ffs_softdep.c revision 47131
1/*
2 * Copyright 1998 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * The following are the copyrights and redistribution conditions that
10 * apply to this copy of the soft update software. For a license
11 * to use, redistribute or sell the soft update software under
12 * conditions other than those described here, please contact the
13 * author at one of the following addresses:
14 *
15 *	Marshall Kirk McKusick		mckusick@mckusick.com
16 *	1614 Oxford Street		+1-510-843-9542
17 *	Berkeley, CA 94709-1608
18 *	USA
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * 1. Redistributions of source code must retain the above copyright
25 *    notice, this list of conditions and the following disclaimer.
26 * 2. Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in the
28 *    documentation and/or other materials provided with the distribution.
29 * 3. None of the names of McKusick, Ganger, Patt, or the University of
30 *    Michigan may be used to endorse or promote products derived from
31 *    this software without specific prior written permission.
32 * 4. Redistributions in any form must be accompanied by information on
33 *    how to obtain complete source code for any accompanying software
34 *    that uses this software. This source code must either be included
35 *    in the distribution or be available for no more than the cost of
36 *    distribution plus a nominal fee, and must be freely redistributable
37 *    under reasonable conditions. For an executable file, complete
38 *    source code means the source code for all modules it contains.
39 *    It does not mean source code for modules or files that typically
40 *    accompany the operating system on which the executable file runs,
41 *    e.g., standard library modules or system header files.
42 *
43 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
44 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
45 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
46 * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
47 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 *
55 *	from: @(#)ffs_softdep.c	9.38 (McKusick) 5/13/99
56 *	$Id: ffs_softdep.c,v 1.27 1999/05/09 19:39:54 mckusick Exp $
57 */
58
59/*
60 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
61 */
62#ifndef DIAGNOSTIC
63#define DIAGNOSTIC
64#endif
65#ifndef DEBUG
66#define DEBUG
67#endif
68
69#include <sys/param.h>
70#include <sys/buf.h>
71#include <sys/kernel.h>
72#include <sys/malloc.h>
73#include <sys/mount.h>
74#include <sys/proc.h>
75#include <sys/syslog.h>
76#include <sys/systm.h>
77#include <sys/vnode.h>
78#include <miscfs/specfs/specdev.h>
79#include <ufs/ufs/dir.h>
80#include <ufs/ufs/quota.h>
81#include <ufs/ufs/inode.h>
82#include <ufs/ufs/ufsmount.h>
83#include <ufs/ffs/fs.h>
84#include <ufs/ffs/softdep.h>
85#include <ufs/ffs/ffs_extern.h>
86#include <ufs/ufs/ufs_extern.h>
87
88/*
89 * These definitions need to be adapted to the system to which
90 * this file is being ported.
91 */
92/*
93 * malloc types defined for the softdep system.
94 */
95MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
96MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
97MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
98MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
99MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
100MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
101MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
102MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
103MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
104MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
105MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
106MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
107MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
108
109#define	D_PAGEDEP	0
110#define	D_INODEDEP	1
111#define	D_NEWBLK	2
112#define	D_BMSAFEMAP	3
113#define	D_ALLOCDIRECT	4
114#define	D_INDIRDEP	5
115#define	D_ALLOCINDIR	6
116#define	D_FREEFRAG	7
117#define	D_FREEBLKS	8
118#define	D_FREEFILE	9
119#define	D_DIRADD	10
120#define	D_MKDIR		11
121#define	D_DIRREM	12
122#define D_LAST		D_DIRREM
123
124/*
125 * translate from workitem type to memory type
126 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
127 */
128static struct malloc_type *memtype[] = {
129	M_PAGEDEP,
130	M_INODEDEP,
131	M_NEWBLK,
132	M_BMSAFEMAP,
133	M_ALLOCDIRECT,
134	M_INDIRDEP,
135	M_ALLOCINDIR,
136	M_FREEFRAG,
137	M_FREEBLKS,
138	M_FREEFILE,
139	M_DIRADD,
140	M_MKDIR,
141	M_DIRREM
142};
143
144#define DtoM(type) (memtype[type])
145
146/*
147 * Names of malloc types.
148 */
149#define TYPENAME(type)  \
150	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
151#define CURPROC curproc
152/*
153 * End system adaptaion definitions.
154 */
155
156/*
157 * Internal function prototypes.
158 */
159static	void softdep_error __P((char *, int));
160static	void drain_output __P((struct vnode *, int));
161static	int getdirtybuf __P((struct buf **, int));
162static	void clear_remove __P((struct proc *));
163static	void clear_inodedeps __P((struct proc *));
164static	int flush_pagedep_deps __P((struct vnode *, struct mount *,
165	    struct diraddhd *));
166static	int flush_inodedep_deps __P((struct fs *, ino_t));
167static	int handle_written_filepage __P((struct pagedep *, struct buf *));
168static  void diradd_inode_written __P((struct diradd *, struct inodedep *));
169static	int handle_written_inodeblock __P((struct inodedep *, struct buf *));
170static	void handle_allocdirect_partdone __P((struct allocdirect *));
171static	void handle_allocindir_partdone __P((struct allocindir *));
172static	void initiate_write_filepage __P((struct pagedep *, struct buf *));
173static	void handle_written_mkdir __P((struct mkdir *, int));
174static	void initiate_write_inodeblock __P((struct inodedep *, struct buf *));
175static	void handle_workitem_freefile __P((struct freefile *));
176static	void handle_workitem_remove __P((struct dirrem *));
177static	struct dirrem *newdirrem __P((struct buf *, struct inode *,
178	    struct inode *, int));
179static	void free_diradd __P((struct diradd *));
180static	void free_allocindir __P((struct allocindir *, struct inodedep *));
181static	int indir_trunc __P((struct inode *, ufs_daddr_t, int, ufs_lbn_t,
182	    long *));
183static	void deallocate_dependencies __P((struct buf *, struct inodedep *));
184static	void free_allocdirect __P((struct allocdirectlst *,
185	    struct allocdirect *, int));
186static	int free_inodedep __P((struct inodedep *));
187static	void handle_workitem_freeblocks __P((struct freeblks *));
188static	void merge_inode_lists __P((struct inodedep *));
189static	void setup_allocindir_phase2 __P((struct buf *, struct inode *,
190	    struct allocindir *));
191static	struct allocindir *newallocindir __P((struct inode *, int, ufs_daddr_t,
192	    ufs_daddr_t));
193static	void handle_workitem_freefrag __P((struct freefrag *));
194static	struct freefrag *newfreefrag __P((struct inode *, ufs_daddr_t, long));
195static	void allocdirect_merge __P((struct allocdirectlst *,
196	    struct allocdirect *, struct allocdirect *));
197static	struct bmsafemap *bmsafemap_lookup __P((struct buf *));
198static	int newblk_lookup __P((struct fs *, ufs_daddr_t, int,
199	    struct newblk **));
200static	int inodedep_lookup __P((struct fs *, ino_t, int, struct inodedep **));
201static	int pagedep_lookup __P((struct inode *, ufs_lbn_t, int,
202	    struct pagedep **));
203static	void pause_timer __P((void *));
204static	int checklimit __P((long *, int));
205static	void add_to_worklist __P((struct worklist *));
206
207/*
208 * Exported softdep operations.
209 */
210struct bio_ops bioops = {
211	softdep_disk_io_initiation,		/* io_start */
212	softdep_disk_write_complete,		/* io_complete */
213	softdep_deallocate_dependencies,	/* io_deallocate */
214	softdep_fsync,				/* io_fsync */
215	softdep_process_worklist,		/* io_sync */
216};
217
218/*
219 * Locking primitives.
220 *
221 * For a uniprocessor, all we need to do is protect against disk
222 * interrupts. For a multiprocessor, this lock would have to be
223 * a mutex. A single mutex is used throughout this file, though
224 * finer grain locking could be used if contention warranted it.
225 *
226 * For a multiprocessor, the sleep call would accept a lock and
227 * release it after the sleep processing was complete. In a uniprocessor
228 * implementation there is no such interlock, so we simple mark
229 * the places where it needs to be done with the `interlocked' form
230 * of the lock calls. Since the uniprocessor sleep already interlocks
231 * the spl, there is nothing that really needs to be done.
232 */
233#ifndef /* NOT */ DEBUG
234static struct lockit {
235	int	lkt_spl;
236} lk = { 0 };
237#define ACQUIRE_LOCK(lk)		(lk)->lkt_spl = splbio()
238#define FREE_LOCK(lk)			splx((lk)->lkt_spl)
239#define ACQUIRE_LOCK_INTERLOCKED(lk)
240#define FREE_LOCK_INTERLOCKED(lk)
241
242#else /* DEBUG */
243static struct lockit {
244	int	lkt_spl;
245	pid_t	lkt_held;
246} lk = { 0, -1 };
247static int lockcnt;
248
249static	void acquire_lock __P((struct lockit *));
250static	void free_lock __P((struct lockit *));
251static	void acquire_lock_interlocked __P((struct lockit *));
252static	void free_lock_interlocked __P((struct lockit *));
253
254#define ACQUIRE_LOCK(lk)		acquire_lock(lk)
255#define FREE_LOCK(lk)			free_lock(lk)
256#define ACQUIRE_LOCK_INTERLOCKED(lk)	acquire_lock_interlocked(lk)
257#define FREE_LOCK_INTERLOCKED(lk)	free_lock_interlocked(lk)
258
259static void
260acquire_lock(lk)
261	struct lockit *lk;
262{
263
264	if (lk->lkt_held != -1)
265		if (lk->lkt_held == CURPROC->p_pid)
266			panic("softdep_lock: locking against myself");
267		else
268			panic("softdep_lock: lock held by %d", lk->lkt_held);
269	lk->lkt_spl = splbio();
270	lk->lkt_held = CURPROC->p_pid;
271	lockcnt++;
272}
273
274static void
275free_lock(lk)
276	struct lockit *lk;
277{
278
279	if (lk->lkt_held == -1)
280		panic("softdep_unlock: lock not held");
281	lk->lkt_held = -1;
282	splx(lk->lkt_spl);
283}
284
285static void
286acquire_lock_interlocked(lk)
287	struct lockit *lk;
288{
289
290	if (lk->lkt_held != -1)
291		if (lk->lkt_held == CURPROC->p_pid)
292			panic("softdep_lock_interlocked: locking against self");
293		else
294			panic("softdep_lock_interlocked: lock held by %d",
295			    lk->lkt_held);
296	lk->lkt_held = CURPROC->p_pid;
297	lockcnt++;
298}
299
300static void
301free_lock_interlocked(lk)
302	struct lockit *lk;
303{
304
305	if (lk->lkt_held == -1)
306		panic("softdep_unlock_interlocked: lock not held");
307	lk->lkt_held = -1;
308}
309#endif /* DEBUG */
310
311/*
312 * Place holder for real semaphores.
313 */
314struct sema {
315	int	value;
316	pid_t	holder;
317	char	*name;
318	int	prio;
319	int	timo;
320};
321static	void sema_init __P((struct sema *, char *, int, int));
322static	int sema_get __P((struct sema *, struct lockit *));
323static	void sema_release __P((struct sema *));
324
325static void
326sema_init(semap, name, prio, timo)
327	struct sema *semap;
328	char *name;
329	int prio, timo;
330{
331
332	semap->holder = -1;
333	semap->value = 0;
334	semap->name = name;
335	semap->prio = prio;
336	semap->timo = timo;
337}
338
339static int
340sema_get(semap, interlock)
341	struct sema *semap;
342	struct lockit *interlock;
343{
344
345	if (semap->value++ > 0) {
346		if (interlock != NULL)
347			FREE_LOCK_INTERLOCKED(interlock);
348		tsleep((caddr_t)semap, semap->prio, semap->name, semap->timo);
349		if (interlock != NULL) {
350			ACQUIRE_LOCK_INTERLOCKED(interlock);
351			FREE_LOCK(interlock);
352		}
353		return (0);
354	}
355	semap->holder = CURPROC->p_pid;
356	if (interlock != NULL)
357		FREE_LOCK(interlock);
358	return (1);
359}
360
361static void
362sema_release(semap)
363	struct sema *semap;
364{
365
366	if (semap->value <= 0 || semap->holder != CURPROC->p_pid)
367		panic("sema_release: not held");
368	if (--semap->value > 0) {
369		semap->value = 0;
370		wakeup(semap);
371	}
372	semap->holder = -1;
373}
374
375/*
376 * Worklist queue management.
377 * These routines require that the lock be held.
378 */
379#ifndef /* NOT */ DEBUG
380#define WORKLIST_INSERT(head, item) do {	\
381	(item)->wk_state |= ONWORKLIST;		\
382	LIST_INSERT_HEAD(head, item, wk_list);	\
383} while (0)
384#define WORKLIST_REMOVE(item) do {		\
385	(item)->wk_state &= ~ONWORKLIST;	\
386	LIST_REMOVE(item, wk_list);		\
387} while (0)
388#define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
389
390#else /* DEBUG */
391static	void worklist_insert __P((struct workhead *, struct worklist *));
392static	void worklist_remove __P((struct worklist *));
393static	void workitem_free __P((struct worklist *, int));
394
395#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
396#define WORKLIST_REMOVE(item) worklist_remove(item)
397#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
398
399static void
400worklist_insert(head, item)
401	struct workhead *head;
402	struct worklist *item;
403{
404
405	if (lk.lkt_held == -1)
406		panic("worklist_insert: lock not held");
407	if (item->wk_state & ONWORKLIST)
408		panic("worklist_insert: already on list");
409	item->wk_state |= ONWORKLIST;
410	LIST_INSERT_HEAD(head, item, wk_list);
411}
412
413static void
414worklist_remove(item)
415	struct worklist *item;
416{
417
418	if (lk.lkt_held == -1)
419		panic("worklist_remove: lock not held");
420	if ((item->wk_state & ONWORKLIST) == 0)
421		panic("worklist_remove: not on list");
422	item->wk_state &= ~ONWORKLIST;
423	LIST_REMOVE(item, wk_list);
424}
425
426static void
427workitem_free(item, type)
428	struct worklist *item;
429	int type;
430{
431
432	if (item->wk_state & ONWORKLIST)
433		panic("workitem_free: still on list");
434	if (item->wk_type != type)
435		panic("workitem_free: type mismatch");
436	FREE(item, DtoM(type));
437}
438#endif /* DEBUG */
439
440/*
441 * Workitem queue management
442 */
443static struct workhead softdep_workitem_pending;
444static int softdep_worklist_busy;
445static int max_softdeps;	/* maximum number of structs before slowdown */
446static int tickdelay = 2;	/* number of ticks to pause during slowdown */
447static int proc_waiting;	/* tracks whether we have a timeout posted */
448static struct proc *filesys_syncer; /* proc of filesystem syncer process */
449static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
450static int req_clear_remove;	/* syncer process flush some freeblks */
451/*
452 * runtime statistics
453 */
454static int stat_rush_requests;	/* number of times I/O speeded up */
455static int stat_blk_limit_push;	/* number of times block limit neared */
456static int stat_ino_limit_push;	/* number of times inode limit neared */
457static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
458static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
459static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
460static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
461static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
462static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
463#ifdef DEBUG
464#include <vm/vm.h>
465#include <sys/sysctl.h>
466#if defined(__FreeBSD__)
467SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
468SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
469SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
470SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
471SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
472SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
473SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
474SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
475SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
476SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
477SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
478#else /* !__FreeBSD__ */
479struct ctldebug debug20 = { "max_softdeps", &max_softdeps };
480struct ctldebug debug21 = { "tickdelay", &tickdelay };
481struct ctldebug debug22 = { "rush_requests", &stat_rush_requests };
482struct ctldebug debug23 = { "blk_limit_push", &stat_blk_limit_push };
483struct ctldebug debug24 = { "ino_limit_push", &stat_ino_limit_push };
484struct ctldebug debug25 = { "blk_limit_hit", &stat_blk_limit_hit };
485struct ctldebug debug26 = { "ino_limit_hit", &stat_ino_limit_hit };
486struct ctldebug debug27 = { "indir_blk_ptrs", &stat_indir_blk_ptrs };
487struct ctldebug debug28 = { "inode_bitmap", &stat_inode_bitmap };
488struct ctldebug debug29 = { "direct_blk_ptrs", &stat_direct_blk_ptrs };
489struct ctldebug debug30 = { "dir_entry", &stat_dir_entry };
490#endif	/* !__FreeBSD__ */
491
492#endif /* DEBUG */
493
494/*
495 * Add an item to the end of the work queue.
496 * This routine requires that the lock be held.
497 * This is the only routine that adds items to the list.
498 * The following routine is the only one that removes items
499 * and does so in order from first to last.
500 */
501static void
502add_to_worklist(wk)
503	struct worklist *wk;
504{
505	static struct worklist *worklist_tail;
506
507	if (wk->wk_state & ONWORKLIST)
508		panic("add_to_worklist: already on list");
509	wk->wk_state |= ONWORKLIST;
510	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
511		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
512	else
513		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
514	worklist_tail = wk;
515}
516
517/*
518 * Process that runs once per second to handle items in the background queue.
519 *
520 * Note that we ensure that everything is done in the order in which they
521 * appear in the queue. The code below depends on this property to ensure
522 * that blocks of a file are freed before the inode itself is freed. This
523 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
524 * until all the old ones have been purged from the dependency lists.
525 */
526int
527softdep_process_worklist(matchmnt)
528	struct mount *matchmnt;
529{
530	struct proc *p = CURPROC;
531	struct worklist *wk;
532	struct fs *matchfs;
533	int matchcnt;
534
535	/*
536	 * Record the process identifier of our caller so that we can
537	 * give this process preferential treatment in checklimit below.
538	 */
539	filesys_syncer = p;
540	matchcnt = 0;
541	matchfs = NULL;
542	if (matchmnt != NULL)
543		matchfs = VFSTOUFS(matchmnt)->um_fs;
544	/*
545	 * There is no danger of having multiple processes run this
546	 * code. It is single threaded solely so that softdep_flushfiles
547	 * (below) can get an accurate count of the number of items
548	 * related to its mount point that are in the list.
549	 */
550	if (softdep_worklist_busy && matchmnt == NULL)
551		return (-1);
552	/*
553	 * If requested, try removing inode or removal dependencies.
554	 */
555	if (req_clear_inodedeps) {
556		clear_inodedeps(p);
557		req_clear_inodedeps = 0;
558		wakeup(&proc_waiting);
559	}
560	if (req_clear_remove) {
561		clear_remove(p);
562		req_clear_remove = 0;
563		wakeup(&proc_waiting);
564	}
565	ACQUIRE_LOCK(&lk);
566	while ((wk = LIST_FIRST(&softdep_workitem_pending)) != 0) {
567		WORKLIST_REMOVE(wk);
568		FREE_LOCK(&lk);
569		switch (wk->wk_type) {
570
571		case D_DIRREM:
572			/* removal of a directory entry */
573			if (WK_DIRREM(wk)->dm_mnt == matchmnt)
574				matchcnt += 1;
575			handle_workitem_remove(WK_DIRREM(wk));
576			break;
577
578		case D_FREEBLKS:
579			/* releasing blocks and/or fragments from a file */
580			if (WK_FREEBLKS(wk)->fb_fs == matchfs)
581				matchcnt += 1;
582			handle_workitem_freeblocks(WK_FREEBLKS(wk));
583			break;
584
585		case D_FREEFRAG:
586			/* releasing a fragment when replaced as a file grows */
587			if (WK_FREEFRAG(wk)->ff_fs == matchfs)
588				matchcnt += 1;
589			handle_workitem_freefrag(WK_FREEFRAG(wk));
590			break;
591
592		case D_FREEFILE:
593			/* releasing an inode when its link count drops to 0 */
594			if (WK_FREEFILE(wk)->fx_fs == matchfs)
595				matchcnt += 1;
596			handle_workitem_freefile(WK_FREEFILE(wk));
597			break;
598
599		default:
600			panic("%s_process_worklist: Unknown type %s",
601			    "softdep", TYPENAME(wk->wk_type));
602			/* NOTREACHED */
603		}
604		if (softdep_worklist_busy && matchmnt == NULL)
605			return (-1);
606		/*
607		 * If requested, try removing inode or removal dependencies.
608		 */
609		if (req_clear_inodedeps) {
610			clear_inodedeps(p);
611			req_clear_inodedeps = 0;
612			wakeup(&proc_waiting);
613		}
614		if (req_clear_remove) {
615			clear_remove(p);
616			req_clear_remove = 0;
617			wakeup(&proc_waiting);
618		}
619		ACQUIRE_LOCK(&lk);
620	}
621	FREE_LOCK(&lk);
622	return (matchcnt);
623}
624
625/*
626 * Purge the work list of all items associated with a particular mount point.
627 */
628int
629softdep_flushfiles(oldmnt, flags, p)
630	struct mount *oldmnt;
631	int flags;
632	struct proc *p;
633{
634	struct vnode *devvp;
635	int error, loopcnt;
636
637	/*
638	 * Await our turn to clear out the queue.
639	 */
640	while (softdep_worklist_busy)
641		tsleep(&lbolt, PRIBIO, "softflush", 0);
642	softdep_worklist_busy = 1;
643	if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) {
644		softdep_worklist_busy = 0;
645		return (error);
646	}
647	/*
648	 * Alternately flush the block device associated with the mount
649	 * point and process any dependencies that the flushing
650	 * creates. In theory, this loop can happen at most twice,
651	 * but we give it a few extra just to be sure.
652	 */
653	devvp = VFSTOUFS(oldmnt)->um_devvp;
654	for (loopcnt = 10; loopcnt > 0; loopcnt--) {
655		if (softdep_process_worklist(oldmnt) == 0) {
656			/*
657			 * Do another flush in case any vnodes were brought in
658			 * as part of the cleanup operations.
659			 */
660			if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0)
661				break;
662			/*
663			 * If we still found nothing to do, we are really done.
664			 */
665			if (softdep_process_worklist(oldmnt) == 0)
666				break;
667		}
668		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p);
669		error = VOP_FSYNC(devvp, p->p_ucred, MNT_WAIT, p);
670		VOP_UNLOCK(devvp, 0, p);
671		if (error)
672			break;
673	}
674	softdep_worklist_busy = 0;
675	/*
676	 * If we are unmounting then it is an error to fail. If we
677	 * are simply trying to downgrade to read-only, then filesystem
678	 * activity can keep us busy forever, so we just fail with EBUSY.
679	 */
680	if (loopcnt == 0) {
681		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
682			panic("softdep_flushfiles: looping");
683		error = EBUSY;
684	}
685	return (error);
686}
687
688/*
689 * Structure hashing.
690 *
691 * There are three types of structures that can be looked up:
692 *	1) pagedep structures identified by mount point, inode number,
693 *	   and logical block.
694 *	2) inodedep structures identified by mount point and inode number.
695 *	3) newblk structures identified by mount point and
696 *	   physical block number.
697 *
698 * The "pagedep" and "inodedep" dependency structures are hashed
699 * separately from the file blocks and inodes to which they correspond.
700 * This separation helps when the in-memory copy of an inode or
701 * file block must be replaced. It also obviates the need to access
702 * an inode or file page when simply updating (or de-allocating)
703 * dependency structures. Lookup of newblk structures is needed to
704 * find newly allocated blocks when trying to associate them with
705 * their allocdirect or allocindir structure.
706 *
707 * The lookup routines optionally create and hash a new instance when
708 * an existing entry is not found.
709 */
710#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
711
712/*
713 * Structures and routines associated with pagedep caching.
714 */
715LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
716u_long	pagedep_hash;		/* size of hash table - 1 */
717#define	PAGEDEP_HASH(mp, inum, lbn) \
718	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
719	    pagedep_hash])
720static struct sema pagedep_in_progress;
721
722/*
723 * Look up a pagedep. Return 1 if found, 0 if not found.
724 * If not found, allocate if DEPALLOC flag is passed.
725 * Found or allocated entry is returned in pagedeppp.
726 * This routine must be called with splbio interrupts blocked.
727 */
728static int
729pagedep_lookup(ip, lbn, flags, pagedeppp)
730	struct inode *ip;
731	ufs_lbn_t lbn;
732	int flags;
733	struct pagedep **pagedeppp;
734{
735	struct pagedep *pagedep;
736	struct pagedep_hashhead *pagedephd;
737	struct mount *mp;
738	int i;
739
740#ifdef DEBUG
741	if (lk.lkt_held == -1)
742		panic("pagedep_lookup: lock not held");
743#endif
744	mp = ITOV(ip)->v_mount;
745	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
746top:
747	for (pagedep = LIST_FIRST(pagedephd); pagedep;
748	     pagedep = LIST_NEXT(pagedep, pd_hash))
749		if (ip->i_number == pagedep->pd_ino &&
750		    lbn == pagedep->pd_lbn &&
751		    mp == pagedep->pd_mnt)
752			break;
753	if (pagedep) {
754		*pagedeppp = pagedep;
755		return (1);
756	}
757	if ((flags & DEPALLOC) == 0) {
758		*pagedeppp = NULL;
759		return (0);
760	}
761	if (sema_get(&pagedep_in_progress, &lk) == 0) {
762		ACQUIRE_LOCK(&lk);
763		goto top;
764	}
765	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
766		M_WAITOK);
767	bzero(pagedep, sizeof(struct pagedep));
768	pagedep->pd_list.wk_type = D_PAGEDEP;
769	pagedep->pd_mnt = mp;
770	pagedep->pd_ino = ip->i_number;
771	pagedep->pd_lbn = lbn;
772	LIST_INIT(&pagedep->pd_dirremhd);
773	LIST_INIT(&pagedep->pd_pendinghd);
774	for (i = 0; i < DAHASHSZ; i++)
775		LIST_INIT(&pagedep->pd_diraddhd[i]);
776	ACQUIRE_LOCK(&lk);
777	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
778	sema_release(&pagedep_in_progress);
779	*pagedeppp = pagedep;
780	return (0);
781}
782
783/*
784 * Structures and routines associated with inodedep caching.
785 */
786LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
787static u_long	inodedep_hash;	/* size of hash table - 1 */
788static long	num_inodedep;	/* number of inodedep allocated */
789#define	INODEDEP_HASH(fs, inum) \
790      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
791static struct sema inodedep_in_progress;
792
793/*
794 * Look up a inodedep. Return 1 if found, 0 if not found.
795 * If not found, allocate if DEPALLOC flag is passed.
796 * Found or allocated entry is returned in inodedeppp.
797 * This routine must be called with splbio interrupts blocked.
798 */
799static int
800inodedep_lookup(fs, inum, flags, inodedeppp)
801	struct fs *fs;
802	ino_t inum;
803	int flags;
804	struct inodedep **inodedeppp;
805{
806	struct inodedep *inodedep;
807	struct inodedep_hashhead *inodedephd;
808	int firsttry;
809
810#ifdef DEBUG
811	if (lk.lkt_held == -1)
812		panic("inodedep_lookup: lock not held");
813#endif
814	firsttry = 1;
815	inodedephd = INODEDEP_HASH(fs, inum);
816top:
817	for (inodedep = LIST_FIRST(inodedephd); inodedep;
818	     inodedep = LIST_NEXT(inodedep, id_hash))
819		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
820			break;
821	if (inodedep) {
822		*inodedeppp = inodedep;
823		return (1);
824	}
825	if ((flags & DEPALLOC) == 0) {
826		*inodedeppp = NULL;
827		return (0);
828	}
829	if (firsttry && checklimit(&num_inodedep, 1) == 1) {
830		firsttry = 0;
831		goto top;
832	}
833	if (sema_get(&inodedep_in_progress, &lk) == 0) {
834		ACQUIRE_LOCK(&lk);
835		goto top;
836	}
837	num_inodedep += 1;
838	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
839		M_INODEDEP, M_WAITOK);
840	inodedep->id_list.wk_type = D_INODEDEP;
841	inodedep->id_fs = fs;
842	inodedep->id_ino = inum;
843	inodedep->id_state = ALLCOMPLETE;
844	inodedep->id_nlinkdelta = 0;
845	inodedep->id_savedino = NULL;
846	inodedep->id_savedsize = -1;
847	inodedep->id_buf = NULL;
848	LIST_INIT(&inodedep->id_pendinghd);
849	LIST_INIT(&inodedep->id_inowait);
850	LIST_INIT(&inodedep->id_bufwait);
851	TAILQ_INIT(&inodedep->id_inoupdt);
852	TAILQ_INIT(&inodedep->id_newinoupdt);
853	ACQUIRE_LOCK(&lk);
854	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
855	sema_release(&inodedep_in_progress);
856	*inodedeppp = inodedep;
857	return (0);
858}
859
860/*
861 * Structures and routines associated with newblk caching.
862 */
863LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
864u_long	newblk_hash;		/* size of hash table - 1 */
865#define	NEWBLK_HASH(fs, inum) \
866	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
867static struct sema newblk_in_progress;
868
869/*
870 * Look up a newblk. Return 1 if found, 0 if not found.
871 * If not found, allocate if DEPALLOC flag is passed.
872 * Found or allocated entry is returned in newblkpp.
873 */
874static int
875newblk_lookup(fs, newblkno, flags, newblkpp)
876	struct fs *fs;
877	ufs_daddr_t newblkno;
878	int flags;
879	struct newblk **newblkpp;
880{
881	struct newblk *newblk;
882	struct newblk_hashhead *newblkhd;
883
884	newblkhd = NEWBLK_HASH(fs, newblkno);
885top:
886	for (newblk = LIST_FIRST(newblkhd); newblk;
887	     newblk = LIST_NEXT(newblk, nb_hash))
888		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
889			break;
890	if (newblk) {
891		*newblkpp = newblk;
892		return (1);
893	}
894	if ((flags & DEPALLOC) == 0) {
895		*newblkpp = NULL;
896		return (0);
897	}
898	if (sema_get(&newblk_in_progress, 0) == 0)
899		goto top;
900	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
901		M_NEWBLK, M_WAITOK);
902	newblk->nb_state = 0;
903	newblk->nb_fs = fs;
904	newblk->nb_newblkno = newblkno;
905	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
906	sema_release(&newblk_in_progress);
907	*newblkpp = newblk;
908	return (0);
909}
910
911/*
912 * Executed during filesystem system initialization before
913 * mounting any file systems.
914 */
915void
916softdep_initialize()
917{
918
919	LIST_INIT(&mkdirlisthd);
920	LIST_INIT(&softdep_workitem_pending);
921	max_softdeps = desiredvnodes * 8;
922	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
923	    &pagedep_hash);
924	sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0);
925	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
926	sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0);
927	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
928	sema_init(&newblk_in_progress, "newblk", PRIBIO, 0);
929}
930
931/*
932 * Called at mount time to notify the dependency code that a
933 * filesystem wishes to use it.
934 */
935int
936softdep_mount(devvp, mp, fs, cred)
937	struct vnode *devvp;
938	struct mount *mp;
939	struct fs *fs;
940	struct ucred *cred;
941{
942	struct csum cstotal;
943	struct cg *cgp;
944	struct buf *bp;
945	int error, cyl;
946
947	mp->mnt_flag &= ~MNT_ASYNC;
948	mp->mnt_flag |= MNT_SOFTDEP;
949	/*
950	 * When doing soft updates, the counters in the
951	 * superblock may have gotten out of sync, so we have
952	 * to scan the cylinder groups and recalculate them.
953	 */
954	if (fs->fs_clean != 0)
955		return (0);
956	bzero(&cstotal, sizeof cstotal);
957	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
958		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
959		    fs->fs_cgsize, cred, &bp)) != 0) {
960			brelse(bp);
961			return (error);
962		}
963		cgp = (struct cg *)bp->b_data;
964		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
965		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
966		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
967		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
968		fs->fs_cs(fs, cyl) = cgp->cg_cs;
969		brelse(bp);
970	}
971#ifdef DEBUG
972	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
973		printf("ffs_mountfs: superblock updated for soft updates\n");
974#endif
975	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
976	return (0);
977}
978
979/*
980 * Protecting the freemaps (or bitmaps).
981 *
982 * To eliminate the need to execute fsck before mounting a file system
983 * after a power failure, one must (conservatively) guarantee that the
984 * on-disk copy of the bitmaps never indicate that a live inode or block is
985 * free.  So, when a block or inode is allocated, the bitmap should be
986 * updated (on disk) before any new pointers.  When a block or inode is
987 * freed, the bitmap should not be updated until all pointers have been
988 * reset.  The latter dependency is handled by the delayed de-allocation
989 * approach described below for block and inode de-allocation.  The former
990 * dependency is handled by calling the following procedure when a block or
991 * inode is allocated. When an inode is allocated an "inodedep" is created
992 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
993 * Each "inodedep" is also inserted into the hash indexing structure so
994 * that any additional link additions can be made dependent on the inode
995 * allocation.
996 *
997 * The ufs file system maintains a number of free block counts (e.g., per
998 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
999 * in addition to the bitmaps.  These counts are used to improve efficiency
1000 * during allocation and therefore must be consistent with the bitmaps.
1001 * There is no convenient way to guarantee post-crash consistency of these
1002 * counts with simple update ordering, for two main reasons: (1) The counts
1003 * and bitmaps for a single cylinder group block are not in the same disk
1004 * sector.  If a disk write is interrupted (e.g., by power failure), one may
1005 * be written and the other not.  (2) Some of the counts are located in the
1006 * superblock rather than the cylinder group block. So, we focus our soft
1007 * updates implementation on protecting the bitmaps. When mounting a
1008 * filesystem, we recompute the auxiliary counts from the bitmaps.
1009 */
1010
1011/*
1012 * Called just after updating the cylinder group block to allocate an inode.
1013 */
1014void
1015softdep_setup_inomapdep(bp, ip, newinum)
1016	struct buf *bp;		/* buffer for cylgroup block with inode map */
1017	struct inode *ip;	/* inode related to allocation */
1018	ino_t newinum;		/* new inode number being allocated */
1019{
1020	struct inodedep *inodedep;
1021	struct bmsafemap *bmsafemap;
1022
1023	/*
1024	 * Create a dependency for the newly allocated inode.
1025	 * Panic if it already exists as something is seriously wrong.
1026	 * Otherwise add it to the dependency list for the buffer holding
1027	 * the cylinder group map from which it was allocated.
1028	 */
1029	ACQUIRE_LOCK(&lk);
1030	if (inodedep_lookup(ip->i_fs, newinum, DEPALLOC, &inodedep) != 0)
1031		panic("softdep_setup_inomapdep: found inode");
1032	inodedep->id_buf = bp;
1033	inodedep->id_state &= ~DEPCOMPLETE;
1034	bmsafemap = bmsafemap_lookup(bp);
1035	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1036	FREE_LOCK(&lk);
1037}
1038
1039/*
1040 * Called just after updating the cylinder group block to
1041 * allocate block or fragment.
1042 */
1043void
1044softdep_setup_blkmapdep(bp, fs, newblkno)
1045	struct buf *bp;		/* buffer for cylgroup block with block map */
1046	struct fs *fs;		/* filesystem doing allocation */
1047	ufs_daddr_t newblkno;	/* number of newly allocated block */
1048{
1049	struct newblk *newblk;
1050	struct bmsafemap *bmsafemap;
1051
1052	/*
1053	 * Create a dependency for the newly allocated block.
1054	 * Add it to the dependency list for the buffer holding
1055	 * the cylinder group map from which it was allocated.
1056	 */
1057	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1058		panic("softdep_setup_blkmapdep: found block");
1059	ACQUIRE_LOCK(&lk);
1060	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1061	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1062	FREE_LOCK(&lk);
1063}
1064
1065/*
1066 * Find the bmsafemap associated with a cylinder group buffer.
1067 * If none exists, create one. The buffer must be locked when
1068 * this routine is called and this routine must be called with
1069 * splbio interrupts blocked.
1070 */
1071static struct bmsafemap *
1072bmsafemap_lookup(bp)
1073	struct buf *bp;
1074{
1075	struct bmsafemap *bmsafemap;
1076	struct worklist *wk;
1077
1078#ifdef DEBUG
1079	if (lk.lkt_held == -1)
1080		panic("bmsafemap_lookup: lock not held");
1081#endif
1082	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = LIST_NEXT(wk, wk_list))
1083		if (wk->wk_type == D_BMSAFEMAP)
1084			return (WK_BMSAFEMAP(wk));
1085	FREE_LOCK(&lk);
1086	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1087		M_BMSAFEMAP, M_WAITOK);
1088	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1089	bmsafemap->sm_list.wk_state = 0;
1090	bmsafemap->sm_buf = bp;
1091	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1092	LIST_INIT(&bmsafemap->sm_allocindirhd);
1093	LIST_INIT(&bmsafemap->sm_inodedephd);
1094	LIST_INIT(&bmsafemap->sm_newblkhd);
1095	ACQUIRE_LOCK(&lk);
1096	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1097	return (bmsafemap);
1098}
1099
1100/*
1101 * Direct block allocation dependencies.
1102 *
1103 * When a new block is allocated, the corresponding disk locations must be
1104 * initialized (with zeros or new data) before the on-disk inode points to
1105 * them.  Also, the freemap from which the block was allocated must be
1106 * updated (on disk) before the inode's pointer. These two dependencies are
1107 * independent of each other and are needed for all file blocks and indirect
1108 * blocks that are pointed to directly by the inode.  Just before the
1109 * "in-core" version of the inode is updated with a newly allocated block
1110 * number, a procedure (below) is called to setup allocation dependency
1111 * structures.  These structures are removed when the corresponding
1112 * dependencies are satisfied or when the block allocation becomes obsolete
1113 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1114 * fragment that gets upgraded).  All of these cases are handled in
1115 * procedures described later.
1116 *
1117 * When a file extension causes a fragment to be upgraded, either to a larger
1118 * fragment or to a full block, the on-disk location may change (if the
1119 * previous fragment could not simply be extended). In this case, the old
1120 * fragment must be de-allocated, but not until after the inode's pointer has
1121 * been updated. In most cases, this is handled by later procedures, which
1122 * will construct a "freefrag" structure to be added to the workitem queue
1123 * when the inode update is complete (or obsolete).  The main exception to
1124 * this is when an allocation occurs while a pending allocation dependency
1125 * (for the same block pointer) remains.  This case is handled in the main
1126 * allocation dependency setup procedure by immediately freeing the
1127 * unreferenced fragments.
1128 */
1129void
1130softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1131	struct inode *ip;	/* inode to which block is being added */
1132	ufs_lbn_t lbn;		/* block pointer within inode */
1133	ufs_daddr_t newblkno;	/* disk block number being added */
1134	ufs_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1135	long newsize;		/* size of new block */
1136	long oldsize;		/* size of new block */
1137	struct buf *bp;		/* bp for allocated block */
1138{
1139	struct allocdirect *adp, *oldadp;
1140	struct allocdirectlst *adphead;
1141	struct bmsafemap *bmsafemap;
1142	struct inodedep *inodedep;
1143	struct pagedep *pagedep;
1144	struct newblk *newblk;
1145
1146	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1147		M_ALLOCDIRECT, M_WAITOK);
1148	bzero(adp, sizeof(struct allocdirect));
1149	adp->ad_list.wk_type = D_ALLOCDIRECT;
1150	adp->ad_lbn = lbn;
1151	adp->ad_newblkno = newblkno;
1152	adp->ad_oldblkno = oldblkno;
1153	adp->ad_newsize = newsize;
1154	adp->ad_oldsize = oldsize;
1155	adp->ad_state = ATTACHED;
1156	if (newblkno == oldblkno)
1157		adp->ad_freefrag = NULL;
1158	else
1159		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1160
1161	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1162		panic("softdep_setup_allocdirect: lost block");
1163
1164	ACQUIRE_LOCK(&lk);
1165	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
1166	adp->ad_inodedep = inodedep;
1167
1168	if (newblk->nb_state == DEPCOMPLETE) {
1169		adp->ad_state |= DEPCOMPLETE;
1170		adp->ad_buf = NULL;
1171	} else {
1172		bmsafemap = newblk->nb_bmsafemap;
1173		adp->ad_buf = bmsafemap->sm_buf;
1174		LIST_REMOVE(newblk, nb_deps);
1175		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1176	}
1177	LIST_REMOVE(newblk, nb_hash);
1178	FREE(newblk, M_NEWBLK);
1179
1180	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1181	if (lbn >= NDADDR) {
1182		/* allocating an indirect block */
1183		if (oldblkno != 0)
1184			panic("softdep_setup_allocdirect: non-zero indir");
1185	} else {
1186		/*
1187		 * Allocating a direct block.
1188		 *
1189		 * If we are allocating a directory block, then we must
1190		 * allocate an associated pagedep to track additions and
1191		 * deletions.
1192		 */
1193		if ((ip->i_mode & IFMT) == IFDIR &&
1194		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1195			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1196	}
1197	/*
1198	 * The list of allocdirects must be kept in sorted and ascending
1199	 * order so that the rollback routines can quickly determine the
1200	 * first uncommitted block (the size of the file stored on disk
1201	 * ends at the end of the lowest committed fragment, or if there
1202	 * are no fragments, at the end of the highest committed block).
1203	 * Since files generally grow, the typical case is that the new
1204	 * block is to be added at the end of the list. We speed this
1205	 * special case by checking against the last allocdirect in the
1206	 * list before laboriously traversing the list looking for the
1207	 * insertion point.
1208	 */
1209	adphead = &inodedep->id_newinoupdt;
1210	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1211	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1212		/* insert at end of list */
1213		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1214		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1215			allocdirect_merge(adphead, adp, oldadp);
1216		FREE_LOCK(&lk);
1217		return;
1218	}
1219	for (oldadp = TAILQ_FIRST(adphead); oldadp;
1220	     oldadp = TAILQ_NEXT(oldadp, ad_next)) {
1221		if (oldadp->ad_lbn >= lbn)
1222			break;
1223	}
1224	if (oldadp == NULL)
1225		panic("softdep_setup_allocdirect: lost entry");
1226	/* insert in middle of list */
1227	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1228	if (oldadp->ad_lbn == lbn)
1229		allocdirect_merge(adphead, adp, oldadp);
1230	FREE_LOCK(&lk);
1231}
1232
1233/*
1234 * Replace an old allocdirect dependency with a newer one.
1235 * This routine must be called with splbio interrupts blocked.
1236 */
1237static void
1238allocdirect_merge(adphead, newadp, oldadp)
1239	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1240	struct allocdirect *newadp;	/* allocdirect being added */
1241	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1242{
1243	struct freefrag *freefrag;
1244
1245#ifdef DEBUG
1246	if (lk.lkt_held == -1)
1247		panic("allocdirect_merge: lock not held");
1248#endif
1249	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1250	    newadp->ad_oldsize != oldadp->ad_newsize ||
1251	    newadp->ad_lbn >= NDADDR)
1252		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1253		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1254		    NDADDR);
1255	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1256	newadp->ad_oldsize = oldadp->ad_oldsize;
1257	/*
1258	 * If the old dependency had a fragment to free or had never
1259	 * previously had a block allocated, then the new dependency
1260	 * can immediately post its freefrag and adopt the old freefrag.
1261	 * This action is done by swapping the freefrag dependencies.
1262	 * The new dependency gains the old one's freefrag, and the
1263	 * old one gets the new one and then immediately puts it on
1264	 * the worklist when it is freed by free_allocdirect. It is
1265	 * not possible to do this swap when the old dependency had a
1266	 * non-zero size but no previous fragment to free. This condition
1267	 * arises when the new block is an extension of the old block.
1268	 * Here, the first part of the fragment allocated to the new
1269	 * dependency is part of the block currently claimed on disk by
1270	 * the old dependency, so cannot legitimately be freed until the
1271	 * conditions for the new dependency are fulfilled.
1272	 */
1273	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1274		freefrag = newadp->ad_freefrag;
1275		newadp->ad_freefrag = oldadp->ad_freefrag;
1276		oldadp->ad_freefrag = freefrag;
1277	}
1278	free_allocdirect(adphead, oldadp, 0);
1279}
1280
1281/*
1282 * Allocate a new freefrag structure if needed.
1283 */
1284static struct freefrag *
1285newfreefrag(ip, blkno, size)
1286	struct inode *ip;
1287	ufs_daddr_t blkno;
1288	long size;
1289{
1290	struct freefrag *freefrag;
1291	struct fs *fs;
1292
1293	if (blkno == 0)
1294		return (NULL);
1295	fs = ip->i_fs;
1296	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1297		panic("newfreefrag: frag size");
1298	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1299		M_FREEFRAG, M_WAITOK);
1300	freefrag->ff_list.wk_type = D_FREEFRAG;
1301	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1302	freefrag->ff_inum = ip->i_number;
1303	freefrag->ff_fs = fs;
1304	freefrag->ff_devvp = ip->i_devvp;
1305	freefrag->ff_blkno = blkno;
1306	freefrag->ff_fragsize = size;
1307	return (freefrag);
1308}
1309
1310/*
1311 * This workitem de-allocates fragments that were replaced during
1312 * file block allocation.
1313 */
1314static void
1315handle_workitem_freefrag(freefrag)
1316	struct freefrag *freefrag;
1317{
1318	struct inode tip;
1319
1320	tip.i_fs = freefrag->ff_fs;
1321	tip.i_devvp = freefrag->ff_devvp;
1322	tip.i_dev = freefrag->ff_devvp->v_rdev;
1323	tip.i_number = freefrag->ff_inum;
1324	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1325	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1326	FREE(freefrag, M_FREEFRAG);
1327}
1328
1329/*
1330 * Indirect block allocation dependencies.
1331 *
1332 * The same dependencies that exist for a direct block also exist when
1333 * a new block is allocated and pointed to by an entry in a block of
1334 * indirect pointers. The undo/redo states described above are also
1335 * used here. Because an indirect block contains many pointers that
1336 * may have dependencies, a second copy of the entire in-memory indirect
1337 * block is kept. The buffer cache copy is always completely up-to-date.
1338 * The second copy, which is used only as a source for disk writes,
1339 * contains only the safe pointers (i.e., those that have no remaining
1340 * update dependencies). The second copy is freed when all pointers
1341 * are safe. The cache is not allowed to replace indirect blocks with
1342 * pending update dependencies. If a buffer containing an indirect
1343 * block with dependencies is written, these routines will mark it
1344 * dirty again. It can only be successfully written once all the
1345 * dependencies are removed. The ffs_fsync routine in conjunction with
1346 * softdep_sync_metadata work together to get all the dependencies
1347 * removed so that a file can be successfully written to disk. Three
1348 * procedures are used when setting up indirect block pointer
1349 * dependencies. The division is necessary because of the organization
1350 * of the "balloc" routine and because of the distinction between file
1351 * pages and file metadata blocks.
1352 */
1353
1354/*
1355 * Allocate a new allocindir structure.
1356 */
1357static struct allocindir *
1358newallocindir(ip, ptrno, newblkno, oldblkno)
1359	struct inode *ip;	/* inode for file being extended */
1360	int ptrno;		/* offset of pointer in indirect block */
1361	ufs_daddr_t newblkno;	/* disk block number being added */
1362	ufs_daddr_t oldblkno;	/* previous block number, 0 if none */
1363{
1364	struct allocindir *aip;
1365
1366	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1367		M_ALLOCINDIR, M_WAITOK);
1368	bzero(aip, sizeof(struct allocindir));
1369	aip->ai_list.wk_type = D_ALLOCINDIR;
1370	aip->ai_state = ATTACHED;
1371	aip->ai_offset = ptrno;
1372	aip->ai_newblkno = newblkno;
1373	aip->ai_oldblkno = oldblkno;
1374	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1375	return (aip);
1376}
1377
1378/*
1379 * Called just before setting an indirect block pointer
1380 * to a newly allocated file page.
1381 */
1382void
1383softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1384	struct inode *ip;	/* inode for file being extended */
1385	ufs_lbn_t lbn;		/* allocated block number within file */
1386	struct buf *bp;		/* buffer with indirect blk referencing page */
1387	int ptrno;		/* offset of pointer in indirect block */
1388	ufs_daddr_t newblkno;	/* disk block number being added */
1389	ufs_daddr_t oldblkno;	/* previous block number, 0 if none */
1390	struct buf *nbp;	/* buffer holding allocated page */
1391{
1392	struct allocindir *aip;
1393	struct pagedep *pagedep;
1394
1395	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1396	ACQUIRE_LOCK(&lk);
1397	/*
1398	 * If we are allocating a directory page, then we must
1399	 * allocate an associated pagedep to track additions and
1400	 * deletions.
1401	 */
1402	if ((ip->i_mode & IFMT) == IFDIR &&
1403	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1404		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1405	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1406	FREE_LOCK(&lk);
1407	setup_allocindir_phase2(bp, ip, aip);
1408}
1409
1410/*
1411 * Called just before setting an indirect block pointer to a
1412 * newly allocated indirect block.
1413 */
1414void
1415softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
1416	struct buf *nbp;	/* newly allocated indirect block */
1417	struct inode *ip;	/* inode for file being extended */
1418	struct buf *bp;		/* indirect block referencing allocated block */
1419	int ptrno;		/* offset of pointer in indirect block */
1420	ufs_daddr_t newblkno;	/* disk block number being added */
1421{
1422	struct allocindir *aip;
1423
1424	aip = newallocindir(ip, ptrno, newblkno, 0);
1425	ACQUIRE_LOCK(&lk);
1426	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1427	FREE_LOCK(&lk);
1428	setup_allocindir_phase2(bp, ip, aip);
1429}
1430
1431/*
1432 * Called to finish the allocation of the "aip" allocated
1433 * by one of the two routines above.
1434 */
1435static void
1436setup_allocindir_phase2(bp, ip, aip)
1437	struct buf *bp;		/* in-memory copy of the indirect block */
1438	struct inode *ip;	/* inode for file being extended */
1439	struct allocindir *aip;	/* allocindir allocated by the above routines */
1440{
1441	struct worklist *wk;
1442	struct indirdep *indirdep, *newindirdep;
1443	struct bmsafemap *bmsafemap;
1444	struct allocindir *oldaip;
1445	struct freefrag *freefrag;
1446	struct newblk *newblk;
1447
1448	if (bp->b_lblkno >= 0)
1449		panic("setup_allocindir_phase2: not indir blk");
1450	for (indirdep = NULL, newindirdep = NULL; ; ) {
1451		ACQUIRE_LOCK(&lk);
1452		for (wk = LIST_FIRST(&bp->b_dep); wk;
1453		     wk = LIST_NEXT(wk, wk_list)) {
1454			if (wk->wk_type != D_INDIRDEP)
1455				continue;
1456			indirdep = WK_INDIRDEP(wk);
1457			break;
1458		}
1459		if (indirdep == NULL && newindirdep) {
1460			indirdep = newindirdep;
1461			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
1462			newindirdep = NULL;
1463		}
1464		FREE_LOCK(&lk);
1465		if (indirdep) {
1466			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1467			    &newblk) == 0)
1468				panic("setup_allocindir: lost block");
1469			ACQUIRE_LOCK(&lk);
1470			if (newblk->nb_state == DEPCOMPLETE) {
1471				aip->ai_state |= DEPCOMPLETE;
1472				aip->ai_buf = NULL;
1473			} else {
1474				bmsafemap = newblk->nb_bmsafemap;
1475				aip->ai_buf = bmsafemap->sm_buf;
1476				LIST_REMOVE(newblk, nb_deps);
1477				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1478				    aip, ai_deps);
1479			}
1480			LIST_REMOVE(newblk, nb_hash);
1481			FREE(newblk, M_NEWBLK);
1482			aip->ai_indirdep = indirdep;
1483			/*
1484			 * Check to see if there is an existing dependency
1485			 * for this block. If there is, merge the old
1486			 * dependency into the new one.
1487			 */
1488			if (aip->ai_oldblkno == 0)
1489				oldaip = NULL;
1490			else
1491				for (oldaip=LIST_FIRST(&indirdep->ir_deplisthd);
1492				    oldaip; oldaip = LIST_NEXT(oldaip, ai_next))
1493					if (oldaip->ai_offset == aip->ai_offset)
1494						break;
1495			if (oldaip != NULL) {
1496				if (oldaip->ai_newblkno != aip->ai_oldblkno)
1497					panic("setup_allocindir_phase2: blkno");
1498				aip->ai_oldblkno = oldaip->ai_oldblkno;
1499				freefrag = oldaip->ai_freefrag;
1500				oldaip->ai_freefrag = aip->ai_freefrag;
1501				aip->ai_freefrag = freefrag;
1502				free_allocindir(oldaip, NULL);
1503			}
1504			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1505			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1506			    [aip->ai_offset] = aip->ai_oldblkno;
1507			FREE_LOCK(&lk);
1508		}
1509		if (newindirdep) {
1510			if (indirdep->ir_savebp != NULL)
1511				brelse(newindirdep->ir_savebp);
1512			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1513		}
1514		if (indirdep)
1515			break;
1516		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1517			M_INDIRDEP, M_WAITOK);
1518		newindirdep->ir_list.wk_type = D_INDIRDEP;
1519		newindirdep->ir_state = ATTACHED;
1520		LIST_INIT(&newindirdep->ir_deplisthd);
1521		LIST_INIT(&newindirdep->ir_donehd);
1522		if (bp->b_blkno == bp->b_lblkno) {
1523			VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
1524				NULL, NULL);
1525		}
1526		newindirdep->ir_savebp =
1527		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0);
1528		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1529	}
1530}
1531
1532/*
1533 * Block de-allocation dependencies.
1534 *
1535 * When blocks are de-allocated, the on-disk pointers must be nullified before
1536 * the blocks are made available for use by other files.  (The true
1537 * requirement is that old pointers must be nullified before new on-disk
1538 * pointers are set.  We chose this slightly more stringent requirement to
1539 * reduce complexity.) Our implementation handles this dependency by updating
1540 * the inode (or indirect block) appropriately but delaying the actual block
1541 * de-allocation (i.e., freemap and free space count manipulation) until
1542 * after the updated versions reach stable storage.  After the disk is
1543 * updated, the blocks can be safely de-allocated whenever it is convenient.
1544 * This implementation handles only the common case of reducing a file's
1545 * length to zero. Other cases are handled by the conventional synchronous
1546 * write approach.
1547 *
1548 * The ffs implementation with which we worked double-checks
1549 * the state of the block pointers and file size as it reduces
1550 * a file's length.  Some of this code is replicated here in our
1551 * soft updates implementation.  The freeblks->fb_chkcnt field is
1552 * used to transfer a part of this information to the procedure
1553 * that eventually de-allocates the blocks.
1554 *
1555 * This routine should be called from the routine that shortens
1556 * a file's length, before the inode's size or block pointers
1557 * are modified. It will save the block pointer information for
1558 * later release and zero the inode so that the calling routine
1559 * can release it.
1560 */
1561static long num_freeblks;	/* number of freeblks allocated */
1562void
1563softdep_setup_freeblocks(ip, length)
1564	struct inode *ip;	/* The inode whose length is to be reduced */
1565	off_t length;		/* The new length for the file */
1566{
1567	struct freeblks *freeblks;
1568	struct inodedep *inodedep;
1569	struct allocdirect *adp;
1570	struct vnode *vp;
1571	struct buf *bp;
1572	struct fs *fs;
1573	int i, error;
1574
1575	fs = ip->i_fs;
1576	if (length != 0)
1577		panic("softde_setup_freeblocks: non-zero length");
1578	(void) checklimit(&num_freeblks, 0);
1579	num_freeblks += 1;
1580	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1581		M_FREEBLKS, M_WAITOK);
1582	bzero(freeblks, sizeof(struct freeblks));
1583	freeblks->fb_list.wk_type = D_FREEBLKS;
1584	freeblks->fb_uid = ip->i_uid;
1585	freeblks->fb_previousinum = ip->i_number;
1586	freeblks->fb_devvp = ip->i_devvp;
1587	freeblks->fb_fs = fs;
1588	freeblks->fb_oldsize = ip->i_size;
1589	freeblks->fb_newsize = length;
1590	freeblks->fb_chkcnt = ip->i_blocks;
1591	for (i = 0; i < NDADDR; i++) {
1592		freeblks->fb_dblks[i] = ip->i_db[i];
1593		ip->i_db[i] = 0;
1594	}
1595	for (i = 0; i < NIADDR; i++) {
1596		freeblks->fb_iblks[i] = ip->i_ib[i];
1597		ip->i_ib[i] = 0;
1598	}
1599	ip->i_blocks = 0;
1600	ip->i_size = 0;
1601	/*
1602	 * Push the zero'ed inode to to its disk buffer so that we are free
1603	 * to delete its dependencies below. Once the dependencies are gone
1604	 * the buffer can be safely released.
1605	 */
1606	if ((error = bread(ip->i_devvp,
1607	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
1608	    (int)fs->fs_bsize, NOCRED, &bp)) != 0)
1609		softdep_error("softdep_setup_freeblocks", error);
1610	*((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1611	    ip->i_din;
1612	/*
1613	 * Find and eliminate any inode dependencies.
1614	 */
1615	ACQUIRE_LOCK(&lk);
1616	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1617	if ((inodedep->id_state & IOSTARTED) != 0)
1618		panic("softdep_setup_freeblocks: inode busy");
1619	/*
1620	 * Add the freeblks structure to the list of operations that
1621	 * must await the zero'ed inode being written to disk.
1622	 */
1623	WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1624	/*
1625	 * Because the file length has been truncated to zero, any
1626	 * pending block allocation dependency structures associated
1627	 * with this inode are obsolete and can simply be de-allocated.
1628	 * We must first merge the two dependency lists to get rid of
1629	 * any duplicate freefrag structures, then purge the merged list.
1630	 */
1631	merge_inode_lists(inodedep);
1632	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1633		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1634	FREE_LOCK(&lk);
1635	bdwrite(bp);
1636	/*
1637	 * We must wait for any I/O in progress to finish so that
1638	 * all potential buffers on the dirty list will be visible.
1639	 * Once they are all there, walk the list and get rid of
1640	 * any dependencies.
1641	 */
1642	vp = ITOV(ip);
1643	ACQUIRE_LOCK(&lk);
1644	drain_output(vp, 1);
1645	while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) {
1646		bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
1647		(void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
1648		deallocate_dependencies(bp, inodedep);
1649		bp->b_flags |= B_INVAL | B_NOCACHE;
1650		FREE_LOCK(&lk);
1651		brelse(bp);
1652		ACQUIRE_LOCK(&lk);
1653	}
1654	/*
1655	 * Try freeing the inodedep in case that was the last dependency.
1656	 */
1657	if ((inodedep_lookup(fs, ip->i_number, 0, &inodedep)) != 0)
1658		(void) free_inodedep(inodedep);
1659	FREE_LOCK(&lk);
1660}
1661
1662/*
1663 * Reclaim any dependency structures from a buffer that is about to
1664 * be reallocated to a new vnode. The buffer must be locked, thus,
1665 * no I/O completion operations can occur while we are manipulating
1666 * its associated dependencies. The mutex is held so that other I/O's
1667 * associated with related dependencies do not occur.
1668 */
1669static void
1670deallocate_dependencies(bp, inodedep)
1671	struct buf *bp;
1672	struct inodedep *inodedep;
1673{
1674	struct worklist *wk;
1675	struct indirdep *indirdep;
1676	struct allocindir *aip;
1677	struct pagedep *pagedep;
1678	struct dirrem *dirrem;
1679	struct diradd *dap;
1680	int i;
1681
1682	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1683		switch (wk->wk_type) {
1684
1685		case D_INDIRDEP:
1686			indirdep = WK_INDIRDEP(wk);
1687			/*
1688			 * None of the indirect pointers will ever be visible,
1689			 * so they can simply be tossed. GOINGAWAY ensures
1690			 * that allocated pointers will be saved in the buffer
1691			 * cache until they are freed. Note that they will
1692			 * only be able to be found by their physical address
1693			 * since the inode mapping the logical address will
1694			 * be gone. The save buffer used for the safe copy
1695			 * was allocated in setup_allocindir_phase2 using
1696			 * the physical address so it could be used for this
1697			 * purpose. Hence we swap the safe copy with the real
1698			 * copy, allowing the safe copy to be freed and holding
1699			 * on to the real copy for later use in indir_trunc.
1700			 */
1701			if (indirdep->ir_state & GOINGAWAY)
1702				panic("deallocate_dependencies: already gone");
1703			indirdep->ir_state |= GOINGAWAY;
1704			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
1705				free_allocindir(aip, inodedep);
1706			if (bp->b_lblkno >= 0 ||
1707			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
1708				panic("deallocate_dependencies: not indir");
1709			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1710			    bp->b_bcount);
1711			WORKLIST_REMOVE(wk);
1712			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
1713			continue;
1714
1715		case D_PAGEDEP:
1716			pagedep = WK_PAGEDEP(wk);
1717			/*
1718			 * None of the directory additions will ever be
1719			 * visible, so they can simply be tossed.
1720			 */
1721			for (i = 0; i < DAHASHSZ; i++)
1722				while (dap=LIST_FIRST(&pagedep->pd_diraddhd[i]))
1723					free_diradd(dap);
1724			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
1725				free_diradd(dap);
1726			/*
1727			 * Copy any directory remove dependencies to the list
1728			 * to be processed after the zero'ed inode is written.
1729			 * If the inode has already been written, then they
1730			 * can be dumped directly onto the work list.
1731			 */
1732			for (dirrem = LIST_FIRST(&pagedep->pd_dirremhd); dirrem;
1733			     dirrem = LIST_NEXT(dirrem, dm_next)) {
1734				LIST_REMOVE(dirrem, dm_next);
1735				dirrem->dm_dirinum = pagedep->pd_ino;
1736				if (inodedep == NULL)
1737					add_to_worklist(&dirrem->dm_list);
1738				else
1739					WORKLIST_INSERT(&inodedep->id_bufwait,
1740					    &dirrem->dm_list);
1741			}
1742			WORKLIST_REMOVE(&pagedep->pd_list);
1743			LIST_REMOVE(pagedep, pd_hash);
1744			WORKITEM_FREE(pagedep, D_PAGEDEP);
1745			continue;
1746
1747		case D_ALLOCINDIR:
1748			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1749			continue;
1750
1751		case D_ALLOCDIRECT:
1752		case D_INODEDEP:
1753			panic("deallocate_dependencies: Unexpected type %s",
1754			    TYPENAME(wk->wk_type));
1755			/* NOTREACHED */
1756
1757		default:
1758			panic("deallocate_dependencies: Unknown type %s",
1759			    TYPENAME(wk->wk_type));
1760			/* NOTREACHED */
1761		}
1762	}
1763}
1764
1765/*
1766 * Free an allocdirect. Generate a new freefrag work request if appropriate.
1767 * This routine must be called with splbio interrupts blocked.
1768 */
1769static void
1770free_allocdirect(adphead, adp, delay)
1771	struct allocdirectlst *adphead;
1772	struct allocdirect *adp;
1773	int delay;
1774{
1775
1776#ifdef DEBUG
1777	if (lk.lkt_held == -1)
1778		panic("free_allocdirect: lock not held");
1779#endif
1780	if ((adp->ad_state & DEPCOMPLETE) == 0)
1781		LIST_REMOVE(adp, ad_deps);
1782	TAILQ_REMOVE(adphead, adp, ad_next);
1783	if ((adp->ad_state & COMPLETE) == 0)
1784		WORKLIST_REMOVE(&adp->ad_list);
1785	if (adp->ad_freefrag != NULL) {
1786		if (delay)
1787			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
1788			    &adp->ad_freefrag->ff_list);
1789		else
1790			add_to_worklist(&adp->ad_freefrag->ff_list);
1791	}
1792	WORKITEM_FREE(adp, D_ALLOCDIRECT);
1793}
1794
1795/*
1796 * Prepare an inode to be freed. The actual free operation is not
1797 * done until the zero'ed inode has been written to disk.
1798 */
1799static long num_freefile;	/* number of freefile allocated */
1800void
1801softdep_freefile(pvp, ino, mode)
1802		struct vnode *pvp;
1803		ino_t ino;
1804		int mode;
1805{
1806	struct inode *ip = VTOI(pvp);
1807	struct inodedep *inodedep;
1808	struct freefile *freefile;
1809
1810	/*
1811	 * This sets up the inode de-allocation dependency.
1812	 */
1813	(void) checklimit(&num_freefile, 0);
1814	num_freefile += 1;
1815	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
1816		M_FREEFILE, M_WAITOK);
1817	freefile->fx_list.wk_type = D_FREEFILE;
1818	freefile->fx_list.wk_state = 0;
1819	freefile->fx_mode = mode;
1820	freefile->fx_oldinum = ino;
1821	freefile->fx_devvp = ip->i_devvp;
1822	freefile->fx_fs = ip->i_fs;
1823
1824	/*
1825	 * If the inodedep does not exist, then the zero'ed inode has
1826	 * been written to disk and we can free the file immediately.
1827	 */
1828	ACQUIRE_LOCK(&lk);
1829	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0) {
1830		add_to_worklist(&freefile->fx_list);
1831		FREE_LOCK(&lk);
1832		return;
1833	}
1834
1835	/*
1836	 * If we still have a bitmap dependency, then the inode has never
1837	 * been written to disk. Drop the dependency as it is no longer
1838	 * necessary since the inode is being deallocated. We could process
1839	 * the freefile immediately, but then we would have to clear the
1840	 * id_inowait dependencies here and it is easier just to let the
1841	 * zero'ed inode be written and let them be cleaned up in the
1842	 * normal followup actions that follow the inode write.
1843	 */
1844	 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
1845		inodedep->id_state |= DEPCOMPLETE;
1846		LIST_REMOVE(inodedep, id_deps);
1847		inodedep->id_buf = NULL;
1848	}
1849	/*
1850	 * If the inodedep has no dependencies associated with it,
1851	 * then we must free it here and free the file immediately.
1852	 * This case arises when an early allocation fails (for
1853	 * example, the user is over their file quota).
1854	 */
1855	if (free_inodedep(inodedep) == 0)
1856		WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
1857	else
1858		add_to_worklist(&freefile->fx_list);
1859	FREE_LOCK(&lk);
1860}
1861
1862/*
1863 * Try to free an inodedep structure. Return 1 if it could be freed.
1864 */
1865static int
1866free_inodedep(inodedep)
1867	struct inodedep *inodedep;
1868{
1869
1870	if ((inodedep->id_state & ONWORKLIST) != 0 ||
1871	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
1872	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
1873	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
1874	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
1875	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
1876	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
1877	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
1878		return (0);
1879	LIST_REMOVE(inodedep, id_hash);
1880	WORKITEM_FREE(inodedep, D_INODEDEP);
1881	num_inodedep -= 1;
1882	return (1);
1883}
1884
1885/*
1886 * This workitem routine performs the block de-allocation.
1887 * The workitem is added to the pending list after the updated
1888 * inode block has been written to disk.  As mentioned above,
1889 * checks regarding the number of blocks de-allocated (compared
1890 * to the number of blocks allocated for the file) are also
1891 * performed in this function.
1892 */
1893static void
1894handle_workitem_freeblocks(freeblks)
1895	struct freeblks *freeblks;
1896{
1897	struct inode tip;
1898	ufs_daddr_t bn;
1899	struct fs *fs;
1900	int i, level, bsize;
1901	long nblocks, blocksreleased = 0;
1902	int error, allerror = 0;
1903	ufs_lbn_t baselbns[NIADDR], tmpval;
1904
1905	tip.i_number = freeblks->fb_previousinum;
1906	tip.i_devvp = freeblks->fb_devvp;
1907	tip.i_dev = freeblks->fb_devvp->v_rdev;
1908	tip.i_fs = freeblks->fb_fs;
1909	tip.i_size = freeblks->fb_oldsize;
1910	tip.i_uid = freeblks->fb_uid;
1911	fs = freeblks->fb_fs;
1912	tmpval = 1;
1913	baselbns[0] = NDADDR;
1914	for (i = 1; i < NIADDR; i++) {
1915		tmpval *= NINDIR(fs);
1916		baselbns[i] = baselbns[i - 1] + tmpval;
1917	}
1918	nblocks = btodb(fs->fs_bsize);
1919	blocksreleased = 0;
1920	/*
1921	 * Indirect blocks first.
1922	 */
1923	for (level = (NIADDR - 1); level >= 0; level--) {
1924		if ((bn = freeblks->fb_iblks[level]) == 0)
1925			continue;
1926		if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level,
1927		    baselbns[level], &blocksreleased)) == 0)
1928			allerror = error;
1929		ffs_blkfree(&tip, bn, fs->fs_bsize);
1930		blocksreleased += nblocks;
1931	}
1932	/*
1933	 * All direct blocks or frags.
1934	 */
1935	for (i = (NDADDR - 1); i >= 0; i--) {
1936		if ((bn = freeblks->fb_dblks[i]) == 0)
1937			continue;
1938		bsize = blksize(fs, &tip, i);
1939		ffs_blkfree(&tip, bn, bsize);
1940		blocksreleased += btodb(bsize);
1941	}
1942
1943#ifdef DIAGNOSTIC
1944	if (freeblks->fb_chkcnt != blocksreleased)
1945		panic("handle_workitem_freeblocks: block count");
1946	if (allerror)
1947		softdep_error("handle_workitem_freeblks", allerror);
1948#endif /* DIAGNOSTIC */
1949	WORKITEM_FREE(freeblks, D_FREEBLKS);
1950	num_freeblks -= 1;
1951}
1952
1953/*
1954 * Release blocks associated with the inode ip and stored in the indirect
1955 * block dbn. If level is greater than SINGLE, the block is an indirect block
1956 * and recursive calls to indirtrunc must be used to cleanse other indirect
1957 * blocks.
1958 */
1959static int
1960indir_trunc(ip, dbn, level, lbn, countp)
1961	struct inode *ip;
1962	ufs_daddr_t dbn;
1963	int level;
1964	ufs_lbn_t lbn;
1965	long *countp;
1966{
1967	struct buf *bp;
1968	ufs_daddr_t *bap;
1969	ufs_daddr_t nb;
1970	struct fs *fs;
1971	struct worklist *wk;
1972	struct indirdep *indirdep;
1973	int i, lbnadd, nblocks;
1974	int error, allerror = 0;
1975
1976	fs = ip->i_fs;
1977	lbnadd = 1;
1978	for (i = level; i > 0; i--)
1979		lbnadd *= NINDIR(fs);
1980	/*
1981	 * Get buffer of block pointers to be freed. This routine is not
1982	 * called until the zero'ed inode has been written, so it is safe
1983	 * to free blocks as they are encountered. Because the inode has
1984	 * been zero'ed, calls to bmap on these blocks will fail. So, we
1985	 * have to use the on-disk address and the block device for the
1986	 * filesystem to look them up. If the file was deleted before its
1987	 * indirect blocks were all written to disk, the routine that set
1988	 * us up (deallocate_dependencies) will have arranged to leave
1989	 * a complete copy of the indirect block in memory for our use.
1990	 * Otherwise we have to read the blocks in from the disk.
1991	 */
1992	ACQUIRE_LOCK(&lk);
1993	if ((bp = incore(ip->i_devvp, dbn)) != NULL &&
1994	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1995		if (wk->wk_type != D_INDIRDEP ||
1996		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
1997		    (indirdep->ir_state & GOINGAWAY) == 0)
1998			panic("indir_trunc: lost indirdep");
1999		WORKLIST_REMOVE(wk);
2000		WORKITEM_FREE(indirdep, D_INDIRDEP);
2001		if (LIST_FIRST(&bp->b_dep) != NULL)
2002			panic("indir_trunc: dangling dep");
2003		FREE_LOCK(&lk);
2004	} else {
2005		FREE_LOCK(&lk);
2006		error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, NOCRED, &bp);
2007		if (error)
2008			return (error);
2009	}
2010	/*
2011	 * Recursively free indirect blocks.
2012	 */
2013	bap = (ufs_daddr_t *)bp->b_data;
2014	nblocks = btodb(fs->fs_bsize);
2015	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2016		if ((nb = bap[i]) == 0)
2017			continue;
2018		if (level != 0) {
2019			if ((error = indir_trunc(ip, fsbtodb(fs, nb),
2020			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2021				allerror = error;
2022		}
2023		ffs_blkfree(ip, nb, fs->fs_bsize);
2024		*countp += nblocks;
2025	}
2026	bp->b_flags |= B_INVAL | B_NOCACHE;
2027	brelse(bp);
2028	return (allerror);
2029}
2030
2031/*
2032 * Free an allocindir.
2033 * This routine must be called with splbio interrupts blocked.
2034 */
2035static void
2036free_allocindir(aip, inodedep)
2037	struct allocindir *aip;
2038	struct inodedep *inodedep;
2039{
2040	struct freefrag *freefrag;
2041
2042#ifdef DEBUG
2043	if (lk.lkt_held == -1)
2044		panic("free_allocindir: lock not held");
2045#endif
2046	if ((aip->ai_state & DEPCOMPLETE) == 0)
2047		LIST_REMOVE(aip, ai_deps);
2048	if (aip->ai_state & ONWORKLIST)
2049		WORKLIST_REMOVE(&aip->ai_list);
2050	LIST_REMOVE(aip, ai_next);
2051	if ((freefrag = aip->ai_freefrag) != NULL) {
2052		if (inodedep == NULL)
2053			add_to_worklist(&freefrag->ff_list);
2054		else
2055			WORKLIST_INSERT(&inodedep->id_bufwait,
2056			    &freefrag->ff_list);
2057	}
2058	WORKITEM_FREE(aip, D_ALLOCINDIR);
2059}
2060
2061/*
2062 * Directory entry addition dependencies.
2063 *
2064 * When adding a new directory entry, the inode (with its incremented link
2065 * count) must be written to disk before the directory entry's pointer to it.
2066 * Also, if the inode is newly allocated, the corresponding freemap must be
2067 * updated (on disk) before the directory entry's pointer. These requirements
2068 * are met via undo/redo on the directory entry's pointer, which consists
2069 * simply of the inode number.
2070 *
2071 * As directory entries are added and deleted, the free space within a
2072 * directory block can become fragmented.  The ufs file system will compact
2073 * a fragmented directory block to make space for a new entry. When this
2074 * occurs, the offsets of previously added entries change. Any "diradd"
2075 * dependency structures corresponding to these entries must be updated with
2076 * the new offsets.
2077 */
2078
2079/*
2080 * This routine is called after the in-memory inode's link
2081 * count has been incremented, but before the directory entry's
2082 * pointer to the inode has been set.
2083 */
2084void
2085softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp)
2086	struct buf *bp;		/* buffer containing directory block */
2087	struct inode *dp;	/* inode for directory */
2088	off_t diroffset;	/* offset of new entry in directory */
2089	long newinum;		/* inode referenced by new directory entry */
2090	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2091{
2092	int offset;		/* offset of new entry within directory block */
2093	ufs_lbn_t lbn;		/* block in directory containing new entry */
2094	struct fs *fs;
2095	struct diradd *dap;
2096	struct pagedep *pagedep;
2097	struct inodedep *inodedep;
2098	struct mkdir *mkdir1, *mkdir2;
2099
2100	/*
2101	 * Whiteouts have no dependencies.
2102	 */
2103	if (newinum == WINO) {
2104		if (newdirbp != NULL)
2105			bdwrite(newdirbp);
2106		return;
2107	}
2108
2109	fs = dp->i_fs;
2110	lbn = lblkno(fs, diroffset);
2111	offset = blkoff(fs, diroffset);
2112	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, M_WAITOK);
2113	bzero(dap, sizeof(struct diradd));
2114	dap->da_list.wk_type = D_DIRADD;
2115	dap->da_offset = offset;
2116	dap->da_newinum = newinum;
2117	dap->da_state = ATTACHED;
2118	if (newdirbp == NULL) {
2119		dap->da_state |= DEPCOMPLETE;
2120		ACQUIRE_LOCK(&lk);
2121	} else {
2122		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2123		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2124		    M_WAITOK);
2125		mkdir1->md_list.wk_type = D_MKDIR;
2126		mkdir1->md_state = MKDIR_BODY;
2127		mkdir1->md_diradd = dap;
2128		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2129		    M_WAITOK);
2130		mkdir2->md_list.wk_type = D_MKDIR;
2131		mkdir2->md_state = MKDIR_PARENT;
2132		mkdir2->md_diradd = dap;
2133		/*
2134		 * Dependency on "." and ".." being written to disk.
2135		 */
2136		mkdir1->md_buf = newdirbp;
2137		ACQUIRE_LOCK(&lk);
2138		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2139		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
2140		FREE_LOCK(&lk);
2141		bdwrite(newdirbp);
2142		/*
2143		 * Dependency on link count increase for parent directory
2144		 */
2145		ACQUIRE_LOCK(&lk);
2146		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2147		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2148			dap->da_state &= ~MKDIR_PARENT;
2149			WORKITEM_FREE(mkdir2, D_MKDIR);
2150		} else {
2151			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2152			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2153		}
2154	}
2155	/*
2156	 * Link into parent directory pagedep to await its being written.
2157	 */
2158	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2159		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2160	dap->da_pagedep = pagedep;
2161	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2162	    da_pdlist);
2163	/*
2164	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2165	 * is not yet written. If it is written, do the post-inode write
2166	 * processing to put it on the id_pendinghd list.
2167	 */
2168	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2169	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2170		diradd_inode_written(dap, inodedep);
2171	else
2172		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2173	FREE_LOCK(&lk);
2174}
2175
2176/*
2177 * This procedure is called to change the offset of a directory
2178 * entry when compacting a directory block which must be owned
2179 * exclusively by the caller. Note that the actual entry movement
2180 * must be done in this procedure to ensure that no I/O completions
2181 * occur while the move is in progress.
2182 */
2183void
2184softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
2185	struct inode *dp;	/* inode for directory */
2186	caddr_t base;		/* address of dp->i_offset */
2187	caddr_t oldloc;		/* address of old directory location */
2188	caddr_t newloc;		/* address of new directory location */
2189	int entrysize;		/* size of directory entry */
2190{
2191	int offset, oldoffset, newoffset;
2192	struct pagedep *pagedep;
2193	struct diradd *dap;
2194	ufs_lbn_t lbn;
2195
2196	ACQUIRE_LOCK(&lk);
2197	lbn = lblkno(dp->i_fs, dp->i_offset);
2198	offset = blkoff(dp->i_fs, dp->i_offset);
2199	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2200		goto done;
2201	oldoffset = offset + (oldloc - base);
2202	newoffset = offset + (newloc - base);
2203	for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(oldoffset)]);
2204	     dap; dap = LIST_NEXT(dap, da_pdlist)) {
2205		if (dap->da_offset != oldoffset)
2206			continue;
2207		dap->da_offset = newoffset;
2208		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2209			break;
2210		LIST_REMOVE(dap, da_pdlist);
2211		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2212		    dap, da_pdlist);
2213		break;
2214	}
2215	if (dap == NULL) {
2216		for (dap = LIST_FIRST(&pagedep->pd_pendinghd);
2217		     dap; dap = LIST_NEXT(dap, da_pdlist)) {
2218			if (dap->da_offset == oldoffset) {
2219				dap->da_offset = newoffset;
2220				break;
2221			}
2222		}
2223	}
2224done:
2225	bcopy(oldloc, newloc, entrysize);
2226	FREE_LOCK(&lk);
2227}
2228
2229/*
2230 * Free a diradd dependency structure. This routine must be called
2231 * with splbio interrupts blocked.
2232 */
2233static void
2234free_diradd(dap)
2235	struct diradd *dap;
2236{
2237	struct dirrem *dirrem;
2238	struct pagedep *pagedep;
2239	struct inodedep *inodedep;
2240	struct mkdir *mkdir, *nextmd;
2241
2242#ifdef DEBUG
2243	if (lk.lkt_held == -1)
2244		panic("free_diradd: lock not held");
2245#endif
2246	WORKLIST_REMOVE(&dap->da_list);
2247	LIST_REMOVE(dap, da_pdlist);
2248	if ((dap->da_state & DIRCHG) == 0) {
2249		pagedep = dap->da_pagedep;
2250	} else {
2251		dirrem = dap->da_previous;
2252		pagedep = dirrem->dm_pagedep;
2253		dirrem->dm_dirinum = pagedep->pd_ino;
2254		add_to_worklist(&dirrem->dm_list);
2255	}
2256	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2257	    0, &inodedep) != 0)
2258		(void) free_inodedep(inodedep);
2259	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2260		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2261			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2262			if (mkdir->md_diradd != dap)
2263				continue;
2264			dap->da_state &= ~mkdir->md_state;
2265			WORKLIST_REMOVE(&mkdir->md_list);
2266			LIST_REMOVE(mkdir, md_mkdirs);
2267			WORKITEM_FREE(mkdir, D_MKDIR);
2268		}
2269		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
2270			panic("free_diradd: unfound ref");
2271	}
2272	WORKITEM_FREE(dap, D_DIRADD);
2273}
2274
2275/*
2276 * Directory entry removal dependencies.
2277 *
2278 * When removing a directory entry, the entry's inode pointer must be
2279 * zero'ed on disk before the corresponding inode's link count is decremented
2280 * (possibly freeing the inode for re-use). This dependency is handled by
2281 * updating the directory entry but delaying the inode count reduction until
2282 * after the directory block has been written to disk. After this point, the
2283 * inode count can be decremented whenever it is convenient.
2284 */
2285
2286/*
2287 * This routine should be called immediately after removing
2288 * a directory entry.  The inode's link count should not be
2289 * decremented by the calling procedure -- the soft updates
2290 * code will do this task when it is safe.
2291 */
2292void
2293softdep_setup_remove(bp, dp, ip, isrmdir)
2294	struct buf *bp;		/* buffer containing directory block */
2295	struct inode *dp;	/* inode for the directory being modified */
2296	struct inode *ip;	/* inode for directory entry being removed */
2297	int isrmdir;		/* indicates if doing RMDIR */
2298{
2299	struct dirrem *dirrem;
2300
2301	/*
2302	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2303	 */
2304	dirrem = newdirrem(bp, dp, ip, isrmdir);
2305	if ((dirrem->dm_state & COMPLETE) == 0) {
2306		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2307		    dm_next);
2308	} else {
2309		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2310		add_to_worklist(&dirrem->dm_list);
2311	}
2312	FREE_LOCK(&lk);
2313}
2314
2315/*
2316 * Allocate a new dirrem if appropriate and return it along with
2317 * its associated pagedep. Called without a lock, returns with lock.
2318 */
2319static struct dirrem *
2320newdirrem(bp, dp, ip, isrmdir)
2321	struct buf *bp;		/* buffer containing directory block */
2322	struct inode *dp;	/* inode for the directory being modified */
2323	struct inode *ip;	/* inode for directory entry being removed */
2324	int isrmdir;		/* indicates if doing RMDIR */
2325{
2326	int offset;
2327	ufs_lbn_t lbn;
2328	struct diradd *dap;
2329	struct dirrem *dirrem;
2330	struct pagedep *pagedep;
2331
2332	/*
2333	 * Whiteouts have no deletion dependencies.
2334	 */
2335	if (ip == NULL)
2336		panic("newdirrem: whiteout");
2337	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2338		M_DIRREM, M_WAITOK);
2339	bzero(dirrem, sizeof(struct dirrem));
2340	dirrem->dm_list.wk_type = D_DIRREM;
2341	dirrem->dm_state = isrmdir ? RMDIR : 0;
2342	dirrem->dm_mnt = ITOV(ip)->v_mount;
2343	dirrem->dm_oldinum = ip->i_number;
2344
2345	ACQUIRE_LOCK(&lk);
2346	lbn = lblkno(dp->i_fs, dp->i_offset);
2347	offset = blkoff(dp->i_fs, dp->i_offset);
2348	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2349		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2350	dirrem->dm_pagedep = pagedep;
2351	/*
2352	 * Check for a diradd dependency for the same directory entry.
2353	 * If present, then both dependencies become obsolete and can
2354	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2355	 * list and the pd_pendinghd list.
2356	 */
2357	for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(offset)]);
2358	     dap; dap = LIST_NEXT(dap, da_pdlist))
2359		if (dap->da_offset == offset)
2360			break;
2361	if (dap == NULL) {
2362		for (dap = LIST_FIRST(&pagedep->pd_pendinghd);
2363		     dap; dap = LIST_NEXT(dap, da_pdlist))
2364			if (dap->da_offset == offset)
2365				break;
2366		if (dap == NULL)
2367			return (dirrem);
2368	}
2369	/*
2370	 * Must be ATTACHED at this point, so just delete it.
2371	 */
2372	if ((dap->da_state & ATTACHED) == 0)
2373		panic("newdirrem: not ATTACHED");
2374	if (dap->da_newinum != ip->i_number)
2375		panic("newdirrem: inum %d should be %d",
2376		    ip->i_number, dap->da_newinum);
2377	free_diradd(dap);
2378	dirrem->dm_state |= COMPLETE;
2379	return (dirrem);
2380}
2381
2382/*
2383 * Directory entry change dependencies.
2384 *
2385 * Changing an existing directory entry requires that an add operation
2386 * be completed first followed by a deletion. The semantics for the addition
2387 * are identical to the description of adding a new entry above except
2388 * that the rollback is to the old inode number rather than zero. Once
2389 * the addition dependency is completed, the removal is done as described
2390 * in the removal routine above.
2391 */
2392
2393/*
2394 * This routine should be called immediately after changing
2395 * a directory entry.  The inode's link count should not be
2396 * decremented by the calling procedure -- the soft updates
2397 * code will perform this task when it is safe.
2398 */
2399void
2400softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
2401	struct buf *bp;		/* buffer containing directory block */
2402	struct inode *dp;	/* inode for the directory being modified */
2403	struct inode *ip;	/* inode for directory entry being removed */
2404	long newinum;		/* new inode number for changed entry */
2405	int isrmdir;		/* indicates if doing RMDIR */
2406{
2407	int offset;
2408	struct diradd *dap = NULL;
2409	struct dirrem *dirrem;
2410	struct pagedep *pagedep;
2411	struct inodedep *inodedep;
2412
2413	offset = blkoff(dp->i_fs, dp->i_offset);
2414
2415	/*
2416	 * Whiteouts do not need diradd dependencies.
2417	 */
2418	if (newinum != WINO) {
2419		MALLOC(dap, struct diradd *, sizeof(struct diradd),
2420		    M_DIRADD, M_WAITOK);
2421		bzero(dap, sizeof(struct diradd));
2422		dap->da_list.wk_type = D_DIRADD;
2423		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2424		dap->da_offset = offset;
2425		dap->da_newinum = newinum;
2426	}
2427
2428	/*
2429	 * Allocate a new dirrem and ACQUIRE_LOCK.
2430	 */
2431	dirrem = newdirrem(bp, dp, ip, isrmdir);
2432	pagedep = dirrem->dm_pagedep;
2433	/*
2434	 * The possible values for isrmdir:
2435	 *	0 - non-directory file rename
2436	 *	1 - directory rename within same directory
2437	 *   inum - directory rename to new directory of given inode number
2438	 * When renaming to a new directory, we are both deleting and
2439	 * creating a new directory entry, so the link count on the new
2440	 * directory should not change. Thus we do not need the followup
2441	 * dirrem which is usually done in handle_workitem_remove. We set
2442	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2443	 * followup dirrem.
2444	 */
2445	if (isrmdir > 1)
2446		dirrem->dm_state |= DIRCHG;
2447
2448	/*
2449	 * Whiteouts have no additional dependencies,
2450	 * so just put the dirrem on the correct list.
2451	 */
2452	if (newinum == WINO) {
2453		if ((dirrem->dm_state & COMPLETE) == 0) {
2454			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2455			    dm_next);
2456		} else {
2457			dirrem->dm_dirinum = pagedep->pd_ino;
2458			add_to_worklist(&dirrem->dm_list);
2459		}
2460		FREE_LOCK(&lk);
2461		return;
2462	}
2463
2464	/*
2465	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2466	 * is not yet written. If it is written, do the post-inode write
2467	 * processing to put it on the id_pendinghd list.
2468	 */
2469	dap->da_previous = dirrem;
2470	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2471	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2472		dap->da_state |= COMPLETE;
2473		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2474		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2475	} else {
2476		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2477		    dap, da_pdlist);
2478		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2479	}
2480	/*
2481	 * If the previous inode was never written or its previous directory
2482	 * entry was never written, then we do not want to roll back to this
2483	 * previous value. Instead we want to roll back to zero and immediately
2484	 * free the unwritten or unreferenced inode.
2485	 */
2486	if (dirrem->dm_state & COMPLETE) {
2487		dap->da_state &= ~DIRCHG;
2488		dap->da_pagedep = pagedep;
2489		dirrem->dm_dirinum = pagedep->pd_ino;
2490		add_to_worklist(&dirrem->dm_list);
2491	}
2492	FREE_LOCK(&lk);
2493}
2494
2495/*
2496 * Called whenever the link count on an inode is increased.
2497 * It creates an inode dependency so that the new reference(s)
2498 * to the inode cannot be committed to disk until the updated
2499 * inode has been written.
2500 */
2501void
2502softdep_increase_linkcnt(ip)
2503	struct inode *ip;	/* the inode with the increased link count */
2504{
2505	struct inodedep *inodedep;
2506
2507	ACQUIRE_LOCK(&lk);
2508	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2509	FREE_LOCK(&lk);
2510}
2511
2512/*
2513 * This workitem decrements the inode's link count.
2514 * If the link count reaches zero, the file is removed.
2515 */
2516static void
2517handle_workitem_remove(dirrem)
2518	struct dirrem *dirrem;
2519{
2520	struct proc *p = CURPROC;	/* XXX */
2521	struct inodedep *inodedep;
2522	struct vnode *vp;
2523	struct inode *ip;
2524	int error;
2525
2526	if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) {
2527		softdep_error("handle_workitem_remove: vget", error);
2528		return;
2529	}
2530	ip = VTOI(vp);
2531	/*
2532	 * Normal file deletion.
2533	 */
2534	if ((dirrem->dm_state & RMDIR) == 0) {
2535		ip->i_nlink--;
2536		if (ip->i_nlink < ip->i_effnlink)
2537			panic("handle_workitem_remove: bad file delta");
2538		ip->i_flag |= IN_CHANGE;
2539		vput(vp);
2540		WORKITEM_FREE(dirrem, D_DIRREM);
2541		return;
2542	}
2543	/*
2544	 * Directory deletion. Decrement reference count for both the
2545	 * just deleted parent directory entry and the reference for ".".
2546	 * Next truncate the directory to length zero. When the
2547	 * truncation completes, arrange to have the reference count on
2548	 * the parent decremented to account for the loss of "..".
2549	 */
2550	ip->i_nlink -= 2;
2551	if (ip->i_nlink < ip->i_effnlink)
2552		panic("handle_workitem_remove: bad dir delta");
2553	ip->i_flag |= IN_CHANGE;
2554	if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, p->p_ucred, p)) != 0)
2555		softdep_error("handle_workitem_remove: truncate", error);
2556	/*
2557	 * Rename a directory to a new parent. Since, we are both deleting
2558	 * and creating a new directory entry, the link count on the new
2559	 * directory should not change. Thus we skip the followup dirrem.
2560	 */
2561	if (dirrem->dm_state & DIRCHG) {
2562		vput(vp);
2563		WORKITEM_FREE(dirrem, D_DIRREM);
2564		return;
2565	}
2566	ACQUIRE_LOCK(&lk);
2567	(void) inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, DEPALLOC,
2568	    &inodedep);
2569	dirrem->dm_state = 0;
2570	dirrem->dm_oldinum = dirrem->dm_dirinum;
2571	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2572	FREE_LOCK(&lk);
2573	vput(vp);
2574}
2575
2576/*
2577 * Inode de-allocation dependencies.
2578 *
2579 * When an inode's link count is reduced to zero, it can be de-allocated. We
2580 * found it convenient to postpone de-allocation until after the inode is
2581 * written to disk with its new link count (zero).  At this point, all of the
2582 * on-disk inode's block pointers are nullified and, with careful dependency
2583 * list ordering, all dependencies related to the inode will be satisfied and
2584 * the corresponding dependency structures de-allocated.  So, if/when the
2585 * inode is reused, there will be no mixing of old dependencies with new
2586 * ones.  This artificial dependency is set up by the block de-allocation
2587 * procedure above (softdep_setup_freeblocks) and completed by the
2588 * following procedure.
2589 */
2590static void
2591handle_workitem_freefile(freefile)
2592	struct freefile *freefile;
2593{
2594	struct vnode vp;
2595	struct inode tip;
2596	struct inodedep *idp;
2597	int error;
2598
2599#ifdef DEBUG
2600	ACQUIRE_LOCK(&lk);
2601	if (inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp))
2602		panic("handle_workitem_freefile: inodedep survived");
2603	FREE_LOCK(&lk);
2604#endif
2605	tip.i_devvp = freefile->fx_devvp;
2606	tip.i_dev = freefile->fx_devvp->v_rdev;
2607	tip.i_fs = freefile->fx_fs;
2608	vp.v_data = &tip;
2609	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
2610		softdep_error("handle_workitem_freefile", error);
2611	WORKITEM_FREE(freefile, D_FREEFILE);
2612	num_freefile -= 1;
2613}
2614
2615/*
2616 * Disk writes.
2617 *
2618 * The dependency structures constructed above are most actively used when file
2619 * system blocks are written to disk.  No constraints are placed on when a
2620 * block can be written, but unsatisfied update dependencies are made safe by
2621 * modifying (or replacing) the source memory for the duration of the disk
2622 * write.  When the disk write completes, the memory block is again brought
2623 * up-to-date.
2624 *
2625 * In-core inode structure reclamation.
2626 *
2627 * Because there are a finite number of "in-core" inode structures, they are
2628 * reused regularly.  By transferring all inode-related dependencies to the
2629 * in-memory inode block and indexing them separately (via "inodedep"s), we
2630 * can allow "in-core" inode structures to be reused at any time and avoid
2631 * any increase in contention.
2632 *
2633 * Called just before entering the device driver to initiate a new disk I/O.
2634 * The buffer must be locked, thus, no I/O completion operations can occur
2635 * while we are manipulating its associated dependencies.
2636 */
2637void
2638softdep_disk_io_initiation(bp)
2639	struct buf *bp;		/* structure describing disk write to occur */
2640{
2641	struct worklist *wk, *nextwk;
2642	struct indirdep *indirdep;
2643
2644	/*
2645	 * We only care about write operations. There should never
2646	 * be dependencies for reads.
2647	 */
2648	if (bp->b_flags & B_READ)
2649		panic("softdep_disk_io_initiation: read");
2650	/*
2651	 * Do any necessary pre-I/O processing.
2652	 */
2653	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) {
2654		nextwk = LIST_NEXT(wk, wk_list);
2655		switch (wk->wk_type) {
2656
2657		case D_PAGEDEP:
2658			initiate_write_filepage(WK_PAGEDEP(wk), bp);
2659			continue;
2660
2661		case D_INODEDEP:
2662			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
2663			continue;
2664
2665		case D_INDIRDEP:
2666			indirdep = WK_INDIRDEP(wk);
2667			if (indirdep->ir_state & GOINGAWAY)
2668				panic("disk_io_initiation: indirdep gone");
2669			/*
2670			 * If there are no remaining dependencies, this
2671			 * will be writing the real pointers, so the
2672			 * dependency can be freed.
2673			 */
2674			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
2675				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
2676				brelse(indirdep->ir_savebp);
2677				/* inline expand WORKLIST_REMOVE(wk); */
2678				wk->wk_state &= ~ONWORKLIST;
2679				LIST_REMOVE(wk, wk_list);
2680				WORKITEM_FREE(indirdep, D_INDIRDEP);
2681				continue;
2682			}
2683			/*
2684			 * Replace up-to-date version with safe version.
2685			 */
2686			ACQUIRE_LOCK(&lk);
2687			indirdep->ir_state &= ~ATTACHED;
2688			indirdep->ir_state |= UNDONE;
2689			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
2690			    M_INDIRDEP, M_WAITOK);
2691			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
2692			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
2693			    bp->b_bcount);
2694			FREE_LOCK(&lk);
2695			continue;
2696
2697		case D_MKDIR:
2698		case D_BMSAFEMAP:
2699		case D_ALLOCDIRECT:
2700		case D_ALLOCINDIR:
2701			continue;
2702
2703		default:
2704			panic("handle_disk_io_initiation: Unexpected type %s",
2705			    TYPENAME(wk->wk_type));
2706			/* NOTREACHED */
2707		}
2708	}
2709}
2710
2711/*
2712 * Called from within the procedure above to deal with unsatisfied
2713 * allocation dependencies in a directory. The buffer must be locked,
2714 * thus, no I/O completion operations can occur while we are
2715 * manipulating its associated dependencies.
2716 */
2717static void
2718initiate_write_filepage(pagedep, bp)
2719	struct pagedep *pagedep;
2720	struct buf *bp;
2721{
2722	struct diradd *dap;
2723	struct direct *ep;
2724	int i;
2725
2726	if (pagedep->pd_state & IOSTARTED) {
2727		/*
2728		 * This can only happen if there is a driver that does not
2729		 * understand chaining. Here biodone will reissue the call
2730		 * to strategy for the incomplete buffers.
2731		 */
2732		printf("initiate_write_filepage: already started\n");
2733		return;
2734	}
2735	pagedep->pd_state |= IOSTARTED;
2736	ACQUIRE_LOCK(&lk);
2737	for (i = 0; i < DAHASHSZ; i++) {
2738		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
2739		     dap = LIST_NEXT(dap, da_pdlist)) {
2740			ep = (struct direct *)
2741			    ((char *)bp->b_data + dap->da_offset);
2742			if (ep->d_ino != dap->da_newinum)
2743				panic("%s: dir inum %d != new %d",
2744				    "initiate_write_filepage",
2745				    ep->d_ino, dap->da_newinum);
2746			if (dap->da_state & DIRCHG)
2747				ep->d_ino = dap->da_previous->dm_oldinum;
2748			else
2749				ep->d_ino = 0;
2750			dap->da_state &= ~ATTACHED;
2751			dap->da_state |= UNDONE;
2752		}
2753	}
2754	FREE_LOCK(&lk);
2755}
2756
2757/*
2758 * Called from within the procedure above to deal with unsatisfied
2759 * allocation dependencies in an inodeblock. The buffer must be
2760 * locked, thus, no I/O completion operations can occur while we
2761 * are manipulating its associated dependencies.
2762 */
2763static void
2764initiate_write_inodeblock(inodedep, bp)
2765	struct inodedep *inodedep;
2766	struct buf *bp;			/* The inode block */
2767{
2768	struct allocdirect *adp, *lastadp;
2769	struct dinode *dp;
2770	struct fs *fs;
2771	ufs_lbn_t prevlbn = 0;
2772	int i, deplist;
2773
2774	if (inodedep->id_state & IOSTARTED)
2775		panic("initiate_write_inodeblock: already started");
2776	inodedep->id_state |= IOSTARTED;
2777	fs = inodedep->id_fs;
2778	dp = (struct dinode *)bp->b_data +
2779	    ino_to_fsbo(fs, inodedep->id_ino);
2780	/*
2781	 * If the bitmap is not yet written, then the allocated
2782	 * inode cannot be written to disk.
2783	 */
2784	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
2785		if (inodedep->id_savedino != NULL)
2786			panic("initiate_write_inodeblock: already doing I/O");
2787		MALLOC(inodedep->id_savedino, struct dinode *,
2788		    sizeof(struct dinode), M_INODEDEP, M_WAITOK);
2789		*inodedep->id_savedino = *dp;
2790		bzero((caddr_t)dp, sizeof(struct dinode));
2791		return;
2792	}
2793	/*
2794	 * If no dependencies, then there is nothing to roll back.
2795	 */
2796	inodedep->id_savedsize = dp->di_size;
2797	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
2798		return;
2799	/*
2800	 * Set the dependencies to busy.
2801	 */
2802	ACQUIRE_LOCK(&lk);
2803	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
2804	     adp = TAILQ_NEXT(adp, ad_next)) {
2805#ifdef DIAGNOSTIC
2806		if (deplist != 0 && prevlbn >= adp->ad_lbn)
2807			panic("softdep_write_inodeblock: lbn order");
2808		prevlbn = adp->ad_lbn;
2809		if (adp->ad_lbn < NDADDR &&
2810		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
2811			panic("%s: direct pointer #%ld mismatch %d != %d",
2812			    "softdep_write_inodeblock", adp->ad_lbn,
2813			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
2814		if (adp->ad_lbn >= NDADDR &&
2815		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
2816			panic("%s: indirect pointer #%ld mismatch %d != %d",
2817			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
2818			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
2819		deplist |= 1 << adp->ad_lbn;
2820		if ((adp->ad_state & ATTACHED) == 0)
2821			panic("softdep_write_inodeblock: Unknown state 0x%x",
2822			    adp->ad_state);
2823#endif /* DIAGNOSTIC */
2824		adp->ad_state &= ~ATTACHED;
2825		adp->ad_state |= UNDONE;
2826	}
2827	/*
2828	 * The on-disk inode cannot claim to be any larger than the last
2829	 * fragment that has been written. Otherwise, the on-disk inode
2830	 * might have fragments that were not the last block in the file
2831	 * which would corrupt the filesystem.
2832	 */
2833	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
2834	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
2835		if (adp->ad_lbn >= NDADDR)
2836			break;
2837		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
2838		/* keep going until hitting a rollback to a frag */
2839		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
2840			continue;
2841		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
2842		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
2843#ifdef DIAGNOSTIC
2844			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
2845				panic("softdep_write_inodeblock: lost dep1");
2846#endif /* DIAGNOSTIC */
2847			dp->di_db[i] = 0;
2848		}
2849		for (i = 0; i < NIADDR; i++) {
2850#ifdef DIAGNOSTIC
2851			if (dp->di_ib[i] != 0 &&
2852			    (deplist & ((1 << NDADDR) << i)) == 0)
2853				panic("softdep_write_inodeblock: lost dep2");
2854#endif /* DIAGNOSTIC */
2855			dp->di_ib[i] = 0;
2856		}
2857		FREE_LOCK(&lk);
2858		return;
2859	}
2860	/*
2861	 * If we have zero'ed out the last allocated block of the file,
2862	 * roll back the size to the last currently allocated block.
2863	 * We know that this last allocated block is a full-sized as
2864	 * we already checked for fragments in the loop above.
2865	 */
2866	if (lastadp != NULL &&
2867	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
2868		for (i = lastadp->ad_lbn; i >= 0; i--)
2869			if (dp->di_db[i] != 0)
2870				break;
2871		dp->di_size = (i + 1) * fs->fs_bsize;
2872	}
2873	/*
2874	 * The only dependencies are for indirect blocks.
2875	 *
2876	 * The file size for indirect block additions is not guaranteed.
2877	 * Such a guarantee would be non-trivial to achieve. The conventional
2878	 * synchronous write implementation also does not make this guarantee.
2879	 * Fsck should catch and fix discrepancies. Arguably, the file size
2880	 * can be over-estimated without destroying integrity when the file
2881	 * moves into the indirect blocks (i.e., is large). If we want to
2882	 * postpone fsck, we are stuck with this argument.
2883	 */
2884	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
2885		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
2886	FREE_LOCK(&lk);
2887}
2888
2889/*
2890 * This routine is called during the completion interrupt
2891 * service routine for a disk write (from the procedure called
2892 * by the device driver to inform the file system caches of
2893 * a request completion).  It should be called early in this
2894 * procedure, before the block is made available to other
2895 * processes or other routines are called.
2896 */
2897void
2898softdep_disk_write_complete(bp)
2899	struct buf *bp;		/* describes the completed disk write */
2900{
2901	struct worklist *wk;
2902	struct workhead reattach;
2903	struct newblk *newblk;
2904	struct allocindir *aip;
2905	struct allocdirect *adp;
2906	struct indirdep *indirdep;
2907	struct inodedep *inodedep;
2908	struct bmsafemap *bmsafemap;
2909
2910#ifdef DEBUG
2911	if (lk.lkt_held != -1)
2912		panic("softdep_disk_write_complete: lock is held");
2913	lk.lkt_held = -2;
2914#endif
2915	LIST_INIT(&reattach);
2916	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2917		WORKLIST_REMOVE(wk);
2918		switch (wk->wk_type) {
2919
2920		case D_PAGEDEP:
2921			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
2922				WORKLIST_INSERT(&reattach, wk);
2923			continue;
2924
2925		case D_INODEDEP:
2926			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
2927				WORKLIST_INSERT(&reattach, wk);
2928			continue;
2929
2930		case D_BMSAFEMAP:
2931			bmsafemap = WK_BMSAFEMAP(wk);
2932			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
2933				newblk->nb_state |= DEPCOMPLETE;
2934				newblk->nb_bmsafemap = NULL;
2935				LIST_REMOVE(newblk, nb_deps);
2936			}
2937			while (adp = LIST_FIRST(&bmsafemap->sm_allocdirecthd)) {
2938				adp->ad_state |= DEPCOMPLETE;
2939				adp->ad_buf = NULL;
2940				LIST_REMOVE(adp, ad_deps);
2941				handle_allocdirect_partdone(adp);
2942			}
2943			while (aip = LIST_FIRST(&bmsafemap->sm_allocindirhd)) {
2944				aip->ai_state |= DEPCOMPLETE;
2945				aip->ai_buf = NULL;
2946				LIST_REMOVE(aip, ai_deps);
2947				handle_allocindir_partdone(aip);
2948			}
2949			while ((inodedep =
2950			       LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
2951				inodedep->id_state |= DEPCOMPLETE;
2952				LIST_REMOVE(inodedep, id_deps);
2953				inodedep->id_buf = NULL;
2954			}
2955			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
2956			continue;
2957
2958		case D_MKDIR:
2959			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
2960			continue;
2961
2962		case D_ALLOCDIRECT:
2963			adp = WK_ALLOCDIRECT(wk);
2964			adp->ad_state |= COMPLETE;
2965			handle_allocdirect_partdone(adp);
2966			continue;
2967
2968		case D_ALLOCINDIR:
2969			aip = WK_ALLOCINDIR(wk);
2970			aip->ai_state |= COMPLETE;
2971			handle_allocindir_partdone(aip);
2972			continue;
2973
2974		case D_INDIRDEP:
2975			indirdep = WK_INDIRDEP(wk);
2976			if (indirdep->ir_state & GOINGAWAY)
2977				panic("disk_write_complete: indirdep gone");
2978			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
2979			FREE(indirdep->ir_saveddata, M_INDIRDEP);
2980			indirdep->ir_saveddata = 0;
2981			indirdep->ir_state &= ~UNDONE;
2982			indirdep->ir_state |= ATTACHED;
2983			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
2984				handle_allocindir_partdone(aip);
2985				if (aip == LIST_FIRST(&indirdep->ir_donehd))
2986					panic("disk_write_complete: not gone");
2987			}
2988			WORKLIST_INSERT(&reattach, wk);
2989			if ((bp->b_flags & B_DELWRI) == 0)
2990				stat_indir_blk_ptrs++;
2991			bdirty(bp);
2992			continue;
2993
2994		default:
2995			panic("handle_disk_write_complete: Unknown type %s",
2996			    TYPENAME(wk->wk_type));
2997			/* NOTREACHED */
2998		}
2999	}
3000	/*
3001	 * Reattach any requests that must be redone.
3002	 */
3003	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3004		WORKLIST_REMOVE(wk);
3005		WORKLIST_INSERT(&bp->b_dep, wk);
3006	}
3007#ifdef DEBUG
3008	if (lk.lkt_held != -2)
3009		panic("softdep_disk_write_complete: lock lost");
3010	lk.lkt_held = -1;
3011#endif
3012}
3013
3014/*
3015 * Called from within softdep_disk_write_complete above. Note that
3016 * this routine is always called from interrupt level with further
3017 * splbio interrupts blocked.
3018 */
3019static void
3020handle_allocdirect_partdone(adp)
3021	struct allocdirect *adp;	/* the completed allocdirect */
3022{
3023	struct allocdirect *listadp;
3024	struct inodedep *inodedep;
3025	long bsize;
3026
3027	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3028		return;
3029	if (adp->ad_buf != NULL)
3030		panic("handle_allocdirect_partdone: dangling dep");
3031	/*
3032	 * The on-disk inode cannot claim to be any larger than the last
3033	 * fragment that has been written. Otherwise, the on-disk inode
3034	 * might have fragments that were not the last block in the file
3035	 * which would corrupt the filesystem. Thus, we cannot free any
3036	 * allocdirects after one whose ad_oldblkno claims a fragment as
3037	 * these blocks must be rolled back to zero before writing the inode.
3038	 * We check the currently active set of allocdirects in id_inoupdt.
3039	 */
3040	inodedep = adp->ad_inodedep;
3041	bsize = inodedep->id_fs->fs_bsize;
3042	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp;
3043	     listadp = TAILQ_NEXT(listadp, ad_next)) {
3044		/* found our block */
3045		if (listadp == adp)
3046			break;
3047		/* continue if ad_oldlbn is not a fragment */
3048		if (listadp->ad_oldsize == 0 ||
3049		    listadp->ad_oldsize == bsize)
3050			continue;
3051		/* hit a fragment */
3052		return;
3053	}
3054	/*
3055	 * If we have reached the end of the current list without
3056	 * finding the just finished dependency, then it must be
3057	 * on the future dependency list. Future dependencies cannot
3058	 * be freed until they are moved to the current list.
3059	 */
3060	if (listadp == NULL) {
3061#ifdef DEBUG
3062		for (listadp = TAILQ_FIRST(&inodedep->id_newinoupdt); listadp;
3063		     listadp = TAILQ_NEXT(listadp, ad_next))
3064			/* found our block */
3065			if (listadp == adp)
3066				break;
3067		if (listadp == NULL)
3068			panic("handle_allocdirect_partdone: lost dep");
3069#endif /* DEBUG */
3070		return;
3071	}
3072	/*
3073	 * If we have found the just finished dependency, then free
3074	 * it along with anything that follows it that is complete.
3075	 */
3076	for (; adp; adp = listadp) {
3077		listadp = TAILQ_NEXT(adp, ad_next);
3078		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3079			return;
3080		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3081	}
3082}
3083
3084/*
3085 * Called from within softdep_disk_write_complete above. Note that
3086 * this routine is always called from interrupt level with further
3087 * splbio interrupts blocked.
3088 */
3089static void
3090handle_allocindir_partdone(aip)
3091	struct allocindir *aip;		/* the completed allocindir */
3092{
3093	struct indirdep *indirdep;
3094
3095	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3096		return;
3097	if (aip->ai_buf != NULL)
3098		panic("handle_allocindir_partdone: dangling dependency");
3099	indirdep = aip->ai_indirdep;
3100	if (indirdep->ir_state & UNDONE) {
3101		LIST_REMOVE(aip, ai_next);
3102		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3103		return;
3104	}
3105	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3106	    aip->ai_newblkno;
3107	LIST_REMOVE(aip, ai_next);
3108	if (aip->ai_freefrag != NULL)
3109		add_to_worklist(&aip->ai_freefrag->ff_list);
3110	WORKITEM_FREE(aip, D_ALLOCINDIR);
3111}
3112
3113/*
3114 * Called from within softdep_disk_write_complete above to restore
3115 * in-memory inode block contents to their most up-to-date state. Note
3116 * that this routine is always called from interrupt level with further
3117 * splbio interrupts blocked.
3118 */
3119static int
3120handle_written_inodeblock(inodedep, bp)
3121	struct inodedep *inodedep;
3122	struct buf *bp;		/* buffer containing the inode block */
3123{
3124	struct worklist *wk, *filefree;
3125	struct allocdirect *adp, *nextadp;
3126	struct dinode *dp;
3127	int hadchanges;
3128
3129	if ((inodedep->id_state & IOSTARTED) == 0)
3130		panic("handle_written_inodeblock: not started");
3131	inodedep->id_state &= ~IOSTARTED;
3132	inodedep->id_state |= COMPLETE;
3133	dp = (struct dinode *)bp->b_data +
3134	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3135	/*
3136	 * If we had to rollback the inode allocation because of
3137	 * bitmaps being incomplete, then simply restore it.
3138	 * Keep the block dirty so that it will not be reclaimed until
3139	 * all associated dependencies have been cleared and the
3140	 * corresponding updates written to disk.
3141	 */
3142	if (inodedep->id_savedino != NULL) {
3143		*dp = *inodedep->id_savedino;
3144		FREE(inodedep->id_savedino, M_INODEDEP);
3145		inodedep->id_savedino = NULL;
3146		if ((bp->b_flags & B_DELWRI) == 0)
3147			stat_inode_bitmap++;
3148		bdirty(bp);
3149		return (1);
3150	}
3151	/*
3152	 * Roll forward anything that had to be rolled back before
3153	 * the inode could be updated.
3154	 */
3155	hadchanges = 0;
3156	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3157		nextadp = TAILQ_NEXT(adp, ad_next);
3158		if (adp->ad_state & ATTACHED)
3159			panic("handle_written_inodeblock: new entry");
3160		if (adp->ad_lbn < NDADDR) {
3161			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno)
3162				panic("%s: %s #%ld mismatch %d != %d",
3163				    "handle_written_inodeblock",
3164				    "direct pointer", adp->ad_lbn,
3165				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3166			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3167		} else {
3168			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0)
3169				panic("%s: %s #%ld allocated as %d",
3170				    "handle_written_inodeblock",
3171				    "indirect pointer", adp->ad_lbn - NDADDR,
3172				    dp->di_ib[adp->ad_lbn - NDADDR]);
3173			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3174		}
3175		adp->ad_state &= ~UNDONE;
3176		adp->ad_state |= ATTACHED;
3177		hadchanges = 1;
3178	}
3179	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3180		stat_direct_blk_ptrs++;
3181	/*
3182	 * Reset the file size to its most up-to-date value.
3183	 */
3184	if (inodedep->id_savedsize == -1)
3185		panic("handle_written_inodeblock: bad size");
3186	if (dp->di_size != inodedep->id_savedsize) {
3187		dp->di_size = inodedep->id_savedsize;
3188		hadchanges = 1;
3189	}
3190	inodedep->id_savedsize = -1;
3191	/*
3192	 * If there were any rollbacks in the inode block, then it must be
3193	 * marked dirty so that its will eventually get written back in
3194	 * its correct form.
3195	 */
3196	if (hadchanges)
3197		bdirty(bp);
3198	/*
3199	 * Process any allocdirects that completed during the update.
3200	 */
3201	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3202		handle_allocdirect_partdone(adp);
3203	/*
3204	 * Process deallocations that were held pending until the
3205	 * inode had been written to disk. Freeing of the inode
3206	 * is delayed until after all blocks have been freed to
3207	 * avoid creation of new <vfsid, inum, lbn> triples
3208	 * before the old ones have been deleted.
3209	 */
3210	filefree = NULL;
3211	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3212		WORKLIST_REMOVE(wk);
3213		switch (wk->wk_type) {
3214
3215		case D_FREEFILE:
3216			/*
3217			 * We defer adding filefree to the worklist until
3218			 * all other additions have been made to ensure
3219			 * that it will be done after all the old blocks
3220			 * have been freed.
3221			 */
3222			if (filefree != NULL)
3223				panic("handle_written_inodeblock: filefree");
3224			filefree = wk;
3225			continue;
3226
3227		case D_MKDIR:
3228			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3229			continue;
3230
3231		case D_DIRADD:
3232			diradd_inode_written(WK_DIRADD(wk), inodedep);
3233			continue;
3234
3235		case D_FREEBLKS:
3236		case D_FREEFRAG:
3237		case D_DIRREM:
3238			add_to_worklist(wk);
3239			continue;
3240
3241		default:
3242			panic("handle_written_inodeblock: Unknown type %s",
3243			    TYPENAME(wk->wk_type));
3244			/* NOTREACHED */
3245		}
3246	}
3247	if (filefree != NULL) {
3248		if (free_inodedep(inodedep) == 0)
3249			panic("handle_written_inodeblock: live inodedep");
3250		add_to_worklist(filefree);
3251		return (0);
3252	}
3253
3254	/*
3255	 * If no outstanding dependencies, free it.
3256	 */
3257	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3258		return (0);
3259	return (hadchanges);
3260}
3261
3262/*
3263 * Process a diradd entry after its dependent inode has been written.
3264 * This routine must be called with splbio interrupts blocked.
3265 */
3266static void
3267diradd_inode_written(dap, inodedep)
3268	struct diradd *dap;
3269	struct inodedep *inodedep;
3270{
3271	struct pagedep *pagedep;
3272
3273	dap->da_state |= COMPLETE;
3274	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3275		if (dap->da_state & DIRCHG)
3276			pagedep = dap->da_previous->dm_pagedep;
3277		else
3278			pagedep = dap->da_pagedep;
3279		LIST_REMOVE(dap, da_pdlist);
3280		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3281	}
3282	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3283}
3284
3285/*
3286 * Handle the completion of a mkdir dependency.
3287 */
3288static void
3289handle_written_mkdir(mkdir, type)
3290	struct mkdir *mkdir;
3291	int type;
3292{
3293	struct diradd *dap;
3294	struct pagedep *pagedep;
3295
3296	if (mkdir->md_state != type)
3297		panic("handle_written_mkdir: bad type");
3298	dap = mkdir->md_diradd;
3299	dap->da_state &= ~type;
3300	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3301		dap->da_state |= DEPCOMPLETE;
3302	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3303		if (dap->da_state & DIRCHG)
3304			pagedep = dap->da_previous->dm_pagedep;
3305		else
3306			pagedep = dap->da_pagedep;
3307		LIST_REMOVE(dap, da_pdlist);
3308		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3309	}
3310	LIST_REMOVE(mkdir, md_mkdirs);
3311	WORKITEM_FREE(mkdir, D_MKDIR);
3312}
3313
3314/*
3315 * Called from within softdep_disk_write_complete above.
3316 * A write operation was just completed. Removed inodes can
3317 * now be freed and associated block pointers may be committed.
3318 * Note that this routine is always called from interrupt level
3319 * with further splbio interrupts blocked.
3320 */
3321static int
3322handle_written_filepage(pagedep, bp)
3323	struct pagedep *pagedep;
3324	struct buf *bp;		/* buffer containing the written page */
3325{
3326	struct dirrem *dirrem;
3327	struct diradd *dap, *nextdap;
3328	struct direct *ep;
3329	int i, chgs;
3330
3331	if ((pagedep->pd_state & IOSTARTED) == 0)
3332		panic("handle_written_filepage: not started");
3333	pagedep->pd_state &= ~IOSTARTED;
3334	/*
3335	 * Process any directory removals that have been committed.
3336	 */
3337	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3338		LIST_REMOVE(dirrem, dm_next);
3339		dirrem->dm_dirinum = pagedep->pd_ino;
3340		add_to_worklist(&dirrem->dm_list);
3341	}
3342	/*
3343	 * Free any directory additions that have been committed.
3344	 */
3345	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3346		free_diradd(dap);
3347	/*
3348	 * Uncommitted directory entries must be restored.
3349	 */
3350	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3351		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3352		     dap = nextdap) {
3353			nextdap = LIST_NEXT(dap, da_pdlist);
3354			if (dap->da_state & ATTACHED)
3355				panic("handle_written_filepage: attached");
3356			ep = (struct direct *)
3357			    ((char *)bp->b_data + dap->da_offset);
3358			ep->d_ino = dap->da_newinum;
3359			dap->da_state &= ~UNDONE;
3360			dap->da_state |= ATTACHED;
3361			chgs = 1;
3362			/*
3363			 * If the inode referenced by the directory has
3364			 * been written out, then the dependency can be
3365			 * moved to the pending list.
3366			 */
3367			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3368				LIST_REMOVE(dap, da_pdlist);
3369				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3370				    da_pdlist);
3371			}
3372		}
3373	}
3374	/*
3375	 * If there were any rollbacks in the directory, then it must be
3376	 * marked dirty so that its will eventually get written back in
3377	 * its correct form.
3378	 */
3379	if (chgs) {
3380		if ((bp->b_flags & B_DELWRI) == 0)
3381			stat_dir_entry++;
3382		bdirty(bp);
3383	}
3384	/*
3385	 * If no dependencies remain, the pagedep will be freed.
3386	 * Otherwise it will remain to update the page before it
3387	 * is written back to disk.
3388	 */
3389	if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3390		for (i = 0; i < DAHASHSZ; i++)
3391			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3392				break;
3393		if (i == DAHASHSZ) {
3394			LIST_REMOVE(pagedep, pd_hash);
3395			WORKITEM_FREE(pagedep, D_PAGEDEP);
3396			return (0);
3397		}
3398	}
3399	return (1);
3400}
3401
3402/*
3403 * Writing back in-core inode structures.
3404 *
3405 * The file system only accesses an inode's contents when it occupies an
3406 * "in-core" inode structure.  These "in-core" structures are separate from
3407 * the page frames used to cache inode blocks.  Only the latter are
3408 * transferred to/from the disk.  So, when the updated contents of the
3409 * "in-core" inode structure are copied to the corresponding in-memory inode
3410 * block, the dependencies are also transferred.  The following procedure is
3411 * called when copying a dirty "in-core" inode to a cached inode block.
3412 */
3413
3414/*
3415 * Called when an inode is loaded from disk. If the effective link count
3416 * differed from the actual link count when it was last flushed, then we
3417 * need to ensure that the correct effective link count is put back.
3418 */
3419void
3420softdep_load_inodeblock(ip)
3421	struct inode *ip;	/* the "in_core" copy of the inode */
3422{
3423	struct inodedep *inodedep;
3424
3425	/*
3426	 * Check for alternate nlink count.
3427	 */
3428	ip->i_effnlink = ip->i_nlink;
3429	ACQUIRE_LOCK(&lk);
3430	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3431		FREE_LOCK(&lk);
3432		return;
3433	}
3434	if (inodedep->id_nlinkdelta != 0) {
3435		ip->i_effnlink -= inodedep->id_nlinkdelta;
3436		ip->i_flag |= IN_MODIFIED;
3437		inodedep->id_nlinkdelta = 0;
3438		(void) free_inodedep(inodedep);
3439	}
3440	FREE_LOCK(&lk);
3441}
3442
3443/*
3444 * This routine is called just before the "in-core" inode
3445 * information is to be copied to the in-memory inode block.
3446 * Recall that an inode block contains several inodes. If
3447 * the force flag is set, then the dependencies will be
3448 * cleared so that the update can always be made. Note that
3449 * the buffer is locked when this routine is called, so we
3450 * will never be in the middle of writing the inode block
3451 * to disk.
3452 */
3453void
3454softdep_update_inodeblock(ip, bp, waitfor)
3455	struct inode *ip;	/* the "in_core" copy of the inode */
3456	struct buf *bp;		/* the buffer containing the inode block */
3457	int waitfor;		/* nonzero => update must be allowed */
3458{
3459	struct inodedep *inodedep;
3460	struct worklist *wk;
3461	int error, gotit;
3462
3463	/*
3464	 * If the effective link count is not equal to the actual link
3465	 * count, then we must track the difference in an inodedep while
3466	 * the inode is (potentially) tossed out of the cache. Otherwise,
3467	 * if there is no existing inodedep, then there are no dependencies
3468	 * to track.
3469	 */
3470	ACQUIRE_LOCK(&lk);
3471	if (ip->i_effnlink != ip->i_nlink) {
3472		(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC,
3473		    &inodedep);
3474	} else if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3475		FREE_LOCK(&lk);
3476		return;
3477	}
3478	if (ip->i_nlink < ip->i_effnlink)
3479		panic("softdep_update_inodeblock: bad delta");
3480	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3481	/*
3482	 * Changes have been initiated. Anything depending on these
3483	 * changes cannot occur until this inode has been written.
3484	 */
3485	inodedep->id_state &= ~COMPLETE;
3486	if ((inodedep->id_state & ONWORKLIST) == 0)
3487		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
3488	/*
3489	 * Any new dependencies associated with the incore inode must
3490	 * now be moved to the list associated with the buffer holding
3491	 * the in-memory copy of the inode. Once merged process any
3492	 * allocdirects that are completed by the merger.
3493	 */
3494	merge_inode_lists(inodedep);
3495	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3496		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3497	/*
3498	 * Now that the inode has been pushed into the buffer, the
3499	 * operations dependent on the inode being written to disk
3500	 * can be moved to the id_bufwait so that they will be
3501	 * processed when the buffer I/O completes.
3502	 */
3503	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3504		WORKLIST_REMOVE(wk);
3505		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
3506	}
3507	/*
3508	 * Newly allocated inodes cannot be written until the bitmap
3509	 * that allocates them have been written (indicated by
3510	 * DEPCOMPLETE being set in id_state). If we are doing a
3511	 * forced sync (e.g., an fsync on a file), we force the bitmap
3512	 * to be written so that the update can be done.
3513	 */
3514	if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
3515		FREE_LOCK(&lk);
3516		return;
3517	}
3518	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
3519	FREE_LOCK(&lk);
3520	if (gotit && (error = VOP_BWRITE(inodedep->id_buf)) != 0)
3521		softdep_error("softdep_update_inodeblock: bwrite", error);
3522	if ((inodedep->id_state & DEPCOMPLETE) == 0)
3523		panic("softdep_update_inodeblock: update failed");
3524}
3525
3526/*
3527 * Merge the new inode dependency list (id_newinoupdt) into the old
3528 * inode dependency list (id_inoupdt). This routine must be called
3529 * with splbio interrupts blocked.
3530 */
3531static void
3532merge_inode_lists(inodedep)
3533	struct inodedep *inodedep;
3534{
3535	struct allocdirect *listadp, *newadp;
3536
3537	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3538	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
3539		if (listadp->ad_lbn < newadp->ad_lbn) {
3540			listadp = TAILQ_NEXT(listadp, ad_next);
3541			continue;
3542		}
3543		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3544		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
3545		if (listadp->ad_lbn == newadp->ad_lbn) {
3546			allocdirect_merge(&inodedep->id_inoupdt, newadp,
3547			    listadp);
3548			listadp = newadp;
3549		}
3550		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3551	}
3552	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
3553		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3554		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
3555	}
3556}
3557
3558/*
3559 * If we are doing an fsync, then we must ensure that any directory
3560 * entries for the inode have been written after the inode gets to disk.
3561 */
3562int
3563softdep_fsync(vp)
3564	struct vnode *vp;	/* the "in_core" copy of the inode */
3565{
3566	struct diradd *dap, *olddap;
3567	struct inodedep *inodedep;
3568	struct pagedep *pagedep;
3569	struct worklist *wk;
3570	struct mount *mnt;
3571	struct vnode *pvp;
3572	struct inode *ip;
3573	struct buf *bp;
3574	struct fs *fs;
3575	struct proc *p = CURPROC;		/* XXX */
3576	int error, ret, flushparent;
3577	ino_t parentino;
3578	ufs_lbn_t lbn;
3579
3580	ip = VTOI(vp);
3581	fs = ip->i_fs;
3582	for (error = 0, flushparent = 0, olddap = NULL; ; ) {
3583		ACQUIRE_LOCK(&lk);
3584		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
3585			break;
3586		if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
3587		    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
3588		    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
3589		    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL)
3590			panic("softdep_fsync: pending ops");
3591		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
3592			break;
3593		if (wk->wk_type != D_DIRADD)
3594			panic("softdep_fsync: Unexpected type %s",
3595			    TYPENAME(wk->wk_type));
3596		dap = WK_DIRADD(wk);
3597		/*
3598		 * If we have failed to get rid of all the dependencies
3599		 * then something is seriously wrong.
3600		 */
3601		if (dap == olddap)
3602			panic("softdep_fsync: flush failed");
3603		olddap = dap;
3604		/*
3605		 * Flush our parent if this directory entry
3606		 * has a MKDIR_PARENT dependency.
3607		 */
3608		if (dap->da_state & DIRCHG)
3609			pagedep = dap->da_previous->dm_pagedep;
3610		else
3611			pagedep = dap->da_pagedep;
3612		mnt = pagedep->pd_mnt;
3613		parentino = pagedep->pd_ino;
3614		lbn = pagedep->pd_lbn;
3615		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
3616			panic("softdep_fsync: dirty");
3617		flushparent = dap->da_state & MKDIR_PARENT;
3618		/*
3619		 * If we are being fsync'ed as part of vgone'ing this vnode,
3620		 * then we will not be able to release and recover the
3621		 * vnode below, so we just have to give up on writing its
3622		 * directory entry out. It will eventually be written, just
3623		 * not now, but then the user was not asking to have it
3624		 * written, so we are not breaking any promises.
3625		 */
3626		if (vp->v_flag & VXLOCK)
3627			break;
3628		/*
3629		 * We prevent deadlock by always fetching inodes from the
3630		 * root, moving down the directory tree. Thus, when fetching
3631		 * our parent directory, we must unlock ourselves before
3632		 * requesting the lock on our parent. See the comment in
3633		 * ufs_lookup for details on possible races.
3634		 */
3635		FREE_LOCK(&lk);
3636		VOP_UNLOCK(vp, 0, p);
3637		if ((error = VFS_VGET(mnt, parentino, &pvp)) != 0) {
3638			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
3639			return (error);
3640		}
3641		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
3642		if (flushparent) {
3643			if ((error = UFS_UPDATE(pvp, 1)) != 0) {
3644				vput(pvp);
3645				return (error);
3646			}
3647		}
3648		/*
3649		 * Flush directory page containing the inode's name.
3650		 */
3651		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), p->p_ucred,
3652		    &bp);
3653		ret = VOP_BWRITE(bp);
3654		vput(pvp);
3655		if (error != 0)
3656			return (error);
3657		if (ret != 0)
3658			return (ret);
3659	}
3660	FREE_LOCK(&lk);
3661	return (0);
3662}
3663
3664/*
3665 * Flush all the dirty bitmaps associated with the block device
3666 * before flushing the rest of the dirty blocks so as to reduce
3667 * the number of dependencies that will have to be rolled back.
3668 */
3669void
3670softdep_fsync_mountdev(vp)
3671	struct vnode *vp;
3672{
3673	struct buf *bp, *nbp;
3674	struct worklist *wk;
3675
3676	if (vp->v_type != VBLK)
3677		panic("softdep_fsync_mountdev: vnode not VBLK");
3678	ACQUIRE_LOCK(&lk);
3679	for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
3680		nbp = TAILQ_NEXT(bp, b_vnbufs);
3681		/*
3682		 * If it is already scheduled, skip to the next buffer.
3683		 */
3684		if (bp->b_flags & B_BUSY)
3685			continue;
3686		if ((bp->b_flags & B_DELWRI) == 0)
3687			panic("softdep_fsync_mountdev: not dirty");
3688		/*
3689		 * We are only interested in bitmaps with outstanding
3690		 * dependencies.
3691		 */
3692		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
3693		    wk->wk_type != D_BMSAFEMAP)
3694			continue;
3695		bremfree(bp);
3696		bp->b_flags |= B_BUSY;
3697		FREE_LOCK(&lk);
3698		(void) bawrite(bp);
3699		ACQUIRE_LOCK(&lk);
3700		/*
3701		 * Since we may have slept during the I/O, we need
3702		 * to start from a known point.
3703		 */
3704		nbp = TAILQ_FIRST(&vp->v_dirtyblkhd);
3705	}
3706	drain_output(vp, 1);
3707	FREE_LOCK(&lk);
3708}
3709
3710/*
3711 * This routine is called when we are trying to synchronously flush a
3712 * file. This routine must eliminate any filesystem metadata dependencies
3713 * so that the syncing routine can succeed by pushing the dirty blocks
3714 * associated with the file. If any I/O errors occur, they are returned.
3715 */
3716int
3717softdep_sync_metadata(ap)
3718	struct vop_fsync_args /* {
3719		struct vnode *a_vp;
3720		struct ucred *a_cred;
3721		int a_waitfor;
3722		struct proc *a_p;
3723	} */ *ap;
3724{
3725	struct vnode *vp = ap->a_vp;
3726	struct pagedep *pagedep;
3727	struct allocdirect *adp;
3728	struct allocindir *aip;
3729	struct buf *bp, *nbp;
3730	struct worklist *wk;
3731	int i, error, waitfor;
3732
3733	/*
3734	 * Check whether this vnode is involved in a filesystem
3735	 * that is doing soft dependency processing.
3736	 */
3737	if (vp->v_type != VBLK) {
3738		if (!DOINGSOFTDEP(vp))
3739			return (0);
3740	} else
3741		if (vp->v_specmountpoint == NULL ||
3742		    (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP) == 0)
3743			return (0);
3744	/*
3745	 * Ensure that any direct block dependencies have been cleared.
3746	 */
3747	ACQUIRE_LOCK(&lk);
3748	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
3749		FREE_LOCK(&lk);
3750		return (error);
3751	}
3752	/*
3753	 * For most files, the only metadata dependencies are the
3754	 * cylinder group maps that allocate their inode or blocks.
3755	 * The block allocation dependencies can be found by traversing
3756	 * the dependency lists for any buffers that remain on their
3757	 * dirty buffer list. The inode allocation dependency will
3758	 * be resolved when the inode is updated with MNT_WAIT.
3759	 * This work is done in two passes. The first pass grabs most
3760	 * of the buffers and begins asynchronously writing them. The
3761	 * only way to wait for these asynchronous writes is to sleep
3762	 * on the filesystem vnode which may stay busy for a long time
3763	 * if the filesystem is active. So, instead, we make a second
3764	 * pass over the dependencies blocking on each write. In the
3765	 * usual case we will be blocking against a write that we
3766	 * initiated, so when it is done the dependency will have been
3767	 * resolved. Thus the second pass is expected to end quickly.
3768	 */
3769	waitfor = MNT_NOWAIT;
3770top:
3771	if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) {
3772		drain_output(vp, 1);
3773		FREE_LOCK(&lk);
3774		return (0);
3775	}
3776	bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
3777loop:
3778	/*
3779	 * As we hold the buffer locked, none of its dependencies
3780	 * will disappear.
3781	 */
3782	for (wk = LIST_FIRST(&bp->b_dep); wk;
3783	     wk = LIST_NEXT(wk, wk_list)) {
3784		switch (wk->wk_type) {
3785
3786		case D_ALLOCDIRECT:
3787			adp = WK_ALLOCDIRECT(wk);
3788			if (adp->ad_state & DEPCOMPLETE)
3789				break;
3790			nbp = adp->ad_buf;
3791			if (getdirtybuf(&nbp, waitfor) == 0)
3792				break;
3793			FREE_LOCK(&lk);
3794			if (waitfor == MNT_NOWAIT) {
3795				bawrite(nbp);
3796			} else if ((error = VOP_BWRITE(nbp)) != 0) {
3797				bawrite(bp);
3798				return (error);
3799			}
3800			ACQUIRE_LOCK(&lk);
3801			break;
3802
3803		case D_ALLOCINDIR:
3804			aip = WK_ALLOCINDIR(wk);
3805			if (aip->ai_state & DEPCOMPLETE)
3806				break;
3807			nbp = aip->ai_buf;
3808			if (getdirtybuf(&nbp, waitfor) == 0)
3809				break;
3810			FREE_LOCK(&lk);
3811			if (waitfor == MNT_NOWAIT) {
3812				bawrite(nbp);
3813			} else if ((error = VOP_BWRITE(nbp)) != 0) {
3814				bawrite(bp);
3815				return (error);
3816			}
3817			ACQUIRE_LOCK(&lk);
3818			break;
3819
3820		case D_INDIRDEP:
3821		restart:
3822			for (aip = LIST_FIRST(&WK_INDIRDEP(wk)->ir_deplisthd);
3823			     aip; aip = LIST_NEXT(aip, ai_next)) {
3824				if (aip->ai_state & DEPCOMPLETE)
3825					continue;
3826				nbp = aip->ai_buf;
3827				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
3828					goto restart;
3829				FREE_LOCK(&lk);
3830				if ((error = VOP_BWRITE(nbp)) != 0) {
3831					bawrite(bp);
3832					return (error);
3833				}
3834				ACQUIRE_LOCK(&lk);
3835				goto restart;
3836			}
3837			break;
3838
3839		case D_INODEDEP:
3840			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
3841			    WK_INODEDEP(wk)->id_ino)) != 0) {
3842				FREE_LOCK(&lk);
3843				bawrite(bp);
3844				return (error);
3845			}
3846			break;
3847
3848		case D_PAGEDEP:
3849			/*
3850			 * We are trying to sync a directory that may
3851			 * have dependencies on both its own metadata
3852			 * and/or dependencies on the inodes of any
3853			 * recently allocated files. We walk its diradd
3854			 * lists pushing out the associated inode.
3855			 */
3856			pagedep = WK_PAGEDEP(wk);
3857			for (i = 0; i < DAHASHSZ; i++) {
3858				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
3859					continue;
3860				if (error = flush_pagedep_deps(vp,
3861				   pagedep->pd_mnt, &pagedep->pd_diraddhd[i])) {
3862					FREE_LOCK(&lk);
3863					bawrite(bp);
3864					return (error);
3865				}
3866			}
3867			break;
3868
3869		case D_MKDIR:
3870			/*
3871			 * This case should never happen if the vnode has
3872			 * been properly sync'ed. However, if this function
3873			 * is used at a place where the vnode has not yet
3874			 * been sync'ed, this dependency can show up. So,
3875			 * rather than panic, just flush it.
3876			 */
3877			nbp = WK_MKDIR(wk)->md_buf;
3878			if (getdirtybuf(&nbp, waitfor) == 0)
3879				break;
3880			FREE_LOCK(&lk);
3881			if (waitfor == MNT_NOWAIT) {
3882				bawrite(nbp);
3883			} else if ((error = VOP_BWRITE(nbp)) != 0) {
3884				bawrite(bp);
3885				return (error);
3886			}
3887			ACQUIRE_LOCK(&lk);
3888			break;
3889
3890		case D_BMSAFEMAP:
3891			/*
3892			 * This case should never happen if the vnode has
3893			 * been properly sync'ed. However, if this function
3894			 * is used at a place where the vnode has not yet
3895			 * been sync'ed, this dependency can show up. So,
3896			 * rather than panic, just flush it.
3897			 */
3898			nbp = WK_BMSAFEMAP(wk)->sm_buf;
3899			if (getdirtybuf(&nbp, waitfor) == 0)
3900				break;
3901			FREE_LOCK(&lk);
3902			if (waitfor == MNT_NOWAIT) {
3903				bawrite(nbp);
3904			} else if ((error = VOP_BWRITE(nbp)) != 0) {
3905				bawrite(bp);
3906				return (error);
3907			}
3908			ACQUIRE_LOCK(&lk);
3909			break;
3910
3911		default:
3912			panic("softdep_sync_metadata: Unknown type %s",
3913			    TYPENAME(wk->wk_type));
3914			/* NOTREACHED */
3915		}
3916	}
3917	(void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT);
3918	nbp = TAILQ_NEXT(bp, b_vnbufs);
3919	FREE_LOCK(&lk);
3920	bawrite(bp);
3921	ACQUIRE_LOCK(&lk);
3922	if (nbp != NULL) {
3923		bp = nbp;
3924		goto loop;
3925	}
3926	/*
3927	 * We must wait for any I/O in progress to finish so that
3928	 * all potential buffers on the dirty list will be visible.
3929	 * Once they are all there, proceed with the second pass
3930	 * which will wait for the I/O as per above.
3931	 */
3932	drain_output(vp, 1);
3933	/*
3934	 * The brief unlock is to allow any pent up dependency
3935	 * processing to be done.
3936	 */
3937	if (waitfor == MNT_NOWAIT) {
3938		waitfor = MNT_WAIT;
3939		FREE_LOCK(&lk);
3940		ACQUIRE_LOCK(&lk);
3941		goto top;
3942	}
3943
3944	/*
3945	 * If we have managed to get rid of all the dirty buffers,
3946	 * then we are done. For certain directories and block
3947	 * devices, we may need to do further work.
3948	 */
3949	if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) {
3950		FREE_LOCK(&lk);
3951		return (0);
3952	}
3953
3954	FREE_LOCK(&lk);
3955	/*
3956	 * If we are trying to sync a block device, some of its buffers may
3957	 * contain metadata that cannot be written until the contents of some
3958	 * partially written files have been written to disk. The only easy
3959	 * way to accomplish this is to sync the entire filesystem (luckily
3960	 * this happens rarely).
3961	 */
3962	if (vp->v_type == VBLK && vp->v_specmountpoint && !VOP_ISLOCKED(vp) &&
3963	    (error = VFS_SYNC(vp->v_specmountpoint, MNT_WAIT, ap->a_cred,
3964	     ap->a_p)) != 0)
3965		return (error);
3966	return (0);
3967}
3968
3969/*
3970 * Flush the dependencies associated with an inodedep.
3971 * Called with splbio blocked.
3972 */
3973static int
3974flush_inodedep_deps(fs, ino)
3975	struct fs *fs;
3976	ino_t ino;
3977{
3978	struct inodedep *inodedep;
3979	struct allocdirect *adp;
3980	int error, waitfor;
3981	struct buf *bp;
3982
3983	/*
3984	 * This work is done in two passes. The first pass grabs most
3985	 * of the buffers and begins asynchronously writing them. The
3986	 * only way to wait for these asynchronous writes is to sleep
3987	 * on the filesystem vnode which may stay busy for a long time
3988	 * if the filesystem is active. So, instead, we make a second
3989	 * pass over the dependencies blocking on each write. In the
3990	 * usual case we will be blocking against a write that we
3991	 * initiated, so when it is done the dependency will have been
3992	 * resolved. Thus the second pass is expected to end quickly.
3993	 * We give a brief window at the top of the loop to allow
3994	 * any pending I/O to complete.
3995	 */
3996	for (waitfor = MNT_NOWAIT; ; ) {
3997		FREE_LOCK(&lk);
3998		ACQUIRE_LOCK(&lk);
3999		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4000			return (0);
4001		for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
4002		     adp = TAILQ_NEXT(adp, ad_next)) {
4003			if (adp->ad_state & DEPCOMPLETE)
4004				continue;
4005			bp = adp->ad_buf;
4006			if (getdirtybuf(&bp, waitfor) == 0) {
4007				if (waitfor == MNT_NOWAIT)
4008					continue;
4009				break;
4010			}
4011			FREE_LOCK(&lk);
4012			if (waitfor == MNT_NOWAIT) {
4013				bawrite(bp);
4014			} else if ((error = VOP_BWRITE(bp)) != 0) {
4015				ACQUIRE_LOCK(&lk);
4016				return (error);
4017			}
4018			ACQUIRE_LOCK(&lk);
4019			break;
4020		}
4021		if (adp != NULL)
4022			continue;
4023		for (adp = TAILQ_FIRST(&inodedep->id_newinoupdt); adp;
4024		     adp = TAILQ_NEXT(adp, ad_next)) {
4025			if (adp->ad_state & DEPCOMPLETE)
4026				continue;
4027			bp = adp->ad_buf;
4028			if (getdirtybuf(&bp, waitfor) == 0) {
4029				if (waitfor == MNT_NOWAIT)
4030					continue;
4031				break;
4032			}
4033			FREE_LOCK(&lk);
4034			if (waitfor == MNT_NOWAIT) {
4035				bawrite(bp);
4036			} else if ((error = VOP_BWRITE(bp)) != 0) {
4037				ACQUIRE_LOCK(&lk);
4038				return (error);
4039			}
4040			ACQUIRE_LOCK(&lk);
4041			break;
4042		}
4043		if (adp != NULL)
4044			continue;
4045		/*
4046		 * If pass2, we are done, otherwise do pass 2.
4047		 */
4048		if (waitfor == MNT_WAIT)
4049			break;
4050		waitfor = MNT_WAIT;
4051	}
4052	/*
4053	 * Try freeing inodedep in case all dependencies have been removed.
4054	 */
4055	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4056		(void) free_inodedep(inodedep);
4057	return (0);
4058}
4059
4060/*
4061 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4062 * Called with splbio blocked.
4063 */
4064static int
4065flush_pagedep_deps(pvp, mp, diraddhdp)
4066	struct vnode *pvp;
4067	struct mount *mp;
4068	struct diraddhd *diraddhdp;
4069{
4070	struct proc *p = CURPROC;	/* XXX */
4071	struct inodedep *inodedep;
4072	struct ufsmount *ump;
4073	struct diradd *dap;
4074	struct vnode *vp;
4075	int gotit, error = 0;
4076	struct buf *bp;
4077	ino_t inum;
4078
4079	ump = VFSTOUFS(mp);
4080	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4081		/*
4082		 * Flush ourselves if this directory entry
4083		 * has a MKDIR_PARENT dependency.
4084		 */
4085		if (dap->da_state & MKDIR_PARENT) {
4086			FREE_LOCK(&lk);
4087			if ((error = UFS_UPDATE(pvp, 1)) != 0)
4088				break;
4089			ACQUIRE_LOCK(&lk);
4090			/*
4091			 * If that cleared dependencies, go on to next.
4092			 */
4093			if (dap != LIST_FIRST(diraddhdp))
4094				continue;
4095			if (dap->da_state & MKDIR_PARENT)
4096				panic("flush_pagedep_deps: MKDIR");
4097		}
4098		/*
4099		 * Flush the file on which the directory entry depends.
4100		 * If the inode has already been pushed out of the cache,
4101		 * then all the block dependencies will have been flushed
4102		 * leaving only inode dependencies (e.g., bitmaps). Thus,
4103		 * we do a ufs_ihashget to check for the vnode in the cache.
4104		 * If it is there, we do a full flush. If it is no longer
4105		 * there we need only dispose of any remaining bitmap
4106		 * dependencies and write the inode to disk.
4107		 */
4108		inum = dap->da_newinum;
4109		FREE_LOCK(&lk);
4110		if ((vp = ufs_ihashget(ump->um_dev, inum)) == NULL) {
4111			ACQUIRE_LOCK(&lk);
4112			if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0
4113			    && dap == LIST_FIRST(diraddhdp))
4114				panic("flush_pagedep_deps: flush 1 failed");
4115			/*
4116			 * If the inode still has bitmap dependencies,
4117			 * push them to disk.
4118			 */
4119			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4120				gotit = getdirtybuf(&inodedep->id_buf,MNT_WAIT);
4121				FREE_LOCK(&lk);
4122				if (gotit &&
4123				    (error = VOP_BWRITE(inodedep->id_buf)) != 0)
4124					break;
4125				ACQUIRE_LOCK(&lk);
4126			}
4127			if (dap != LIST_FIRST(diraddhdp))
4128				continue;
4129			/*
4130			 * If the inode is still sitting in a buffer waiting
4131			 * to be written, push it to disk.
4132			 */
4133			FREE_LOCK(&lk);
4134			if ((error = bread(ump->um_devvp,
4135			    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4136			    (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0)
4137				break;
4138			if ((error = VOP_BWRITE(bp)) != 0)
4139				break;
4140			ACQUIRE_LOCK(&lk);
4141			if (dap == LIST_FIRST(diraddhdp))
4142				panic("flush_pagedep_deps: flush 2 failed");
4143			continue;
4144		}
4145		if (vp->v_type == VDIR) {
4146			/*
4147			 * A newly allocated directory must have its "." and
4148			 * ".." entries written out before its name can be
4149			 * committed in its parent. We do not want or need
4150			 * the full semantics of a synchronous VOP_FSYNC as
4151			 * that may end up here again, once for each directory
4152			 * level in the filesystem. Instead, we push the blocks
4153			 * and wait for them to clear.
4154			 */
4155			if (error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)) {
4156				vput(vp);
4157				break;
4158			}
4159			drain_output(vp, 0);
4160		}
4161		error = UFS_UPDATE(vp, 1);
4162		vput(vp);
4163		if (error)
4164			break;
4165		/*
4166		 * If we have failed to get rid of all the dependencies
4167		 * then something is seriously wrong.
4168		 */
4169		if (dap == LIST_FIRST(diraddhdp))
4170			panic("flush_pagedep_deps: flush 3 failed");
4171		ACQUIRE_LOCK(&lk);
4172	}
4173	if (error)
4174		ACQUIRE_LOCK(&lk);
4175	return (error);
4176}
4177
4178/*
4179 * A large burst of file addition or deletion activity can drive the
4180 * memory load excessively high. Therefore we deliberately slow things
4181 * down and speed up the I/O processing if we find ourselves with too
4182 * many dependencies in progress.
4183 */
4184static int
4185checklimit(resource, islocked)
4186	long *resource;
4187	int islocked;
4188{
4189	struct callout_handle handle;
4190	struct proc *p = CURPROC;
4191	int s;
4192
4193	/*
4194	 * If we are under our limit, just proceed.
4195	 */
4196	if (*resource < max_softdeps)
4197		return (0);
4198	/*
4199	 * We never hold up the filesystem syncer process.
4200	 */
4201	if (p == filesys_syncer)
4202		return (0);
4203	/*
4204	 * Our first approach is to speed up the syncer process.
4205	 * We never push it to speed up more than half of its
4206	 * normal turn time, otherwise it could take over the cpu.
4207	 */
4208	s = splhigh();
4209	if (filesys_syncer->p_wchan == &lbolt)
4210		setrunnable(filesys_syncer);
4211	splx(s);
4212	if (rushjob < syncdelay / 2) {
4213		rushjob += 1;
4214		stat_rush_requests += 1;
4215		return (0);
4216	}
4217	/*
4218	 * If we are resource constrained on inode dependencies, try
4219	 * flushing some dirty inodes. Otherwise, we are constrained
4220	 * by file deletions, so try accelerating flushes of directories
4221	 * with removal dependencies. We would like to do the cleanup
4222	 * here, but we probably hold an inode locked at this point and
4223	 * that might deadlock against one that we try to clean. So,
4224	 * the best that we can do is request the syncer daemon (kick
4225	 * started above) to do the cleanup for us.
4226	 */
4227	if (resource == &num_inodedep) {
4228		stat_ino_limit_push += 1;
4229		req_clear_inodedeps = 1;
4230	} else {
4231		stat_blk_limit_push += 1;
4232		req_clear_remove = 1;
4233	}
4234	/*
4235	 * Hopefully the syncer daemon will catch up and awaken us.
4236	 * We wait at most tickdelay before proceeding in any case.
4237	 */
4238	if (islocked == 0)
4239		ACQUIRE_LOCK(&lk);
4240	if (proc_waiting == 0) {
4241		proc_waiting = 1;
4242		handle = timeout(pause_timer, NULL,
4243		    tickdelay > 2 ? tickdelay : 2);
4244	}
4245	FREE_LOCK_INTERLOCKED(&lk);
4246	(void) tsleep((caddr_t)&proc_waiting, PPAUSE | PCATCH, "softupdate", 0);
4247	ACQUIRE_LOCK_INTERLOCKED(&lk);
4248	if (proc_waiting) {
4249		untimeout(pause_timer, NULL, handle);
4250		proc_waiting = 0;
4251	} else {
4252		if (resource == &num_inodedep)
4253			stat_ino_limit_hit += 1;
4254		else
4255			stat_blk_limit_hit += 1;
4256	}
4257	if (islocked == 0)
4258		FREE_LOCK(&lk);
4259	return (1);
4260}
4261
4262/*
4263 * Awaken processes pausing in checklimit and clear proc_waiting
4264 * to indicate that there is no longer a timer running.
4265 */
4266void
4267pause_timer(arg)
4268	void *arg;
4269{
4270
4271	proc_waiting = 0;
4272	wakeup(&proc_waiting);
4273}
4274
4275/*
4276 * Flush out a directory with at least one removal dependency in an effort
4277 * to reduce the number of freefile and freeblks dependency structures.
4278 */
4279static void
4280clear_remove(p)
4281	struct proc *p;
4282{
4283	struct pagedep_hashhead *pagedephd;
4284	struct pagedep *pagedep;
4285	static int next = 0;
4286	struct mount *mp;
4287	struct vnode *vp;
4288	int error, cnt;
4289	ino_t ino;
4290
4291	ACQUIRE_LOCK(&lk);
4292	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4293		pagedephd = &pagedep_hashtbl[next++];
4294		if (next >= pagedep_hash)
4295			next = 0;
4296		for (pagedep = LIST_FIRST(pagedephd); pagedep;
4297		     pagedep = LIST_NEXT(pagedep, pd_hash)) {
4298			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4299				continue;
4300			mp = pagedep->pd_mnt;
4301			ino = pagedep->pd_ino;
4302			FREE_LOCK(&lk);
4303			if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4304				softdep_error("clear_remove: vget", error);
4305				return;
4306			}
4307			if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)))
4308				softdep_error("clear_remove: fsync", error);
4309			drain_output(vp, 0);
4310			vput(vp);
4311			return;
4312		}
4313	}
4314	FREE_LOCK(&lk);
4315}
4316
4317/*
4318 * Clear out a block of dirty inodes in an effort to reduce
4319 * the number of inodedep dependency structures.
4320 */
4321static void
4322clear_inodedeps(p)
4323	struct proc *p;
4324{
4325	struct inodedep_hashhead *inodedephd;
4326	struct inodedep *inodedep;
4327	static int next = 0;
4328	struct mount *mp;
4329	struct vnode *vp;
4330	struct fs *fs;
4331	int error, cnt;
4332	ino_t firstino, lastino, ino;
4333
4334	ACQUIRE_LOCK(&lk);
4335	/*
4336	 * Pick a random inode dependency to be cleared.
4337	 * We will then gather up all the inodes in its block
4338	 * that have dependencies and flush them out.
4339	 */
4340	for (cnt = 0; cnt < inodedep_hash; cnt++) {
4341		inodedephd = &inodedep_hashtbl[next++];
4342		if (next >= inodedep_hash)
4343			next = 0;
4344		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4345			break;
4346	}
4347	/*
4348	 * Ugly code to find mount point given pointer to superblock.
4349	 */
4350	fs = inodedep->id_fs;
4351	for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
4352	     mp = CIRCLEQ_NEXT(mp, mnt_list))
4353		if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
4354			break;
4355	/*
4356	 * Find the last inode in the block with dependencies.
4357	 */
4358	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4359	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4360		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4361			break;
4362	/*
4363	 * Asynchronously push all but the last inode with dependencies.
4364	 * Synchronously push the last inode with dependencies to ensure
4365	 * that the inode block gets written to free up the inodedeps.
4366	 */
4367	for (ino = firstino; ino <= lastino; ino++) {
4368		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4369			continue;
4370		FREE_LOCK(&lk);
4371		if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4372			softdep_error("clear_inodedeps: vget", error);
4373			return;
4374		}
4375		if (ino == lastino) {
4376			if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p)))
4377				softdep_error("clear_inodedeps: fsync1", error);
4378		} else {
4379			if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)))
4380				softdep_error("clear_inodedeps: fsync2", error);
4381			drain_output(vp, 0);
4382		}
4383		vput(vp);
4384		ACQUIRE_LOCK(&lk);
4385	}
4386	FREE_LOCK(&lk);
4387}
4388
4389/*
4390 * Acquire exclusive access to a buffer.
4391 * Must be called with splbio blocked.
4392 * Return 1 if buffer was acquired.
4393 */
4394static int
4395getdirtybuf(bpp, waitfor)
4396	struct buf **bpp;
4397	int waitfor;
4398{
4399	struct buf *bp;
4400
4401	for (;;) {
4402		if ((bp = *bpp) == NULL)
4403			return (0);
4404		if ((bp->b_flags & B_BUSY) == 0)
4405			break;
4406		if (waitfor != MNT_WAIT)
4407			return (0);
4408		bp->b_flags |= B_WANTED;
4409		FREE_LOCK_INTERLOCKED(&lk);
4410		tsleep((caddr_t)bp, PRIBIO + 1, "sdsdty", 0);
4411		ACQUIRE_LOCK_INTERLOCKED(&lk);
4412	}
4413	if ((bp->b_flags & B_DELWRI) == 0)
4414		return (0);
4415	bremfree(bp);
4416	bp->b_flags |= B_BUSY;
4417	return (1);
4418}
4419
4420/*
4421 * Wait for pending output on a vnode to complete.
4422 * Must be called with vnode locked.
4423 */
4424static void
4425drain_output(vp, islocked)
4426	struct vnode *vp;
4427	int islocked;
4428{
4429
4430	if (!islocked)
4431		ACQUIRE_LOCK(&lk);
4432	while (vp->v_numoutput) {
4433		vp->v_flag |= VBWAIT;
4434		FREE_LOCK_INTERLOCKED(&lk);
4435		tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "drainvp", 0);
4436		ACQUIRE_LOCK_INTERLOCKED(&lk);
4437	}
4438	if (!islocked)
4439		FREE_LOCK(&lk);
4440}
4441
4442/*
4443 * Called whenever a buffer that is being invalidated or reallocated
4444 * contains dependencies. This should only happen if an I/O error has
4445 * occurred. The routine is called with the buffer locked.
4446 */
4447void
4448softdep_deallocate_dependencies(bp)
4449	struct buf *bp;
4450{
4451
4452	if ((bp->b_flags & B_ERROR) == 0)
4453		panic("softdep_deallocate_dependencies: dangling deps");
4454	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
4455	panic("softdep_deallocate_dependencies: unrecovered I/O error");
4456}
4457
4458/*
4459 * Function to handle asynchronous write errors in the filesystem.
4460 */
4461void
4462softdep_error(func, error)
4463	char *func;
4464	int error;
4465{
4466
4467	/* XXX should do something better! */
4468	printf("%s: got error %d while accessing filesystem\n", func, error);
4469}
4470