTACHED;
1540	aip->ai_offset = ptrno;
1541	aip->ai_newblkno = newblkno;
1542	aip->ai_oldblkno = oldblkno;
1543	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1544	return (aip);
1545}
1546
1547/*
1548 * Called just before setting an indirect block pointer
1549 * to a newly allocated file page.
1550 */
1551void
1552softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1553	struct inode *ip;	/* inode for file being extended */
1554	ufs_lbn_t lbn;		/* allocated block number within file */
1555	struct buf *bp;		/* buffer with indirect blk referencing page */
1556	int ptrno;		/* offset of pointer in indirect block */
1557	ufs_daddr_t newblkno;	/* disk block number being added */
1558	ufs_daddr_t oldblkno;	/* previous block number, 0 if none */
1559	struct buf *nbp;	/* buffer holding allocated page */
1560{
1561	struct allocindir *aip;
1562	struct pagedep *pagedep;
1563
1564	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1565	ACQUIRE_LOCK(&lk);
1566	/*
1567	 * If we are allocating a directory page, then we must
1568	 * allocate an associated pagedep to track additions and
1569	 * deletions.
1570	 */
1571	if ((ip->i_mode & IFMT) == IFDIR &&
1572	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1573		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1574	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1575	FREE_LOCK(&lk);
1576	setup_allocindir_phase2(bp, ip, aip);
1577}
1578
1579/*
1580 * Called just before setting an indirect block pointer to a
1581 * newly allocated indirect block.
1582 */
1583void
1584softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
1585	struct buf *nbp;	/* newly allocated indirect block */
1586	struct inode *ip;	/* inode for file being extended */
1587	struct buf *bp;		/* indirect block referencing allocated block */
1588	int ptrno;		/* offset of pointer in indirect block */
1589	ufs_daddr_t newblkno;	/* disk block number being added */
1590{
1591	struct allocindir *aip;
1592
1593	aip = newallocindir(ip, ptrno, newblkno, 0);
1594	ACQUIRE_LOCK(&lk);
1595	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1596	FREE_LOCK(&lk);
1597	setup_allocindir_phase2(bp, ip, aip);
1598}
1599
1600/*
1601 * Called to finish the allocation of the "aip" allocated
1602 * by one of the two routines above.
1603 */
1604static void
1605setup_allocindir_phase2(bp, ip, aip)
1606	struct buf *bp;		/* in-memory copy of the indirect block */
1607	struct inode *ip;	/* inode for file being extended */
1608	struct allocindir *aip;	/* allocindir allocated by the above routines */
1609{
1610	struct worklist *wk;
1611	struct indirdep *indirdep, *newindirdep;
1612	struct bmsafemap *bmsafemap;
1613	struct allocindir *oldaip;
1614	struct freefrag *freefrag;
1615	struct newblk *newblk;
1616
1617	if (bp->b_lblkno >= 0)
1618		panic("setup_allocindir_phase2: not indir blk");
1619	for (indirdep = NULL, newindirdep = NULL; ; ) {
1620		ACQUIRE_LOCK(&lk);
1621		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1622			if (wk->wk_type != D_INDIRDEP)
1623				continue;
1624			indirdep = WK_INDIRDEP(wk);
1625			break;
1626		}
1627		if (indirdep == NULL && newindirdep) {
1628			indirdep = newindirdep;
1629			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
1630			newindirdep = NULL;
1631		}
1632		FREE_LOCK(&lk);
1633		if (indirdep) {
1634			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1635			    &newblk) == 0)
1636				panic("setup_allocindir: lost block");
1637			ACQUIRE_LOCK(&lk);
1638			if (newblk->nb_state == DEPCOMPLETE) {
1639				aip->ai_state |= DEPCOMPLETE;
1640				aip->ai_buf = NULL;
1641			} else {
1642				bmsafemap = newblk->nb_bmsafemap;
1643				aip->ai_buf = bmsafemap->sm_buf;
1644				LIST_REMOVE(newblk, nb_deps);
1645				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1646				    aip, ai_deps);
1647			}
1648			LIST_REMOVE(newblk, nb_hash);
1649			FREE(newblk, M_NEWBLK);
1650			aip->ai_indirdep = indirdep;
1651			/*
1652			 * Check to see if there is an existing dependency
1653			 * for this block. If there is, merge the old
1654			 * dependency into the new one.
1655			 */
1656			if (aip->ai_oldblkno == 0)
1657				oldaip = NULL;
1658			else
1659
1660				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1661					if (oldaip->ai_offset == aip->ai_offset)
1662						break;
1663			freefrag = NULL;
1664			if (oldaip != NULL) {
1665				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1666					FREE_LOCK(&lk);
1667					panic("setup_allocindir_phase2: blkno");
1668				}
1669				aip->ai_oldblkno = oldaip->ai_oldblkno;
1670				freefrag = aip->ai_freefrag;
1671				aip->ai_freefrag = oldaip->ai_freefrag;
1672				oldaip->ai_freefrag = NULL;
1673				free_allocindir(oldaip, NULL);
1674			}
1675			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1676			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1677			    [aip->ai_offset] = aip->ai_oldblkno;
1678			FREE_LOCK(&lk);
1679			if (freefrag != NULL)
1680				handle_workitem_freefrag(freefrag);
1681		}
1682		if (newindirdep) {
1683			if (indirdep->ir_savebp != NULL)
1684				brelse(newindirdep->ir_savebp);
1685			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1686		}
1687		if (indirdep)
1688			break;
1689		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1690			M_INDIRDEP, M_SOFTDEP_FLAGS);
1691		newindirdep->ir_list.wk_type = D_INDIRDEP;
1692		newindirdep->ir_state = ATTACHED;
1693		LIST_INIT(&newindirdep->ir_deplisthd);
1694		LIST_INIT(&newindirdep->ir_donehd);
1695		if (bp->b_blkno == bp->b_lblkno)
1696			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &bp->b_blkno, NULL, NULL);
1697		newindirdep->ir_savebp =
1698		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0);
1699		BUF_KERNPROC(newindirdep->ir_savebp);
1700		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1701	}
1702}
1703
1704/*
1705 * Block de-allocation dependencies.
1706 *
1707 * When blocks are de-allocated, the on-disk pointers must be nullified before
1708 * the blocks are made available for use by other files.  (The true
1709 * requirement is that old pointers must be nullified before new on-disk
1710 * pointers are set.  We chose this slightly more stringent requirement to
1711 * reduce complexity.) Our implementation handles this dependency by updating
1712 * the inode (or indirect block) appropriately but delaying the actual block
1713 * de-allocation (i.e., freemap and free space count manipulation) until
1714 * after the updated versions reach stable storage.  After the disk is
1715 * updated, the blocks can be safely de-allocated whenever it is convenient.
1716 * This implementation handles only the common case of reducing a file's
1717 * length to zero. Other cases are handled by the conventional synchronous
1718 * write approach.
1719 *
1720 * The ffs implementation with which we worked double-checks
1721 * the state of the block pointers and file size as it reduces
1722 * a file's length.  Some of this code is replicated here in our
1723 * soft updates implementation.  The freeblks->fb_chkcnt field is
1724 * used to transfer a part of this information to the procedure
1725 * that eventually de-allocates the blocks.
1726 *
1727 * This routine should be called from the routine that shortens
1728 * a file's length, before the inode's size or block pointers
1729 * are modified. It will save the block pointer information for
1730 * later release and zero the inode so that the calling routine
1731 * can release it.
1732 */
1733void
1734softdep_setup_freeblocks(ip, length)
1735	struct inode *ip;	/* The inode whose length is to be reduced */
1736	off_t length;		/* The new length for the file */
1737{
1738	struct freeblks *freeblks;
1739	struct inodedep *inodedep;
1740	struct allocdirect *adp;
1741	struct vnode *vp;
1742	struct buf *bp;
1743	struct fs *fs;
1744	int i, delay, error;
1745
1746	fs = ip->i_fs;
1747	if (length != 0)
1748		panic("softdep_setup_freeblocks: non-zero length");
1749	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1750		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
1751	freeblks->fb_list.wk_type = D_FREEBLKS;
1752	freeblks->fb_uid = ip->i_uid;
1753	freeblks->fb_previousinum = ip->i_number;
1754	freeblks->fb_devvp = ip->i_devvp;
1755	freeblks->fb_mnt = ITOV(ip)->v_mount;
1756	freeblks->fb_oldsize = ip->i_size;
1757	freeblks->fb_newsize = length;
1758	freeblks->fb_chkcnt = ip->i_blocks;
1759	for (i = 0; i < NDADDR; i++) {
1760		freeblks->fb_dblks[i] = ip->i_db[i];
1761		ip->i_db[i] = 0;
1762	}
1763	for (i = 0; i < NIADDR; i++) {
1764		freeblks->fb_iblks[i] = ip->i_ib[i];
1765		ip->i_ib[i] = 0;
1766	}
1767	ip->i_blocks = 0;
1768	ip->i_size = 0;
1769	/*
1770	 * If the file was removed, then the space being freed was
1771	 * accounted for then (see softdep_filereleased()). If the
1772	 * file is merely being truncated, then we account for it now.
1773	 */
1774	if ((ip->i_flag & IN_SPACECOUNTED) == 0)
1775		fs->fs_pendingblocks += freeblks->fb_chkcnt;
1776	/*
1777	 * Push the zero'ed inode to to its disk buffer so that we are free
1778	 * to delete its dependencies below. Once the dependencies are gone
1779	 * the buffer can be safely released.
1780	 */
1781	if ((error = bread(ip->i_devvp,
1782	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
1783	    (int)fs->fs_bsize, NOCRED, &bp)) != 0)
1784		softdep_error("softdep_setup_freeblocks", error);
1785	*((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1786	    ip->i_din;
1787	/*
1788	 * Find and eliminate any inode dependencies.
1789	 */
1790	ACQUIRE_LOCK(&lk);
1791	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1792	if ((inodedep->id_state & IOSTARTED) != 0) {
1793		FREE_LOCK(&lk);
1794		panic("softdep_setup_freeblocks: inode busy");
1795	}
1796	/*
1797	 * Add the freeblks structure to the list of operations that
1798	 * must await the zero'ed inode being written to disk. If we
1799	 * still have a bitmap dependency (delay == 0), then the inode
1800	 * has never been written to disk, so we can process the
1801	 * freeblks below once we have deleted the dependencies.
1802	 */
1803	delay = (inodedep->id_state & DEPCOMPLETE);
1804	if (delay)
1805		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1806	/*
1807	 * Because the file length has been truncated to zero, any
1808	 * pending block allocation dependency structures associated
1809	 * with this inode are obsolete and can simply be de-allocated.
1810	 * We must first merge the two dependency lists to get rid of
1811	 * any duplicate freefrag structures, then purge the merged list.
1812	 * If we still have a bitmap dependency, then the inode has never
1813	 * been written to disk, so we can free any fragments without delay.
1814	 */
1815	merge_inode_lists(inodedep);
1816	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1817		free_allocdirect(&inodedep->id_inoupdt, adp, delay);
1818	FREE_LOCK(&lk);
1819	bdwrite(bp);
1820	/*
1821	 * We must wait for any I/O in progress to finish so that
1822	 * all potential buffers on the dirty list will be visible.
1823	 * Once they are all there, walk the list and get rid of
1824	 * any dependencies.
1825	 */
1826	vp = ITOV(ip);
1827	ACQUIRE_LOCK(&lk);
1828	drain_output(vp, 1);
1829	while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) {
1830		bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
1831		(void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
1832		deallocate_dependencies(bp, inodedep);
1833		bp->b_flags |= B_INVAL | B_NOCACHE;
1834		FREE_LOCK(&lk);
1835		brelse(bp);
1836		ACQUIRE_LOCK(&lk);
1837	}
1838	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1839		(void) free_inodedep(inodedep);
1840	FREE_LOCK(&lk);
1841	/*
1842	 * If the inode has never been written to disk (delay == 0),
1843	 * then we can process the freeblks now that we have deleted
1844	 * the dependencies.
1845	 */
1846	if (!delay)
1847		handle_workitem_freeblocks(freeblks, 0);
1848}
1849
1850/*
1851 * Reclaim any dependency structures from a buffer that is about to
1852 * be reallocated to a new vnode. The buffer must be locked, thus,
1853 * no I/O completion operations can occur while we are manipulating
1854 * its associated dependencies. The mutex is held so that other I/O's
1855 * associated with related dependencies do not occur.
1856 */
1857static void
1858deallocate_dependencies(bp, inodedep)
1859	struct buf *bp;
1860	struct inodedep *inodedep;
1861{
1862	struct worklist *wk;
1863	struct indirdep *indirdep;
1864	struct allocindir *aip;
1865	struct pagedep *pagedep;
1866	struct dirrem *dirrem;
1867	struct diradd *dap;
1868	int i;
1869
1870	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1871		switch (wk->wk_type) {
1872
1873		case D_INDIRDEP:
1874			indirdep = WK_INDIRDEP(wk);
1875			/*
1876			 * None of the indirect pointers will ever be visible,
1877			 * so they can simply be tossed. GOINGAWAY ensures
1878			 * that allocated pointers will be saved in the buffer
1879			 * cache until they are freed. Note that they will
1880			 * only be able to be found by their physical address
1881			 * since the inode mapping the logical address will
1882			 * be gone. The save buffer used for the safe copy
1883			 * was allocated in setup_allocindir_phase2 using
1884			 * the physical address so it could be used for this
1885			 * purpose. Hence we swap the safe copy with the real
1886			 * copy, allowing the safe copy to be freed and holding
1887			 * on to the real copy for later use in indir_trunc.
1888			 */
1889			if (indirdep->ir_state & GOINGAWAY) {
1890				FREE_LOCK(&lk);
1891				panic("deallocate_dependencies: already gone");
1892			}
1893			indirdep->ir_state |= GOINGAWAY;
1894			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
1895				free_allocindir(aip, inodedep);
1896			if (bp->b_lblkno >= 0 ||
1897			    bp->b_blkno != indirdep->ir_savebp->b_lblkno) {
1898				FREE_LOCK(&lk);
1899				panic("deallocate_dependencies: not indir");
1900			}
1901			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1902			    bp->b_bcount);
1903			WORKLIST_REMOVE(wk);
1904			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
1905			continue;
1906
1907		case D_PAGEDEP:
1908			pagedep = WK_PAGEDEP(wk);
1909			/*
1910			 * None of the directory additions will ever be
1911			 * visible, so they can simply be tossed.
1912			 */
1913			for (i = 0; i < DAHASHSZ; i++)
1914				while ((dap =
1915				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
1916					free_diradd(dap);
1917			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
1918				free_diradd(dap);
1919			/*
1920			 * Copy any directory remove dependencies to the list
1921			 * to be processed after the zero'ed inode is written.
1922			 * If the inode has already been written, then they
1923			 * can be dumped directly onto the work list.
1924			 */
1925			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1926				LIST_REMOVE(dirrem, dm_next);
1927				dirrem->dm_dirinum = pagedep->pd_ino;
1928				if (inodedep == NULL ||
1929				    (inodedep->id_state & ALLCOMPLETE) ==
1930				     ALLCOMPLETE)
1931					add_to_worklist(&dirrem->dm_list);
1932				else
1933					WORKLIST_INSERT(&inodedep->id_bufwait,
1934					    &dirrem->dm_list);
1935			}
1936			if ((pagedep->pd_state & NEWBLOCK) != 0) {
1937				LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
1938					if (wk->wk_type == D_NEWDIRBLK &&
1939					    WK_NEWDIRBLK(wk)->db_pagedep ==
1940					      pagedep)
1941						break;
1942				if (wk != NULL) {
1943					WORKLIST_REMOVE(wk);
1944					free_newdirblk(WK_NEWDIRBLK(wk));
1945				} else {
1946					FREE_LOCK(&lk);
1947					panic("deallocate_dependencies: "
1948					      "lost pagedep");
1949				}
1950			}
1951			WORKLIST_REMOVE(&pagedep->pd_list);
1952			LIST_REMOVE(pagedep, pd_hash);
1953			WORKITEM_FREE(pagedep, D_PAGEDEP);
1954			continue;
1955
1956		case D_ALLOCINDIR:
1957			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1958			continue;
1959
1960		case D_ALLOCDIRECT:
1961		case D_INODEDEP:
1962			FREE_LOCK(&lk);
1963			panic("deallocate_dependencies: Unexpected type %s",
1964			    TYPENAME(wk->wk_type));
1965			/* NOTREACHED */
1966
1967		default:
1968			FREE_LOCK(&lk);
1969			panic("deallocate_dependencies: Unknown type %s",
1970			    TYPENAME(wk->wk_type));
1971			/* NOTREACHED */
1972		}
1973	}
1974}
1975
1976/*
1977 * Free an allocdirect. Generate a new freefrag work request if appropriate.
1978 * This routine must be called with splbio interrupts blocked.
1979 */
1980static void
1981free_allocdirect(adphead, adp, delay)
1982	struct allocdirectlst *adphead;
1983	struct allocdirect *adp;
1984	int delay;
1985{
1986	struct newdirblk *newdirblk;
1987	struct worklist *wk;
1988
1989#ifdef DEBUG
1990	if (lk.lkt_held == NOHOLDER)
1991		panic("free_allocdirect: lock not held");
1992#endif
1993	if ((adp->ad_state & DEPCOMPLETE) == 0)
1994		LIST_REMOVE(adp, ad_deps);
1995	TAILQ_REMOVE(adphead, adp, ad_next);
1996	if ((adp->ad_state & COMPLETE) == 0)
1997		WORKLIST_REMOVE(&adp->ad_list);
1998	if (adp->ad_freefrag != NULL) {
1999		if (delay)
2000			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2001			    &adp->ad_freefrag->ff_list);
2002		else
2003			add_to_worklist(&adp->ad_freefrag->ff_list);
2004	}
2005	if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
2006		newdirblk = WK_NEWDIRBLK(wk);
2007		WORKLIST_REMOVE(&newdirblk->db_list);
2008		if (LIST_FIRST(&adp->ad_newdirblk) != NULL)
2009			panic("free_allocdirect: extra newdirblk");
2010		if (delay)
2011			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2012			    &newdirblk->db_list);
2013		else
2014			free_newdirblk(newdirblk);
2015	}
2016	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2017}
2018
2019/*
2020 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
2021 * This routine must be called with splbio interrupts blocked.
2022 */
2023static void
2024free_newdirblk(newdirblk)
2025	struct newdirblk *newdirblk;
2026{
2027	struct pagedep *pagedep;
2028	struct diradd *dap;
2029	int i;
2030
2031#ifdef DEBUG
2032	if (lk.lkt_held == NOHOLDER)
2033		panic("free_newdirblk: lock not held");
2034#endif
2035	/*
2036	 * If the pagedep is still linked onto the directory buffer
2037	 * dependency chain, then some of the entries on the
2038	 * pd_pendinghd list may not be committed to disk yet. In
2039	 * this case, we will simply clear the NEWBLOCK flag and
2040	 * let the pd_pendinghd list be processed when the pagedep
2041	 * is next written. If the pagedep is no longer on the buffer
2042	 * dependency chain, then all the entries on the pd_pending
2043	 * list are committed to disk and we can free them here.
2044	 */
2045	pagedep = newdirblk->db_pagedep;
2046	pagedep->pd_state &= ~NEWBLOCK;
2047	if ((pagedep->pd_state & ONWORKLIST) == 0)
2048		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2049			free_diradd(dap);
2050	/*
2051	 * If no dependencies remain, the pagedep will be freed.
2052	 */
2053	for (i = 0; i < DAHASHSZ; i++)
2054		if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
2055			break;
2056	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
2057		LIST_REMOVE(pagedep, pd_hash);
2058		WORKITEM_FREE(pagedep, D_PAGEDEP);
2059	}
2060	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2061}
2062
2063/*
2064 * Prepare an inode to be freed. The actual free operation is not
2065 * done until the zero'ed inode has been written to disk.
2066 */
2067void
2068softdep_freefile(pvp, ino, mode)
2069		struct vnode *pvp;
2070		ino_t ino;
2071		int mode;
2072{
2073	struct inode *ip = VTOI(pvp);
2074	struct inodedep *inodedep;
2075	struct freefile *freefile;
2076
2077	/*
2078	 * This sets up the inode de-allocation dependency.
2079	 */
2080	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2081		M_FREEFILE, M_SOFTDEP_FLAGS);
2082	freefile->fx_list.wk_type = D_FREEFILE;
2083	freefile->fx_list.wk_state = 0;
2084	freefile->fx_mode = mode;
2085	freefile->fx_oldinum = ino;
2086	freefile->fx_devvp = ip->i_devvp;
2087	freefile->fx_mnt = ITOV(ip)->v_mount;
2088	if ((ip->i_flag & IN_SPACECOUNTED) == 0)
2089		ip->i_fs->fs_pendinginodes += 1;
2090
2091	/*
2092	 * If the inodedep does not exist, then the zero'ed inode has
2093	 * been written to disk. If the allocated inode has never been
2094	 * written to disk, then the on-disk inode is zero'ed. In either
2095	 * case we can free the file immediately.
2096	 */
2097	ACQUIRE_LOCK(&lk);
2098	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2099	    check_inode_unwritten(inodedep)) {
2100		FREE_LOCK(&lk);
2101		handle_workitem_freefile(freefile);
2102		return;
2103	}
2104	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2105	FREE_LOCK(&lk);
2106}
2107
2108/*
2109 * Check to see if an inode has never been written to disk. If
2110 * so free the inodedep and return success, otherwise return failure.
2111 * This routine must be called with splbio interrupts blocked.
2112 *
2113 * If we still have a bitmap dependency, then the inode has never
2114 * been written to disk. Drop the dependency as it is no longer
2115 * necessary since the inode is being deallocated. We set the
2116 * ALLCOMPLETE flags since the bitmap now properly shows that the
2117 * inode is not allocated. Even if the inode is actively being
2118 * written, it has been rolled back to its zero'ed state, so we
2119 * are ensured that a zero inode is what is on the disk. For short
2120 * lived files, this change will usually result in removing all the
2121 * dependencies from the inode so that it can be freed immediately.
2122 */
2123static int
2124check_inode_unwritten(inodedep)
2125	struct inodedep *inodedep;
2126{
2127
2128	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2129	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2130	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2131	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2132	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2133	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2134	    inodedep->id_nlinkdelta != 0)
2135		return (0);
2136	inodedep->id_state |= ALLCOMPLETE;
2137	LIST_REMOVE(inodedep, id_deps);
2138	inodedep->id_buf = NULL;
2139	if (inodedep->id_state & ONWORKLIST)
2140		WORKLIST_REMOVE(&inodedep->id_list);
2141	if (inodedep->id_savedino != NULL) {
2142		FREE(inodedep->id_savedino, M_INODEDEP);
2143		inodedep->id_savedino = NULL;
2144	}
2145	if (free_inodedep(inodedep) == 0) {
2146		FREE_LOCK(&lk);
2147		panic("check_inode_unwritten: busy inode");
2148	}
2149	return (1);
2150}
2151
2152/*
2153 * Try to free an inodedep structure. Return 1 if it could be freed.
2154 */
2155static int
2156free_inodedep(inodedep)
2157	struct inodedep *inodedep;
2158{
2159
2160	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2161	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2162	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2163	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2164	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2165	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2166	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2167	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2168		return (0);
2169	LIST_REMOVE(inodedep, id_hash);
2170	WORKITEM_FREE(inodedep, D_INODEDEP);
2171	num_inodedep -= 1;
2172	return (1);
2173}
2174
2175/*
2176 * This workitem routine performs the block de-allocation.
2177 * The workitem is added to the pending list after the updated
2178 * inode block has been written to disk.  As mentioned above,
2179 * checks regarding the number of blocks de-allocated (compared
2180 * to the number of blocks allocated for the file) are also
2181 * performed in this function.
2182 */
2183static void
2184handle_workitem_freeblocks(freeblks, flags)
2185	struct freeblks *freeblks;
2186	int flags;
2187{
2188	struct inode tip, *ip;
2189	struct vnode *vp;
2190	ufs_daddr_t bn;
2191	struct fs *fs;
2192	int i, level, bsize;
2193	long nblocks, blocksreleased = 0;
2194	int error, allerror = 0;
2195	ufs_lbn_t baselbns[NIADDR], tmpval;
2196
2197	tip.i_fs = fs = VFSTOUFS(freeblks->fb_mnt)->um_fs;
2198	tip.i_number = freeblks->fb_previousinum;
2199	tip.i_devvp = freeblks->fb_devvp;
2200	tip.i_dev = freeblks->fb_devvp->v_rdev;
2201	tip.i_size = freeblks->fb_oldsize;
2202	tip.i_uid = freeblks->fb_uid;
2203	tip.i_vnode = NULL;
2204	tmpval = 1;
2205	baselbns[0] = NDADDR;
2206	for (i = 1; i < NIADDR; i++) {
2207		tmpval *= NINDIR(fs);
2208		baselbns[i] = baselbns[i - 1] + tmpval;
2209	}
2210	nblocks = btodb(fs->fs_bsize);
2211	blocksreleased = 0;
2212	/*
2213	 * Indirect blocks first.
2214	 */
2215	for (level = (NIADDR - 1); level >= 0; level--) {
2216		if ((bn = freeblks->fb_iblks[level]) == 0)
2217			continue;
2218		if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level,
2219		    baselbns[level], &blocksreleased)) == 0)
2220			allerror = error;
2221		ffs_blkfree(&tip, bn, fs->fs_bsize);
2222		fs->fs_pendingblocks -= nblocks;
2223		blocksreleased += nblocks;
2224	}
2225	/*
2226	 * All direct blocks or frags.
2227	 */
2228	for (i = (NDADDR - 1); i >= 0; i--) {
2229		if ((bn = freeblks->fb_dblks[i]) == 0)
2230			continue;
2231		bsize = blksize(fs, &tip, i);
2232		ffs_blkfree(&tip, bn, bsize);
2233		fs->fs_pendingblocks -= btodb(bsize);
2234		blocksreleased += btodb(bsize);
2235	}
2236	/*
2237	 * If we still have not finished background cleanup, then check
2238	 * to see if the block count needs to be adjusted.
2239	 */
2240	if (freeblks->fb_chkcnt != blocksreleased &&
2241	    (fs->fs_flags & FS_UNCLEAN) != 0 && (flags & LK_NOWAIT) == 0 &&
2242	    VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum, &vp) == 0) {
2243		ip = VTOI(vp);
2244		ip->i_blocks += freeblks->fb_chkcnt - blocksreleased;
2245		ip->i_flag |= IN_CHANGE;
2246		vput(vp);
2247	}
2248
2249#ifdef DIAGNOSTIC
2250	if (freeblks->fb_chkcnt != blocksreleased &&
2251	    ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
2252		printf("handle_workitem_freeblocks: block count");
2253	if (allerror)
2254		softdep_error("handle_workitem_freeblks", allerror);
2255#endif /* DIAGNOSTIC */
2256
2257	WORKITEM_FREE(freeblks, D_FREEBLKS);
2258}
2259
2260/*
2261 * Release blocks associated with the inode ip and stored in the indirect
2262 * block dbn. If level is greater than SINGLE, the block is an indirect block
2263 * and recursive calls to indirtrunc must be used to cleanse other indirect
2264 * blocks.
2265 */
2266static int
2267indir_trunc(ip, dbn, level, lbn, countp)
2268	struct inode *ip;
2269	ufs_daddr_t dbn;
2270	int level;
2271	ufs_lbn_t lbn;
2272	long *countp;
2273{
2274	struct buf *bp;
2275	ufs_daddr_t *bap;
2276	ufs_daddr_t nb;
2277	struct fs *fs;
2278	struct worklist *wk;
2279	struct indirdep *indirdep;
2280	int i, lbnadd, nblocks;
2281	int error, allerror = 0;
2282
2283	fs = ip->i_fs;
2284	lbnadd = 1;
2285	for (i = level; i > 0; i--)
2286		lbnadd *= NINDIR(fs);
2287	/*
2288	 * Get buffer of block pointers to be freed. This routine is not
2289	 * called until the zero'ed inode has been written, so it is safe
2290	 * to free blocks as they are encountered. Because the inode has
2291	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2292	 * have to use the on-disk address and the block device for the
2293	 * filesystem to look them up. If the file was deleted before its
2294	 * indirect blocks were all written to disk, the routine that set
2295	 * us up (deallocate_dependencies) will have arranged to leave
2296	 * a complete copy of the indirect block in memory for our use.
2297	 * Otherwise we have to read the blocks in from the disk.
2298	 */
2299	ACQUIRE_LOCK(&lk);
2300	if ((bp = incore(ip->i_devvp, dbn)) != NULL &&
2301	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2302		if (wk->wk_type != D_INDIRDEP ||
2303		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2304		    (indirdep->ir_state & GOINGAWAY) == 0) {
2305			FREE_LOCK(&lk);
2306			panic("indir_trunc: lost indirdep");
2307		}
2308		WORKLIST_REMOVE(wk);
2309		WORKITEM_FREE(indirdep, D_INDIRDEP);
2310		if (LIST_FIRST(&bp->b_dep) != NULL) {
2311			FREE_LOCK(&lk);
2312			panic("indir_trunc: dangling dep");
2313		}
2314		FREE_LOCK(&lk);
2315	} else {
2316		FREE_LOCK(&lk);
2317		error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, NOCRED, &bp);
2318		if (error)
2319			return (error);
2320	}
2321	/*
2322	 * Recursively free indirect blocks.
2323	 */
2324	bap = (ufs_daddr_t *)bp->b_data;
2325	nblocks = btodb(fs->fs_bsize);
2326	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2327		if ((nb = bap[i]) == 0)
2328			continue;
2329		if (level != 0) {
2330			if ((error = indir_trunc(ip, fsbtodb(fs, nb),
2331			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2332				allerror = error;
2333		}
2334		ffs_blkfree(ip, nb, fs->fs_bsize);
2335		fs->fs_pendingblocks -= nblocks;
2336		*countp += nblocks;
2337	}
2338	bp->b_flags |= B_INVAL | B_NOCACHE;
2339	brelse(bp);
2340	return (allerror);
2341}
2342
2343/*
2344 * Free an allocindir.
2345 * This routine must be called with splbio interrupts blocked.
2346 */
2347static void
2348free_allocindir(aip, inodedep)
2349	struct allocindir *aip;
2350	struct inodedep *inodedep;
2351{
2352	struct freefrag *freefrag;
2353
2354#ifdef DEBUG
2355	if (lk.lkt_held == NOHOLDER)
2356		panic("free_allocindir: lock not held");
2357#endif
2358	if ((aip->ai_state & DEPCOMPLETE) == 0)
2359		LIST_REMOVE(aip, ai_deps);
2360	if (aip->ai_state & ONWORKLIST)
2361		WORKLIST_REMOVE(&aip->ai_list);
2362	LIST_REMOVE(aip, ai_next);
2363	if ((freefrag = aip->ai_freefrag) != NULL) {
2364		if (inodedep == NULL)
2365			add_to_worklist(&freefrag->ff_list);
2366		else
2367			WORKLIST_INSERT(&inodedep->id_bufwait,
2368			    &freefrag->ff_list);
2369	}
2370	WORKITEM_FREE(aip, D_ALLOCINDIR);
2371}
2372
2373/*
2374 * Directory entry addition dependencies.
2375 *
2376 * When adding a new directory entry, the inode (with its incremented link
2377 * count) must be written to disk before the directory entry's pointer to it.
2378 * Also, if the inode is newly allocated, the corresponding freemap must be
2379 * updated (on disk) before the directory entry's pointer. These requirements
2380 * are met via undo/redo on the directory entry's pointer, which consists
2381 * simply of the inode number.
2382 *
2383 * As directory entries are added and deleted, the free space within a
2384 * directory block can become fragmented.  The ufs file system will compact
2385 * a fragmented directory block to make space for a new entry. When this
2386 * occurs, the offsets of previously added entries change. Any "diradd"
2387 * dependency structures corresponding to these entries must be updated with
2388 * the new offsets.
2389 */
2390
2391/*
2392 * This routine is called after the in-memory inode's link
2393 * count has been incremented, but before the directory entry's
2394 * pointer to the inode has been set.
2395 */
2396int
2397softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
2398	struct buf *bp;		/* buffer containing directory block */
2399	struct inode *dp;	/* inode for directory */
2400	off_t diroffset;	/* offset of new entry in directory */
2401	long newinum;		/* inode referenced by new directory entry */
2402	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2403	int isnewblk;		/* entry is in a newly allocated block */
2404{
2405	int offset;		/* offset of new entry within directory block */
2406	ufs_lbn_t lbn;		/* block in directory containing new entry */
2407	struct fs *fs;
2408	struct diradd *dap;
2409	struct allocdirect *adp;
2410	struct pagedep *pagedep;
2411	struct inodedep *inodedep;
2412	struct newdirblk *newdirblk = 0;
2413	struct mkdir *mkdir1, *mkdir2;
2414
2415	/*
2416	 * Whiteouts have no dependencies.
2417	 */
2418	if (newinum == WINO) {
2419		if (newdirbp != NULL)
2420			bdwrite(newdirbp);
2421		return (0);
2422	}
2423
2424	fs = dp->i_fs;
2425	lbn = lblkno(fs, diroffset);
2426	offset = blkoff(fs, diroffset);
2427	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2428		M_SOFTDEP_FLAGS|M_ZERO);
2429	dap->da_list.wk_type = D_DIRADD;
2430	dap->da_offset = offset;
2431	dap->da_newinum = newinum;
2432	dap->da_state = ATTACHED;
2433	if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
2434		MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk),
2435		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
2436		newdirblk->db_list.wk_type = D_NEWDIRBLK;
2437		newdirblk->db_state = 0;
2438	}
2439	if (newdirbp == NULL) {
2440		dap->da_state |= DEPCOMPLETE;
2441		ACQUIRE_LOCK(&lk);
2442	} else {
2443		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2444		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2445		    M_SOFTDEP_FLAGS);
2446		mkdir1->md_list.wk_type = D_MKDIR;
2447		mkdir1->md_state = MKDIR_BODY;
2448		mkdir1->md_diradd = dap;
2449		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2450		    M_SOFTDEP_FLAGS);
2451		mkdir2->md_list.wk_type = D_MKDIR;
2452		mkdir2->md_state = MKDIR_PARENT;
2453		mkdir2->md_diradd = dap;
2454		/*
2455		 * Dependency on "." and ".." being written to disk.
2456		 */
2457		mkdir1->md_buf = newdirbp;
2458		ACQUIRE_LOCK(&lk);
2459		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2460		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
2461		FREE_LOCK(&lk);
2462		bdwrite(newdirbp);
2463		/*
2464		 * Dependency on link count increase for parent directory
2465		 */
2466		ACQUIRE_LOCK(&lk);
2467		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0
2468		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2469			dap->da_state &= ~MKDIR_PARENT;
2470			WORKITEM_FREE(mkdir2, D_MKDIR);
2471		} else {
2472			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2473			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2474		}
2475	}
2476	/*
2477	 * Link into parent directory pagedep to await its being written.
2478	 */
2479	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2480		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2481	dap->da_pagedep = pagedep;
2482	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2483	    da_pdlist);
2484	/*
2485	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2486	 * is not yet written. If it is written, do the post-inode write
2487	 * processing to put it on the id_pendinghd list.
2488	 */
2489	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2490	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2491		diradd_inode_written(dap, inodedep);
2492	else
2493		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2494	if (isnewblk) {
2495		/*
2496		 * Directories growing into indirect blocks are rare
2497		 * enough and the frequency of new block allocation
2498		 * in those cases even more rare, that we choose not
2499		 * to bother tracking them. Rather we simply force the
2500		 * new directory entry to disk.
2501		 */
2502		if (lbn >= NDADDR) {
2503			FREE_LOCK(&lk);
2504			/*
2505			 * We only have a new allocation when at the
2506			 * beginning of a new block, not when we are
2507			 * expanding into an existing block.
2508			 */
2509			if (blkoff(fs, diroffset) == 0)
2510				return (1);
2511			return (0);
2512		}
2513		/*
2514		 * We only have a new allocation when at the beginning
2515		 * of a new fragment, not when we are expanding into an
2516		 * existing fragment. Also, there is nothing to do if we
2517		 * are already tracking this block.
2518		 */
2519		if (fragoff(fs, diroffset) != 0) {
2520			FREE_LOCK(&lk);
2521			return (0);
2522		}
2523		if ((pagedep->pd_state & NEWBLOCK) != 0) {
2524			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2525			FREE_LOCK(&lk);
2526			return (0);
2527		}
2528		/*
2529		 * Find our associated allocdirect and have it track us.
2530		 */
2531		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0)
2532			panic("softdep_setup_directory_add: lost inodedep");
2533		adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
2534		if (adp == NULL || adp->ad_lbn != lbn) {
2535			FREE_LOCK(&lk);
2536			panic("softdep_setup_directory_add: lost entry");
2537		}
2538		pagedep->pd_state |= NEWBLOCK;
2539		newdirblk->db_pagedep = pagedep;
2540		WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
2541	}
2542	FREE_LOCK(&lk);
2543	return (0);
2544}
2545
2546/*
2547 * This procedure is called to change the offset of a directory
2548 * entry when compacting a directory block which must be owned
2549 * exclusively by the caller. Note that the actual entry movement
2550 * must be done in this procedure to ensure that no I/O completions
2551 * occur while the move is in progress.
2552 */
2553void
2554softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
2555	struct inode *dp;	/* inode for directory */
2556	caddr_t base;		/* address of dp->i_offset */
2557	caddr_t oldloc;		/* address of old directory location */
2558	caddr_t newloc;		/* address of new directory location */
2559	int entrysize;		/* size of directory entry */
2560{
2561	int offset, oldoffset, newoffset;
2562	struct pagedep *pagedep;
2563	struct diradd *dap;
2564	ufs_lbn_t lbn;
2565
2566	ACQUIRE_LOCK(&lk);
2567	lbn = lblkno(dp->i_fs, dp->i_offset);
2568	offset = blkoff(dp->i_fs, dp->i_offset);
2569	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2570		goto done;
2571	oldoffset = offset + (oldloc - base);
2572	newoffset = offset + (newloc - base);
2573
2574	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2575		if (dap->da_offset != oldoffset)
2576			continue;
2577		dap->da_offset = newoffset;
2578		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2579			break;
2580		LIST_REMOVE(dap, da_pdlist);
2581		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2582		    dap, da_pdlist);
2583		break;
2584	}
2585	if (dap == NULL) {
2586
2587		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2588			if (dap->da_offset == oldoffset) {
2589				dap->da_offset = newoffset;
2590				break;
2591			}
2592		}
2593	}
2594done:
2595	bcopy(oldloc, newloc, entrysize);
2596	FREE_LOCK(&lk);
2597}
2598
2599/*
2600 * Free a diradd dependency structure. This routine must be called
2601 * with splbio interrupts blocked.
2602 */
2603static void
2604free_diradd(dap)
2605	struct diradd *dap;
2606{
2607	struct dirrem *dirrem;
2608	struct pagedep *pagedep;
2609	struct inodedep *inodedep;
2610	struct mkdir *mkdir, *nextmd;
2611
2612#ifdef DEBUG
2613	if (lk.lkt_held == NOHOLDER)
2614		panic("free_diradd: lock not held");
2615#endif
2616	WORKLIST_REMOVE(&dap->da_list);
2617	LIST_REMOVE(dap, da_pdlist);
2618	if ((dap->da_state & DIRCHG) == 0) {
2619		pagedep = dap->da_pagedep;
2620	} else {
2621		dirrem = dap->da_previous;
2622		pagedep = dirrem->dm_pagedep;
2623		dirrem->dm_dirinum = pagedep->pd_ino;
2624		add_to_worklist(&dirrem->dm_list);
2625	}
2626	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2627	    0, &inodedep) != 0)
2628		(void) free_inodedep(inodedep);
2629	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2630		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2631			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2632			if (mkdir->md_diradd != dap)
2633				continue;
2634			dap->da_state &= ~mkdir->md_state;
2635			WORKLIST_REMOVE(&mkdir->md_list);
2636			LIST_REMOVE(mkdir, md_mkdirs);
2637			WORKITEM_FREE(mkdir, D_MKDIR);
2638		}
2639		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2640			FREE_LOCK(&lk);
2641			panic("free_diradd: unfound ref");
2642		}
2643	}
2644	WORKITEM_FREE(dap, D_DIRADD);
2645}
2646
2647/*
2648 * Directory entry removal dependencies.
2649 *
2650 * When removing a directory entry, the entry's inode pointer must be
2651 * zero'ed on disk before the corresponding inode's link count is decremented
2652 * (possibly freeing the inode for re-use). This dependency is handled by
2653 * updating the directory entry but delaying the inode count reduction until
2654 * after the directory block has been written to disk. After this point, the
2655 * inode count can be decremented whenever it is convenient.
2656 */
2657
2658/*
2659 * This routine should be called immediately after removing
2660 * a directory entry.  The inode's link count should not be
2661 * decremented by the calling procedure -- the soft updates
2662 * code will do this task when it is safe.
2663 */
2664void
2665softdep_setup_remove(bp, dp, ip, isrmdir)
2666	struct buf *bp;		/* buffer containing directory block */
2667	struct inode *dp;	/* inode for the directory being modified */
2668	struct inode *ip;	/* inode for directory entry being removed */
2669	int isrmdir;		/* indicates if doing RMDIR */
2670{
2671	struct dirrem *dirrem, *prevdirrem;
2672
2673	/*
2674	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2675	 */
2676	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2677
2678	/*
2679	 * If the COMPLETE flag is clear, then there were no active
2680	 * entries and we want to roll back to a zeroed entry until
2681	 * the new inode is committed to disk. If the COMPLETE flag is
2682	 * set then we have deleted an entry that never made it to
2683	 * disk. If the entry we deleted resulted from a name change,
2684	 * then the old name still resides on disk. We cannot delete
2685	 * its inode (returned to us in prevdirrem) until the zeroed
2686	 * directory entry gets to disk. The new inode has never been
2687	 * referenced on the disk, so can be deleted immediately.
2688	 */
2689	if ((dirrem->dm_state & COMPLETE) == 0) {
2690		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2691		    dm_next);
2692		FREE_LOCK(&lk);
2693	} else {
2694		if (prevdirrem != NULL)
2695			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2696			    prevdirrem, dm_next);
2697		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2698		FREE_LOCK(&lk);
2699		handle_workitem_remove(dirrem);
2700	}
2701}
2702
2703/*
2704 * Allocate a new dirrem if appropriate and return it along with
2705 * its associated pagedep. Called without a lock, returns with lock.
2706 */
2707static long num_dirrem;		/* number of dirrem allocated */
2708static struct dirrem *
2709newdirrem(bp, dp, ip, isrmdir, prevdirremp)
2710	struct buf *bp;		/* buffer containing directory block */
2711	struct inode *dp;	/* inode for the directory being modified */
2712	struct inode *ip;	/* inode for directory entry being removed */
2713	int isrmdir;		/* indicates if doing RMDIR */
2714	struct dirrem **prevdirremp; /* previously referenced inode, if any */
2715{
2716	int offset;
2717	ufs_lbn_t lbn;
2718	struct diradd *dap;
2719	struct dirrem *dirrem;
2720	struct pagedep *pagedep;
2721
2722	/*
2723	 * Whiteouts have no deletion dependencies.
2724	 */
2725	if (ip == NULL)
2726		panic("newdirrem: whiteout");
2727	/*
2728	 * If we are over our limit, try to improve the situation.
2729	 * Limiting the number of dirrem structures will also limit
2730	 * the number of freefile and freeblks structures.
2731	 */
2732	if (num_dirrem > max_softdeps / 2)
2733		(void) request_cleanup(FLUSH_REMOVE, 0);
2734	num_dirrem += 1;
2735	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2736		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
2737	dirrem->dm_list.wk_type = D_DIRREM;
2738	dirrem->dm_state = isrmdir ? RMDIR : 0;
2739	dirrem->dm_mnt = ITOV(ip)->v_mount;
2740	dirrem->dm_oldinum = ip->i_number;
2741	*prevdirremp = NULL;
2742
2743	ACQUIRE_LOCK(&lk);
2744	lbn = lblkno(dp->i_fs, dp->i_offset);
2745	offset = blkoff(dp->i_fs, dp->i_offset);
2746	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2747		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2748	dirrem->dm_pagedep = pagedep;
2749	/*
2750	 * Check for a diradd dependency for the same directory entry.
2751	 * If present, then both dependencies become obsolete and can
2752	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2753	 * list and the pd_pendinghd list.
2754	 */
2755
2756	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2757		if (dap->da_offset == offset)
2758			break;
2759	if (dap == NULL) {
2760
2761		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2762			if (dap->da_offset == offset)
2763				break;
2764		if (dap == NULL)
2765			return (dirrem);
2766	}
2767	/*
2768	 * Must be ATTACHED at this point.
2769	 */
2770	if ((dap->da_state & ATTACHED) == 0) {
2771		FREE_LOCK(&lk);
2772		panic("newdirrem: not ATTACHED");
2773	}
2774	if (dap->da_newinum != ip->i_number) {
2775		FREE_LOCK(&lk);
2776		panic("newdirrem: inum %d should be %d",
2777		    ip->i_number, dap->da_newinum);
2778	}
2779	/*
2780	 * If we are deleting a changed name that never made it to disk,
2781	 * then return the dirrem describing the previous inode (which
2782	 * represents the inode currently referenced from this entry on disk).
2783	 */
2784	if ((dap->da_state & DIRCHG) != 0) {
2785		*prevdirremp = dap->da_previous;
2786		dap->da_state &= ~DIRCHG;
2787		dap->da_pagedep = pagedep;
2788	}
2789	/*
2790	 * We are deleting an entry that never made it to disk.
2791	 * Mark it COMPLETE so we can delete its inode immediately.
2792	 */
2793	dirrem->dm_state |= COMPLETE;
2794	free_diradd(dap);
2795	return (dirrem);
2796}
2797
2798/*
2799 * Directory entry change dependencies.
2800 *
2801 * Changing an existing directory entry requires that an add operation
2802 * be completed first followed by a deletion. The semantics for the addition
2803 * are identical to the description of adding a new entry above except
2804 * that the rollback is to the old inode number rather than zero. Once
2805 * the addition dependency is completed, the removal is done as described
2806 * in the removal routine above.
2807 */
2808
2809/*
2810 * This routine should be called immediately after changing
2811 * a directory entry.  The inode's link count should not be
2812 * decremented by the calling procedure -- the soft updates
2813 * code will perform this task when it is safe.
2814 */
2815void
2816softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
2817	struct buf *bp;		/* buffer containing directory block */
2818	struct inode *dp;	/* inode for the directory being modified */
2819	struct inode *ip;	/* inode for directory entry being removed */
2820	long newinum;		/* new inode number for changed entry */
2821	int isrmdir;		/* indicates if doing RMDIR */
2822{
2823	int offset;
2824	struct diradd *dap = NULL;
2825	struct dirrem *dirrem, *prevdirrem;
2826	struct pagedep *pagedep;
2827	struct inodedep *inodedep;
2828
2829	offset = blkoff(dp->i_fs, dp->i_offset);
2830
2831	/*
2832	 * Whiteouts do not need diradd dependencies.
2833	 */
2834	if (newinum != WINO) {
2835		MALLOC(dap, struct diradd *, sizeof(struct diradd),
2836		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
2837		dap->da_list.wk_type = D_DIRADD;
2838		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2839		dap->da_offset = offset;
2840		dap->da_newinum = newinum;
2841	}
2842
2843	/*
2844	 * Allocate a new dirrem and ACQUIRE_LOCK.
2845	 */
2846	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2847	pagedep = dirrem->dm_pagedep;
2848	/*
2849	 * The possible values for isrmdir:
2850	 *	0 - non-directory file rename
2851	 *	1 - directory rename within same directory
2852	 *   inum - directory rename to new directory of given inode number
2853	 * When renaming to a new directory, we are both deleting and
2854	 * creating a new directory entry, so the link count on the new
2855	 * directory should not change. Thus we do not need the followup
2856	 * dirrem which is usually done in handle_workitem_remove. We set
2857	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2858	 * followup dirrem.
2859	 */
2860	if (isrmdir > 1)
2861		dirrem->dm_state |= DIRCHG;
2862
2863	/*
2864	 * Whiteouts have no additional dependencies,
2865	 * so just put the dirrem on the correct list.
2866	 */
2867	if (newinum == WINO) {
2868		if ((dirrem->dm_state & COMPLETE) == 0) {
2869			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2870			    dm_next);
2871		} else {
2872			dirrem->dm_dirinum = pagedep->pd_ino;
2873			add_to_worklist(&dirrem->dm_list);
2874		}
2875		FREE_LOCK(&lk);
2876		return;
2877	}
2878
2879	/*
2880	 * If the COMPLETE flag is clear, then there were no active
2881	 * entries and we want to roll back to the previous inode until
2882	 * the new inode is committed to disk. If the COMPLETE flag is
2883	 * set, then we have deleted an entry that never made it to disk.
2884	 * If the entry we deleted resulted from a name change, then the old
2885	 * inode reference still resides on disk. Any rollback that we do
2886	 * needs to be to that old inode (returned to us in prevdirrem). If
2887	 * the entry we deleted resulted from a create, then there is
2888	 * no entry on the disk, so we want to roll back to zero rather
2889	 * than the uncommitted inode. In either of the COMPLETE cases we
2890	 * want to immediately free the unwritten and unreferenced inode.
2891	 */
2892	if ((dirrem->dm_state & COMPLETE) == 0) {
2893		dap->da_previous = dirrem;
2894	} else {
2895		if (prevdirrem != NULL) {
2896			dap->da_previous = prevdirrem;
2897		} else {
2898			dap->da_state &= ~DIRCHG;
2899			dap->da_pagedep = pagedep;
2900		}
2901		dirrem->dm_dirinum = pagedep->pd_ino;
2902		add_to_worklist(&dirrem->dm_list);
2903	}
2904	/*
2905	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2906	 * is not yet written. If it is written, do the post-inode write
2907	 * processing to put it on the id_pendinghd list.
2908	 */
2909	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2910	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2911		dap->da_state |= COMPLETE;
2912		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2913		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2914	} else {
2915		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2916		    dap, da_pdlist);
2917		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2918	}
2919	FREE_LOCK(&lk);
2920}
2921
2922/*
2923 * Called whenever the link count on an inode is changed.
2924 * It creates an inode dependency so that the new reference(s)
2925 * to the inode cannot be committed to disk until the updated
2926 * inode has been written.
2927 */
2928void
2929softdep_change_linkcnt(ip)
2930	struct inode *ip;	/* the inode with the increased link count */
2931{
2932	struct inodedep *inodedep;
2933
2934	ACQUIRE_LOCK(&lk);
2935	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2936	if (ip->i_nlink < ip->i_effnlink) {
2937		FREE_LOCK(&lk);
2938		panic("softdep_change_linkcnt: bad delta");
2939	}
2940	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2941	FREE_LOCK(&lk);
2942}
2943
2944/*
2945 * Called when the effective link count and the reference count
2946 * on an inode drops to zero. At this point there are no names
2947 * referencing the file in the filesystem and no active file
2948 * references. The space associated with the file will be freed
2949 * as soon as the necessary soft dependencies are cleared.
2950 */
2951void
2952softdep_releasefile(ip)
2953	struct inode *ip;	/* inode with the zero effective link count */
2954{
2955	struct inodedep *inodedep;
2956
2957	if (ip->i_effnlink > 0)
2958		panic("softdep_filerelease: file still referenced");
2959	/*
2960	 * We may be called several times as the real reference count
2961	 * drops to zero. We only want to account for the space once.
2962	 */
2963	if (ip->i_flag & IN_SPACECOUNTED)
2964		return;
2965	/*
2966	 * We have to deactivate a snapshot otherwise copyonwrites may
2967	 * add blocks and the cleanup may remove blocks after we have
2968	 * tried to account for them.
2969	 */
2970	if ((ip->i_flags & SF_SNAPSHOT) != 0)
2971		ffs_snapremove(ITOV(ip));
2972	/*
2973	 * If we are tracking an nlinkdelta, we have to also remember
2974	 * whether we accounted for the freed space yet.
2975	 */
2976	ACQUIRE_LOCK(&lk);
2977	if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep)))
2978		inodedep->id_state |= SPACECOUNTED;
2979	FREE_LOCK(&lk);
2980	ip->i_fs->fs_pendingblocks += ip->i_blocks;
2981	ip->i_fs->fs_pendinginodes += 1;
2982	ip->i_flag |= IN_SPACECOUNTED;
2983}
2984
2985/*
2986 * This workitem decrements the inode's link count.
2987 * If the link count reaches zero, the file is removed.
2988 */
2989static void
2990handle_workitem_remove(dirrem)
2991	struct dirrem *dirrem;
2992{
2993	struct thread *td = curthread;
2994	struct inodedep *inodedep;
2995	struct vnode *vp;
2996	struct inode *ip;
2997	ino_t oldinum;
2998	int error;
2999
3000	if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) {
3001		softdep_error("handle_workitem_remove: vget", error);
3002		return;
3003	}
3004	ip = VTOI(vp);
3005	ACQUIRE_LOCK(&lk);
3006	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
3007		FREE_LOCK(&lk);
3008		panic("handle_workitem_remove: lost inodedep");
3009	}
3010	/*
3011	 * Normal file deletion.
3012	 */
3013	if ((dirrem->dm_state & RMDIR) == 0) {
3014		ip->i_nlink--;
3015		ip->i_flag |= IN_CHANGE;
3016		if (ip->i_nlink < ip->i_effnlink) {
3017			FREE_LOCK(&lk);
3018			panic("handle_workitem_remove: bad file delta");
3019		}
3020		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3021		FREE_LOCK(&lk);
3022		vput(vp);
3023		num_dirrem -= 1;
3024		WORKITEM_FREE(dirrem, D_DIRREM);
3025		return;
3026	}
3027	/*
3028	 * Directory deletion. Decrement reference count for both the
3029	 * just deleted parent directory entry and the reference for ".".
3030	 * Next truncate the directory to length zero. When the
3031	 * truncation completes, arrange to have the reference count on
3032	 * the parent decremented to account for the loss of "..".
3033	 */
3034	ip->i_nlink -= 2;
3035	ip->i_flag |= IN_CHANGE;
3036	if (ip->i_nlink < ip->i_effnlink) {
3037		FREE_LOCK(&lk);
3038		panic("handle_workitem_remove: bad dir delta");
3039	}
3040	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3041	FREE_LOCK(&lk);
3042	if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_proc->p_ucred, td)) != 0)
3043		softdep_error("handle_workitem_remove: truncate", error);
3044	/*
3045	 * Rename a directory to a new parent. Since, we are both deleting
3046	 * and creating a new directory entry, the link count on the new
3047	 * directory should not change. Thus we skip the followup dirrem.
3048	 */
3049	if (dirrem->dm_state & DIRCHG) {
3050		vput(vp);
3051		num_dirrem -= 1;
3052		WORKITEM_FREE(dirrem, D_DIRREM);
3053		return;
3054	}
3055	/*
3056	 * If the inodedep does not exist, then the zero'ed inode has
3057	 * been written to disk. If the allocated inode has never been
3058	 * written to disk, then the on-disk inode is zero'ed. In either
3059	 * case we can remove the file immediately.
3060	 */
3061	ACQUIRE_LOCK(&lk);
3062	dirrem->dm_state = 0;
3063	oldinum = dirrem->dm_oldinum;
3064	dirrem->dm_oldinum = dirrem->dm_dirinum;
3065	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
3066	    check_inode_unwritten(inodedep)) {
3067		FREE_LOCK(&lk);
3068		vput(vp);
3069		handle_workitem_remove(dirrem);
3070		return;
3071	}
3072	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3073	FREE_LOCK(&lk);
3074	vput(vp);
3075}
3076
3077/*
3078 * Inode de-allocation dependencies.
3079 *
3080 * When an inode's link count is reduced to zero, it can be de-allocated. We
3081 * found it convenient to postpone de-allocation until after the inode is
3082 * written to disk with its new link count (zero).  At this point, all of the
3083 * on-disk inode's block pointers are nullified and, with careful dependency
3084 * list ordering, all dependencies related to the inode will be satisfied and
3085 * the corresponding dependency structures de-allocated.  So, if/when the
3086 * inode is reused, there will be no mixing of old dependencies with new
3087 * ones.  This artificial dependency is set up by the block de-allocation
3088 * procedure above (softdep_setup_freeblocks) and completed by the
3089 * following procedure.
3090 */
3091static void
3092handle_workitem_freefile(freefile)
3093	struct freefile *freefile;
3094{
3095	struct fs *fs;
3096	struct inode tip;
3097	struct inodedep *idp;
3098	int error;
3099
3100	fs = VFSTOUFS(freefile->fx_mnt)->um_fs;
3101#ifdef DEBUG
3102	ACQUIRE_LOCK(&lk);
3103	error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp);
3104	FREE_LOCK(&lk);
3105	if (error)
3106		panic("handle_workitem_freefile: inodedep survived");
3107#endif
3108	tip.i_devvp = freefile->fx_devvp;
3109	tip.i_dev = freefile->fx_devvp->v_rdev;
3110	tip.i_fs = fs;
3111	fs->fs_pendinginodes -= 1;
3112	if ((error = ffs_freefile(&tip, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3113		softdep_error("handle_workitem_freefile", error);
3114	WORKITEM_FREE(freefile, D_FREEFILE);
3115}
3116
3117/*
3118 * Disk writes.
3119 *
3120 * The dependency structures constructed above are most actively used when file
3121 * system blocks are written to disk.  No constraints are placed on when a
3122 * block can be written, but unsatisfied update dependencies are made safe by
3123 * modifying (or replacing) the source memory for the duration of the disk
3124 * write.  When the disk write completes, the memory block is again brought
3125 * up-to-date.
3126 *
3127 * In-core inode structure reclamation.
3128 *
3129 * Because there are a finite number of "in-core" inode structures, they are
3130 * reused regularly.  By transferring all inode-related dependencies to the
3131 * in-memory inode block and indexing them separately (via "inodedep"s), we
3132 * can allow "in-core" inode structures to be reused at any time and avoid
3133 * any increase in contention.
3134 *
3135 * Called just before entering the device driver to initiate a new disk I/O.
3136 * The buffer must be locked, thus, no I/O completion operations can occur
3137 * while we are manipulating its associated dependencies.
3138 */
3139static void
3140softdep_disk_io_initiation(bp)
3141	struct buf *bp;		/* structure describing disk write to occur */
3142{
3143	struct worklist *wk, *nextwk;
3144	struct indirdep *indirdep;
3145
3146	/*
3147	 * We only care about write operations. There should never
3148	 * be dependencies for reads.
3149	 */
3150	if (bp->b_iocmd == BIO_READ)
3151		panic("softdep_disk_io_initiation: read");
3152	/*
3153	 * Do any necessary pre-I/O processing.
3154	 */
3155	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) {
3156		nextwk = LIST_NEXT(wk, wk_list);
3157		switch (wk->wk_type) {
3158
3159		case D_PAGEDEP:
3160			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3161			continue;
3162
3163		case D_INODEDEP:
3164			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3165			continue;
3166
3167		case D_INDIRDEP:
3168			indirdep = WK_INDIRDEP(wk);
3169			if (indirdep->ir_state & GOINGAWAY)
3170				panic("disk_io_initiation: indirdep gone");
3171			/*
3172			 * If there are no remaining dependencies, this
3173			 * will be writing the real pointers, so the
3174			 * dependency can be freed.
3175			 */
3176			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3177				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3178				brelse(indirdep->ir_savebp);
3179				/* inline expand WORKLIST_REMOVE(wk); */
3180				wk->wk_state &= ~ONWORKLIST;
3181				LIST_REMOVE(wk, wk_list);
3182				WORKITEM_FREE(indirdep, D_INDIRDEP);
3183				continue;
3184			}
3185			/*
3186			 * Replace up-to-date version with safe version.
3187			 */
3188			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3189			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3190			ACQUIRE_LOCK(&lk);
3191			indirdep->ir_state &= ~ATTACHED;
3192			indirdep->ir_state |= UNDONE;
3193			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3194			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3195			    bp->b_bcount);
3196			FREE_LOCK(&lk);
3197			continue;
3198
3199		case D_MKDIR:
3200		case D_BMSAFEMAP:
3201		case D_ALLOCDIRECT:
3202		case D_ALLOCINDIR:
3203			continue;
3204
3205		default:
3206			panic("handle_disk_io_initiation: Unexpected type %s",
3207			    TYPENAME(wk->wk_type));
3208			/* NOTREACHED */
3209		}
3210	}
3211}
3212
3213/*
3214 * Called from within the procedure above to deal with unsatisfied
3215 * allocation dependencies in a directory. The buffer must be locked,
3216 * thus, no I/O completion operations can occur while we are
3217 * manipulating its associated dependencies.
3218 */
3219static void
3220initiate_write_filepage(pagedep, bp)
3221	struct pagedep *pagedep;
3222	struct buf *bp;
3223{
3224	struct diradd *dap;
3225	struct direct *ep;
3226	int i;
3227
3228	if (pagedep->pd_state & IOSTARTED) {
3229		/*
3230		 * This can only happen if there is a driver that does not
3231		 * understand chaining. Here biodone will reissue the call
3232		 * to strategy for the incomplete buffers.
3233		 */
3234		printf("initiate_write_filepage: already started\n");
3235		return;
3236	}
3237	pagedep->pd_state |= IOSTARTED;
3238	ACQUIRE_LOCK(&lk);
3239	for (i = 0; i < DAHASHSZ; i++) {
3240		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3241			ep = (struct direct *)
3242			    ((char *)bp->b_data + dap->da_offset);
3243			if (ep->d_ino != dap->da_newinum) {
3244				FREE_LOCK(&lk);
3245				panic("%s: dir inum %d != new %d",
3246				    "initiate_write_filepage",
3247				    ep->d_ino, dap->da_newinum);
3248			}
3249			if (dap->da_state & DIRCHG)
3250				ep->d_ino = dap->da_previous->dm_oldinum;
3251			else
3252				ep->d_ino = 0;
3253			dap->da_state &= ~ATTACHED;
3254			dap->da_state |= UNDONE;
3255		}
3256	}
3257	FREE_LOCK(&lk);
3258}
3259
3260/*
3261 * Called from within the procedure above to deal with unsatisfied
3262 * allocation dependencies in an inodeblock. The buffer must be
3263 * locked, thus, no I/O completion operations can occur while we
3264 * are manipulating its associated dependencies.
3265 */
3266static void
3267initiate_write_inodeblock(inodedep, bp)
3268	struct inodedep *inodedep;
3269	struct buf *bp;			/* The inode block */
3270{
3271	struct allocdirect *adp, *lastadp;
3272	struct dinode *dp;
3273	struct fs *fs;
3274	ufs_lbn_t prevlbn = 0;
3275	int i, deplist;
3276
3277	if (inodedep->id_state & IOSTARTED)
3278		panic("initiate_write_inodeblock: already started");
3279	inodedep->id_state |= IOSTARTED;
3280	fs = inodedep->id_fs;
3281	dp = (struct dinode *)bp->b_data +
3282	    ino_to_fsbo(fs, inodedep->id_ino);
3283	/*
3284	 * If the bitmap is not yet written, then the allocated
3285	 * inode cannot be written to disk.
3286	 */
3287	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3288		if (inodedep->id_savedino != NULL)
3289			panic("initiate_write_inodeblock: already doing I/O");
3290		MALLOC(inodedep->id_savedino, struct dinode *,
3291		    sizeof(struct dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3292		*inodedep->id_savedino = *dp;
3293		bzero((caddr_t)dp, sizeof(struct dinode));
3294		return;
3295	}
3296	/*
3297	 * If no dependencies, then there is nothing to roll back.
3298	 */
3299	inodedep->id_savedsize = dp->di_size;
3300	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3301		return;
3302	/*
3303	 * Set the dependencies to busy.
3304	 */
3305	ACQUIRE_LOCK(&lk);
3306	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3307	     adp = TAILQ_NEXT(adp, ad_next)) {
3308#ifdef DIAGNOSTIC
3309		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3310			FREE_LOCK(&lk);
3311			panic("softdep_write_inodeblock: lbn order");
3312		}
3313		prevlbn = adp->ad_lbn;
3314		if (adp->ad_lbn < NDADDR &&
3315		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3316			FREE_LOCK(&lk);
3317			panic("%s: direct pointer #%ld mismatch %d != %d",
3318			    "softdep_write_inodeblock", adp->ad_lbn,
3319			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3320		}
3321		if (adp->ad_lbn >= NDADDR &&
3322		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3323			FREE_LOCK(&lk);
3324			panic("%s: indirect pointer #%ld mismatch %d != %d",
3325			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3326			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3327		}
3328		deplist |= 1 << adp->ad_lbn;
3329		if ((adp->ad_state & ATTACHED) == 0) {
3330			FREE_LOCK(&lk);
3331			panic("softdep_write_inodeblock: Unknown state 0x%x",
3332			    adp->ad_state);
3333		}
3334#endif /* DIAGNOSTIC */
3335		adp->ad_state &= ~ATTACHED;
3336		adp->ad_state |= UNDONE;
3337	}
3338	/*
3339	 * The on-disk inode cannot claim to be any larger than the last
3340	 * fragment that has been written. Otherwise, the on-disk inode
3341	 * might have fragments that were not the last block in the file
3342	 * which would corrupt the filesystem.
3343	 */
3344	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3345	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3346		if (adp->ad_lbn >= NDADDR)
3347			break;
3348		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3349		/* keep going until hitting a rollback to a frag */
3350		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3351			continue;
3352		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3353		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3354#ifdef DIAGNOSTIC
3355			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3356				FREE_LOCK(&lk);
3357				panic("softdep_write_inodeblock: lost dep1");
3358			}
3359#endif /* DIAGNOSTIC */
3360			dp->di_db[i] = 0;
3361		}
3362		for (i = 0; i < NIADDR; i++) {
3363#ifdef DIAGNOSTIC
3364			if (dp->di_ib[i] != 0 &&
3365			    (deplist & ((1 << NDADDR) << i)) == 0) {
3366				FREE_LOCK(&lk);
3367				panic("softdep_write_inodeblock: lost dep2");
3368			}
3369#endif /* DIAGNOSTIC */
3370			dp->di_ib[i] = 0;
3371		}
3372		FREE_LOCK(&lk);
3373		return;
3374	}
3375	/*
3376	 * If we have zero'ed out the last allocated block of the file,
3377	 * roll back the size to the last currently allocated block.
3378	 * We know that this last allocated block is a full-sized as
3379	 * we already checked for fragments in the loop above.
3380	 */
3381	if (lastadp != NULL &&
3382	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3383		for (i = lastadp->ad_lbn; i >= 0; i--)
3384			if (dp->di_db[i] != 0)
3385				break;
3386		dp->di_size = (i + 1) * fs->fs_bsize;
3387	}
3388	/*
3389	 * The only dependencies are for indirect blocks.
3390	 *
3391	 * The file size for indirect block additions is not guaranteed.
3392	 * Such a guarantee would be non-trivial to achieve. The conventional
3393	 * synchronous write implementation also does not make this guarantee.
3394	 * Fsck should catch and fix discrepancies. Arguably, the file size
3395	 * can be over-estimated without destroying integrity when the file
3396	 * moves into the indirect blocks (i.e., is large). If we want to
3397	 * postpone fsck, we are stuck with this argument.
3398	 */
3399	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3400		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3401	FREE_LOCK(&lk);
3402}
3403
3404/*
3405 * This routine is called during the completion interrupt
3406 * service routine for a disk write (from the procedure called
3407 * by the device driver to inform the file system caches of
3408 * a request completion).  It should be called early in this
3409 * procedure, before the block is made available to other
3410 * processes or other routines are called.
3411 */
3412static void
3413softdep_disk_write_complete(bp)
3414	struct buf *bp;		/* describes the completed disk write */
3415{
3416	struct worklist *wk;
3417	struct workhead reattach;
3418	struct newblk *newblk;
3419	struct allocindir *aip;
3420	struct allocdirect *adp;
3421	struct indirdep *indirdep;
3422	struct inodedep *inodedep;
3423	struct bmsafemap *bmsafemap;
3424
3425#ifdef DEBUG
3426	if (lk.lkt_held != NOHOLDER)
3427		panic("softdep_disk_write_complete: lock is held");
3428	lk.lkt_held = SPECIAL_FLAG;
3429#endif
3430	LIST_INIT(&reattach);
3431	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3432		WORKLIST_REMOVE(wk);
3433		switch (wk->wk_type) {
3434
3435		case D_PAGEDEP:
3436			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3437				WORKLIST_INSERT(&reattach, wk);
3438			continue;
3439
3440		case D_INODEDEP:
3441			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3442				WORKLIST_INSERT(&reattach, wk);
3443			continue;
3444
3445		case D_BMSAFEMAP:
3446			bmsafemap = WK_BMSAFEMAP(wk);
3447			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3448				newblk->nb_state |= DEPCOMPLETE;
3449				newblk->nb_bmsafemap = NULL;
3450				LIST_REMOVE(newblk, nb_deps);
3451			}
3452			while ((adp =
3453			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3454				adp->ad_state |= DEPCOMPLETE;
3455				adp->ad_buf = NULL;
3456				LIST_REMOVE(adp, ad_deps);
3457				handle_allocdirect_partdone(adp);
3458			}
3459			while ((aip =
3460			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3461				aip->ai_state |= DEPCOMPLETE;
3462				aip->ai_buf = NULL;
3463				LIST_REMOVE(aip, ai_deps);
3464				handle_allocindir_partdone(aip);
3465			}
3466			while ((inodedep =
3467			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3468				inodedep->id_state |= DEPCOMPLETE;
3469				LIST_REMOVE(inodedep, id_deps);
3470				inodedep->id_buf = NULL;
3471			}
3472			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3473			continue;
3474
3475		case D_MKDIR:
3476			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3477			continue;
3478
3479		case D_ALLOCDIRECT:
3480			adp = WK_ALLOCDIRECT(wk);
3481			adp->ad_state |= COMPLETE;
3482			handle_allocdirect_partdone(adp);
3483			continue;
3484
3485		case D_ALLOCINDIR:
3486			aip = WK_ALLOCINDIR(wk);
3487			aip->ai_state |= COMPLETE;
3488			handle_allocindir_partdone(aip);
3489			continue;
3490
3491		case D_INDIRDEP:
3492			indirdep = WK_INDIRDEP(wk);
3493			if (indirdep->ir_state & GOINGAWAY) {
3494				lk.lkt_held = NOHOLDER;
3495				panic("disk_write_complete: indirdep gone");
3496			}
3497			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3498			FREE(indirdep->ir_saveddata, M_INDIRDEP);
3499			indirdep->ir_saveddata = 0;
3500			indirdep->ir_state &= ~UNDONE;
3501			indirdep->ir_state |= ATTACHED;
3502			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3503				handle_allocindir_partdone(aip);
3504				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3505					lk.lkt_held = NOHOLDER;
3506					panic("disk_write_complete: not gone");
3507				}
3508			}
3509			WORKLIST_INSERT(&reattach, wk);
3510			if ((bp->b_flags & B_DELWRI) == 0)
3511				stat_indir_blk_ptrs++;
3512			bdirty(bp);
3513			continue;
3514
3515		default:
3516			lk.lkt_held = NOHOLDER;
3517			panic("handle_disk_write_complete: Unknown type %s",
3518			    TYPENAME(wk->wk_type));
3519			/* NOTREACHED */
3520		}
3521	}
3522	/*
3523	 * Reattach any requests that must be redone.
3524	 */
3525	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3526		WORKLIST_REMOVE(wk);
3527		WORKLIST_INSERT(&bp->b_dep, wk);
3528	}
3529#ifdef DEBUG
3530	if (lk.lkt_held != SPECIAL_FLAG)
3531		panic("softdep_disk_write_complete: lock lost");
3532	lk.lkt_held = NOHOLDER;
3533#endif
3534}
3535
3536/*
3537 * Called from within softdep_disk_write_complete above. Note that
3538 * this routine is always called from interrupt level with further
3539 * splbio interrupts blocked.
3540 */
3541static void
3542handle_allocdirect_partdone(adp)
3543	struct allocdirect *adp;	/* the completed allocdirect */
3544{
3545	struct allocdirect *listadp;
3546	struct inodedep *inodedep;
3547	long bsize, delay;
3548
3549	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3550		return;
3551	if (adp->ad_buf != NULL) {
3552		lk.lkt_held = NOHOLDER;
3553		panic("handle_allocdirect_partdone: dangling dep");
3554	}
3555	/*
3556	 * The on-disk inode cannot claim to be any larger than the last
3557	 * fragment that has been written. Otherwise, the on-disk inode
3558	 * might have fragments that were not the last block in the file
3559	 * which would corrupt the filesystem. Thus, we cannot free any
3560	 * allocdirects after one whose ad_oldblkno claims a fragment as
3561	 * these blocks must be rolled back to zero before writing the inode.
3562	 * We check the currently active set of allocdirects in id_inoupdt.
3563	 */
3564	inodedep = adp->ad_inodedep;
3565	bsize = inodedep->id_fs->fs_bsize;
3566	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3567		/* found our block */
3568		if (listadp == adp)
3569			break;
3570		/* continue if ad_oldlbn is not a fragment */
3571		if (listadp->ad_oldsize == 0 ||
3572		    listadp->ad_oldsize == bsize)
3573			continue;
3574		/* hit a fragment */
3575		return;
3576	}
3577	/*
3578	 * If we have reached the end of the current list without
3579	 * finding the just finished dependency, then it must be
3580	 * on the future dependency list. Future dependencies cannot
3581	 * be freed until they are moved to the current list.
3582	 */
3583	if (listadp == NULL) {
3584#ifdef DEBUG
3585		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3586			/* found our block */
3587			if (listadp == adp)
3588				break;
3589		if (listadp == NULL) {
3590			lk.lkt_held = NOHOLDER;
3591			panic("handle_allocdirect_partdone: lost dep");
3592		}
3593#endif /* DEBUG */
3594		return;
3595	}
3596	/*
3597	 * If we have found the just finished dependency, then free
3598	 * it along with anything that follows it that is complete.
3599	 * If the inode still has a bitmap dependency, then it has
3600	 * never been written to disk, hence the on-disk inode cannot
3601	 * reference the old fragment so we can free it without delay.
3602	 */
3603	delay = (inodedep->id_state & DEPCOMPLETE);
3604	for (; adp; adp = listadp) {
3605		listadp = TAILQ_NEXT(adp, ad_next);
3606		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3607			return;
3608		free_allocdirect(&inodedep->id_inoupdt, adp, delay);
3609	}
3610}
3611
3612/*
3613 * Called from within softdep_disk_write_complete above. Note that
3614 * this routine is always called from interrupt level with further
3615 * splbio interrupts blocked.
3616 */
3617static void
3618handle_allocindir_partdone(aip)
3619	struct allocindir *aip;		/* the completed allocindir */
3620{
3621	struct indirdep *indirdep;
3622
3623	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3624		return;
3625	if (aip->ai_buf != NULL) {
3626		lk.lkt_held = NOHOLDER;
3627		panic("handle_allocindir_partdone: dangling dependency");
3628	}
3629	indirdep = aip->ai_indirdep;
3630	if (indirdep->ir_state & UNDONE) {
3631		LIST_REMOVE(aip, ai_next);
3632		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3633		return;
3634	}
3635	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3636	    aip->ai_newblkno;
3637	LIST_REMOVE(aip, ai_next);
3638	if (aip->ai_freefrag != NULL)
3639		add_to_worklist(&aip->ai_freefrag->ff_list);
3640	WORKITEM_FREE(aip, D_ALLOCINDIR);
3641}
3642
3643/*
3644 * Called from within softdep_disk_write_complete above to restore
3645 * in-memory inode block contents to their most up-to-date state. Note
3646 * that this routine is always called from interrupt level with further
3647 * splbio interrupts blocked.
3648 */
3649static int
3650handle_written_inodeblock(inodedep, bp)
3651	struct inodedep *inodedep;
3652	struct buf *bp;		/* buffer containing the inode block */
3653{
3654	struct worklist *wk, *filefree;
3655	struct allocdirect *adp, *nextadp;
3656	struct dinode *dp;
3657	int hadchanges;
3658
3659	if ((inodedep->id_state & IOSTARTED) == 0) {
3660		lk.lkt_held = NOHOLDER;
3661		panic("handle_written_inodeblock: not started");
3662	}
3663	inodedep->id_state &= ~IOSTARTED;
3664	inodedep->id_state |= COMPLETE;
3665	dp = (struct dinode *)bp->b_data +
3666	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3667	/*
3668	 * If we had to rollback the inode allocation because of
3669	 * bitmaps being incomplete, then simply restore it.
3670	 * Keep the block dirty so that it will not be reclaimed until
3671	 * all associated dependencies have been cleared and the
3672	 * corresponding updates written to disk.
3673	 */
3674	if (inodedep->id_savedino != NULL) {
3675		*dp = *inodedep->id_savedino;
3676		FREE(inodedep->id_savedino, M_INODEDEP);
3677		inodedep->id_savedino = NULL;
3678		if ((bp->b_flags & B_DELWRI) == 0)
3679			stat_inode_bitmap++;
3680		bdirty(bp);
3681		return (1);
3682	}
3683	/*
3684	 * Roll forward anything that had to be rolled back before
3685	 * the inode could be updated.
3686	 */
3687	hadchanges = 0;
3688	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3689		nextadp = TAILQ_NEXT(adp, ad_next);
3690		if (adp->ad_state & ATTACHED) {
3691			lk.lkt_held = NOHOLDER;
3692			panic("handle_written_inodeblock: new entry");
3693		}
3694		if (adp->ad_lbn < NDADDR) {
3695			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3696				lk.lkt_held = NOHOLDER;
3697				panic("%s: %s #%ld mismatch %d != %d",
3698				    "handle_written_inodeblock",
3699				    "direct pointer", adp->ad_lbn,
3700				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3701			}
3702			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3703		} else {
3704			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3705				lk.lkt_held = NOHOLDER;
3706				panic("%s: %s #%ld allocated as %d",
3707				    "handle_written_inodeblock",
3708				    "indirect pointer", adp->ad_lbn - NDADDR,
3709				    dp->di_ib[adp->ad_lbn - NDADDR]);
3710			}
3711			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3712		}
3713		adp->ad_state &= ~UNDONE;
3714		adp->ad_state |= ATTACHED;
3715		hadchanges = 1;
3716	}
3717	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3718		stat_direct_blk_ptrs++;
3719	/*
3720	 * Reset the file size to its most up-to-date value.
3721	 */
3722	if (inodedep->id_savedsize == -1) {
3723		lk.lkt_held = NOHOLDER;
3724		panic("handle_written_inodeblock: bad size");
3725	}
3726	if (dp->di_size != inodedep->id_savedsize) {
3727		dp->di_size = inodedep->id_savedsize;
3728		hadchanges = 1;
3729	}
3730	inodedep->id_savedsize = -1;
3731	/*
3732	 * If there were any rollbacks in the inode block, then it must be
3733	 * marked dirty so that its will eventually get written back in
3734	 * its correct form.
3735	 */
3736	if (hadchanges)
3737		bdirty(bp);
3738	/*
3739	 * Process any allocdirects that completed during the update.
3740	 */
3741	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3742		handle_allocdirect_partdone(adp);
3743	/*
3744	 * Process deallocations that were held pending until the
3745	 * inode had been written to disk. Freeing of the inode
3746	 * is delayed until after all blocks have been freed to
3747	 * avoid creation of new <vfsid, inum, lbn> triples
3748	 * before the old ones have been deleted.
3749	 */
3750	filefree = NULL;
3751	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3752		WORKLIST_REMOVE(wk);
3753		switch (wk->wk_type) {
3754
3755		case D_FREEFILE:
3756			/*
3757			 * We defer adding filefree to the worklist until
3758			 * all other additions have been made to ensure
3759			 * that it will be done after all the old blocks
3760			 * have been freed.
3761			 */
3762			if (filefree != NULL) {
3763				lk.lkt_held = NOHOLDER;
3764				panic("handle_written_inodeblock: filefree");
3765			}
3766			filefree = wk;
3767			continue;
3768
3769		case D_MKDIR:
3770			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3771			continue;
3772
3773		case D_DIRADD:
3774			diradd_inode_written(WK_DIRADD(wk), inodedep);
3775			continue;
3776
3777		case D_FREEBLKS:
3778		case D_FREEFRAG:
3779		case D_DIRREM:
3780			add_to_worklist(wk);
3781			continue;
3782
3783		case D_NEWDIRBLK:
3784			free_newdirblk(WK_NEWDIRBLK(wk));
3785			continue;
3786
3787		default:
3788			lk.lkt_held = NOHOLDER;
3789			panic("handle_written_inodeblock: Unknown type %s",
3790			    TYPENAME(wk->wk_type));
3791			/* NOTREACHED */
3792		}
3793	}
3794	if (filefree != NULL) {
3795		if (free_inodedep(inodedep) == 0) {
3796			lk.lkt_held = NOHOLDER;
3797			panic("handle_written_inodeblock: live inodedep");
3798		}
3799		add_to_worklist(filefree);
3800		return (0);
3801	}
3802
3803	/*
3804	 * If no outstanding dependencies, free it.
3805	 */
3806	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3807		return (0);
3808	return (hadchanges);
3809}
3810
3811/*
3812 * Process a diradd entry after its dependent inode has been written.
3813 * This routine must be called with splbio interrupts blocked.
3814 */
3815static void
3816diradd_inode_written(dap, inodedep)
3817	struct diradd *dap;
3818	struct inodedep *inodedep;
3819{
3820	struct pagedep *pagedep;
3821
3822	dap->da_state |= COMPLETE;
3823	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3824		if (dap->da_state & DIRCHG)
3825			pagedep = dap->da_previous->dm_pagedep;
3826		else
3827			pagedep = dap->da_pagedep;
3828		LIST_REMOVE(dap, da_pdlist);
3829		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3830	}
3831	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3832}
3833
3834/*
3835 * Handle the completion of a mkdir dependency.
3836 */
3837static void
3838handle_written_mkdir(mkdir, type)
3839	struct mkdir *mkdir;
3840	int type;
3841{
3842	struct diradd *dap;
3843	struct pagedep *pagedep;
3844
3845	if (mkdir->md_state != type) {
3846		lk.lkt_held = NOHOLDER;
3847		panic("handle_written_mkdir: bad type");
3848	}
3849	dap = mkdir->md_diradd;
3850	dap->da_state &= ~type;
3851	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3852		dap->da_state |= DEPCOMPLETE;
3853	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3854		if (dap->da_state & DIRCHG)
3855			pagedep = dap->da_previous->dm_pagedep;
3856		else
3857			pagedep = dap->da_pagedep;
3858		LIST_REMOVE(dap, da_pdlist);
3859		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3860	}
3861	LIST_REMOVE(mkdir, md_mkdirs);
3862	WORKITEM_FREE(mkdir, D_MKDIR);
3863}
3864
3865/*
3866 * Called from within softdep_disk_write_complete above.
3867 * A write operation was just completed. Removed inodes can
3868 * now be freed and associated block pointers may be committed.
3869 * Note that this routine is always called from interrupt level
3870 * with further splbio interrupts blocked.
3871 */
3872static int
3873handle_written_filepage(pagedep, bp)
3874	struct pagedep *pagedep;
3875	struct buf *bp;		/* buffer containing the written page */
3876{
3877	struct dirrem *dirrem;
3878	struct diradd *dap, *nextdap;
3879	struct direct *ep;
3880	int i, chgs;
3881
3882	if ((pagedep->pd_state & IOSTARTED) == 0) {
3883		lk.lkt_held = NOHOLDER;
3884		panic("handle_written_filepage: not started");
3885	}
3886	pagedep->pd_state &= ~IOSTARTED;
3887	/*
3888	 * Process any directory removals that have been committed.
3889	 */
3890	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3891		LIST_REMOVE(dirrem, dm_next);
3892		dirrem->dm_dirinum = pagedep->pd_ino;
3893		add_to_worklist(&dirrem->dm_list);
3894	}
3895	/*
3896	 * Free any directory additions that have been committed.
3897	 * If it is a newly allocated block, we have to wait until
3898	 * the on-disk directory inode claims the new block.
3899	 */
3900	if ((pagedep->pd_state & NEWBLOCK) == 0)
3901		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3902			free_diradd(dap);
3903	/*
3904	 * Uncommitted directory entries must be restored.
3905	 */
3906	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3907		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3908		     dap = nextdap) {
3909			nextdap = LIST_NEXT(dap, da_pdlist);
3910			if (dap->da_state & ATTACHED) {
3911				lk.lkt_held = NOHOLDER;
3912				panic("handle_written_filepage: attached");
3913			}
3914			ep = (struct direct *)
3915			    ((char *)bp->b_data + dap->da_offset);
3916			ep->d_ino = dap->da_newinum;
3917			dap->da_state &= ~UNDONE;
3918			dap->da_state |= ATTACHED;
3919			chgs = 1;
3920			/*
3921			 * If the inode referenced by the directory has
3922			 * been written out, then the dependency can be
3923			 * moved to the pending list.
3924			 */
3925			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3926				LIST_REMOVE(dap, da_pdlist);
3927				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3928				    da_pdlist);
3929			}
3930		}
3931	}
3932	/*
3933	 * If there were any rollbacks in the directory, then it must be
3934	 * marked dirty so that its will eventually get written back in
3935	 * its correct form.
3936	 */
3937	if (chgs) {
3938		if ((bp->b_flags & B_DELWRI) == 0)
3939			stat_dir_entry++;
3940		bdirty(bp);
3941		return (1);
3942	}
3943	/*
3944	 * If no dependencies remain and we are not waiting for a
3945	 * new directory block to be claimed by its inode, then the
3946	 * pagedep will be freed. Otherwise it will remain to track
3947	 * any new entries on the page in case they are fsync'ed.
3948	 */
3949	if (LIST_FIRST(&pagedep->pd_pendinghd) == 0 &&
3950	    (pagedep->pd_state & NEWBLOCK) == 0) {
3951		LIST_REMOVE(pagedep, pd_hash);
3952		WORKITEM_FREE(pagedep, D_PAGEDEP);
3953	}
3954	return (0);
3955}
3956
3957/*
3958 * Writing back in-core inode structures.
3959 *
3960 * The file system only accesses an inode's contents when it occupies an
3961 * "in-core" inode structure.  These "in-core" structures are separate from
3962 * the page frames used to cache inode blocks.  Only the latter are
3963 * transferred to/from the disk.  So, when the updated contents of the
3964 * "in-core" inode structure are copied to the corresponding in-memory inode
3965 * block, the dependencies are also transferred.  The following procedure is
3966 * called when copying a dirty "in-core" inode to a cached inode block.
3967 */
3968
3969/*
3970 * Called when an inode is loaded from disk. If the effective link count
3971 * differed from the actual link count when it was last flushed, then we
3972 * need to ensure that the correct effective link count is put back.
3973 */
3974void
3975softdep_load_inodeblock(ip)
3976	struct inode *ip;	/* the "in_core" copy of the inode */
3977{
3978	struct inodedep *inodedep;
3979
3980	/*
3981	 * Check for alternate nlink count.
3982	 */
3983	ip->i_effnlink = ip->i_nlink;
3984	ACQUIRE_LOCK(&lk);
3985	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3986		FREE_LOCK(&lk);
3987		return;
3988	}
3989	ip->i_effnlink -= inodedep->id_nlinkdelta;
3990	if (inodedep->id_state & SPACECOUNTED)
3991		ip->i_flag |= IN_SPACECOUNTED;
3992	FREE_LOCK(&lk);
3993}
3994
3995/*
3996 * This routine is called just before the "in-core" inode
3997 * information is to be copied to the in-memory inode block.
3998 * Recall that an inode block contains several inodes. If
3999 * the force flag is set, then the dependencies will be
4000 * cleared so that the update can always be made. Note that
4001 * the buffer is locked when this routine is called, so we
4002 * will never be in the middle of writing the inode block
4003 * to disk.
4004 */
4005void
4006softdep_update_inodeblock(ip, bp, waitfor)
4007	struct inode *ip;	/* the "in_core" copy of the inode */
4008	struct buf *bp;		/* the buffer containing the inode block */
4009	int waitfor;		/* nonzero => update must be allowed */
4010{
4011	struct inodedep *inodedep;
4012	struct worklist *wk;
4013	int error, gotit;
4014
4015	/*
4016	 * If the effective link count is not equal to the actual link
4017	 * count, then we must track the difference in an inodedep while
4018	 * the inode is (potentially) tossed out of the cache. Otherwise,
4019	 * if there is no existing inodedep, then there are no dependencies
4020	 * to track.
4021	 */
4022	ACQUIRE_LOCK(&lk);
4023	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4024		FREE_LOCK(&lk);
4025		if (ip->i_effnlink != ip->i_nlink)
4026			panic("softdep_update_inodeblock: bad link count");
4027		return;
4028	}
4029	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
4030		FREE_LOCK(&lk);
4031		panic("softdep_update_inodeblock: bad delta");
4032	}
4033	/*
4034	 * Changes have been initiated. Anything depending on these
4035	 * changes cannot occur until this inode has been written.
4036	 */
4037	inodedep->id_state &= ~COMPLETE;
4038	if ((inodedep->id_state & ONWORKLIST) == 0)
4039		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
4040	/*
4041	 * Any new dependencies associated with the incore inode must
4042	 * now be moved to the list associated with the buffer holding
4043	 * the in-memory copy of the inode. Once merged process any
4044	 * allocdirects that are completed by the merger.
4045	 */
4046	merge_inode_lists(inodedep);
4047	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4048		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4049	/*
4050	 * Now that the inode has been pushed into the buffer, the
4051	 * operations dependent on the inode being written to disk
4052	 * can be moved to the id_bufwait so that they will be
4053	 * processed when the buffer I/O completes.
4054	 */
4055	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4056		WORKLIST_REMOVE(wk);
4057		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4058	}
4059	/*
4060	 * Newly allocated inodes cannot be written until the bitmap
4061	 * that allocates them have been written (indicated by
4062	 * DEPCOMPLETE being set in id_state). If we are doing a
4063	 * forced sync (e.g., an fsync on a file), we force the bitmap
4064	 * to be written so that the update can be done.
4065	 */
4066	if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4067		FREE_LOCK(&lk);
4068		return;
4069	}
4070	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4071	FREE_LOCK(&lk);
4072	if (gotit &&
4073	    (error = BUF_WRITE(inodedep->id_buf)) != 0)
4074		softdep_error("softdep_update_inodeblock: bwrite", error);
4075	if ((inodedep->id_state & DEPCOMPLETE) == 0)
4076		panic("softdep_update_inodeblock: update failed");
4077}
4078
4079/*
4080 * Merge the new inode dependency list (id_newinoupdt) into the old
4081 * inode dependency list (id_inoupdt). This routine must be called
4082 * with splbio interrupts blocked.
4083 */
4084static void
4085merge_inode_lists(inodedep)
4086	struct inodedep *inodedep;
4087{
4088	struct allocdirect *listadp, *newadp;
4089
4090	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4091	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
4092		if (listadp->ad_lbn < newadp->ad_lbn) {
4093			listadp = TAILQ_NEXT(listadp, ad_next);
4094			continue;
4095		}
4096		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4097		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4098		if (listadp->ad_lbn == newadp->ad_lbn) {
4099			allocdirect_merge(&inodedep->id_inoupdt, newadp,
4100			    listadp);
4101			listadp = newadp;
4102		}
4103		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4104	}
4105	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
4106		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4107		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
4108	}
4109}
4110
4111/*
4112 * If we are doing an fsync, then we must ensure that any directory
4113 * entries for the inode have been written after the inode gets to disk.
4114 */
4115int
4116softdep_fsync(vp)
4117	struct vnode *vp;	/* the "in_core" copy of the inode */
4118{
4119	struct inodedep *inodedep;
4120	struct pagedep *pagedep;
4121	struct worklist *wk;
4122	struct diradd *dap;
4123	struct mount *mnt;
4124	struct vnode *pvp;
4125	struct inode *ip;
4126	struct buf *bp;
4127	struct fs *fs;
4128	struct thread *td = curthread;
4129	int error, flushparent;
4130	ino_t parentino;
4131	ufs_lbn_t lbn;
4132
4133	ip = VTOI(vp);
4134	fs = ip->i_fs;
4135	ACQUIRE_LOCK(&lk);
4136	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4137		FREE_LOCK(&lk);
4138		return (0);
4139	}
4140	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4141	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4142	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4143	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4144		FREE_LOCK(&lk);
4145		panic("softdep_fsync: pending ops");
4146	}
4147	for (error = 0, flushparent = 0; ; ) {
4148		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4149			break;
4150		if (wk->wk_type != D_DIRADD) {
4151			FREE_LOCK(&lk);
4152			panic("softdep_fsync: Unexpected type %s",
4153			    TYPENAME(wk->wk_type));
4154		}
4155		dap = WK_DIRADD(wk);
4156		/*
4157		 * Flush our parent if this directory entry has a MKDIR_PARENT
4158		 * dependency or is contained in a newly allocated block.
4159		 */
4160		if (dap->da_state & DIRCHG)
4161			pagedep = dap->da_previous->dm_pagedep;
4162		else
4163			pagedep = dap->da_pagedep;
4164		mnt = pagedep->pd_mnt;
4165		parentino = pagedep->pd_ino;
4166		lbn = pagedep->pd_lbn;
4167		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4168			FREE_LOCK(&lk);
4169			panic("softdep_fsync: dirty");
4170		}
4171		if ((dap->da_state & MKDIR_PARENT) ||
4172		    (pagedep->pd_state & NEWBLOCK))
4173			flushparent = 1;
4174		else
4175			flushparent = 0;
4176		/*
4177		 * If we are being fsync'ed as part of vgone'ing this vnode,
4178		 * then we will not be able to release and recover the
4179		 * vnode below, so we just have to give up on writing its
4180		 * directory entry out. It will eventually be written, just
4181		 * not now, but then the user was not asking to have it
4182		 * written, so we are not breaking any promises.
4183		 */
4184		if (vp->v_flag & VXLOCK)
4185			break;
4186		/*
4187		 * We prevent deadlock by always fetching inodes from the
4188		 * root, moving down the directory tree. Thus, when fetching
4189		 * our parent directory, we must unlock ourselves before
4190		 * requesting the lock on our parent. See the comment in
4191		 * ufs_lookup for details on possible races.
4192		 */
4193		FREE_LOCK(&lk);
4194		VOP_UNLOCK(vp, 0, td);
4195		error = VFS_VGET(mnt, parentino, &pvp);
4196		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
4197		if (error != 0)
4198			return (error);
4199		/*
4200		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
4201		 * that are contained in direct blocks will be resolved by
4202		 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks
4203		 * may require a complete sync'ing of the directory. So, we
4204		 * try the cheap and fast UFS_UPDATE first, and if that fails,
4205		 * then we do the slower VOP_FSYNC of the directory.
4206		 */
4207		if (flushparent) {
4208			if ((error = UFS_UPDATE(pvp, 1)) != 0) {
4209				vput(pvp);
4210				return (error);
4211			}
4212			if ((pagedep->pd_state & NEWBLOCK) &&
4213			    (error = VOP_FSYNC(pvp, td->td_proc->p_ucred, MNT_WAIT, td))) {
4214				vput(pvp);
4215				return (error);
4216			}
4217		}
4218		/*
4219		 * Flush directory page containing the inode's name.
4220		 */
4221		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_proc->p_ucred,
4222		    &bp);
4223		if (error == 0)
4224			error = BUF_WRITE(bp);
4225		vput(pvp);
4226		if (error != 0)
4227			return (error);
4228		ACQUIRE_LOCK(&lk);
4229		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4230			break;
4231	}
4232	FREE_LOCK(&lk);
4233	return (0);
4234}
4235
4236/*
4237 * Flush all the dirty bitmaps associated with the block device
4238 * before flushing the rest of the dirty blocks so as to reduce
4239 * the number of dependencies that will have to be rolled back.
4240 */
4241void
4242softdep_fsync_mountdev(vp)
4243	struct vnode *vp;
4244{
4245	struct buf *bp, *nbp;
4246	struct worklist *wk;
4247
4248	if (!vn_isdisk(vp, NULL))
4249		panic("softdep_fsync_mountdev: vnode not a disk");
4250	ACQUIRE_LOCK(&lk);
4251	for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
4252		nbp = TAILQ_NEXT(bp, b_vnbufs);
4253		/*
4254		 * If it is already scheduled, skip to the next buffer.
4255		 */
4256		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4257			continue;
4258		if ((bp->b_flags & B_DELWRI) == 0) {
4259			FREE_LOCK(&lk);
4260			panic("softdep_fsync_mountdev: not dirty");
4261		}
4262		/*
4263		 * We are only interested in bitmaps with outstanding
4264		 * dependencies.
4265		 */
4266		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4267		    wk->wk_type != D_BMSAFEMAP ||
4268		    (bp->b_xflags & BX_BKGRDINPROG)) {
4269			BUF_UNLOCK(bp);
4270			continue;
4271		}
4272		bremfree(bp);
4273		FREE_LOCK(&lk);
4274		(void) bawrite(bp);
4275		ACQUIRE_LOCK(&lk);
4276		/*
4277		 * Since we may have slept during the I/O, we need
4278		 * to start from a known point.
4279		 */
4280		nbp = TAILQ_FIRST(&vp->v_dirtyblkhd);
4281	}
4282	drain_output(vp, 1);
4283	FREE_LOCK(&lk);
4284}
4285
4286/*
4287 * This routine is called when we are trying to synchronously flush a
4288 * file. This routine must eliminate any filesystem metadata dependencies
4289 * so that the syncing routine can succeed by pushing the dirty blocks
4290 * associated with the file. If any I/O errors occur, they are returned.
4291 */
4292int
4293softdep_sync_metadata(ap)
4294	struct vop_fsync_args /* {
4295		struct vnode *a_vp;
4296		struct ucred *a_cred;
4297		int a_waitfor;
4298		struct thread *a_td;
4299	} */ *ap;
4300{
4301	struct vnode *vp = ap->a_vp;
4302	struct pagedep *pagedep;
4303	struct allocdirect *adp;
4304	struct allocindir *aip;
4305	struct buf *bp, *nbp;
4306	struct worklist *wk;
4307	int i, error, waitfor;
4308
4309	/*
4310	 * Check whether this vnode is involved in a filesystem
4311	 * that is doing soft dependency processing.
4312	 */
4313	if (!vn_isdisk(vp, NULL)) {
4314		if (!DOINGSOFTDEP(vp))
4315			return (0);
4316	} else
4317		if (vp->v_rdev->si_mountpoint == NULL ||
4318		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4319			return (0);
4320	/*
4321	 * Ensure that any direct block dependencies have been cleared.
4322	 */
4323	ACQUIRE_LOCK(&lk);
4324	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4325		FREE_LOCK(&lk);
4326		return (error);
4327	}
4328	/*
4329	 * For most files, the only metadata dependencies are the
4330	 * cylinder group maps that allocate their inode or blocks.
4331	 * The block allocation dependencies can be found by traversing
4332	 * the dependency lists for any buffers that remain on their
4333	 * dirty buffer list. The inode allocation dependency will
4334	 * be resolved when the inode is updated with MNT_WAIT.
4335	 * This work is done in two passes. The first pass grabs most
4336	 * of the buffers and begins asynchronously writing them. The
4337	 * only way to wait for these asynchronous writes is to sleep
4338	 * on the filesystem vnode which may stay busy for a long time
4339	 * if the filesystem is active. So, instead, we make a second
4340	 * pass over the dependencies blocking on each write. In the
4341	 * usual case we will be blocking against a write that we
4342	 * initiated, so when it is done the dependency will have been
4343	 * resolved. Thus the second pass is expected to end quickly.
4344	 */
4345	waitfor = MNT_NOWAIT;
4346top:
4347	/*
4348	 * We must wait for any I/O in progress to finish so that
4349	 * all potential buffers on the dirty list will be visible.
4350	 */
4351	drain_output(vp, 1);
4352	if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) {
4353		FREE_LOCK(&lk);
4354		return (0);
4355	}
4356	bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
4357	/* While syncing snapshots, we must allow recursive lookups */
4358	bp->b_lock.lk_flags |= LK_CANRECURSE;
4359loop:
4360	/*
4361	 * As we hold the buffer locked, none of its dependencies
4362	 * will disappear.
4363	 */
4364	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4365		switch (wk->wk_type) {
4366
4367		case D_ALLOCDIRECT:
4368			adp = WK_ALLOCDIRECT(wk);
4369			if (adp->ad_state & DEPCOMPLETE)
4370				continue;
4371			nbp = adp->ad_buf;
4372			if (getdirtybuf(&nbp, waitfor) == 0)
4373				continue;
4374			FREE_LOCK(&lk);
4375			if (waitfor == MNT_NOWAIT) {
4376				bawrite(nbp);
4377			} else if ((error = BUF_WRITE(nbp)) != 0) {
4378				break;
4379			}
4380			ACQUIRE_LOCK(&lk);
4381			continue;
4382
4383		case D_ALLOCINDIR:
4384			aip = WK_ALLOCINDIR(wk);
4385			if (aip->ai_state & DEPCOMPLETE)
4386				continue;
4387			nbp = aip->ai_buf;
4388			if (getdirtybuf(&nbp, waitfor) == 0)
4389				continue;
4390			FREE_LOCK(&lk);
4391			if (waitfor == MNT_NOWAIT) {
4392				bawrite(nbp);
4393			} else if ((error = BUF_WRITE(nbp)) != 0) {
4394				break;
4395			}
4396			ACQUIRE_LOCK(&lk);
4397			continue;
4398
4399		case D_INDIRDEP:
4400		restart:
4401
4402			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4403				if (aip->ai_state & DEPCOMPLETE)
4404					continue;
4405				nbp = aip->ai_buf;
4406				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4407					goto restart;
4408				FREE_LOCK(&lk);
4409				if ((error = BUF_WRITE(nbp)) != 0) {
4410					break;
4411				}
4412				ACQUIRE_LOCK(&lk);
4413				goto restart;
4414			}
4415			continue;
4416
4417		case D_INODEDEP:
4418			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4419			    WK_INODEDEP(wk)->id_ino)) != 0) {
4420				FREE_LOCK(&lk);
4421				break;
4422			}
4423			continue;
4424
4425		case D_PAGEDEP:
4426			/*
4427			 * We are trying to sync a directory that may
4428			 * have dependencies on both its own metadata
4429			 * and/or dependencies on the inodes of any
4430			 * recently allocated files. We walk its diradd
4431			 * lists pushing out the associated inode.
4432			 */
4433			pagedep = WK_PAGEDEP(wk);
4434			for (i = 0; i < DAHASHSZ; i++) {
4435				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4436					continue;
4437				if ((error =
4438				    flush_pagedep_deps(vp, pagedep->pd_mnt,
4439						&pagedep->pd_diraddhd[i]))) {
4440					FREE_LOCK(&lk);
4441					break;
4442				}
4443			}
4444			continue;
4445
4446		case D_MKDIR:
4447			/*
4448			 * This case should never happen if the vnode has
4449			 * been properly sync'ed. However, if this function
4450			 * is used at a place where the vnode has not yet
4451			 * been sync'ed, this dependency can show up. So,
4452			 * rather than panic, just flush it.
4453			 */
4454			nbp = WK_MKDIR(wk)->md_buf;
4455			if (getdirtybuf(&nbp, waitfor) == 0)
4456				continue;
4457			FREE_LOCK(&lk);
4458			if (waitfor == MNT_NOWAIT) {
4459				bawrite(nbp);
4460			} else if ((error = BUF_WRITE(nbp)) != 0) {
4461				break;
4462			}
4463			ACQUIRE_LOCK(&lk);
4464			continue;
4465
4466		case D_BMSAFEMAP:
4467			/*
4468			 * This case should never happen if the vnode has
4469			 * been properly sync'ed. However, if this function
4470			 * is used at a place where the vnode has not yet
4471			 * been sync'ed, this dependency can show up. So,
4472			 * rather than panic, just flush it.
4473			 */
4474			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4475			if (getdirtybuf(&nbp, waitfor) == 0)
4476				continue;
4477			FREE_LOCK(&lk);
4478			if (waitfor == MNT_NOWAIT) {
4479				bawrite(nbp);
4480			} else if ((error = BUF_WRITE(nbp)) != 0) {
4481				break;
4482			}
4483			ACQUIRE_LOCK(&lk);
4484			continue;
4485
4486		default:
4487			FREE_LOCK(&lk);
4488			panic("softdep_sync_metadata: Unknown type %s",
4489			    TYPENAME(wk->wk_type));
4490			/* NOTREACHED */
4491		}
4492		/* We reach here only in error and unlocked */
4493		if (error == 0)
4494			panic("softdep_sync_metadata: zero error");
4495		bp->b_lock.lk_flags &= ~LK_CANRECURSE;
4496		bawrite(bp);
4497		return (error);
4498	}
4499	(void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT);
4500	nbp = TAILQ_NEXT(bp, b_vnbufs);
4501	FREE_LOCK(&lk);
4502	bp->b_lock.lk_flags &= ~LK_CANRECURSE;
4503	bawrite(bp);
4504	ACQUIRE_LOCK(&lk);
4505	if (nbp != NULL) {
4506		bp = nbp;
4507		goto loop;
4508	}
4509	/*
4510	 * The brief unlock is to allow any pent up dependency
4511	 * processing to be done. Then proceed with the second pass.
4512	 */
4513	if (waitfor == MNT_NOWAIT) {
4514		waitfor = MNT_WAIT;
4515		FREE_LOCK(&lk);
4516		ACQUIRE_LOCK(&lk);
4517		goto top;
4518	}
4519
4520	/*
4521	 * If we have managed to get rid of all the dirty buffers,
4522	 * then we are done. For certain directories and block
4523	 * devices, we may need to do further work.
4524	 *
4525	 * We must wait for any I/O in progress to finish so that
4526	 * all potential buffers on the dirty list will be visible.
4527	 */
4528	drain_output(vp, 1);
4529	if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) {
4530		FREE_LOCK(&lk);
4531		return (0);
4532	}
4533
4534	FREE_LOCK(&lk);
4535	/*
4536	 * If we are trying to sync a block device, some of its buffers may
4537	 * contain metadata that cannot be written until the contents of some
4538	 * partially written files have been written to disk. The only easy
4539	 * way to accomplish this is to sync the entire filesystem (luckily
4540	 * this happens rarely).
4541	 */
4542	if (vn_isdisk(vp, NULL) &&
4543	    vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) &&
4544	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_cred,
4545	     ap->a_td)) != 0)
4546		return (error);
4547	return (0);
4548}
4549
4550/*
4551 * Flush the dependencies associated with an inodedep.
4552 * Called with splbio blocked.
4553 */
4554static int
4555flush_inodedep_deps(fs, ino)
4556	struct fs *fs;
4557	ino_t ino;
4558{
4559	struct inodedep *inodedep;
4560	struct allocdirect *adp;
4561	int error, waitfor;
4562	struct buf *bp;
4563
4564	/*
4565	 * This work is done in two passes. The first pass grabs most
4566	 * of the buffers and begins asynchronously writing them. The
4567	 * only way to wait for these asynchronous writes is to sleep
4568	 * on the filesystem vnode which may stay busy for a long time
4569	 * if the filesystem is active. So, instead, we make a second
4570	 * pass over the dependencies blocking on each write. In the
4571	 * usual case we will be blocking against a write that we
4572	 * initiated, so when it is done the dependency will have been
4573	 * resolved. Thus the second pass is expected to end quickly.
4574	 * We give a brief window at the top of the loop to allow
4575	 * any pending I/O to complete.
4576	 */
4577	for (waitfor = MNT_NOWAIT; ; ) {
4578		FREE_LOCK(&lk);
4579		ACQUIRE_LOCK(&lk);
4580		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4581			return (0);
4582		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4583			if (adp->ad_state & DEPCOMPLETE)
4584				continue;
4585			bp = adp->ad_buf;
4586			if (getdirtybuf(&bp, waitfor) == 0) {
4587				if (waitfor == MNT_NOWAIT)
4588					continue;
4589				break;
4590			}
4591			FREE_LOCK(&lk);
4592			if (waitfor == MNT_NOWAIT) {
4593				bawrite(bp);
4594			} else if ((error = BUF_WRITE(bp)) != 0) {
4595				ACQUIRE_LOCK(&lk);
4596				return (error);
4597			}
4598			ACQUIRE_LOCK(&lk);
4599			break;
4600		}
4601		if (adp != NULL)
4602			continue;
4603		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4604			if (adp->ad_state & DEPCOMPLETE)
4605				continue;
4606			bp = adp->ad_buf;
4607			if (getdirtybuf(&bp, waitfor) == 0) {
4608				if (waitfor == MNT_NOWAIT)
4609					continue;
4610				break;
4611			}
4612			FREE_LOCK(&lk);
4613			if (waitfor == MNT_NOWAIT) {
4614				bawrite(bp);
4615			} else if ((error = BUF_WRITE(bp)) != 0) {
4616				ACQUIRE_LOCK(&lk);
4617				return (error);
4618			}
4619			ACQUIRE_LOCK(&lk);
4620			break;
4621		}
4622		if (adp != NULL)
4623			continue;
4624		/*
4625		 * If pass2, we are done, otherwise do pass 2.
4626		 */
4627		if (waitfor == MNT_WAIT)
4628			break;
4629		waitfor = MNT_WAIT;
4630	}
4631	/*
4632	 * Try freeing inodedep in case all dependencies have been removed.
4633	 */
4634	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4635		(void) free_inodedep(inodedep);
4636	return (0);
4637}
4638
4639/*
4640 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4641 * Called with splbio blocked.
4642 */
4643static int
4644flush_pagedep_deps(pvp, mp, diraddhdp)
4645	struct vnode *pvp;
4646	struct mount *mp;
4647	struct diraddhd *diraddhdp;
4648{
4649	struct thread *td = curthread;
4650	struct inodedep *inodedep;
4651	struct ufsmount *ump;
4652	struct diradd *dap;
4653	struct vnode *vp;
4654	int gotit, error = 0;
4655	struct buf *bp;
4656	ino_t inum;
4657
4658	ump = VFSTOUFS(mp);
4659	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4660		/*
4661		 * Flush ourselves if this directory entry
4662		 * has a MKDIR_PARENT dependency.
4663		 */
4664		if (dap->da_state & MKDIR_PARENT) {
4665			FREE_LOCK(&lk);
4666			if ((error = UFS_UPDATE(pvp, 1)) != 0)
4667				break;
4668			ACQUIRE_LOCK(&lk);
4669			/*
4670			 * If that cleared dependencies, go on to next.
4671			 */
4672			if (dap != LIST_FIRST(diraddhdp))
4673				continue;
4674			if (dap->da_state & MKDIR_PARENT) {
4675				FREE_LOCK(&lk);
4676				panic("flush_pagedep_deps: MKDIR_PARENT");
4677			}
4678		}
4679		/*
4680		 * A newly allocated directory must have its "." and
4681		 * ".." entries written out before its name can be
4682		 * committed in its parent. We do not want or need
4683		 * the full semantics of a synchronous VOP_FSYNC as
4684		 * that may end up here again, once for each directory
4685		 * level in the filesystem. Instead, we push the blocks
4686		 * and wait for them to clear. We have to fsync twice
4687		 * because the first call may choose to defer blocks
4688		 * that still have dependencies, but deferral will
4689		 * happen at most once.
4690		 */
4691		inum = dap->da_newinum;
4692		if (dap->da_state & MKDIR_BODY) {
4693			FREE_LOCK(&lk);
4694			if ((error = VFS_VGET(mp, inum, &vp)) != 0)
4695				break;
4696			if ((error=VOP_FSYNC(vp, td->td_proc->p_ucred, MNT_NOWAIT, td)) ||
4697			    (error=VOP_FSYNC(vp, td->td_proc->p_ucred, MNT_NOWAIT, td))) {
4698				vput(vp);
4699				break;
4700			}
4701			drain_output(vp, 0);
4702			vput(vp);
4703			ACQUIRE_LOCK(&lk);
4704			/*
4705			 * If that cleared dependencies, go on to next.
4706			 */
4707			if (dap != LIST_FIRST(diraddhdp))
4708				continue;
4709			if (dap->da_state & MKDIR_BODY) {
4710				FREE_LOCK(&lk);
4711				panic("flush_pagedep_deps: MKDIR_BODY");
4712			}
4713		}
4714		/*
4715		 * Flush the inode on which the directory entry depends.
4716		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4717		 * the only remaining dependency is that the updated inode
4718		 * count must get pushed to disk. The inode has already
4719		 * been pushed into its inode buffer (via VOP_UPDATE) at
4720		 * the time of the reference count change. So we need only
4721		 * locate that buffer, ensure that there will be no rollback
4722		 * caused by a bitmap dependency, then write the inode buffer.
4723		 */
4724		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4725			FREE_LOCK(&lk);
4726			panic("flush_pagedep_deps: lost inode");
4727		}
4728		/*
4729		 * If the inode still has bitmap dependencies,
4730		 * push them to disk.
4731		 */
4732		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4733			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4734			FREE_LOCK(&lk);
4735			if (gotit &&
4736			    (error = BUF_WRITE(inodedep->id_buf)) != 0)
4737				break;
4738			ACQUIRE_LOCK(&lk);
4739			if (dap != LIST_FIRST(diraddhdp))
4740				continue;
4741		}
4742		/*
4743		 * If the inode is still sitting in a buffer waiting
4744		 * to be written, push it to disk.
4745		 */
4746		FREE_LOCK(&lk);
4747		if ((error = bread(ump->um_devvp,
4748		    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4749		    (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0)
4750			break;
4751		if ((error = BUF_WRITE(bp)) != 0)
4752			break;
4753		ACQUIRE_LOCK(&lk);
4754		/*
4755		 * If we have failed to get rid of all the dependencies
4756		 * then something is seriously wrong.
4757		 */
4758		if (dap == LIST_FIRST(diraddhdp)) {
4759			FREE_LOCK(&lk);
4760			panic("flush_pagedep_deps: flush failed");
4761		}
4762	}
4763	if (error)
4764		ACQUIRE_LOCK(&lk);
4765	return (error);
4766}
4767
4768/*
4769 * A large burst of file addition or deletion activity can drive the
4770 * memory load excessively high. First attempt to slow things down
4771 * using the techniques below. If that fails, this routine requests
4772 * the offending operations to fall back to running synchronously
4773 * until the memory load returns to a reasonable level.
4774 */
4775int
4776softdep_slowdown(vp)
4777	struct vnode *vp;
4778{
4779	int max_softdeps_hard;
4780
4781	max_softdeps_hard = max_softdeps * 11 / 10;
4782	if (num_dirrem < max_softdeps_hard / 2 &&
4783	    num_inodedep < max_softdeps_hard)
4784		return (0);
4785	stat_sync_limit_hit += 1;
4786	return (1);
4787}
4788
4789/*
4790 * If memory utilization has gotten too high, deliberately slow things
4791 * down and speed up the I/O processing.
4792 */
4793static int
4794request_cleanup(resource, islocked)
4795	int resource;
4796	int islocked;
4797{
4798	struct thread *td = curthread;
4799
4800	/*
4801	 * We never hold up the filesystem syncer process.
4802	 */
4803	if (td == filesys_syncer)
4804		return (0);
4805	/*
4806	 * First check to see if the work list has gotten backlogged.
4807	 * If it has, co-opt this process to help clean up two entries.
4808	 * Because this process may hold inodes locked, we cannot
4809	 * handle any remove requests that might block on a locked
4810	 * inode as that could lead to deadlock.
4811	 */
4812	if (num_on_worklist > max_softdeps / 10) {
4813		if (islocked)
4814			FREE_LOCK(&lk);
4815		process_worklist_item(NULL, LK_NOWAIT);
4816		process_worklist_item(NULL, LK_NOWAIT);
4817		stat_worklist_push += 2;
4818		if (islocked)
4819			ACQUIRE_LOCK(&lk);
4820		return(1);
4821	}
4822	/*
4823	 * Next, we attempt to speed up the syncer process. If that
4824	 * is successful, then we allow the process to continue.
4825	 */
4826	if (speedup_syncer())
4827		return(0);
4828	/*
4829	 * If we are resource constrained on inode dependencies, try
4830	 * flushing some dirty inodes. Otherwise, we are constrained
4831	 * by file deletions, so try accelerating flushes of directories
4832	 * with removal dependencies. We would like to do the cleanup
4833	 * here, but we probably hold an inode locked at this point and
4834	 * that might deadlock against one that we try to clean. So,
4835	 * the best that we can do is request the syncer daemon to do
4836	 * the cleanup for us.
4837	 */
4838	switch (resource) {
4839
4840	case FLUSH_INODES:
4841		stat_ino_limit_push += 1;
4842		req_clear_inodedeps += 1;
4843		stat_countp = &stat_ino_limit_hit;
4844		break;
4845
4846	case FLUSH_REMOVE:
4847		stat_blk_limit_push += 1;
4848		req_clear_remove += 1;
4849		stat_countp = &stat_blk_limit_hit;
4850		break;
4851
4852	default:
4853		if (islocked)
4854			FREE_LOCK(&lk);
4855		panic("request_cleanup: unknown type");
4856	}
4857	/*
4858	 * Hopefully the syncer daemon will catch up and awaken us.
4859	 * We wait at most tickdelay before proceeding in any case.
4860	 */
4861	if (islocked == 0)
4862		ACQUIRE_LOCK(&lk);
4863	proc_waiting += 1;
4864	if (handle.callout == NULL)
4865		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
4866	FREE_LOCK_INTERLOCKED(&lk);
4867	(void) tsleep((caddr_t)&proc_waiting, PPAUSE, "softupdate", 0);
4868	ACQUIRE_LOCK_INTERLOCKED(&lk);
4869	proc_waiting -= 1;
4870	if (islocked == 0)
4871		FREE_LOCK(&lk);
4872	return (1);
4873}
4874
4875/*
4876 * Awaken processes pausing in request_cleanup and clear proc_waiting
4877 * to indicate that there is no longer a timer running.
4878 */
4879void
4880pause_timer(arg)
4881	void *arg;
4882{
4883
4884	*stat_countp += 1;
4885	wakeup_one(&proc_waiting);
4886	if (proc_waiting > 0)
4887		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
4888	else
4889		handle.callout = NULL;
4890}
4891
4892/*
4893 * Flush out a directory with at least one removal dependency in an effort to
4894 * reduce the number of dirrem, freefile, and freeblks dependency structures.
4895 */
4896static void
4897clear_remove(td)
4898	struct thread *td;
4899{
4900	struct pagedep_hashhead *pagedephd;
4901	struct pagedep *pagedep;
4902	static int next = 0;
4903	struct mount *mp;
4904	struct vnode *vp;
4905	int error, cnt;
4906	ino_t ino;
4907
4908	ACQUIRE_LOCK(&lk);
4909	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4910		pagedephd = &pagedep_hashtbl[next++];
4911		if (next >= pagedep_hash)
4912			next = 0;
4913		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4914			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4915				continue;
4916			mp = pagedep->pd_mnt;
4917			ino = pagedep->pd_ino;
4918			FREE_LOCK(&lk);
4919			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
4920				continue;
4921			if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4922				softdep_error("clear_remove: vget", error);
4923				vn_finished_write(mp);
4924				return;
4925			}
4926			if ((error = VOP_FSYNC(vp, td->td_proc->p_ucred, MNT_NOWAIT, td)))
4927				softdep_error("clear_remove: fsync", error);
4928			drain_output(vp, 0);
4929			vput(vp);
4930			vn_finished_write(mp);
4931			return;
4932		}
4933	}
4934	FREE_LOCK(&lk);
4935}
4936
4937/*
4938 * Clear out a block of dirty inodes in an effort to reduce
4939 * the number of inodedep dependency structures.
4940 */
4941static void
4942clear_inodedeps(td)
4943	struct thread *td;
4944{
4945	struct inodedep_hashhead *inodedephd;
4946	struct inodedep *inodedep;
4947	static int next = 0;
4948	struct mount *mp;
4949	struct vnode *vp;
4950	struct fs *fs;
4951	int error, cnt;
4952	ino_t firstino, lastino, ino;
4953
4954	ACQUIRE_LOCK(&lk);
4955	/*
4956	 * Pick a random inode dependency to be cleared.
4957	 * We will then gather up all the inodes in its block
4958	 * that have dependencies and flush them out.
4959	 */
4960	for (cnt = 0; cnt < inodedep_hash; cnt++) {
4961		inodedephd = &inodedep_hashtbl[next++];
4962		if (next >= inodedep_hash)
4963			next = 0;
4964		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4965			break;
4966	}
4967	if (inodedep == NULL)
4968		return;
4969	/*
4970	 * Ugly code to find mount point given pointer to superblock.
4971	 */
4972	fs = inodedep->id_fs;
4973	TAILQ_FOREACH(mp, &mountlist, mnt_list)
4974		if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
4975			break;
4976	/*
4977	 * Find the last inode in the block with dependencies.
4978	 */
4979	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4980	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4981		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4982			break;
4983	/*
4984	 * Asynchronously push all but the last inode with dependencies.
4985	 * Synchronously push the last inode with dependencies to ensure
4986	 * that the inode block gets written to free up the inodedeps.
4987	 */
4988	for (ino = firstino; ino <= lastino; ino++) {
4989		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4990			continue;
4991		FREE_LOCK(&lk);
4992		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
4993			continue;
4994		if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4995			softdep_error("clear_inodedeps: vget", error);
4996			vn_finished_write(mp);
4997			return;
4998		}
4999		if (ino == lastino) {
5000			if ((error = VOP_FSYNC(vp, td->td_proc->p_ucred, MNT_WAIT, td)))
5001				softdep_error("clear_inodedeps: fsync1", error);
5002		} else {
5003			if ((error = VOP_FSYNC(vp, td->td_proc->p_ucred, MNT_NOWAIT, td)))
5004				softdep_error("clear_inodedeps: fsync2", error);
5005			drain_output(vp, 0);
5006		}
5007		vput(vp);
5008		vn_finished_write(mp);
5009		ACQUIRE_LOCK(&lk);
5010	}
5011	FREE_LOCK(&lk);
5012}
5013
5014/*
5015 * Function to determine if the buffer has outstanding dependencies
5016 * that will cause a roll-back if the buffer is written. If wantcount
5017 * is set, return number of dependencies, otherwise just yes or no.
5018 */
5019static int
5020softdep_count_dependencies(bp, wantcount)
5021	struct buf *bp;
5022	int wantcount;
5023{
5024	struct worklist *wk;
5025	struct inodedep *inodedep;
5026	struct indirdep *indirdep;
5027	struct allocindir *aip;
5028	struct pagedep *pagedep;
5029	struct diradd *dap;
5030	int i, retval;
5031
5032	retval = 0;
5033	ACQUIRE_LOCK(&lk);
5034	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5035		switch (wk->wk_type) {
5036
5037		case D_INODEDEP:
5038			inodedep = WK_INODEDEP(wk);
5039			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5040				/* bitmap allocation dependency */
5041				retval += 1;
5042				if (!wantcount)
5043					goto out;
5044			}
5045			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5046				/* direct block pointer dependency */
5047				retval += 1;
5048				if (!wantcount)
5049					goto out;
5050			}
5051			continue;
5052
5053		case D_INDIRDEP:
5054			indirdep = WK_INDIRDEP(wk);
5055
5056			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5057				/* indirect block pointer dependency */
5058				retval += 1;
5059				if (!wantcount)
5060					goto out;
5061			}
5062			continue;
5063
5064		case D_PAGEDEP:
5065			pagedep = WK_PAGEDEP(wk);
5066			for (i = 0; i < DAHASHSZ; i++) {
5067
5068				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5069					/* directory entry dependency */
5070					retval += 1;
5071					if (!wantcount)
5072						goto out;
5073				}
5074			}
5075			continue;
5076
5077		case D_BMSAFEMAP:
5078		case D_ALLOCDIRECT:
5079		case D_ALLOCINDIR:
5080		case D_MKDIR:
5081			/* never a dependency on these blocks */
5082			continue;
5083
5084		default:
5085			FREE_LOCK(&lk);
5086			panic("softdep_check_for_rollback: Unexpected type %s",
5087			    TYPENAME(wk->wk_type));
5088			/* NOTREACHED */
5089		}
5090	}
5091out:
5092	FREE_LOCK(&lk);
5093	return retval;
5094}
5095
5096/*
5097 * Acquire exclusive access to a buffer.
5098 * Must be called with splbio blocked.
5099 * Return 1 if buffer was acquired.
5100 */
5101static int
5102getdirtybuf(bpp, waitfor)
5103	struct buf **bpp;
5104	int waitfor;
5105{
5106	struct buf *bp;
5107
5108	for (;;) {
5109		if ((bp = *bpp) == NULL)
5110			return (0);
5111		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
5112			if ((bp->b_xflags & BX_BKGRDINPROG) == 0)
5113				break;
5114			BUF_UNLOCK(bp);
5115			if (waitfor != MNT_WAIT)
5116				return (0);
5117			bp->b_xflags |= BX_BKGRDWAIT;
5118			FREE_LOCK_INTERLOCKED(&lk);
5119			tsleep(&bp->b_xflags, PRIBIO, "getbuf", 0);
5120			ACQUIRE_LOCK_INTERLOCKED(&lk);
5121			continue;
5122		}
5123		if (waitfor != MNT_WAIT)
5124			return (0);
5125		FREE_LOCK_INTERLOCKED(&lk);
5126		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL) != ENOLCK)
5127			panic("getdirtybuf: inconsistent lock");
5128		ACQUIRE_LOCK_INTERLOCKED(&lk);
5129	}
5130	if ((bp->b_flags & B_DELWRI) == 0) {
5131		BUF_UNLOCK(bp);
5132		return (0);
5133	}
5134	bremfree(bp);
5135	return (1);
5136}
5137
5138/*
5139 * Wait for pending output on a vnode to complete.
5140 * Must be called with vnode locked.
5141 */
5142static void
5143drain_output(vp, islocked)
5144	struct vnode *vp;
5145	int islocked;
5146{
5147
5148	if (!islocked)
5149		ACQUIRE_LOCK(&lk);
5150	while (vp->v_numoutput) {
5151		vp->v_flag |= VBWAIT;
5152		FREE_LOCK_INTERLOCKED(&lk);
5153		tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "drainvp", 0);
5154		ACQUIRE_LOCK_INTERLOCKED(&lk);
5155	}
5156	if (!islocked)
5157		FREE_LOCK(&lk);
5158}
5159
5160/*
5161 * Called whenever a buffer that is being invalidated or reallocated
5162 * contains dependencies. This should only happen if an I/O error has
5163 * occurred. The routine is called with the buffer locked.
5164 */
5165static void
5166softdep_deallocate_dependencies(bp)
5167	struct buf *bp;
5168{
5169
5170	if ((bp->b_ioflags & BIO_ERROR) == 0)
5171		panic("softdep_deallocate_dependencies: dangling deps");
5172	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
5173	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5174}
5175
5176/*
5177 * Function to handle asynchronous write errors in the filesystem.
5178 */
5179void
5180softdep_error(func, error)
5181	char *func;
5182	int error;
5183{
5184
5185	/* XXX should do something better! */
5186	printf("%s: got error %d while accessing filesystem\n", func, error);
5187}
5188