ffs_softdep.c revision 231077
1219820Sjeff/*-
2219820Sjeff * Copyright 1998, 2000 Marshall Kirk McKusick.
3219820Sjeff * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4219820Sjeff * All rights reserved.
5219820Sjeff *
6219820Sjeff * The soft updates code is derived from the appendix of a University
7219820Sjeff * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8219820Sjeff * "Soft Updates: A Solution to the Metadata Update Problem in File
9219820Sjeff * Systems", CSE-TR-254-95, August 1995).
10219820Sjeff *
11219820Sjeff * Further information about soft updates can be obtained from:
12219820Sjeff *
13219820Sjeff *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14219820Sjeff *	1614 Oxford Street		mckusick@mckusick.com
15219820Sjeff *	Berkeley, CA 94709-1608		+1-510-843-9542
16219820Sjeff *	USA
17219820Sjeff *
18219820Sjeff * Redistribution and use in source and binary forms, with or without
19219820Sjeff * modification, are permitted provided that the following conditions
20219820Sjeff * are met:
21219820Sjeff *
22219820Sjeff * 1. Redistributions of source code must retain the above copyright
23219820Sjeff *    notice, this list of conditions and the following disclaimer.
24219820Sjeff * 2. Redistributions in binary form must reproduce the above copyright
25219820Sjeff *    notice, this list of conditions and the following disclaimer in the
26219820Sjeff *    documentation and/or other materials provided with the distribution.
27219820Sjeff *
28219820Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29219820Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30219820Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31219820Sjeff * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32219820Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33219820Sjeff * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34219820Sjeff * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35219820Sjeff * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36219820Sjeff * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37219820Sjeff * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38219820Sjeff *
39219820Sjeff *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40219820Sjeff */
41219820Sjeff
42219820Sjeff#include <sys/cdefs.h>
43219820Sjeff__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 231077 2012-02-06 11:47:24Z kib $");
44219820Sjeff
45219820Sjeff#include "opt_ffs.h"
46219820Sjeff#include "opt_ddb.h"
47219820Sjeff
48219820Sjeff/*
49219820Sjeff * For now we want the safety net that the DEBUG flag provides.
50219820Sjeff */
51219820Sjeff#ifndef DEBUG
52219820Sjeff#define DEBUG
53219820Sjeff#endif
54219820Sjeff
55219820Sjeff#include <sys/param.h>
56219820Sjeff#include <sys/kernel.h>
57219820Sjeff#include <sys/systm.h>
58219820Sjeff#include <sys/bio.h>
59219820Sjeff#include <sys/buf.h>
60219820Sjeff#include <sys/kdb.h>
61219820Sjeff#include <sys/kthread.h>
62219820Sjeff#include <sys/limits.h>
63219820Sjeff#include <sys/lock.h>
64219820Sjeff#include <sys/malloc.h>
65219820Sjeff#include <sys/mount.h>
66219820Sjeff#include <sys/mutex.h>
67219820Sjeff#include <sys/namei.h>
68219820Sjeff#include <sys/priv.h>
69219820Sjeff#include <sys/proc.h>
70219820Sjeff#include <sys/stat.h>
71219820Sjeff#include <sys/sysctl.h>
72219820Sjeff#include <sys/syslog.h>
73219820Sjeff#include <sys/vnode.h>
74219820Sjeff#include <sys/conf.h>
75219820Sjeff
76219820Sjeff#include <ufs/ufs/dir.h>
77219820Sjeff#include <ufs/ufs/extattr.h>
78219820Sjeff#include <ufs/ufs/quota.h>
79219820Sjeff#include <ufs/ufs/inode.h>
80219820Sjeff#include <ufs/ufs/ufsmount.h>
81219820Sjeff#include <ufs/ffs/fs.h>
82219820Sjeff#include <ufs/ffs/softdep.h>
83219820Sjeff#include <ufs/ffs/ffs_extern.h>
84219820Sjeff#include <ufs/ufs/ufs_extern.h>
85219820Sjeff
86219820Sjeff#include <vm/vm.h>
87219820Sjeff#include <vm/vm_extern.h>
88#include <vm/vm_object.h>
89
90#include <ddb/ddb.h>
91
92#ifndef SOFTUPDATES
93
94int
95softdep_flushfiles(oldmnt, flags, td)
96	struct mount *oldmnt;
97	int flags;
98	struct thread *td;
99{
100
101	panic("softdep_flushfiles called");
102}
103
104int
105softdep_mount(devvp, mp, fs, cred)
106	struct vnode *devvp;
107	struct mount *mp;
108	struct fs *fs;
109	struct ucred *cred;
110{
111
112	return (0);
113}
114
115void
116softdep_initialize()
117{
118
119	return;
120}
121
122void
123softdep_uninitialize()
124{
125
126	return;
127}
128
129void
130softdep_unmount(mp)
131	struct mount *mp;
132{
133
134}
135
136void
137softdep_setup_sbupdate(ump, fs, bp)
138	struct ufsmount *ump;
139	struct fs *fs;
140	struct buf *bp;
141{
142}
143
144void
145softdep_setup_inomapdep(bp, ip, newinum, mode)
146	struct buf *bp;
147	struct inode *ip;
148	ino_t newinum;
149	int mode;
150{
151
152	panic("softdep_setup_inomapdep called");
153}
154
155void
156softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
157	struct buf *bp;
158	struct mount *mp;
159	ufs2_daddr_t newblkno;
160	int frags;
161	int oldfrags;
162{
163
164	panic("softdep_setup_blkmapdep called");
165}
166
167void
168softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
169	struct inode *ip;
170	ufs_lbn_t lbn;
171	ufs2_daddr_t newblkno;
172	ufs2_daddr_t oldblkno;
173	long newsize;
174	long oldsize;
175	struct buf *bp;
176{
177
178	panic("softdep_setup_allocdirect called");
179}
180
181void
182softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
183	struct inode *ip;
184	ufs_lbn_t lbn;
185	ufs2_daddr_t newblkno;
186	ufs2_daddr_t oldblkno;
187	long newsize;
188	long oldsize;
189	struct buf *bp;
190{
191
192	panic("softdep_setup_allocext called");
193}
194
195void
196softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
197	struct inode *ip;
198	ufs_lbn_t lbn;
199	struct buf *bp;
200	int ptrno;
201	ufs2_daddr_t newblkno;
202	ufs2_daddr_t oldblkno;
203	struct buf *nbp;
204{
205
206	panic("softdep_setup_allocindir_page called");
207}
208
209void
210softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
211	struct buf *nbp;
212	struct inode *ip;
213	struct buf *bp;
214	int ptrno;
215	ufs2_daddr_t newblkno;
216{
217
218	panic("softdep_setup_allocindir_meta called");
219}
220
221void
222softdep_journal_freeblocks(ip, cred, length, flags)
223	struct inode *ip;
224	struct ucred *cred;
225	off_t length;
226	int flags;
227{
228
229	panic("softdep_journal_freeblocks called");
230}
231
232void
233softdep_journal_fsync(ip)
234	struct inode *ip;
235{
236
237	panic("softdep_journal_fsync called");
238}
239
240void
241softdep_setup_freeblocks(ip, length, flags)
242	struct inode *ip;
243	off_t length;
244	int flags;
245{
246
247	panic("softdep_setup_freeblocks called");
248}
249
250void
251softdep_freefile(pvp, ino, mode)
252		struct vnode *pvp;
253		ino_t ino;
254		int mode;
255{
256
257	panic("softdep_freefile called");
258}
259
260int
261softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
262	struct buf *bp;
263	struct inode *dp;
264	off_t diroffset;
265	ino_t newinum;
266	struct buf *newdirbp;
267	int isnewblk;
268{
269
270	panic("softdep_setup_directory_add called");
271}
272
273void
274softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
275	struct buf *bp;
276	struct inode *dp;
277	caddr_t base;
278	caddr_t oldloc;
279	caddr_t newloc;
280	int entrysize;
281{
282
283	panic("softdep_change_directoryentry_offset called");
284}
285
286void
287softdep_setup_remove(bp, dp, ip, isrmdir)
288	struct buf *bp;
289	struct inode *dp;
290	struct inode *ip;
291	int isrmdir;
292{
293
294	panic("softdep_setup_remove called");
295}
296
297void
298softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
299	struct buf *bp;
300	struct inode *dp;
301	struct inode *ip;
302	ino_t newinum;
303	int isrmdir;
304{
305
306	panic("softdep_setup_directory_change called");
307}
308
309void
310softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
311	struct mount *mp;
312	struct buf *bp;
313	ufs2_daddr_t blkno;
314	int frags;
315	struct workhead *wkhd;
316{
317
318	panic("%s called", __FUNCTION__);
319}
320
321void
322softdep_setup_inofree(mp, bp, ino, wkhd)
323	struct mount *mp;
324	struct buf *bp;
325	ino_t ino;
326	struct workhead *wkhd;
327{
328
329	panic("%s called", __FUNCTION__);
330}
331
332void
333softdep_setup_unlink(dp, ip)
334	struct inode *dp;
335	struct inode *ip;
336{
337
338	panic("%s called", __FUNCTION__);
339}
340
341void
342softdep_setup_link(dp, ip)
343	struct inode *dp;
344	struct inode *ip;
345{
346
347	panic("%s called", __FUNCTION__);
348}
349
350void
351softdep_revert_link(dp, ip)
352	struct inode *dp;
353	struct inode *ip;
354{
355
356	panic("%s called", __FUNCTION__);
357}
358
359void
360softdep_setup_rmdir(dp, ip)
361	struct inode *dp;
362	struct inode *ip;
363{
364
365	panic("%s called", __FUNCTION__);
366}
367
368void
369softdep_revert_rmdir(dp, ip)
370	struct inode *dp;
371	struct inode *ip;
372{
373
374	panic("%s called", __FUNCTION__);
375}
376
377void
378softdep_setup_create(dp, ip)
379	struct inode *dp;
380	struct inode *ip;
381{
382
383	panic("%s called", __FUNCTION__);
384}
385
386void
387softdep_revert_create(dp, ip)
388	struct inode *dp;
389	struct inode *ip;
390{
391
392	panic("%s called", __FUNCTION__);
393}
394
395void
396softdep_setup_mkdir(dp, ip)
397	struct inode *dp;
398	struct inode *ip;
399{
400
401	panic("%s called", __FUNCTION__);
402}
403
404void
405softdep_revert_mkdir(dp, ip)
406	struct inode *dp;
407	struct inode *ip;
408{
409
410	panic("%s called", __FUNCTION__);
411}
412
413void
414softdep_setup_dotdot_link(dp, ip)
415	struct inode *dp;
416	struct inode *ip;
417{
418
419	panic("%s called", __FUNCTION__);
420}
421
422int
423softdep_prealloc(vp, waitok)
424	struct vnode *vp;
425	int waitok;
426{
427
428	panic("%s called", __FUNCTION__);
429
430	return (0);
431}
432
433int
434softdep_journal_lookup(mp, vpp)
435	struct mount *mp;
436	struct vnode **vpp;
437{
438
439	return (ENOENT);
440}
441
442void
443softdep_change_linkcnt(ip)
444	struct inode *ip;
445{
446
447	panic("softdep_change_linkcnt called");
448}
449
450void
451softdep_load_inodeblock(ip)
452	struct inode *ip;
453{
454
455	panic("softdep_load_inodeblock called");
456}
457
458void
459softdep_update_inodeblock(ip, bp, waitfor)
460	struct inode *ip;
461	struct buf *bp;
462	int waitfor;
463{
464
465	panic("softdep_update_inodeblock called");
466}
467
468int
469softdep_fsync(vp)
470	struct vnode *vp;	/* the "in_core" copy of the inode */
471{
472
473	return (0);
474}
475
476void
477softdep_fsync_mountdev(vp)
478	struct vnode *vp;
479{
480
481	return;
482}
483
484int
485softdep_flushworklist(oldmnt, countp, td)
486	struct mount *oldmnt;
487	int *countp;
488	struct thread *td;
489{
490
491	*countp = 0;
492	return (0);
493}
494
495int
496softdep_sync_metadata(struct vnode *vp)
497{
498
499	return (0);
500}
501
502int
503softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
504{
505
506	return (0);
507}
508
509int
510softdep_slowdown(vp)
511	struct vnode *vp;
512{
513
514	panic("softdep_slowdown called");
515}
516
517void
518softdep_releasefile(ip)
519	struct inode *ip;	/* inode with the zero effective link count */
520{
521
522	panic("softdep_releasefile called");
523}
524
525int
526softdep_request_cleanup(fs, vp, cred, resource)
527	struct fs *fs;
528	struct vnode *vp;
529	struct ucred *cred;
530	int resource;
531{
532
533	return (0);
534}
535
536int
537softdep_check_suspend(struct mount *mp,
538		      struct vnode *devvp,
539		      int softdep_deps,
540		      int softdep_accdeps,
541		      int secondary_writes,
542		      int secondary_accwrites)
543{
544	struct bufobj *bo;
545	int error;
546
547	(void) softdep_deps,
548	(void) softdep_accdeps;
549
550	bo = &devvp->v_bufobj;
551	ASSERT_BO_LOCKED(bo);
552
553	MNT_ILOCK(mp);
554	while (mp->mnt_secondary_writes != 0) {
555		BO_UNLOCK(bo);
556		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557		    (PUSER - 1) | PDROP, "secwr", 0);
558		BO_LOCK(bo);
559		MNT_ILOCK(mp);
560	}
561
562	/*
563	 * Reasons for needing more work before suspend:
564	 * - Dirty buffers on devvp.
565	 * - Secondary writes occurred after start of vnode sync loop
566	 */
567	error = 0;
568	if (bo->bo_numoutput > 0 ||
569	    bo->bo_dirty.bv_cnt > 0 ||
570	    secondary_writes != 0 ||
571	    mp->mnt_secondary_writes != 0 ||
572	    secondary_accwrites != mp->mnt_secondary_accwrites)
573		error = EAGAIN;
574	BO_UNLOCK(bo);
575	return (error);
576}
577
578void
579softdep_get_depcounts(struct mount *mp,
580		      int *softdepactivep,
581		      int *softdepactiveaccp)
582{
583	(void) mp;
584	*softdepactivep = 0;
585	*softdepactiveaccp = 0;
586}
587
588void
589softdep_buf_append(bp, wkhd)
590	struct buf *bp;
591	struct workhead *wkhd;
592{
593
594	panic("softdep_buf_appendwork called");
595}
596
597void
598softdep_inode_append(ip, cred, wkhd)
599	struct inode *ip;
600	struct ucred *cred;
601	struct workhead *wkhd;
602{
603
604	panic("softdep_inode_appendwork called");
605}
606
607void
608softdep_freework(wkhd)
609	struct workhead *wkhd;
610{
611
612	panic("softdep_freework called");
613}
614
615#else
616
617FEATURE(softupdates, "FFS soft-updates support");
618
619/*
620 * These definitions need to be adapted to the system to which
621 * this file is being ported.
622 */
623
624#define M_SOFTDEP_FLAGS	(M_WAITOK)
625
626#define	D_PAGEDEP	0
627#define	D_INODEDEP	1
628#define	D_BMSAFEMAP	2
629#define	D_NEWBLK	3
630#define	D_ALLOCDIRECT	4
631#define	D_INDIRDEP	5
632#define	D_ALLOCINDIR	6
633#define	D_FREEFRAG	7
634#define	D_FREEBLKS	8
635#define	D_FREEFILE	9
636#define	D_DIRADD	10
637#define	D_MKDIR		11
638#define	D_DIRREM	12
639#define	D_NEWDIRBLK	13
640#define	D_FREEWORK	14
641#define	D_FREEDEP	15
642#define	D_JADDREF	16
643#define	D_JREMREF	17
644#define	D_JMVREF	18
645#define	D_JNEWBLK	19
646#define	D_JFREEBLK	20
647#define	D_JFREEFRAG	21
648#define	D_JSEG		22
649#define	D_JSEGDEP	23
650#define	D_SBDEP		24
651#define	D_JTRUNC	25
652#define	D_JFSYNC	26
653#define	D_SENTINAL	27
654#define	D_LAST		D_SENTINAL
655
656unsigned long dep_current[D_LAST + 1];
657unsigned long dep_total[D_LAST + 1];
658unsigned long dep_write[D_LAST + 1];
659
660
661static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
662    "soft updates stats");
663static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
664    "total dependencies allocated");
665static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
666    "current dependencies allocated");
667static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
668    "current dependencies written");
669
670#define	SOFTDEP_TYPE(type, str, long)					\
671    static MALLOC_DEFINE(M_ ## type, #str, long);			\
672    SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
673	&dep_total[D_ ## type], 0, "");					\
674    SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
675	&dep_current[D_ ## type], 0, "");				\
676    SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
677	&dep_write[D_ ## type], 0, "");
678
679SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
680SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
681SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
682    "Block or frag allocated from cyl group map");
683SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
684SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
685SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
686SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
687SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
688SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
689SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
690SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
691SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
692SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
693SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
694SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
695SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
696SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
697SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
698SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
699SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
700SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
701SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
702SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
703SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
704SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
705SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
706SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
707
708static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
709static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
710
711/*
712 * translate from workitem type to memory type
713 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
714 */
715static struct malloc_type *memtype[] = {
716	M_PAGEDEP,
717	M_INODEDEP,
718	M_BMSAFEMAP,
719	M_NEWBLK,
720	M_ALLOCDIRECT,
721	M_INDIRDEP,
722	M_ALLOCINDIR,
723	M_FREEFRAG,
724	M_FREEBLKS,
725	M_FREEFILE,
726	M_DIRADD,
727	M_MKDIR,
728	M_DIRREM,
729	M_NEWDIRBLK,
730	M_FREEWORK,
731	M_FREEDEP,
732	M_JADDREF,
733	M_JREMREF,
734	M_JMVREF,
735	M_JNEWBLK,
736	M_JFREEBLK,
737	M_JFREEFRAG,
738	M_JSEG,
739	M_JSEGDEP,
740	M_SBDEP,
741	M_JTRUNC,
742	M_JFSYNC
743};
744
745static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
746
747#define DtoM(type) (memtype[type])
748
749/*
750 * Names of malloc types.
751 */
752#define TYPENAME(type)  \
753	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
754/*
755 * End system adaptation definitions.
756 */
757
758#define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
759#define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
760
761/*
762 * Forward declarations.
763 */
764struct inodedep_hashhead;
765struct newblk_hashhead;
766struct pagedep_hashhead;
767struct bmsafemap_hashhead;
768
769/*
770 * Internal function prototypes.
771 */
772static	void softdep_error(char *, int);
773static	void drain_output(struct vnode *);
774static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
775static	void clear_remove(struct thread *);
776static	void clear_inodedeps(struct thread *);
777static	void unlinked_inodedep(struct mount *, struct inodedep *);
778static	void clear_unlinked_inodedep(struct inodedep *);
779static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
780static	int flush_pagedep_deps(struct vnode *, struct mount *,
781	    struct diraddhd *);
782static	int free_pagedep(struct pagedep *);
783static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
784static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
785static	int flush_deplist(struct allocdirectlst *, int, int *);
786static	int sync_cgs(struct mount *, int);
787static	int handle_written_filepage(struct pagedep *, struct buf *);
788static	int handle_written_sbdep(struct sbdep *, struct buf *);
789static	void initiate_write_sbdep(struct sbdep *);
790static  void diradd_inode_written(struct diradd *, struct inodedep *);
791static	int handle_written_indirdep(struct indirdep *, struct buf *,
792	    struct buf**);
793static	int handle_written_inodeblock(struct inodedep *, struct buf *);
794static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
795	    uint8_t *);
796static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
797static	void handle_written_jaddref(struct jaddref *);
798static	void handle_written_jremref(struct jremref *);
799static	void handle_written_jseg(struct jseg *, struct buf *);
800static	void handle_written_jnewblk(struct jnewblk *);
801static	void handle_written_jblkdep(struct jblkdep *);
802static	void handle_written_jfreefrag(struct jfreefrag *);
803static	void complete_jseg(struct jseg *);
804static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
805static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
806static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
807static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
808static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
809static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
810static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
811static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
812static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
813static	inline void inoref_write(struct inoref *, struct jseg *,
814	    struct jrefrec *);
815static	void handle_allocdirect_partdone(struct allocdirect *,
816	    struct workhead *);
817static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
818	    struct workhead *);
819static	void indirdep_complete(struct indirdep *);
820static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
821static	void indirblk_insert(struct freework *);
822static	void indirblk_remove(struct freework *);
823static	void handle_allocindir_partdone(struct allocindir *);
824static	void initiate_write_filepage(struct pagedep *, struct buf *);
825static	void initiate_write_indirdep(struct indirdep*, struct buf *);
826static	void handle_written_mkdir(struct mkdir *, int);
827static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
828	    uint8_t *);
829static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
830static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
831static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
832static	void handle_workitem_freefile(struct freefile *);
833static	int handle_workitem_remove(struct dirrem *, int);
834static	struct dirrem *newdirrem(struct buf *, struct inode *,
835	    struct inode *, int, struct dirrem **);
836static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
837	    struct buf *);
838static	void cancel_indirdep(struct indirdep *, struct buf *,
839	    struct freeblks *);
840static	void free_indirdep(struct indirdep *);
841static	void free_diradd(struct diradd *, struct workhead *);
842static	void merge_diradd(struct inodedep *, struct diradd *);
843static	void complete_diradd(struct diradd *);
844static	struct diradd *diradd_lookup(struct pagedep *, int);
845static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
846	    struct jremref *);
847static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
848	    struct jremref *);
849static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
850	    struct jremref *, struct jremref *);
851static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
852	    struct jremref *);
853static	void cancel_allocindir(struct allocindir *, struct buf *bp,
854	    struct freeblks *, int);
855static	int setup_trunc_indir(struct freeblks *, struct inode *,
856	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
857static	void complete_trunc_indir(struct freework *);
858static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
859	    int);
860static	void complete_mkdir(struct mkdir *);
861static	void free_newdirblk(struct newdirblk *);
862static	void free_jremref(struct jremref *);
863static	void free_jaddref(struct jaddref *);
864static	void free_jsegdep(struct jsegdep *);
865static	void free_jsegs(struct jblocks *);
866static	void rele_jseg(struct jseg *);
867static	void free_jseg(struct jseg *, struct jblocks *);
868static	void free_jnewblk(struct jnewblk *);
869static	void free_jblkdep(struct jblkdep *);
870static	void free_jfreefrag(struct jfreefrag *);
871static	void free_freedep(struct freedep *);
872static	void journal_jremref(struct dirrem *, struct jremref *,
873	    struct inodedep *);
874static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
875static	int cancel_jaddref(struct jaddref *, struct inodedep *,
876	    struct workhead *);
877static	void cancel_jfreefrag(struct jfreefrag *);
878static	inline void setup_freedirect(struct freeblks *, struct inode *,
879	    int, int);
880static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
881static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
882	    ufs_lbn_t, int);
883static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
884static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
885static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
886ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
887static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
888static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
889	    int, int);
890static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
891static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
892static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
893static	void newblk_freefrag(struct newblk*);
894static	void free_newblk(struct newblk *);
895static	void cancel_allocdirect(struct allocdirectlst *,
896	    struct allocdirect *, struct freeblks *);
897static	int check_inode_unwritten(struct inodedep *);
898static	int free_inodedep(struct inodedep *);
899static	void freework_freeblock(struct freework *);
900static	void freework_enqueue(struct freework *);
901static	int handle_workitem_freeblocks(struct freeblks *, int);
902static	int handle_complete_freeblocks(struct freeblks *, int);
903static	void handle_workitem_indirblk(struct freework *);
904static	void handle_written_freework(struct freework *);
905static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
906static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
907	    struct workhead *);
908static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
909	    struct inodedep *, struct allocindir *, ufs_lbn_t);
910static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
911	    ufs2_daddr_t, ufs_lbn_t);
912static	void handle_workitem_freefrag(struct freefrag *);
913static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
914	    ufs_lbn_t);
915static	void allocdirect_merge(struct allocdirectlst *,
916	    struct allocdirect *, struct allocdirect *);
917static	struct freefrag *allocindir_merge(struct allocindir *,
918	    struct allocindir *);
919static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
920	    struct bmsafemap **);
921static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
922	    int cg);
923static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
924	    int, struct newblk **);
925static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
926static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
927	    struct inodedep **);
928static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
929static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
930	    int, struct pagedep **);
931static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
932	    struct mount *mp, int, struct pagedep **);
933static	void pause_timer(void *);
934static	int request_cleanup(struct mount *, int);
935static	int process_worklist_item(struct mount *, int, int);
936static	void process_removes(struct vnode *);
937static	void process_truncates(struct vnode *);
938static	void jwork_move(struct workhead *, struct workhead *);
939static	void jwork_insert(struct workhead *, struct jsegdep *);
940static	void add_to_worklist(struct worklist *, int);
941static	void wake_worklist(struct worklist *);
942static	void wait_worklist(struct worklist *, char *);
943static	void remove_from_worklist(struct worklist *);
944static	void softdep_flush(void);
945static	void softdep_flushjournal(struct mount *);
946static	int softdep_speedup(void);
947static	void worklist_speedup(void);
948static	int journal_mount(struct mount *, struct fs *, struct ucred *);
949static	void journal_unmount(struct mount *);
950static	int journal_space(struct ufsmount *, int);
951static	void journal_suspend(struct ufsmount *);
952static	int journal_unsuspend(struct ufsmount *ump);
953static	void softdep_prelink(struct vnode *, struct vnode *);
954static	void add_to_journal(struct worklist *);
955static	void remove_from_journal(struct worklist *);
956static	void softdep_process_journal(struct mount *, struct worklist *, int);
957static	struct jremref *newjremref(struct dirrem *, struct inode *,
958	    struct inode *ip, off_t, nlink_t);
959static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
960	    uint16_t);
961static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
962	    uint16_t);
963static	inline struct jsegdep *inoref_jseg(struct inoref *);
964static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
965static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
966	    ufs2_daddr_t, int);
967static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
968static	void move_newblock_dep(struct jaddref *, struct inodedep *);
969static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
970static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
971	    ufs2_daddr_t, long, ufs_lbn_t);
972static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
973	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
974static	int jwait(struct worklist *, int);
975static	struct inodedep *inodedep_lookup_ip(struct inode *);
976static	int bmsafemap_rollbacks(struct bmsafemap *);
977static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
978static	void handle_jwork(struct workhead *);
979static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
980	    struct mkdir **);
981static	struct jblocks *jblocks_create(void);
982static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
983static	void jblocks_free(struct jblocks *, struct mount *, int);
984static	void jblocks_destroy(struct jblocks *);
985static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
986
987/*
988 * Exported softdep operations.
989 */
990static	void softdep_disk_io_initiation(struct buf *);
991static	void softdep_disk_write_complete(struct buf *);
992static	void softdep_deallocate_dependencies(struct buf *);
993static	int softdep_count_dependencies(struct buf *bp, int);
994
995static struct mtx lk;
996MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
997
998#define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
999#define ACQUIRE_LOCK(lk)		mtx_lock(lk)
1000#define FREE_LOCK(lk)			mtx_unlock(lk)
1001
1002#define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
1003#define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
1004
1005/*
1006 * Worklist queue management.
1007 * These routines require that the lock be held.
1008 */
1009#ifndef /* NOT */ DEBUG
1010#define WORKLIST_INSERT(head, item) do {	\
1011	(item)->wk_state |= ONWORKLIST;		\
1012	LIST_INSERT_HEAD(head, item, wk_list);	\
1013} while (0)
1014#define WORKLIST_REMOVE(item) do {		\
1015	(item)->wk_state &= ~ONWORKLIST;	\
1016	LIST_REMOVE(item, wk_list);		\
1017} while (0)
1018#define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1019#define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1020
1021#else /* DEBUG */
1022static	void worklist_insert(struct workhead *, struct worklist *, int);
1023static	void worklist_remove(struct worklist *, int);
1024
1025#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1026#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1027#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1028#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1029
1030static void
1031worklist_insert(head, item, locked)
1032	struct workhead *head;
1033	struct worklist *item;
1034	int locked;
1035{
1036
1037	if (locked)
1038		mtx_assert(&lk, MA_OWNED);
1039	if (item->wk_state & ONWORKLIST)
1040		panic("worklist_insert: %p %s(0x%X) already on list",
1041		    item, TYPENAME(item->wk_type), item->wk_state);
1042	item->wk_state |= ONWORKLIST;
1043	LIST_INSERT_HEAD(head, item, wk_list);
1044}
1045
1046static void
1047worklist_remove(item, locked)
1048	struct worklist *item;
1049	int locked;
1050{
1051
1052	if (locked)
1053		mtx_assert(&lk, MA_OWNED);
1054	if ((item->wk_state & ONWORKLIST) == 0)
1055		panic("worklist_remove: %p %s(0x%X) not on list",
1056		    item, TYPENAME(item->wk_type), item->wk_state);
1057	item->wk_state &= ~ONWORKLIST;
1058	LIST_REMOVE(item, wk_list);
1059}
1060#endif /* DEBUG */
1061
1062/*
1063 * Merge two jsegdeps keeping only the oldest one as newer references
1064 * can't be discarded until after older references.
1065 */
1066static inline struct jsegdep *
1067jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1068{
1069	struct jsegdep *swp;
1070
1071	if (two == NULL)
1072		return (one);
1073
1074	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1075		swp = one;
1076		one = two;
1077		two = swp;
1078	}
1079	WORKLIST_REMOVE(&two->jd_list);
1080	free_jsegdep(two);
1081
1082	return (one);
1083}
1084
1085/*
1086 * If two freedeps are compatible free one to reduce list size.
1087 */
1088static inline struct freedep *
1089freedep_merge(struct freedep *one, struct freedep *two)
1090{
1091	if (two == NULL)
1092		return (one);
1093
1094	if (one->fd_freework == two->fd_freework) {
1095		WORKLIST_REMOVE(&two->fd_list);
1096		free_freedep(two);
1097	}
1098	return (one);
1099}
1100
1101/*
1102 * Move journal work from one list to another.  Duplicate freedeps and
1103 * jsegdeps are coalesced to keep the lists as small as possible.
1104 */
1105static void
1106jwork_move(dst, src)
1107	struct workhead *dst;
1108	struct workhead *src;
1109{
1110	struct freedep *freedep;
1111	struct jsegdep *jsegdep;
1112	struct worklist *wkn;
1113	struct worklist *wk;
1114
1115	KASSERT(dst != src,
1116	    ("jwork_move: dst == src"));
1117	freedep = NULL;
1118	jsegdep = NULL;
1119	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1120		if (wk->wk_type == D_JSEGDEP)
1121			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1122		if (wk->wk_type == D_FREEDEP)
1123			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1124	}
1125
1126	mtx_assert(&lk, MA_OWNED);
1127	while ((wk = LIST_FIRST(src)) != NULL) {
1128		WORKLIST_REMOVE(wk);
1129		WORKLIST_INSERT(dst, wk);
1130		if (wk->wk_type == D_JSEGDEP) {
1131			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1132			continue;
1133		}
1134		if (wk->wk_type == D_FREEDEP)
1135			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1136	}
1137}
1138
1139static void
1140jwork_insert(dst, jsegdep)
1141	struct workhead *dst;
1142	struct jsegdep *jsegdep;
1143{
1144	struct jsegdep *jsegdepn;
1145	struct worklist *wk;
1146
1147	LIST_FOREACH(wk, dst, wk_list)
1148		if (wk->wk_type == D_JSEGDEP)
1149			break;
1150	if (wk == NULL) {
1151		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1152		return;
1153	}
1154	jsegdepn = WK_JSEGDEP(wk);
1155	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1156		WORKLIST_REMOVE(wk);
1157		free_jsegdep(jsegdepn);
1158		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1159	} else
1160		free_jsegdep(jsegdep);
1161}
1162
1163/*
1164 * Routines for tracking and managing workitems.
1165 */
1166static	void workitem_free(struct worklist *, int);
1167static	void workitem_alloc(struct worklist *, int, struct mount *);
1168
1169#define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1170
1171static void
1172workitem_free(item, type)
1173	struct worklist *item;
1174	int type;
1175{
1176	struct ufsmount *ump;
1177	mtx_assert(&lk, MA_OWNED);
1178
1179#ifdef DEBUG
1180	if (item->wk_state & ONWORKLIST)
1181		panic("workitem_free: %s(0x%X) still on list",
1182		    TYPENAME(item->wk_type), item->wk_state);
1183	if (item->wk_type != type)
1184		panic("workitem_free: type mismatch %s != %s",
1185		    TYPENAME(item->wk_type), TYPENAME(type));
1186#endif
1187	if (item->wk_state & IOWAITING)
1188		wakeup(item);
1189	ump = VFSTOUFS(item->wk_mp);
1190	if (--ump->softdep_deps == 0 && ump->softdep_req)
1191		wakeup(&ump->softdep_deps);
1192	dep_current[type]--;
1193	free(item, DtoM(type));
1194}
1195
1196static void
1197workitem_alloc(item, type, mp)
1198	struct worklist *item;
1199	int type;
1200	struct mount *mp;
1201{
1202	struct ufsmount *ump;
1203
1204	item->wk_type = type;
1205	item->wk_mp = mp;
1206	item->wk_state = 0;
1207
1208	ump = VFSTOUFS(mp);
1209	ACQUIRE_LOCK(&lk);
1210	dep_current[type]++;
1211	dep_total[type]++;
1212	ump->softdep_deps++;
1213	ump->softdep_accdeps++;
1214	FREE_LOCK(&lk);
1215}
1216
1217/*
1218 * Workitem queue management
1219 */
1220static int max_softdeps;	/* maximum number of structs before slowdown */
1221static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1222static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1223static int proc_waiting;	/* tracks whether we have a timeout posted */
1224static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1225static struct callout softdep_callout;
1226static int req_pending;
1227static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1228static int req_clear_remove;	/* syncer process flush some freeblks */
1229
1230/*
1231 * runtime statistics
1232 */
1233static int stat_worklist_push;	/* number of worklist cleanups */
1234static int stat_blk_limit_push;	/* number of times block limit neared */
1235static int stat_ino_limit_push;	/* number of times inode limit neared */
1236static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1237static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1238static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1239static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1240static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1241static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1242static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1243static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1244static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1245static int stat_journal_min;	/* Times hit journal min threshold */
1246static int stat_journal_low;	/* Times hit journal low threshold */
1247static int stat_journal_wait;	/* Times blocked in jwait(). */
1248static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1249static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1250static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1251static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1252static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1253static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1254static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1255static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1256static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1257
1258SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1259    &max_softdeps, 0, "");
1260SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1261    &tickdelay, 0, "");
1262SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1263    &maxindirdeps, 0, "");
1264SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1265    &stat_worklist_push, 0,"");
1266SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1267    &stat_blk_limit_push, 0,"");
1268SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1269    &stat_ino_limit_push, 0,"");
1270SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1271    &stat_blk_limit_hit, 0, "");
1272SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1273    &stat_ino_limit_hit, 0, "");
1274SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1275    &stat_sync_limit_hit, 0, "");
1276SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1277    &stat_indir_blk_ptrs, 0, "");
1278SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1279    &stat_inode_bitmap, 0, "");
1280SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1281    &stat_direct_blk_ptrs, 0, "");
1282SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1283    &stat_dir_entry, 0, "");
1284SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1285    &stat_jaddref, 0, "");
1286SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1287    &stat_jnewblk, 0, "");
1288SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1289    &stat_journal_low, 0, "");
1290SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1291    &stat_journal_min, 0, "");
1292SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1293    &stat_journal_wait, 0, "");
1294SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1295    &stat_jwait_filepage, 0, "");
1296SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1297    &stat_jwait_freeblks, 0, "");
1298SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1299    &stat_jwait_inode, 0, "");
1300SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1301    &stat_jwait_newblk, 0, "");
1302SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1303    &stat_cleanup_blkrequests, 0, "");
1304SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1305    &stat_cleanup_inorequests, 0, "");
1306SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1307    &stat_cleanup_high_delay, 0, "");
1308SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1309    &stat_cleanup_retries, 0, "");
1310SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1311    &stat_cleanup_failures, 0, "");
1312
1313SYSCTL_DECL(_vfs_ffs);
1314
1315LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1316static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1317
1318static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1319SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1320	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1321
1322static struct proc *softdepproc;
1323static struct kproc_desc softdep_kp = {
1324	"softdepflush",
1325	softdep_flush,
1326	&softdepproc
1327};
1328SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1329    &softdep_kp);
1330
1331static void
1332softdep_flush(void)
1333{
1334	struct mount *nmp;
1335	struct mount *mp;
1336	struct ufsmount *ump;
1337	struct thread *td;
1338	int remaining;
1339	int progress;
1340	int vfslocked;
1341
1342	td = curthread;
1343	td->td_pflags |= TDP_NORUNNINGBUF;
1344
1345	for (;;) {
1346		kproc_suspend_check(softdepproc);
1347		vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
1348		ACQUIRE_LOCK(&lk);
1349		/*
1350		 * If requested, try removing inode or removal dependencies.
1351		 */
1352		if (req_clear_inodedeps) {
1353			clear_inodedeps(td);
1354			req_clear_inodedeps -= 1;
1355			wakeup_one(&proc_waiting);
1356		}
1357		if (req_clear_remove) {
1358			clear_remove(td);
1359			req_clear_remove -= 1;
1360			wakeup_one(&proc_waiting);
1361		}
1362		FREE_LOCK(&lk);
1363		VFS_UNLOCK_GIANT(vfslocked);
1364		remaining = progress = 0;
1365		mtx_lock(&mountlist_mtx);
1366		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1367			nmp = TAILQ_NEXT(mp, mnt_list);
1368			if (MOUNTEDSOFTDEP(mp) == 0)
1369				continue;
1370			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1371				continue;
1372			vfslocked = VFS_LOCK_GIANT(mp);
1373			progress += softdep_process_worklist(mp, 0);
1374			ump = VFSTOUFS(mp);
1375			remaining += ump->softdep_on_worklist;
1376			VFS_UNLOCK_GIANT(vfslocked);
1377			mtx_lock(&mountlist_mtx);
1378			nmp = TAILQ_NEXT(mp, mnt_list);
1379			vfs_unbusy(mp);
1380		}
1381		mtx_unlock(&mountlist_mtx);
1382		if (remaining && progress)
1383			continue;
1384		ACQUIRE_LOCK(&lk);
1385		if (!req_pending)
1386			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1387		req_pending = 0;
1388		FREE_LOCK(&lk);
1389	}
1390}
1391
1392static void
1393worklist_speedup(void)
1394{
1395	mtx_assert(&lk, MA_OWNED);
1396	if (req_pending == 0) {
1397		req_pending = 1;
1398		wakeup(&req_pending);
1399	}
1400}
1401
1402static int
1403softdep_speedup(void)
1404{
1405
1406	worklist_speedup();
1407	bd_speedup();
1408	return speedup_syncer();
1409}
1410
1411/*
1412 * Add an item to the end of the work queue.
1413 * This routine requires that the lock be held.
1414 * This is the only routine that adds items to the list.
1415 * The following routine is the only one that removes items
1416 * and does so in order from first to last.
1417 */
1418
1419#define	WK_HEAD		0x0001	/* Add to HEAD. */
1420#define	WK_NODELAY	0x0002	/* Process immediately. */
1421
1422static void
1423add_to_worklist(wk, flags)
1424	struct worklist *wk;
1425	int flags;
1426{
1427	struct ufsmount *ump;
1428
1429	mtx_assert(&lk, MA_OWNED);
1430	ump = VFSTOUFS(wk->wk_mp);
1431	if (wk->wk_state & ONWORKLIST)
1432		panic("add_to_worklist: %s(0x%X) already on list",
1433		    TYPENAME(wk->wk_type), wk->wk_state);
1434	wk->wk_state |= ONWORKLIST;
1435	if (ump->softdep_on_worklist == 0) {
1436		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1437		ump->softdep_worklist_tail = wk;
1438	} else if (flags & WK_HEAD) {
1439		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1440	} else {
1441		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1442		ump->softdep_worklist_tail = wk;
1443	}
1444	ump->softdep_on_worklist += 1;
1445	if (flags & WK_NODELAY)
1446		worklist_speedup();
1447}
1448
1449/*
1450 * Remove the item to be processed. If we are removing the last
1451 * item on the list, we need to recalculate the tail pointer.
1452 */
1453static void
1454remove_from_worklist(wk)
1455	struct worklist *wk;
1456{
1457	struct ufsmount *ump;
1458
1459	ump = VFSTOUFS(wk->wk_mp);
1460	WORKLIST_REMOVE(wk);
1461	if (ump->softdep_worklist_tail == wk)
1462		ump->softdep_worklist_tail =
1463		    (struct worklist *)wk->wk_list.le_prev;
1464	ump->softdep_on_worklist -= 1;
1465}
1466
1467static void
1468wake_worklist(wk)
1469	struct worklist *wk;
1470{
1471	if (wk->wk_state & IOWAITING) {
1472		wk->wk_state &= ~IOWAITING;
1473		wakeup(wk);
1474	}
1475}
1476
1477static void
1478wait_worklist(wk, wmesg)
1479	struct worklist *wk;
1480	char *wmesg;
1481{
1482
1483	wk->wk_state |= IOWAITING;
1484	msleep(wk, &lk, PVM, wmesg, 0);
1485}
1486
1487/*
1488 * Process that runs once per second to handle items in the background queue.
1489 *
1490 * Note that we ensure that everything is done in the order in which they
1491 * appear in the queue. The code below depends on this property to ensure
1492 * that blocks of a file are freed before the inode itself is freed. This
1493 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1494 * until all the old ones have been purged from the dependency lists.
1495 */
1496int
1497softdep_process_worklist(mp, full)
1498	struct mount *mp;
1499	int full;
1500{
1501	struct thread *td = curthread;
1502	int cnt, matchcnt;
1503	struct ufsmount *ump;
1504	long starttime;
1505
1506	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1507	/*
1508	 * Record the process identifier of our caller so that we can give
1509	 * this process preferential treatment in request_cleanup below.
1510	 */
1511	matchcnt = 0;
1512	ump = VFSTOUFS(mp);
1513	ACQUIRE_LOCK(&lk);
1514	starttime = time_second;
1515	softdep_process_journal(mp, NULL, full?MNT_WAIT:0);
1516	while (ump->softdep_on_worklist > 0) {
1517		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1518			break;
1519		else
1520			matchcnt += cnt;
1521		/*
1522		 * If requested, try removing inode or removal dependencies.
1523		 */
1524		if (req_clear_inodedeps) {
1525			clear_inodedeps(td);
1526			req_clear_inodedeps -= 1;
1527			wakeup_one(&proc_waiting);
1528		}
1529		if (req_clear_remove) {
1530			clear_remove(td);
1531			req_clear_remove -= 1;
1532			wakeup_one(&proc_waiting);
1533		}
1534		/*
1535		 * We do not generally want to stop for buffer space, but if
1536		 * we are really being a buffer hog, we will stop and wait.
1537		 */
1538		if (should_yield()) {
1539			FREE_LOCK(&lk);
1540			kern_yield(PRI_UNCHANGED);
1541			bwillwrite();
1542			ACQUIRE_LOCK(&lk);
1543		}
1544		/*
1545		 * Never allow processing to run for more than one
1546		 * second. Otherwise the other mountpoints may get
1547		 * excessively backlogged.
1548		 */
1549		if (!full && starttime != time_second)
1550			break;
1551	}
1552	if (full == 0)
1553		journal_unsuspend(ump);
1554	FREE_LOCK(&lk);
1555	return (matchcnt);
1556}
1557
1558/*
1559 * Process all removes associated with a vnode if we are running out of
1560 * journal space.  Any other process which attempts to flush these will
1561 * be unable as we have the vnodes locked.
1562 */
1563static void
1564process_removes(vp)
1565	struct vnode *vp;
1566{
1567	struct inodedep *inodedep;
1568	struct dirrem *dirrem;
1569	struct mount *mp;
1570	ino_t inum;
1571
1572	mtx_assert(&lk, MA_OWNED);
1573
1574	mp = vp->v_mount;
1575	inum = VTOI(vp)->i_number;
1576	for (;;) {
1577top:
1578		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1579			return;
1580		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1581			/*
1582			 * If another thread is trying to lock this vnode
1583			 * it will fail but we must wait for it to do so
1584			 * before we can proceed.
1585			 */
1586			if (dirrem->dm_state & INPROGRESS) {
1587				wait_worklist(&dirrem->dm_list, "pwrwait");
1588				goto top;
1589			}
1590			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1591			    (COMPLETE | ONWORKLIST))
1592				break;
1593		}
1594		if (dirrem == NULL)
1595			return;
1596		remove_from_worklist(&dirrem->dm_list);
1597		FREE_LOCK(&lk);
1598		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1599			panic("process_removes: suspended filesystem");
1600		handle_workitem_remove(dirrem, 0);
1601		vn_finished_secondary_write(mp);
1602		ACQUIRE_LOCK(&lk);
1603	}
1604}
1605
1606/*
1607 * Process all truncations associated with a vnode if we are running out
1608 * of journal space.  This is called when the vnode lock is already held
1609 * and no other process can clear the truncation.  This function returns
1610 * a value greater than zero if it did any work.
1611 */
1612static void
1613process_truncates(vp)
1614	struct vnode *vp;
1615{
1616	struct inodedep *inodedep;
1617	struct freeblks *freeblks;
1618	struct mount *mp;
1619	ino_t inum;
1620	int cgwait;
1621
1622	mtx_assert(&lk, MA_OWNED);
1623
1624	mp = vp->v_mount;
1625	inum = VTOI(vp)->i_number;
1626	for (;;) {
1627		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1628			return;
1629		cgwait = 0;
1630		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1631			/* Journal entries not yet written.  */
1632			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1633				jwait(&LIST_FIRST(
1634				    &freeblks->fb_jblkdephd)->jb_list,
1635				    MNT_WAIT);
1636				break;
1637			}
1638			/* Another thread is executing this item. */
1639			if (freeblks->fb_state & INPROGRESS) {
1640				wait_worklist(&freeblks->fb_list, "ptrwait");
1641				break;
1642			}
1643			/* Freeblks is waiting on a inode write. */
1644			if ((freeblks->fb_state & COMPLETE) == 0) {
1645				FREE_LOCK(&lk);
1646				ffs_update(vp, 1);
1647				ACQUIRE_LOCK(&lk);
1648				break;
1649			}
1650			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1651			    (ALLCOMPLETE | ONWORKLIST)) {
1652				remove_from_worklist(&freeblks->fb_list);
1653				freeblks->fb_state |= INPROGRESS;
1654				FREE_LOCK(&lk);
1655				if (vn_start_secondary_write(NULL, &mp,
1656				    V_NOWAIT))
1657					panic("process_truncates: "
1658					    "suspended filesystem");
1659				handle_workitem_freeblocks(freeblks, 0);
1660				vn_finished_secondary_write(mp);
1661				ACQUIRE_LOCK(&lk);
1662				break;
1663			}
1664			if (freeblks->fb_cgwait)
1665				cgwait++;
1666		}
1667		if (cgwait) {
1668			FREE_LOCK(&lk);
1669			sync_cgs(mp, MNT_WAIT);
1670			ffs_sync_snap(mp, MNT_WAIT);
1671			ACQUIRE_LOCK(&lk);
1672			continue;
1673		}
1674		if (freeblks == NULL)
1675			break;
1676	}
1677	return;
1678}
1679
1680/*
1681 * Process one item on the worklist.
1682 */
1683static int
1684process_worklist_item(mp, target, flags)
1685	struct mount *mp;
1686	int target;
1687	int flags;
1688{
1689	struct worklist sintenel;
1690	struct worklist *wk;
1691	struct ufsmount *ump;
1692	int matchcnt;
1693	int error;
1694
1695	mtx_assert(&lk, MA_OWNED);
1696	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1697	/*
1698	 * If we are being called because of a process doing a
1699	 * copy-on-write, then it is not safe to write as we may
1700	 * recurse into the copy-on-write routine.
1701	 */
1702	if (curthread->td_pflags & TDP_COWINPROGRESS)
1703		return (-1);
1704	PHOLD(curproc);	/* Don't let the stack go away. */
1705	ump = VFSTOUFS(mp);
1706	matchcnt = 0;
1707	sintenel.wk_mp = NULL;
1708	sintenel.wk_type = D_SENTINAL;
1709	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sintenel, wk_list);
1710	for (wk = LIST_NEXT(&sintenel, wk_list); wk != NULL;
1711	    wk = LIST_NEXT(&sintenel, wk_list)) {
1712		if (wk->wk_type == D_SENTINAL) {
1713			LIST_REMOVE(&sintenel, wk_list);
1714			LIST_INSERT_AFTER(wk, &sintenel, wk_list);
1715			continue;
1716		}
1717		if (wk->wk_state & INPROGRESS)
1718			panic("process_worklist_item: %p already in progress.",
1719			    wk);
1720		wk->wk_state |= INPROGRESS;
1721		remove_from_worklist(wk);
1722		FREE_LOCK(&lk);
1723		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1724			panic("process_worklist_item: suspended filesystem");
1725		switch (wk->wk_type) {
1726		case D_DIRREM:
1727			/* removal of a directory entry */
1728			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1729			break;
1730
1731		case D_FREEBLKS:
1732			/* releasing blocks and/or fragments from a file */
1733			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1734			    flags);
1735			break;
1736
1737		case D_FREEFRAG:
1738			/* releasing a fragment when replaced as a file grows */
1739			handle_workitem_freefrag(WK_FREEFRAG(wk));
1740			error = 0;
1741			break;
1742
1743		case D_FREEFILE:
1744			/* releasing an inode when its link count drops to 0 */
1745			handle_workitem_freefile(WK_FREEFILE(wk));
1746			error = 0;
1747			break;
1748
1749		default:
1750			panic("%s_process_worklist: Unknown type %s",
1751			    "softdep", TYPENAME(wk->wk_type));
1752			/* NOTREACHED */
1753		}
1754		vn_finished_secondary_write(mp);
1755		ACQUIRE_LOCK(&lk);
1756		if (error == 0) {
1757			if (++matchcnt == target)
1758				break;
1759			continue;
1760		}
1761		/*
1762		 * We have to retry the worklist item later.  Wake up any
1763		 * waiters who may be able to complete it immediately and
1764		 * add the item back to the head so we don't try to execute
1765		 * it again.
1766		 */
1767		wk->wk_state &= ~INPROGRESS;
1768		wake_worklist(wk);
1769		add_to_worklist(wk, WK_HEAD);
1770	}
1771	LIST_REMOVE(&sintenel, wk_list);
1772	/* Sentinal could've become the tail from remove_from_worklist. */
1773	if (ump->softdep_worklist_tail == &sintenel)
1774		ump->softdep_worklist_tail =
1775		    (struct worklist *)sintenel.wk_list.le_prev;
1776	PRELE(curproc);
1777	return (matchcnt);
1778}
1779
1780/*
1781 * Move dependencies from one buffer to another.
1782 */
1783int
1784softdep_move_dependencies(oldbp, newbp)
1785	struct buf *oldbp;
1786	struct buf *newbp;
1787{
1788	struct worklist *wk, *wktail;
1789	int dirty;
1790
1791	dirty = 0;
1792	wktail = NULL;
1793	ACQUIRE_LOCK(&lk);
1794	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1795		LIST_REMOVE(wk, wk_list);
1796		if (wk->wk_type == D_BMSAFEMAP &&
1797		    bmsafemap_rollbacks(WK_BMSAFEMAP(wk)))
1798			dirty = 1;
1799		if (wktail == 0)
1800			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1801		else
1802			LIST_INSERT_AFTER(wktail, wk, wk_list);
1803		wktail = wk;
1804	}
1805	FREE_LOCK(&lk);
1806
1807	return (dirty);
1808}
1809
1810/*
1811 * Purge the work list of all items associated with a particular mount point.
1812 */
1813int
1814softdep_flushworklist(oldmnt, countp, td)
1815	struct mount *oldmnt;
1816	int *countp;
1817	struct thread *td;
1818{
1819	struct vnode *devvp;
1820	int count, error = 0;
1821	struct ufsmount *ump;
1822
1823	/*
1824	 * Alternately flush the block device associated with the mount
1825	 * point and process any dependencies that the flushing
1826	 * creates. We continue until no more worklist dependencies
1827	 * are found.
1828	 */
1829	*countp = 0;
1830	ump = VFSTOUFS(oldmnt);
1831	devvp = ump->um_devvp;
1832	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1833		*countp += count;
1834		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1835		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1836		VOP_UNLOCK(devvp, 0);
1837		if (error)
1838			break;
1839	}
1840	return (error);
1841}
1842
1843int
1844softdep_waitidle(struct mount *mp)
1845{
1846	struct ufsmount *ump;
1847	int error;
1848	int i;
1849
1850	ump = VFSTOUFS(mp);
1851	ACQUIRE_LOCK(&lk);
1852	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1853		ump->softdep_req = 1;
1854		if (ump->softdep_on_worklist)
1855			panic("softdep_waitidle: work added after flush.");
1856		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1857	}
1858	ump->softdep_req = 0;
1859	FREE_LOCK(&lk);
1860	error = 0;
1861	if (i == 10) {
1862		error = EBUSY;
1863		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1864		    mp);
1865	}
1866
1867	return (error);
1868}
1869
1870/*
1871 * Flush all vnodes and worklist items associated with a specified mount point.
1872 */
1873int
1874softdep_flushfiles(oldmnt, flags, td)
1875	struct mount *oldmnt;
1876	int flags;
1877	struct thread *td;
1878{
1879	int error, depcount, loopcnt, retry_flush_count, retry;
1880
1881	loopcnt = 10;
1882	retry_flush_count = 3;
1883retry_flush:
1884	error = 0;
1885
1886	/*
1887	 * Alternately flush the vnodes associated with the mount
1888	 * point and process any dependencies that the flushing
1889	 * creates. In theory, this loop can happen at most twice,
1890	 * but we give it a few extra just to be sure.
1891	 */
1892	for (; loopcnt > 0; loopcnt--) {
1893		/*
1894		 * Do another flush in case any vnodes were brought in
1895		 * as part of the cleanup operations.
1896		 */
1897		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1898			break;
1899		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1900		    depcount == 0)
1901			break;
1902	}
1903	/*
1904	 * If we are unmounting then it is an error to fail. If we
1905	 * are simply trying to downgrade to read-only, then filesystem
1906	 * activity can keep us busy forever, so we just fail with EBUSY.
1907	 */
1908	if (loopcnt == 0) {
1909		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1910			panic("softdep_flushfiles: looping");
1911		error = EBUSY;
1912	}
1913	if (!error)
1914		error = softdep_waitidle(oldmnt);
1915	if (!error) {
1916		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1917			retry = 0;
1918			MNT_ILOCK(oldmnt);
1919			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1920			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1921			if (oldmnt->mnt_nvnodelistsize > 0) {
1922				if (--retry_flush_count > 0) {
1923					retry = 1;
1924					loopcnt = 3;
1925				} else
1926					error = EBUSY;
1927			}
1928			MNT_IUNLOCK(oldmnt);
1929			if (retry)
1930				goto retry_flush;
1931		}
1932	}
1933	return (error);
1934}
1935
1936/*
1937 * Structure hashing.
1938 *
1939 * There are three types of structures that can be looked up:
1940 *	1) pagedep structures identified by mount point, inode number,
1941 *	   and logical block.
1942 *	2) inodedep structures identified by mount point and inode number.
1943 *	3) newblk structures identified by mount point and
1944 *	   physical block number.
1945 *
1946 * The "pagedep" and "inodedep" dependency structures are hashed
1947 * separately from the file blocks and inodes to which they correspond.
1948 * This separation helps when the in-memory copy of an inode or
1949 * file block must be replaced. It also obviates the need to access
1950 * an inode or file page when simply updating (or de-allocating)
1951 * dependency structures. Lookup of newblk structures is needed to
1952 * find newly allocated blocks when trying to associate them with
1953 * their allocdirect or allocindir structure.
1954 *
1955 * The lookup routines optionally create and hash a new instance when
1956 * an existing entry is not found.
1957 */
1958#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1959#define NODELAY		0x0002	/* cannot do background work */
1960
1961/*
1962 * Structures and routines associated with pagedep caching.
1963 */
1964LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1965u_long	pagedep_hash;		/* size of hash table - 1 */
1966#define	PAGEDEP_HASH(mp, inum, lbn) \
1967	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1968	    pagedep_hash])
1969
1970static int
1971pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1972	struct pagedep_hashhead *pagedephd;
1973	ino_t ino;
1974	ufs_lbn_t lbn;
1975	struct mount *mp;
1976	int flags;
1977	struct pagedep **pagedeppp;
1978{
1979	struct pagedep *pagedep;
1980
1981	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
1982		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn &&
1983		    mp == pagedep->pd_list.wk_mp) {
1984			*pagedeppp = pagedep;
1985			return (1);
1986		}
1987	}
1988	*pagedeppp = NULL;
1989	return (0);
1990}
1991/*
1992 * Look up a pagedep. Return 1 if found, 0 otherwise.
1993 * If not found, allocate if DEPALLOC flag is passed.
1994 * Found or allocated entry is returned in pagedeppp.
1995 * This routine must be called with splbio interrupts blocked.
1996 */
1997static int
1998pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
1999	struct mount *mp;
2000	struct buf *bp;
2001	ino_t ino;
2002	ufs_lbn_t lbn;
2003	int flags;
2004	struct pagedep **pagedeppp;
2005{
2006	struct pagedep *pagedep;
2007	struct pagedep_hashhead *pagedephd;
2008	struct worklist *wk;
2009	int ret;
2010	int i;
2011
2012	mtx_assert(&lk, MA_OWNED);
2013	if (bp) {
2014		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2015			if (wk->wk_type == D_PAGEDEP) {
2016				*pagedeppp = WK_PAGEDEP(wk);
2017				return (1);
2018			}
2019		}
2020	}
2021	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
2022	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2023	if (ret) {
2024		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2025			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2026		return (1);
2027	}
2028	if ((flags & DEPALLOC) == 0)
2029		return (0);
2030	FREE_LOCK(&lk);
2031	pagedep = malloc(sizeof(struct pagedep),
2032	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2033	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2034	ACQUIRE_LOCK(&lk);
2035	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2036	if (*pagedeppp) {
2037		/*
2038		 * This should never happen since we only create pagedeps
2039		 * with the vnode lock held.  Could be an assert.
2040		 */
2041		WORKITEM_FREE(pagedep, D_PAGEDEP);
2042		return (ret);
2043	}
2044	pagedep->pd_ino = ino;
2045	pagedep->pd_lbn = lbn;
2046	LIST_INIT(&pagedep->pd_dirremhd);
2047	LIST_INIT(&pagedep->pd_pendinghd);
2048	for (i = 0; i < DAHASHSZ; i++)
2049		LIST_INIT(&pagedep->pd_diraddhd[i]);
2050	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2051	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2052	*pagedeppp = pagedep;
2053	return (0);
2054}
2055
2056/*
2057 * Structures and routines associated with inodedep caching.
2058 */
2059LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
2060static u_long	inodedep_hash;	/* size of hash table - 1 */
2061#define	INODEDEP_HASH(fs, inum) \
2062      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
2063
2064static int
2065inodedep_find(inodedephd, fs, inum, inodedeppp)
2066	struct inodedep_hashhead *inodedephd;
2067	struct fs *fs;
2068	ino_t inum;
2069	struct inodedep **inodedeppp;
2070{
2071	struct inodedep *inodedep;
2072
2073	LIST_FOREACH(inodedep, inodedephd, id_hash)
2074		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
2075			break;
2076	if (inodedep) {
2077		*inodedeppp = inodedep;
2078		return (1);
2079	}
2080	*inodedeppp = NULL;
2081
2082	return (0);
2083}
2084/*
2085 * Look up an inodedep. Return 1 if found, 0 if not found.
2086 * If not found, allocate if DEPALLOC flag is passed.
2087 * Found or allocated entry is returned in inodedeppp.
2088 * This routine must be called with splbio interrupts blocked.
2089 */
2090static int
2091inodedep_lookup(mp, inum, flags, inodedeppp)
2092	struct mount *mp;
2093	ino_t inum;
2094	int flags;
2095	struct inodedep **inodedeppp;
2096{
2097	struct inodedep *inodedep;
2098	struct inodedep_hashhead *inodedephd;
2099	struct fs *fs;
2100
2101	mtx_assert(&lk, MA_OWNED);
2102	fs = VFSTOUFS(mp)->um_fs;
2103	inodedephd = INODEDEP_HASH(fs, inum);
2104
2105	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
2106		return (1);
2107	if ((flags & DEPALLOC) == 0)
2108		return (0);
2109	/*
2110	 * If we are over our limit, try to improve the situation.
2111	 */
2112	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2113		request_cleanup(mp, FLUSH_INODES);
2114	FREE_LOCK(&lk);
2115	inodedep = malloc(sizeof(struct inodedep),
2116		M_INODEDEP, M_SOFTDEP_FLAGS);
2117	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2118	ACQUIRE_LOCK(&lk);
2119	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
2120		WORKITEM_FREE(inodedep, D_INODEDEP);
2121		return (1);
2122	}
2123	inodedep->id_fs = fs;
2124	inodedep->id_ino = inum;
2125	inodedep->id_state = ALLCOMPLETE;
2126	inodedep->id_nlinkdelta = 0;
2127	inodedep->id_savedino1 = NULL;
2128	inodedep->id_savedsize = -1;
2129	inodedep->id_savedextsize = -1;
2130	inodedep->id_savednlink = -1;
2131	inodedep->id_bmsafemap = NULL;
2132	inodedep->id_mkdiradd = NULL;
2133	LIST_INIT(&inodedep->id_dirremhd);
2134	LIST_INIT(&inodedep->id_pendinghd);
2135	LIST_INIT(&inodedep->id_inowait);
2136	LIST_INIT(&inodedep->id_bufwait);
2137	TAILQ_INIT(&inodedep->id_inoreflst);
2138	TAILQ_INIT(&inodedep->id_inoupdt);
2139	TAILQ_INIT(&inodedep->id_newinoupdt);
2140	TAILQ_INIT(&inodedep->id_extupdt);
2141	TAILQ_INIT(&inodedep->id_newextupdt);
2142	TAILQ_INIT(&inodedep->id_freeblklst);
2143	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2144	*inodedeppp = inodedep;
2145	return (0);
2146}
2147
2148/*
2149 * Structures and routines associated with newblk caching.
2150 */
2151LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
2152u_long	newblk_hash;		/* size of hash table - 1 */
2153#define	NEWBLK_HASH(fs, inum) \
2154	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
2155
2156static int
2157newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
2158	struct newblk_hashhead *newblkhd;
2159	struct mount *mp;
2160	ufs2_daddr_t newblkno;
2161	int flags;
2162	struct newblk **newblkpp;
2163{
2164	struct newblk *newblk;
2165
2166	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2167		if (newblkno != newblk->nb_newblkno)
2168			continue;
2169		if (mp != newblk->nb_list.wk_mp)
2170			continue;
2171		/*
2172		 * If we're creating a new dependency don't match those that
2173		 * have already been converted to allocdirects.  This is for
2174		 * a frag extend.
2175		 */
2176		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2177			continue;
2178		break;
2179	}
2180	if (newblk) {
2181		*newblkpp = newblk;
2182		return (1);
2183	}
2184	*newblkpp = NULL;
2185	return (0);
2186}
2187
2188/*
2189 * Look up a newblk. Return 1 if found, 0 if not found.
2190 * If not found, allocate if DEPALLOC flag is passed.
2191 * Found or allocated entry is returned in newblkpp.
2192 */
2193static int
2194newblk_lookup(mp, newblkno, flags, newblkpp)
2195	struct mount *mp;
2196	ufs2_daddr_t newblkno;
2197	int flags;
2198	struct newblk **newblkpp;
2199{
2200	struct newblk *newblk;
2201	struct newblk_hashhead *newblkhd;
2202
2203	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
2204	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
2205		return (1);
2206	if ((flags & DEPALLOC) == 0)
2207		return (0);
2208	FREE_LOCK(&lk);
2209	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2210	    M_SOFTDEP_FLAGS | M_ZERO);
2211	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2212	ACQUIRE_LOCK(&lk);
2213	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
2214		WORKITEM_FREE(newblk, D_NEWBLK);
2215		return (1);
2216	}
2217	newblk->nb_freefrag = NULL;
2218	LIST_INIT(&newblk->nb_indirdeps);
2219	LIST_INIT(&newblk->nb_newdirblk);
2220	LIST_INIT(&newblk->nb_jwork);
2221	newblk->nb_state = ATTACHED;
2222	newblk->nb_newblkno = newblkno;
2223	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2224	*newblkpp = newblk;
2225	return (0);
2226}
2227
2228/*
2229 * Structures and routines associated with freed indirect block caching.
2230 */
2231struct freeworklst *indir_hashtbl;
2232u_long	indir_hash;		/* size of hash table - 1 */
2233#define	INDIR_HASH(mp, blkno) \
2234	(&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash])
2235
2236/*
2237 * Lookup an indirect block in the indir hash table.  The freework is
2238 * removed and potentially freed.  The caller must do a blocking journal
2239 * write before writing to the blkno.
2240 */
2241static int
2242indirblk_lookup(mp, blkno)
2243	struct mount *mp;
2244	ufs2_daddr_t blkno;
2245{
2246	struct freework *freework;
2247	struct freeworklst *wkhd;
2248
2249	wkhd = INDIR_HASH(mp, blkno);
2250	TAILQ_FOREACH(freework, wkhd, fw_next) {
2251		if (freework->fw_blkno != blkno)
2252			continue;
2253		if (freework->fw_list.wk_mp != mp)
2254			continue;
2255		indirblk_remove(freework);
2256		return (1);
2257	}
2258	return (0);
2259}
2260
2261/*
2262 * Insert an indirect block represented by freework into the indirblk
2263 * hash table so that it may prevent the block from being re-used prior
2264 * to the journal being written.
2265 */
2266static void
2267indirblk_insert(freework)
2268	struct freework *freework;
2269{
2270	struct freeblks *freeblks;
2271	struct jsegdep *jsegdep;
2272	struct worklist *wk;
2273
2274	freeblks = freework->fw_freeblks;
2275	LIST_FOREACH(wk, &freeblks->fb_jwork, wk_list)
2276		if (wk->wk_type == D_JSEGDEP)
2277			break;
2278	if (wk == NULL)
2279		return;
2280
2281	jsegdep = WK_JSEGDEP(wk);
2282	LIST_INSERT_HEAD(&jsegdep->jd_seg->js_indirs, freework, fw_segs);
2283	TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp,
2284	    freework->fw_blkno), freework, fw_next);
2285	freework->fw_state &= ~DEPCOMPLETE;
2286}
2287
2288static void
2289indirblk_remove(freework)
2290	struct freework *freework;
2291{
2292
2293	LIST_REMOVE(freework, fw_segs);
2294	TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp,
2295	    freework->fw_blkno), freework, fw_next);
2296	freework->fw_state |= DEPCOMPLETE;
2297	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2298		WORKITEM_FREE(freework, D_FREEWORK);
2299}
2300
2301/*
2302 * Executed during filesystem system initialization before
2303 * mounting any filesystems.
2304 */
2305void
2306softdep_initialize()
2307{
2308	int i;
2309
2310	LIST_INIT(&mkdirlisthd);
2311	max_softdeps = desiredvnodes * 4;
2312	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
2313	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
2314	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
2315	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
2316	i = 1 << (ffs(desiredvnodes / 10) - 1);
2317	indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK,
2318	    M_WAITOK);
2319	indir_hash = i - 1;
2320	for (i = 0; i <= indir_hash; i++)
2321		TAILQ_INIT(&indir_hashtbl[i]);
2322
2323	/* initialise bioops hack */
2324	bioops.io_start = softdep_disk_io_initiation;
2325	bioops.io_complete = softdep_disk_write_complete;
2326	bioops.io_deallocate = softdep_deallocate_dependencies;
2327	bioops.io_countdeps = softdep_count_dependencies;
2328
2329	/* Initialize the callout with an mtx. */
2330	callout_init_mtx(&softdep_callout, &lk, 0);
2331}
2332
2333/*
2334 * Executed after all filesystems have been unmounted during
2335 * filesystem module unload.
2336 */
2337void
2338softdep_uninitialize()
2339{
2340
2341	callout_drain(&softdep_callout);
2342	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2343	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2344	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2345	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2346	free(indir_hashtbl, M_FREEWORK);
2347}
2348
2349/*
2350 * Called at mount time to notify the dependency code that a
2351 * filesystem wishes to use it.
2352 */
2353int
2354softdep_mount(devvp, mp, fs, cred)
2355	struct vnode *devvp;
2356	struct mount *mp;
2357	struct fs *fs;
2358	struct ucred *cred;
2359{
2360	struct csum_total cstotal;
2361	struct ufsmount *ump;
2362	struct cg *cgp;
2363	struct buf *bp;
2364	int error, cyl;
2365
2366	MNT_ILOCK(mp);
2367	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2368	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2369		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2370			MNTK_SOFTDEP;
2371		mp->mnt_noasync++;
2372	}
2373	MNT_IUNLOCK(mp);
2374	ump = VFSTOUFS(mp);
2375	LIST_INIT(&ump->softdep_workitem_pending);
2376	LIST_INIT(&ump->softdep_journal_pending);
2377	TAILQ_INIT(&ump->softdep_unlinked);
2378	LIST_INIT(&ump->softdep_dirtycg);
2379	ump->softdep_worklist_tail = NULL;
2380	ump->softdep_on_worklist = 0;
2381	ump->softdep_deps = 0;
2382	if ((fs->fs_flags & FS_SUJ) &&
2383	    (error = journal_mount(mp, fs, cred)) != 0) {
2384		printf("Failed to start journal: %d\n", error);
2385		return (error);
2386	}
2387	/*
2388	 * When doing soft updates, the counters in the
2389	 * superblock may have gotten out of sync. Recomputation
2390	 * can take a long time and can be deferred for background
2391	 * fsck.  However, the old behavior of scanning the cylinder
2392	 * groups and recalculating them at mount time is available
2393	 * by setting vfs.ffs.compute_summary_at_mount to one.
2394	 */
2395	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2396		return (0);
2397	bzero(&cstotal, sizeof cstotal);
2398	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2399		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2400		    fs->fs_cgsize, cred, &bp)) != 0) {
2401			brelse(bp);
2402			return (error);
2403		}
2404		cgp = (struct cg *)bp->b_data;
2405		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2406		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2407		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2408		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2409		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2410		brelse(bp);
2411	}
2412#ifdef DEBUG
2413	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2414		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2415#endif
2416	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2417	return (0);
2418}
2419
2420void
2421softdep_unmount(mp)
2422	struct mount *mp;
2423{
2424
2425	MNT_ILOCK(mp);
2426	mp->mnt_flag &= ~MNT_SOFTDEP;
2427	if (MOUNTEDSUJ(mp) == 0) {
2428		MNT_IUNLOCK(mp);
2429		return;
2430	}
2431	mp->mnt_flag &= ~MNT_SUJ;
2432	MNT_IUNLOCK(mp);
2433	journal_unmount(mp);
2434}
2435
2436struct jblocks {
2437	struct jseglst	jb_segs;	/* TAILQ of current segments. */
2438	struct jseg	*jb_writeseg;	/* Next write to complete. */
2439	struct jseg	*jb_oldestseg;	/* Oldest segment with valid entries. */
2440	struct jextent	*jb_extent;	/* Extent array. */
2441	uint64_t	jb_nextseq;	/* Next sequence number. */
2442	uint64_t	jb_oldestwrseq;	/* Oldest written sequence number. */
2443	uint8_t		jb_needseg;	/* Need a forced segment. */
2444	uint8_t		jb_suspended;	/* Did journal suspend writes? */
2445	int		jb_avail;	/* Available extents. */
2446	int		jb_used;	/* Last used extent. */
2447	int		jb_head;	/* Allocator head. */
2448	int		jb_off;		/* Allocator extent offset. */
2449	int		jb_blocks;	/* Total disk blocks covered. */
2450	int		jb_free;	/* Total disk blocks free. */
2451	int		jb_min;		/* Minimum free space. */
2452	int		jb_low;		/* Low on space. */
2453	int		jb_age;		/* Insertion time of oldest rec. */
2454};
2455
2456struct jextent {
2457	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2458	int		je_blocks;	/* Disk block count. */
2459};
2460
2461static struct jblocks *
2462jblocks_create(void)
2463{
2464	struct jblocks *jblocks;
2465
2466	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2467	TAILQ_INIT(&jblocks->jb_segs);
2468	jblocks->jb_avail = 10;
2469	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2470	    M_JBLOCKS, M_WAITOK | M_ZERO);
2471
2472	return (jblocks);
2473}
2474
2475static ufs2_daddr_t
2476jblocks_alloc(jblocks, bytes, actual)
2477	struct jblocks *jblocks;
2478	int bytes;
2479	int *actual;
2480{
2481	ufs2_daddr_t daddr;
2482	struct jextent *jext;
2483	int freecnt;
2484	int blocks;
2485
2486	blocks = bytes / DEV_BSIZE;
2487	jext = &jblocks->jb_extent[jblocks->jb_head];
2488	freecnt = jext->je_blocks - jblocks->jb_off;
2489	if (freecnt == 0) {
2490		jblocks->jb_off = 0;
2491		if (++jblocks->jb_head > jblocks->jb_used)
2492			jblocks->jb_head = 0;
2493		jext = &jblocks->jb_extent[jblocks->jb_head];
2494		freecnt = jext->je_blocks;
2495	}
2496	if (freecnt > blocks)
2497		freecnt = blocks;
2498	*actual = freecnt * DEV_BSIZE;
2499	daddr = jext->je_daddr + jblocks->jb_off;
2500	jblocks->jb_off += freecnt;
2501	jblocks->jb_free -= freecnt;
2502
2503	return (daddr);
2504}
2505
2506static void
2507jblocks_free(jblocks, mp, bytes)
2508	struct jblocks *jblocks;
2509	struct mount *mp;
2510	int bytes;
2511{
2512
2513	jblocks->jb_free += bytes / DEV_BSIZE;
2514	if (jblocks->jb_suspended)
2515		worklist_speedup();
2516	wakeup(jblocks);
2517}
2518
2519static void
2520jblocks_destroy(jblocks)
2521	struct jblocks *jblocks;
2522{
2523
2524	if (jblocks->jb_extent)
2525		free(jblocks->jb_extent, M_JBLOCKS);
2526	free(jblocks, M_JBLOCKS);
2527}
2528
2529static void
2530jblocks_add(jblocks, daddr, blocks)
2531	struct jblocks *jblocks;
2532	ufs2_daddr_t daddr;
2533	int blocks;
2534{
2535	struct jextent *jext;
2536
2537	jblocks->jb_blocks += blocks;
2538	jblocks->jb_free += blocks;
2539	jext = &jblocks->jb_extent[jblocks->jb_used];
2540	/* Adding the first block. */
2541	if (jext->je_daddr == 0) {
2542		jext->je_daddr = daddr;
2543		jext->je_blocks = blocks;
2544		return;
2545	}
2546	/* Extending the last extent. */
2547	if (jext->je_daddr + jext->je_blocks == daddr) {
2548		jext->je_blocks += blocks;
2549		return;
2550	}
2551	/* Adding a new extent. */
2552	if (++jblocks->jb_used == jblocks->jb_avail) {
2553		jblocks->jb_avail *= 2;
2554		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2555		    M_JBLOCKS, M_WAITOK | M_ZERO);
2556		memcpy(jext, jblocks->jb_extent,
2557		    sizeof(struct jextent) * jblocks->jb_used);
2558		free(jblocks->jb_extent, M_JBLOCKS);
2559		jblocks->jb_extent = jext;
2560	}
2561	jext = &jblocks->jb_extent[jblocks->jb_used];
2562	jext->je_daddr = daddr;
2563	jext->je_blocks = blocks;
2564	return;
2565}
2566
2567int
2568softdep_journal_lookup(mp, vpp)
2569	struct mount *mp;
2570	struct vnode **vpp;
2571{
2572	struct componentname cnp;
2573	struct vnode *dvp;
2574	ino_t sujournal;
2575	int error;
2576
2577	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2578	if (error)
2579		return (error);
2580	bzero(&cnp, sizeof(cnp));
2581	cnp.cn_nameiop = LOOKUP;
2582	cnp.cn_flags = ISLASTCN;
2583	cnp.cn_thread = curthread;
2584	cnp.cn_cred = curthread->td_ucred;
2585	cnp.cn_pnbuf = SUJ_FILE;
2586	cnp.cn_nameptr = SUJ_FILE;
2587	cnp.cn_namelen = strlen(SUJ_FILE);
2588	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2589	vput(dvp);
2590	if (error != 0)
2591		return (error);
2592	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2593	return (error);
2594}
2595
2596/*
2597 * Open and verify the journal file.
2598 */
2599static int
2600journal_mount(mp, fs, cred)
2601	struct mount *mp;
2602	struct fs *fs;
2603	struct ucred *cred;
2604{
2605	struct jblocks *jblocks;
2606	struct vnode *vp;
2607	struct inode *ip;
2608	ufs2_daddr_t blkno;
2609	int bcount;
2610	int error;
2611	int i;
2612
2613	error = softdep_journal_lookup(mp, &vp);
2614	if (error != 0) {
2615		printf("Failed to find journal.  Use tunefs to create one\n");
2616		return (error);
2617	}
2618	ip = VTOI(vp);
2619	if (ip->i_size < SUJ_MIN) {
2620		error = ENOSPC;
2621		goto out;
2622	}
2623	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2624	jblocks = jblocks_create();
2625	for (i = 0; i < bcount; i++) {
2626		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2627		if (error)
2628			break;
2629		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2630	}
2631	if (error) {
2632		jblocks_destroy(jblocks);
2633		goto out;
2634	}
2635	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2636	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2637	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2638out:
2639	if (error == 0) {
2640		MNT_ILOCK(mp);
2641		mp->mnt_flag |= MNT_SUJ;
2642		mp->mnt_flag &= ~MNT_SOFTDEP;
2643		MNT_IUNLOCK(mp);
2644		/*
2645		 * Only validate the journal contents if the
2646		 * filesystem is clean, otherwise we write the logs
2647		 * but they'll never be used.  If the filesystem was
2648		 * still dirty when we mounted it the journal is
2649		 * invalid and a new journal can only be valid if it
2650		 * starts from a clean mount.
2651		 */
2652		if (fs->fs_clean) {
2653			DIP_SET(ip, i_modrev, fs->fs_mtime);
2654			ip->i_flags |= IN_MODIFIED;
2655			ffs_update(vp, 1);
2656		}
2657	}
2658	vput(vp);
2659	return (error);
2660}
2661
2662static void
2663journal_unmount(mp)
2664	struct mount *mp;
2665{
2666	struct ufsmount *ump;
2667
2668	ump = VFSTOUFS(mp);
2669	if (ump->softdep_jblocks)
2670		jblocks_destroy(ump->softdep_jblocks);
2671	ump->softdep_jblocks = NULL;
2672}
2673
2674/*
2675 * Called when a journal record is ready to be written.  Space is allocated
2676 * and the journal entry is created when the journal is flushed to stable
2677 * store.
2678 */
2679static void
2680add_to_journal(wk)
2681	struct worklist *wk;
2682{
2683	struct ufsmount *ump;
2684
2685	mtx_assert(&lk, MA_OWNED);
2686	ump = VFSTOUFS(wk->wk_mp);
2687	if (wk->wk_state & ONWORKLIST)
2688		panic("add_to_journal: %s(0x%X) already on list",
2689		    TYPENAME(wk->wk_type), wk->wk_state);
2690	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2691	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2692		ump->softdep_jblocks->jb_age = ticks;
2693		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2694	} else
2695		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2696	ump->softdep_journal_tail = wk;
2697	ump->softdep_on_journal += 1;
2698}
2699
2700/*
2701 * Remove an arbitrary item for the journal worklist maintain the tail
2702 * pointer.  This happens when a new operation obviates the need to
2703 * journal an old operation.
2704 */
2705static void
2706remove_from_journal(wk)
2707	struct worklist *wk;
2708{
2709	struct ufsmount *ump;
2710
2711	mtx_assert(&lk, MA_OWNED);
2712	ump = VFSTOUFS(wk->wk_mp);
2713#ifdef SUJ_DEBUG
2714	{
2715		struct worklist *wkn;
2716
2717		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2718			if (wkn == wk)
2719				break;
2720		if (wkn == NULL)
2721			panic("remove_from_journal: %p is not in journal", wk);
2722	}
2723#endif
2724	/*
2725	 * We emulate a TAILQ to save space in most structures which do not
2726	 * require TAILQ semantics.  Here we must update the tail position
2727	 * when removing the tail which is not the final entry. This works
2728	 * only if the worklist linkage are at the beginning of the structure.
2729	 */
2730	if (ump->softdep_journal_tail == wk)
2731		ump->softdep_journal_tail =
2732		    (struct worklist *)wk->wk_list.le_prev;
2733
2734	WORKLIST_REMOVE(wk);
2735	ump->softdep_on_journal -= 1;
2736}
2737
2738/*
2739 * Check for journal space as well as dependency limits so the prelink
2740 * code can throttle both journaled and non-journaled filesystems.
2741 * Threshold is 0 for low and 1 for min.
2742 */
2743static int
2744journal_space(ump, thresh)
2745	struct ufsmount *ump;
2746	int thresh;
2747{
2748	struct jblocks *jblocks;
2749	int avail;
2750
2751	jblocks = ump->softdep_jblocks;
2752	if (jblocks == NULL)
2753		return (1);
2754	/*
2755	 * We use a tighter restriction here to prevent request_cleanup()
2756	 * running in threads from running into locks we currently hold.
2757	 */
2758	if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9)
2759		return (0);
2760	if (thresh)
2761		thresh = jblocks->jb_min;
2762	else
2763		thresh = jblocks->jb_low;
2764	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2765	avail = jblocks->jb_free - avail;
2766
2767	return (avail > thresh);
2768}
2769
2770static void
2771journal_suspend(ump)
2772	struct ufsmount *ump;
2773{
2774	struct jblocks *jblocks;
2775	struct mount *mp;
2776
2777	mp = UFSTOVFS(ump);
2778	jblocks = ump->softdep_jblocks;
2779	MNT_ILOCK(mp);
2780	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2781		stat_journal_min++;
2782		mp->mnt_kern_flag |= MNTK_SUSPEND;
2783		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2784	}
2785	jblocks->jb_suspended = 1;
2786	MNT_IUNLOCK(mp);
2787}
2788
2789static int
2790journal_unsuspend(struct ufsmount *ump)
2791{
2792	struct jblocks *jblocks;
2793	struct mount *mp;
2794
2795	mp = UFSTOVFS(ump);
2796	jblocks = ump->softdep_jblocks;
2797
2798	if (jblocks != NULL && jblocks->jb_suspended &&
2799	    journal_space(ump, jblocks->jb_min)) {
2800		jblocks->jb_suspended = 0;
2801		FREE_LOCK(&lk);
2802		mp->mnt_susp_owner = curthread;
2803		vfs_write_resume(mp);
2804		ACQUIRE_LOCK(&lk);
2805		return (1);
2806	}
2807	return (0);
2808}
2809
2810/*
2811 * Called before any allocation function to be certain that there is
2812 * sufficient space in the journal prior to creating any new records.
2813 * Since in the case of block allocation we may have multiple locked
2814 * buffers at the time of the actual allocation we can not block
2815 * when the journal records are created.  Doing so would create a deadlock
2816 * if any of these buffers needed to be flushed to reclaim space.  Instead
2817 * we require a sufficiently large amount of available space such that
2818 * each thread in the system could have passed this allocation check and
2819 * still have sufficient free space.  With 20% of a minimum journal size
2820 * of 1MB we have 6553 records available.
2821 */
2822int
2823softdep_prealloc(vp, waitok)
2824	struct vnode *vp;
2825	int waitok;
2826{
2827	struct ufsmount *ump;
2828
2829	if (DOINGSUJ(vp) == 0)
2830		return (0);
2831	ump = VFSTOUFS(vp->v_mount);
2832	ACQUIRE_LOCK(&lk);
2833	if (journal_space(ump, 0)) {
2834		FREE_LOCK(&lk);
2835		return (0);
2836	}
2837	stat_journal_low++;
2838	FREE_LOCK(&lk);
2839	if (waitok == MNT_NOWAIT)
2840		return (ENOSPC);
2841	/*
2842	 * Attempt to sync this vnode once to flush any journal
2843	 * work attached to it.
2844	 */
2845	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2846		ffs_syncvnode(vp, waitok);
2847	ACQUIRE_LOCK(&lk);
2848	process_removes(vp);
2849	process_truncates(vp);
2850	if (journal_space(ump, 0) == 0) {
2851		softdep_speedup();
2852		if (journal_space(ump, 1) == 0)
2853			journal_suspend(ump);
2854	}
2855	FREE_LOCK(&lk);
2856
2857	return (0);
2858}
2859
2860/*
2861 * Before adjusting a link count on a vnode verify that we have sufficient
2862 * journal space.  If not, process operations that depend on the currently
2863 * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2864 * and softdep flush threads can not acquire these locks to reclaim space.
2865 */
2866static void
2867softdep_prelink(dvp, vp)
2868	struct vnode *dvp;
2869	struct vnode *vp;
2870{
2871	struct ufsmount *ump;
2872
2873	ump = VFSTOUFS(dvp->v_mount);
2874	mtx_assert(&lk, MA_OWNED);
2875	if (journal_space(ump, 0))
2876		return;
2877	stat_journal_low++;
2878	FREE_LOCK(&lk);
2879	if (vp)
2880		ffs_syncvnode(vp, MNT_NOWAIT);
2881	ffs_syncvnode(dvp, MNT_WAIT);
2882	ACQUIRE_LOCK(&lk);
2883	/* Process vp before dvp as it may create .. removes. */
2884	if (vp) {
2885		process_removes(vp);
2886		process_truncates(vp);
2887	}
2888	process_removes(dvp);
2889	process_truncates(dvp);
2890	softdep_speedup();
2891	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2892	if (journal_space(ump, 0) == 0) {
2893		softdep_speedup();
2894		if (journal_space(ump, 1) == 0)
2895			journal_suspend(ump);
2896	}
2897}
2898
2899static void
2900jseg_write(ump, jseg, data)
2901	struct ufsmount *ump;
2902	struct jseg *jseg;
2903	uint8_t *data;
2904{
2905	struct jsegrec *rec;
2906
2907	rec = (struct jsegrec *)data;
2908	rec->jsr_seq = jseg->js_seq;
2909	rec->jsr_oldest = jseg->js_oldseq;
2910	rec->jsr_cnt = jseg->js_cnt;
2911	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2912	rec->jsr_crc = 0;
2913	rec->jsr_time = ump->um_fs->fs_mtime;
2914}
2915
2916static inline void
2917inoref_write(inoref, jseg, rec)
2918	struct inoref *inoref;
2919	struct jseg *jseg;
2920	struct jrefrec *rec;
2921{
2922
2923	inoref->if_jsegdep->jd_seg = jseg;
2924	rec->jr_ino = inoref->if_ino;
2925	rec->jr_parent = inoref->if_parent;
2926	rec->jr_nlink = inoref->if_nlink;
2927	rec->jr_mode = inoref->if_mode;
2928	rec->jr_diroff = inoref->if_diroff;
2929}
2930
2931static void
2932jaddref_write(jaddref, jseg, data)
2933	struct jaddref *jaddref;
2934	struct jseg *jseg;
2935	uint8_t *data;
2936{
2937	struct jrefrec *rec;
2938
2939	rec = (struct jrefrec *)data;
2940	rec->jr_op = JOP_ADDREF;
2941	inoref_write(&jaddref->ja_ref, jseg, rec);
2942}
2943
2944static void
2945jremref_write(jremref, jseg, data)
2946	struct jremref *jremref;
2947	struct jseg *jseg;
2948	uint8_t *data;
2949{
2950	struct jrefrec *rec;
2951
2952	rec = (struct jrefrec *)data;
2953	rec->jr_op = JOP_REMREF;
2954	inoref_write(&jremref->jr_ref, jseg, rec);
2955}
2956
2957static void
2958jmvref_write(jmvref, jseg, data)
2959	struct jmvref *jmvref;
2960	struct jseg *jseg;
2961	uint8_t *data;
2962{
2963	struct jmvrec *rec;
2964
2965	rec = (struct jmvrec *)data;
2966	rec->jm_op = JOP_MVREF;
2967	rec->jm_ino = jmvref->jm_ino;
2968	rec->jm_parent = jmvref->jm_parent;
2969	rec->jm_oldoff = jmvref->jm_oldoff;
2970	rec->jm_newoff = jmvref->jm_newoff;
2971}
2972
2973static void
2974jnewblk_write(jnewblk, jseg, data)
2975	struct jnewblk *jnewblk;
2976	struct jseg *jseg;
2977	uint8_t *data;
2978{
2979	struct jblkrec *rec;
2980
2981	jnewblk->jn_jsegdep->jd_seg = jseg;
2982	rec = (struct jblkrec *)data;
2983	rec->jb_op = JOP_NEWBLK;
2984	rec->jb_ino = jnewblk->jn_ino;
2985	rec->jb_blkno = jnewblk->jn_blkno;
2986	rec->jb_lbn = jnewblk->jn_lbn;
2987	rec->jb_frags = jnewblk->jn_frags;
2988	rec->jb_oldfrags = jnewblk->jn_oldfrags;
2989}
2990
2991static void
2992jfreeblk_write(jfreeblk, jseg, data)
2993	struct jfreeblk *jfreeblk;
2994	struct jseg *jseg;
2995	uint8_t *data;
2996{
2997	struct jblkrec *rec;
2998
2999	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3000	rec = (struct jblkrec *)data;
3001	rec->jb_op = JOP_FREEBLK;
3002	rec->jb_ino = jfreeblk->jf_ino;
3003	rec->jb_blkno = jfreeblk->jf_blkno;
3004	rec->jb_lbn = jfreeblk->jf_lbn;
3005	rec->jb_frags = jfreeblk->jf_frags;
3006	rec->jb_oldfrags = 0;
3007}
3008
3009static void
3010jfreefrag_write(jfreefrag, jseg, data)
3011	struct jfreefrag *jfreefrag;
3012	struct jseg *jseg;
3013	uint8_t *data;
3014{
3015	struct jblkrec *rec;
3016
3017	jfreefrag->fr_jsegdep->jd_seg = jseg;
3018	rec = (struct jblkrec *)data;
3019	rec->jb_op = JOP_FREEBLK;
3020	rec->jb_ino = jfreefrag->fr_ino;
3021	rec->jb_blkno = jfreefrag->fr_blkno;
3022	rec->jb_lbn = jfreefrag->fr_lbn;
3023	rec->jb_frags = jfreefrag->fr_frags;
3024	rec->jb_oldfrags = 0;
3025}
3026
3027static void
3028jtrunc_write(jtrunc, jseg, data)
3029	struct jtrunc *jtrunc;
3030	struct jseg *jseg;
3031	uint8_t *data;
3032{
3033	struct jtrncrec *rec;
3034
3035	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3036	rec = (struct jtrncrec *)data;
3037	rec->jt_op = JOP_TRUNC;
3038	rec->jt_ino = jtrunc->jt_ino;
3039	rec->jt_size = jtrunc->jt_size;
3040	rec->jt_extsize = jtrunc->jt_extsize;
3041}
3042
3043static void
3044jfsync_write(jfsync, jseg, data)
3045	struct jfsync *jfsync;
3046	struct jseg *jseg;
3047	uint8_t *data;
3048{
3049	struct jtrncrec *rec;
3050
3051	rec = (struct jtrncrec *)data;
3052	rec->jt_op = JOP_SYNC;
3053	rec->jt_ino = jfsync->jfs_ino;
3054	rec->jt_size = jfsync->jfs_size;
3055	rec->jt_extsize = jfsync->jfs_extsize;
3056}
3057
3058static void
3059softdep_flushjournal(mp)
3060	struct mount *mp;
3061{
3062	struct jblocks *jblocks;
3063	struct ufsmount *ump;
3064
3065	if (MOUNTEDSUJ(mp) == 0)
3066		return;
3067	ump = VFSTOUFS(mp);
3068	jblocks = ump->softdep_jblocks;
3069	ACQUIRE_LOCK(&lk);
3070	while (ump->softdep_on_journal) {
3071		jblocks->jb_needseg = 1;
3072		softdep_process_journal(mp, NULL, MNT_WAIT);
3073	}
3074	FREE_LOCK(&lk);
3075}
3076
3077/*
3078 * Flush some journal records to disk.
3079 */
3080static void
3081softdep_process_journal(mp, needwk, flags)
3082	struct mount *mp;
3083	struct worklist *needwk;
3084	int flags;
3085{
3086	struct jblocks *jblocks;
3087	struct ufsmount *ump;
3088	struct worklist *wk;
3089	struct jseg *jseg;
3090	struct buf *bp;
3091	uint8_t *data;
3092	struct fs *fs;
3093	int segwritten;
3094	int jrecmin;	/* Minimum records per block. */
3095	int jrecmax;	/* Maximum records per block. */
3096	int size;
3097	int cnt;
3098	int off;
3099	int devbsize;
3100
3101	if (MOUNTEDSUJ(mp) == 0)
3102		return;
3103	ump = VFSTOUFS(mp);
3104	fs = ump->um_fs;
3105	jblocks = ump->softdep_jblocks;
3106	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3107	/*
3108	 * We write anywhere between a disk block and fs block.  The upper
3109	 * bound is picked to prevent buffer cache fragmentation and limit
3110	 * processing time per I/O.
3111	 */
3112	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3113	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3114	segwritten = 0;
3115	for (;;) {
3116		cnt = ump->softdep_on_journal;
3117		/*
3118		 * Criteria for writing a segment:
3119		 * 1) We have a full block.
3120		 * 2) We're called from jwait() and haven't found the
3121		 *    journal item yet.
3122		 * 3) Always write if needseg is set.
3123		 * 4) If we are called from process_worklist and have
3124		 *    not yet written anything we write a partial block
3125		 *    to enforce a 1 second maximum latency on journal
3126		 *    entries.
3127		 */
3128		if (cnt < (jrecmax - 1) && needwk == NULL &&
3129		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3130			break;
3131		cnt++;
3132		/*
3133		 * Verify some free journal space.  softdep_prealloc() should
3134	 	 * guarantee that we don't run out so this is indicative of
3135		 * a problem with the flow control.  Try to recover
3136		 * gracefully in any event.
3137		 */
3138		while (jblocks->jb_free == 0) {
3139			if (flags != MNT_WAIT)
3140				break;
3141			printf("softdep: Out of journal space!\n");
3142			softdep_speedup();
3143			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
3144		}
3145		FREE_LOCK(&lk);
3146		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3147		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3148		LIST_INIT(&jseg->js_entries);
3149		LIST_INIT(&jseg->js_indirs);
3150		jseg->js_state = ATTACHED;
3151		jseg->js_jblocks = jblocks;
3152		bp = geteblk(fs->fs_bsize, 0);
3153		ACQUIRE_LOCK(&lk);
3154		/*
3155		 * If there was a race while we were allocating the block
3156		 * and jseg the entry we care about was likely written.
3157		 * We bail out in both the WAIT and NOWAIT case and assume
3158		 * the caller will loop if the entry it cares about is
3159		 * not written.
3160		 */
3161		cnt = ump->softdep_on_journal;
3162		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3163			bp->b_flags |= B_INVAL | B_NOCACHE;
3164			WORKITEM_FREE(jseg, D_JSEG);
3165			FREE_LOCK(&lk);
3166			brelse(bp);
3167			ACQUIRE_LOCK(&lk);
3168			break;
3169		}
3170		/*
3171		 * Calculate the disk block size required for the available
3172		 * records rounded to the min size.
3173		 */
3174		if (cnt == 0)
3175			size = devbsize;
3176		else if (cnt < jrecmax)
3177			size = howmany(cnt, jrecmin) * devbsize;
3178		else
3179			size = fs->fs_bsize;
3180		/*
3181		 * Allocate a disk block for this journal data and account
3182		 * for truncation of the requested size if enough contiguous
3183		 * space was not available.
3184		 */
3185		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3186		bp->b_lblkno = bp->b_blkno;
3187		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3188		bp->b_bcount = size;
3189		bp->b_bufobj = &ump->um_devvp->v_bufobj;
3190		bp->b_flags &= ~B_INVAL;
3191		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3192		/*
3193		 * Initialize our jseg with cnt records.  Assign the next
3194		 * sequence number to it and link it in-order.
3195		 */
3196		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3197		jseg->js_buf = bp;
3198		jseg->js_cnt = cnt;
3199		jseg->js_refs = cnt + 1;	/* Self ref. */
3200		jseg->js_size = size;
3201		jseg->js_seq = jblocks->jb_nextseq++;
3202		if (jblocks->jb_oldestseg == NULL)
3203			jblocks->jb_oldestseg = jseg;
3204		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3205		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3206		if (jblocks->jb_writeseg == NULL)
3207			jblocks->jb_writeseg = jseg;
3208		/*
3209		 * Start filling in records from the pending list.
3210		 */
3211		data = bp->b_data;
3212		off = 0;
3213		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3214		    != NULL) {
3215			if (cnt == 0)
3216				break;
3217			/* Place a segment header on every device block. */
3218			if ((off % devbsize) == 0) {
3219				jseg_write(ump, jseg, data);
3220				off += JREC_SIZE;
3221				data = bp->b_data + off;
3222			}
3223			if (wk == needwk)
3224				needwk = NULL;
3225			remove_from_journal(wk);
3226			wk->wk_state |= INPROGRESS;
3227			WORKLIST_INSERT(&jseg->js_entries, wk);
3228			switch (wk->wk_type) {
3229			case D_JADDREF:
3230				jaddref_write(WK_JADDREF(wk), jseg, data);
3231				break;
3232			case D_JREMREF:
3233				jremref_write(WK_JREMREF(wk), jseg, data);
3234				break;
3235			case D_JMVREF:
3236				jmvref_write(WK_JMVREF(wk), jseg, data);
3237				break;
3238			case D_JNEWBLK:
3239				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3240				break;
3241			case D_JFREEBLK:
3242				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3243				break;
3244			case D_JFREEFRAG:
3245				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3246				break;
3247			case D_JTRUNC:
3248				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3249				break;
3250			case D_JFSYNC:
3251				jfsync_write(WK_JFSYNC(wk), jseg, data);
3252				break;
3253			default:
3254				panic("process_journal: Unknown type %s",
3255				    TYPENAME(wk->wk_type));
3256				/* NOTREACHED */
3257			}
3258			off += JREC_SIZE;
3259			data = bp->b_data + off;
3260			cnt--;
3261		}
3262		/*
3263		 * Write this one buffer and continue.
3264		 */
3265		segwritten = 1;
3266		jblocks->jb_needseg = 0;
3267		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3268		FREE_LOCK(&lk);
3269		BO_LOCK(bp->b_bufobj);
3270		bgetvp(ump->um_devvp, bp);
3271		BO_UNLOCK(bp->b_bufobj);
3272		/*
3273		 * We only do the blocking wait once we find the journal
3274		 * entry we're looking for.
3275		 */
3276		if (needwk == NULL && flags == MNT_WAIT)
3277			bwrite(bp);
3278		else
3279			bawrite(bp);
3280		ACQUIRE_LOCK(&lk);
3281	}
3282	/*
3283	 * If we've suspended the filesystem because we ran out of journal
3284	 * space either try to sync it here to make some progress or
3285	 * unsuspend it if we already have.
3286	 */
3287	if (flags == 0 && jblocks->jb_suspended) {
3288		if (journal_unsuspend(ump))
3289			return;
3290		FREE_LOCK(&lk);
3291		VFS_SYNC(mp, MNT_NOWAIT);
3292		ffs_sbupdate(ump, MNT_WAIT, 0);
3293		ACQUIRE_LOCK(&lk);
3294	}
3295}
3296
3297/*
3298 * Complete a jseg, allowing all dependencies awaiting journal writes
3299 * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3300 * structures so that the journal segment can be freed to reclaim space.
3301 */
3302static void
3303complete_jseg(jseg)
3304	struct jseg *jseg;
3305{
3306	struct worklist *wk;
3307	struct jmvref *jmvref;
3308	int waiting;
3309#ifdef INVARIANTS
3310	int i = 0;
3311#endif
3312
3313	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3314		WORKLIST_REMOVE(wk);
3315		waiting = wk->wk_state & IOWAITING;
3316		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3317		wk->wk_state |= COMPLETE;
3318		KASSERT(i++ < jseg->js_cnt,
3319		    ("handle_written_jseg: overflow %d >= %d",
3320		    i - 1, jseg->js_cnt));
3321		switch (wk->wk_type) {
3322		case D_JADDREF:
3323			handle_written_jaddref(WK_JADDREF(wk));
3324			break;
3325		case D_JREMREF:
3326			handle_written_jremref(WK_JREMREF(wk));
3327			break;
3328		case D_JMVREF:
3329			rele_jseg(jseg);	/* No jsegdep. */
3330			jmvref = WK_JMVREF(wk);
3331			LIST_REMOVE(jmvref, jm_deps);
3332			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3333				free_pagedep(jmvref->jm_pagedep);
3334			WORKITEM_FREE(jmvref, D_JMVREF);
3335			break;
3336		case D_JNEWBLK:
3337			handle_written_jnewblk(WK_JNEWBLK(wk));
3338			break;
3339		case D_JFREEBLK:
3340			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3341			break;
3342		case D_JTRUNC:
3343			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3344			break;
3345		case D_JFSYNC:
3346			rele_jseg(jseg);	/* No jsegdep. */
3347			WORKITEM_FREE(wk, D_JFSYNC);
3348			break;
3349		case D_JFREEFRAG:
3350			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3351			break;
3352		default:
3353			panic("handle_written_jseg: Unknown type %s",
3354			    TYPENAME(wk->wk_type));
3355			/* NOTREACHED */
3356		}
3357		if (waiting)
3358			wakeup(wk);
3359	}
3360	/* Release the self reference so the structure may be freed. */
3361	rele_jseg(jseg);
3362}
3363
3364/*
3365 * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Handle jseg
3366 * completions in order only.
3367 */
3368static void
3369handle_written_jseg(jseg, bp)
3370	struct jseg *jseg;
3371	struct buf *bp;
3372{
3373	struct jblocks *jblocks;
3374	struct jseg *jsegn;
3375
3376	if (jseg->js_refs == 0)
3377		panic("handle_written_jseg: No self-reference on %p", jseg);
3378	jseg->js_state |= DEPCOMPLETE;
3379	/*
3380	 * We'll never need this buffer again, set flags so it will be
3381	 * discarded.
3382	 */
3383	bp->b_flags |= B_INVAL | B_NOCACHE;
3384	jblocks = jseg->js_jblocks;
3385	/*
3386	 * Don't allow out of order completions.  If this isn't the first
3387	 * block wait for it to write before we're done.
3388	 */
3389	if (jseg != jblocks->jb_writeseg)
3390		return;
3391	/* Iterate through available jsegs processing their entries. */
3392	do {
3393		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3394		jsegn = TAILQ_NEXT(jseg, js_next);
3395		complete_jseg(jseg);
3396		jseg = jsegn;
3397	} while (jseg && jseg->js_state & DEPCOMPLETE);
3398	jblocks->jb_writeseg = jseg;
3399	/*
3400	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3401	 */
3402	free_jsegs(jblocks);
3403}
3404
3405static inline struct jsegdep *
3406inoref_jseg(inoref)
3407	struct inoref *inoref;
3408{
3409	struct jsegdep *jsegdep;
3410
3411	jsegdep = inoref->if_jsegdep;
3412	inoref->if_jsegdep = NULL;
3413
3414	return (jsegdep);
3415}
3416
3417/*
3418 * Called once a jremref has made it to stable store.  The jremref is marked
3419 * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3420 * for the jremref to complete will be awoken by free_jremref.
3421 */
3422static void
3423handle_written_jremref(jremref)
3424	struct jremref *jremref;
3425{
3426	struct inodedep *inodedep;
3427	struct jsegdep *jsegdep;
3428	struct dirrem *dirrem;
3429
3430	/* Grab the jsegdep. */
3431	jsegdep = inoref_jseg(&jremref->jr_ref);
3432	/*
3433	 * Remove us from the inoref list.
3434	 */
3435	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3436	    0, &inodedep) == 0)
3437		panic("handle_written_jremref: Lost inodedep");
3438	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3439	/*
3440	 * Complete the dirrem.
3441	 */
3442	dirrem = jremref->jr_dirrem;
3443	jremref->jr_dirrem = NULL;
3444	LIST_REMOVE(jremref, jr_deps);
3445	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3446	jwork_insert(&dirrem->dm_jwork, jsegdep);
3447	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3448	    (dirrem->dm_state & COMPLETE) != 0)
3449		add_to_worklist(&dirrem->dm_list, 0);
3450	free_jremref(jremref);
3451}
3452
3453/*
3454 * Called once a jaddref has made it to stable store.  The dependency is
3455 * marked complete and any dependent structures are added to the inode
3456 * bufwait list to be completed as soon as it is written.  If a bitmap write
3457 * depends on this entry we move the inode into the inodedephd of the
3458 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3459 */
3460static void
3461handle_written_jaddref(jaddref)
3462	struct jaddref *jaddref;
3463{
3464	struct jsegdep *jsegdep;
3465	struct inodedep *inodedep;
3466	struct diradd *diradd;
3467	struct mkdir *mkdir;
3468
3469	/* Grab the jsegdep. */
3470	jsegdep = inoref_jseg(&jaddref->ja_ref);
3471	mkdir = NULL;
3472	diradd = NULL;
3473	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3474	    0, &inodedep) == 0)
3475		panic("handle_written_jaddref: Lost inodedep.");
3476	if (jaddref->ja_diradd == NULL)
3477		panic("handle_written_jaddref: No dependency");
3478	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3479		diradd = jaddref->ja_diradd;
3480		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3481	} else if (jaddref->ja_state & MKDIR_PARENT) {
3482		mkdir = jaddref->ja_mkdir;
3483		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3484	} else if (jaddref->ja_state & MKDIR_BODY)
3485		mkdir = jaddref->ja_mkdir;
3486	else
3487		panic("handle_written_jaddref: Unknown dependency %p",
3488		    jaddref->ja_diradd);
3489	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3490	/*
3491	 * Remove us from the inode list.
3492	 */
3493	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3494	/*
3495	 * The mkdir may be waiting on the jaddref to clear before freeing.
3496	 */
3497	if (mkdir) {
3498		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3499		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3500		    TYPENAME(mkdir->md_list.wk_type)));
3501		mkdir->md_jaddref = NULL;
3502		diradd = mkdir->md_diradd;
3503		mkdir->md_state |= DEPCOMPLETE;
3504		complete_mkdir(mkdir);
3505	}
3506	jwork_insert(&diradd->da_jwork, jsegdep);
3507	if (jaddref->ja_state & NEWBLOCK) {
3508		inodedep->id_state |= ONDEPLIST;
3509		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3510		    inodedep, id_deps);
3511	}
3512	free_jaddref(jaddref);
3513}
3514
3515/*
3516 * Called once a jnewblk journal is written.  The allocdirect or allocindir
3517 * is placed in the bmsafemap to await notification of a written bitmap.  If
3518 * the operation was canceled we add the segdep to the appropriate
3519 * dependency to free the journal space once the canceling operation
3520 * completes.
3521 */
3522static void
3523handle_written_jnewblk(jnewblk)
3524	struct jnewblk *jnewblk;
3525{
3526	struct bmsafemap *bmsafemap;
3527	struct freefrag *freefrag;
3528	struct freework *freework;
3529	struct jsegdep *jsegdep;
3530	struct newblk *newblk;
3531
3532	/* Grab the jsegdep. */
3533	jsegdep = jnewblk->jn_jsegdep;
3534	jnewblk->jn_jsegdep = NULL;
3535	if (jnewblk->jn_dep == NULL)
3536		panic("handle_written_jnewblk: No dependency for the segdep.");
3537	switch (jnewblk->jn_dep->wk_type) {
3538	case D_NEWBLK:
3539	case D_ALLOCDIRECT:
3540	case D_ALLOCINDIR:
3541		/*
3542		 * Add the written block to the bmsafemap so it can
3543		 * be notified when the bitmap is on disk.
3544		 */
3545		newblk = WK_NEWBLK(jnewblk->jn_dep);
3546		newblk->nb_jnewblk = NULL;
3547		if ((newblk->nb_state & GOINGAWAY) == 0) {
3548			bmsafemap = newblk->nb_bmsafemap;
3549			newblk->nb_state |= ONDEPLIST;
3550			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3551			    nb_deps);
3552		}
3553		jwork_insert(&newblk->nb_jwork, jsegdep);
3554		break;
3555	case D_FREEFRAG:
3556		/*
3557		 * A newblock being removed by a freefrag when replaced by
3558		 * frag extension.
3559		 */
3560		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3561		freefrag->ff_jdep = NULL;
3562		WORKLIST_INSERT(&freefrag->ff_jwork, &jsegdep->jd_list);
3563		break;
3564	case D_FREEWORK:
3565		/*
3566		 * A direct block was removed by truncate.
3567		 */
3568		freework = WK_FREEWORK(jnewblk->jn_dep);
3569		freework->fw_jnewblk = NULL;
3570		WORKLIST_INSERT(&freework->fw_freeblks->fb_jwork,
3571		    &jsegdep->jd_list);
3572		break;
3573	default:
3574		panic("handle_written_jnewblk: Unknown type %d.",
3575		    jnewblk->jn_dep->wk_type);
3576	}
3577	jnewblk->jn_dep = NULL;
3578	free_jnewblk(jnewblk);
3579}
3580
3581/*
3582 * Cancel a jfreefrag that won't be needed, probably due to colliding with
3583 * an in-flight allocation that has not yet been committed.  Divorce us
3584 * from the freefrag and mark it DEPCOMPLETE so that it may be added
3585 * to the worklist.
3586 */
3587static void
3588cancel_jfreefrag(jfreefrag)
3589	struct jfreefrag *jfreefrag;
3590{
3591	struct freefrag *freefrag;
3592
3593	if (jfreefrag->fr_jsegdep) {
3594		free_jsegdep(jfreefrag->fr_jsegdep);
3595		jfreefrag->fr_jsegdep = NULL;
3596	}
3597	freefrag = jfreefrag->fr_freefrag;
3598	jfreefrag->fr_freefrag = NULL;
3599	free_jfreefrag(jfreefrag);
3600	freefrag->ff_state |= DEPCOMPLETE;
3601}
3602
3603/*
3604 * Free a jfreefrag when the parent freefrag is rendered obsolete.
3605 */
3606static void
3607free_jfreefrag(jfreefrag)
3608	struct jfreefrag *jfreefrag;
3609{
3610
3611	if (jfreefrag->fr_state & INPROGRESS)
3612		WORKLIST_REMOVE(&jfreefrag->fr_list);
3613	else if (jfreefrag->fr_state & ONWORKLIST)
3614		remove_from_journal(&jfreefrag->fr_list);
3615	if (jfreefrag->fr_freefrag != NULL)
3616		panic("free_jfreefrag:  Still attached to a freefrag.");
3617	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3618}
3619
3620/*
3621 * Called when the journal write for a jfreefrag completes.  The parent
3622 * freefrag is added to the worklist if this completes its dependencies.
3623 */
3624static void
3625handle_written_jfreefrag(jfreefrag)
3626	struct jfreefrag *jfreefrag;
3627{
3628	struct jsegdep *jsegdep;
3629	struct freefrag *freefrag;
3630
3631	/* Grab the jsegdep. */
3632	jsegdep = jfreefrag->fr_jsegdep;
3633	jfreefrag->fr_jsegdep = NULL;
3634	freefrag = jfreefrag->fr_freefrag;
3635	if (freefrag == NULL)
3636		panic("handle_written_jfreefrag: No freefrag.");
3637	freefrag->ff_state |= DEPCOMPLETE;
3638	freefrag->ff_jdep = NULL;
3639	jwork_insert(&freefrag->ff_jwork, jsegdep);
3640	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3641		add_to_worklist(&freefrag->ff_list, 0);
3642	jfreefrag->fr_freefrag = NULL;
3643	free_jfreefrag(jfreefrag);
3644}
3645
3646/*
3647 * Called when the journal write for a jfreeblk completes.  The jfreeblk
3648 * is removed from the freeblks list of pending journal writes and the
3649 * jsegdep is moved to the freeblks jwork to be completed when all blocks
3650 * have been reclaimed.
3651 */
3652static void
3653handle_written_jblkdep(jblkdep)
3654	struct jblkdep *jblkdep;
3655{
3656	struct freeblks *freeblks;
3657	struct jsegdep *jsegdep;
3658
3659	/* Grab the jsegdep. */
3660	jsegdep = jblkdep->jb_jsegdep;
3661	jblkdep->jb_jsegdep = NULL;
3662	freeblks = jblkdep->jb_freeblks;
3663	LIST_REMOVE(jblkdep, jb_deps);
3664	WORKLIST_INSERT(&freeblks->fb_jwork, &jsegdep->jd_list);
3665	/*
3666	 * If the freeblks is all journaled, we can add it to the worklist.
3667	 */
3668	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3669	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3670		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3671
3672	free_jblkdep(jblkdep);
3673}
3674
3675static struct jsegdep *
3676newjsegdep(struct worklist *wk)
3677{
3678	struct jsegdep *jsegdep;
3679
3680	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3681	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3682	jsegdep->jd_seg = NULL;
3683
3684	return (jsegdep);
3685}
3686
3687static struct jmvref *
3688newjmvref(dp, ino, oldoff, newoff)
3689	struct inode *dp;
3690	ino_t ino;
3691	off_t oldoff;
3692	off_t newoff;
3693{
3694	struct jmvref *jmvref;
3695
3696	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3697	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3698	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3699	jmvref->jm_parent = dp->i_number;
3700	jmvref->jm_ino = ino;
3701	jmvref->jm_oldoff = oldoff;
3702	jmvref->jm_newoff = newoff;
3703
3704	return (jmvref);
3705}
3706
3707/*
3708 * Allocate a new jremref that tracks the removal of ip from dp with the
3709 * directory entry offset of diroff.  Mark the entry as ATTACHED and
3710 * DEPCOMPLETE as we have all the information required for the journal write
3711 * and the directory has already been removed from the buffer.  The caller
3712 * is responsible for linking the jremref into the pagedep and adding it
3713 * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3714 * a DOTDOT addition so handle_workitem_remove() can properly assign
3715 * the jsegdep when we're done.
3716 */
3717static struct jremref *
3718newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3719    off_t diroff, nlink_t nlink)
3720{
3721	struct jremref *jremref;
3722
3723	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3724	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3725	jremref->jr_state = ATTACHED;
3726	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3727	   nlink, ip->i_mode);
3728	jremref->jr_dirrem = dirrem;
3729
3730	return (jremref);
3731}
3732
3733static inline void
3734newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3735    nlink_t nlink, uint16_t mode)
3736{
3737
3738	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3739	inoref->if_diroff = diroff;
3740	inoref->if_ino = ino;
3741	inoref->if_parent = parent;
3742	inoref->if_nlink = nlink;
3743	inoref->if_mode = mode;
3744}
3745
3746/*
3747 * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3748 * directory offset may not be known until later.  The caller is responsible
3749 * adding the entry to the journal when this information is available.  nlink
3750 * should be the link count prior to the addition and mode is only required
3751 * to have the correct FMT.
3752 */
3753static struct jaddref *
3754newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3755    uint16_t mode)
3756{
3757	struct jaddref *jaddref;
3758
3759	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3760	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3761	jaddref->ja_state = ATTACHED;
3762	jaddref->ja_mkdir = NULL;
3763	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3764
3765	return (jaddref);
3766}
3767
3768/*
3769 * Create a new free dependency for a freework.  The caller is responsible
3770 * for adjusting the reference count when it has the lock held.  The freedep
3771 * will track an outstanding bitmap write that will ultimately clear the
3772 * freework to continue.
3773 */
3774static struct freedep *
3775newfreedep(struct freework *freework)
3776{
3777	struct freedep *freedep;
3778
3779	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3780	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3781	freedep->fd_freework = freework;
3782
3783	return (freedep);
3784}
3785
3786/*
3787 * Free a freedep structure once the buffer it is linked to is written.  If
3788 * this is the last reference to the freework schedule it for completion.
3789 */
3790static void
3791free_freedep(freedep)
3792	struct freedep *freedep;
3793{
3794	struct freework *freework;
3795
3796	freework = freedep->fd_freework;
3797	freework->fw_freeblks->fb_cgwait--;
3798	if (--freework->fw_ref == 0)
3799		freework_enqueue(freework);
3800	WORKITEM_FREE(freedep, D_FREEDEP);
3801}
3802
3803/*
3804 * Allocate a new freework structure that may be a level in an indirect
3805 * when parent is not NULL or a top level block when it is.  The top level
3806 * freework structures are allocated without lk held and before the freeblks
3807 * is visible outside of softdep_setup_freeblocks().
3808 */
3809static struct freework *
3810newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3811	struct ufsmount *ump;
3812	struct freeblks *freeblks;
3813	struct freework *parent;
3814	ufs_lbn_t lbn;
3815	ufs2_daddr_t nb;
3816	int frags;
3817	int off;
3818	int journal;
3819{
3820	struct freework *freework;
3821
3822	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3823	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3824	freework->fw_state = ATTACHED;
3825	freework->fw_jnewblk = NULL;
3826	freework->fw_freeblks = freeblks;
3827	freework->fw_parent = parent;
3828	freework->fw_lbn = lbn;
3829	freework->fw_blkno = nb;
3830	freework->fw_frags = frags;
3831	freework->fw_indir = NULL;
3832	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3833		? 0 : NINDIR(ump->um_fs) + 1;
3834	freework->fw_start = freework->fw_off = off;
3835	if (journal)
3836		newjfreeblk(freeblks, lbn, nb, frags);
3837	if (parent == NULL) {
3838		ACQUIRE_LOCK(&lk);
3839		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3840		freeblks->fb_ref++;
3841		FREE_LOCK(&lk);
3842	}
3843
3844	return (freework);
3845}
3846
3847/*
3848 * Eliminate a jfreeblk for a block that does not need journaling.
3849 */
3850static void
3851cancel_jfreeblk(freeblks, blkno)
3852	struct freeblks *freeblks;
3853	ufs2_daddr_t blkno;
3854{
3855	struct jfreeblk *jfreeblk;
3856	struct jblkdep *jblkdep;
3857
3858	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
3859		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
3860			continue;
3861		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
3862		if (jfreeblk->jf_blkno == blkno)
3863			break;
3864	}
3865	if (jblkdep == NULL)
3866		return;
3867	free_jsegdep(jblkdep->jb_jsegdep);
3868	LIST_REMOVE(jblkdep, jb_deps);
3869	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3870}
3871
3872/*
3873 * Allocate a new jfreeblk to journal top level block pointer when truncating
3874 * a file.  The caller must add this to the worklist when lk is held.
3875 */
3876static struct jfreeblk *
3877newjfreeblk(freeblks, lbn, blkno, frags)
3878	struct freeblks *freeblks;
3879	ufs_lbn_t lbn;
3880	ufs2_daddr_t blkno;
3881	int frags;
3882{
3883	struct jfreeblk *jfreeblk;
3884
3885	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
3886	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
3887	    freeblks->fb_list.wk_mp);
3888	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
3889	jfreeblk->jf_dep.jb_freeblks = freeblks;
3890	jfreeblk->jf_ino = freeblks->fb_inum;
3891	jfreeblk->jf_lbn = lbn;
3892	jfreeblk->jf_blkno = blkno;
3893	jfreeblk->jf_frags = frags;
3894	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
3895
3896	return (jfreeblk);
3897}
3898
3899/*
3900 * Allocate a new jtrunc to track a partial truncation.
3901 */
3902static struct jtrunc *
3903newjtrunc(freeblks, size, extsize)
3904	struct freeblks *freeblks;
3905	off_t size;
3906	int extsize;
3907{
3908	struct jtrunc *jtrunc;
3909
3910	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
3911	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
3912	    freeblks->fb_list.wk_mp);
3913	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
3914	jtrunc->jt_dep.jb_freeblks = freeblks;
3915	jtrunc->jt_ino = freeblks->fb_inum;
3916	jtrunc->jt_size = size;
3917	jtrunc->jt_extsize = extsize;
3918	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
3919
3920	return (jtrunc);
3921}
3922
3923/*
3924 * If we're canceling a new bitmap we have to search for another ref
3925 * to move into the bmsafemap dep.  This might be better expressed
3926 * with another structure.
3927 */
3928static void
3929move_newblock_dep(jaddref, inodedep)
3930	struct jaddref *jaddref;
3931	struct inodedep *inodedep;
3932{
3933	struct inoref *inoref;
3934	struct jaddref *jaddrefn;
3935
3936	jaddrefn = NULL;
3937	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3938	    inoref = TAILQ_NEXT(inoref, if_deps)) {
3939		if ((jaddref->ja_state & NEWBLOCK) &&
3940		    inoref->if_list.wk_type == D_JADDREF) {
3941			jaddrefn = (struct jaddref *)inoref;
3942			break;
3943		}
3944	}
3945	if (jaddrefn == NULL)
3946		return;
3947	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
3948	jaddrefn->ja_state |= jaddref->ja_state &
3949	    (ATTACHED | UNDONE | NEWBLOCK);
3950	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
3951	jaddref->ja_state |= ATTACHED;
3952	LIST_REMOVE(jaddref, ja_bmdeps);
3953	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
3954	    ja_bmdeps);
3955}
3956
3957/*
3958 * Cancel a jaddref either before it has been written or while it is being
3959 * written.  This happens when a link is removed before the add reaches
3960 * the disk.  The jaddref dependency is kept linked into the bmsafemap
3961 * and inode to prevent the link count or bitmap from reaching the disk
3962 * until handle_workitem_remove() re-adjusts the counts and bitmaps as
3963 * required.
3964 *
3965 * Returns 1 if the canceled addref requires journaling of the remove and
3966 * 0 otherwise.
3967 */
3968static int
3969cancel_jaddref(jaddref, inodedep, wkhd)
3970	struct jaddref *jaddref;
3971	struct inodedep *inodedep;
3972	struct workhead *wkhd;
3973{
3974	struct inoref *inoref;
3975	struct jsegdep *jsegdep;
3976	int needsj;
3977
3978	KASSERT((jaddref->ja_state & COMPLETE) == 0,
3979	    ("cancel_jaddref: Canceling complete jaddref"));
3980	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
3981		needsj = 1;
3982	else
3983		needsj = 0;
3984	if (inodedep == NULL)
3985		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3986		    0, &inodedep) == 0)
3987			panic("cancel_jaddref: Lost inodedep");
3988	/*
3989	 * We must adjust the nlink of any reference operation that follows
3990	 * us so that it is consistent with the in-memory reference.  This
3991	 * ensures that inode nlink rollbacks always have the correct link.
3992	 */
3993	if (needsj == 0) {
3994		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3995		    inoref = TAILQ_NEXT(inoref, if_deps)) {
3996			if (inoref->if_state & GOINGAWAY)
3997				break;
3998			inoref->if_nlink--;
3999		}
4000	}
4001	jsegdep = inoref_jseg(&jaddref->ja_ref);
4002	if (jaddref->ja_state & NEWBLOCK)
4003		move_newblock_dep(jaddref, inodedep);
4004	wake_worklist(&jaddref->ja_list);
4005	jaddref->ja_mkdir = NULL;
4006	if (jaddref->ja_state & INPROGRESS) {
4007		jaddref->ja_state &= ~INPROGRESS;
4008		WORKLIST_REMOVE(&jaddref->ja_list);
4009		jwork_insert(wkhd, jsegdep);
4010	} else {
4011		free_jsegdep(jsegdep);
4012		if (jaddref->ja_state & DEPCOMPLETE)
4013			remove_from_journal(&jaddref->ja_list);
4014	}
4015	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4016	/*
4017	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4018	 * can arrange for them to be freed with the bitmap.  Otherwise we
4019	 * no longer need this addref attached to the inoreflst and it
4020	 * will incorrectly adjust nlink if we leave it.
4021	 */
4022	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4023		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4024		    if_deps);
4025		jaddref->ja_state |= COMPLETE;
4026		free_jaddref(jaddref);
4027		return (needsj);
4028	}
4029	/*
4030	 * Leave the head of the list for jsegdeps for fast merging.
4031	 */
4032	if (LIST_FIRST(wkhd) != NULL) {
4033		jaddref->ja_state |= ONWORKLIST;
4034		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4035	} else
4036		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4037
4038	return (needsj);
4039}
4040
4041/*
4042 * Attempt to free a jaddref structure when some work completes.  This
4043 * should only succeed once the entry is written and all dependencies have
4044 * been notified.
4045 */
4046static void
4047free_jaddref(jaddref)
4048	struct jaddref *jaddref;
4049{
4050
4051	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4052		return;
4053	if (jaddref->ja_ref.if_jsegdep)
4054		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4055		    jaddref, jaddref->ja_state);
4056	if (jaddref->ja_state & NEWBLOCK)
4057		LIST_REMOVE(jaddref, ja_bmdeps);
4058	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4059		panic("free_jaddref: Bad state %p(0x%X)",
4060		    jaddref, jaddref->ja_state);
4061	if (jaddref->ja_mkdir != NULL)
4062		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4063	WORKITEM_FREE(jaddref, D_JADDREF);
4064}
4065
4066/*
4067 * Free a jremref structure once it has been written or discarded.
4068 */
4069static void
4070free_jremref(jremref)
4071	struct jremref *jremref;
4072{
4073
4074	if (jremref->jr_ref.if_jsegdep)
4075		free_jsegdep(jremref->jr_ref.if_jsegdep);
4076	if (jremref->jr_state & INPROGRESS)
4077		panic("free_jremref: IO still pending");
4078	WORKITEM_FREE(jremref, D_JREMREF);
4079}
4080
4081/*
4082 * Free a jnewblk structure.
4083 */
4084static void
4085free_jnewblk(jnewblk)
4086	struct jnewblk *jnewblk;
4087{
4088
4089	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4090		return;
4091	LIST_REMOVE(jnewblk, jn_deps);
4092	if (jnewblk->jn_dep != NULL)
4093		panic("free_jnewblk: Dependency still attached.");
4094	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4095}
4096
4097/*
4098 * Cancel a jnewblk which has been been made redundant by frag extension.
4099 */
4100static void
4101cancel_jnewblk(jnewblk, wkhd)
4102	struct jnewblk *jnewblk;
4103	struct workhead *wkhd;
4104{
4105	struct jsegdep *jsegdep;
4106
4107	jsegdep = jnewblk->jn_jsegdep;
4108	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4109		panic("cancel_jnewblk: Invalid state");
4110	jnewblk->jn_jsegdep  = NULL;
4111	jnewblk->jn_dep = NULL;
4112	jnewblk->jn_state |= GOINGAWAY;
4113	if (jnewblk->jn_state & INPROGRESS) {
4114		jnewblk->jn_state &= ~INPROGRESS;
4115		WORKLIST_REMOVE(&jnewblk->jn_list);
4116		jwork_insert(wkhd, jsegdep);
4117	} else {
4118		free_jsegdep(jsegdep);
4119		remove_from_journal(&jnewblk->jn_list);
4120	}
4121	wake_worklist(&jnewblk->jn_list);
4122	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4123}
4124
4125static void
4126free_jblkdep(jblkdep)
4127	struct jblkdep *jblkdep;
4128{
4129
4130	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4131		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4132	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4133		WORKITEM_FREE(jblkdep, D_JTRUNC);
4134	else
4135		panic("free_jblkdep: Unexpected type %s",
4136		    TYPENAME(jblkdep->jb_list.wk_type));
4137}
4138
4139/*
4140 * Free a single jseg once it is no longer referenced in memory or on
4141 * disk.  Reclaim journal blocks and dependencies waiting for the segment
4142 * to disappear.
4143 */
4144static void
4145free_jseg(jseg, jblocks)
4146	struct jseg *jseg;
4147	struct jblocks *jblocks;
4148{
4149	struct freework *freework;
4150
4151	/*
4152	 * Free freework structures that were lingering to indicate freed
4153	 * indirect blocks that forced journal write ordering on reallocate.
4154	 */
4155	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4156		indirblk_remove(freework);
4157	if (jblocks->jb_oldestseg == jseg)
4158		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4159	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4160	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4161	KASSERT(LIST_EMPTY(&jseg->js_entries),
4162	    ("free_jseg: Freed jseg has valid entries."));
4163	WORKITEM_FREE(jseg, D_JSEG);
4164}
4165
4166/*
4167 * Free all jsegs that meet the criteria for being reclaimed and update
4168 * oldestseg.
4169 */
4170static void
4171free_jsegs(jblocks)
4172	struct jblocks *jblocks;
4173{
4174	struct jseg *jseg;
4175
4176	/*
4177	 * Free only those jsegs which have none allocated before them to
4178	 * preserve the journal space ordering.
4179	 */
4180	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4181		/*
4182		 * Only reclaim space when nothing depends on this journal
4183		 * set and another set has written that it is no longer
4184		 * valid.
4185		 */
4186		if (jseg->js_refs != 0) {
4187			jblocks->jb_oldestseg = jseg;
4188			return;
4189		}
4190		if (!LIST_EMPTY(&jseg->js_indirs) &&
4191		    jseg->js_seq >= jblocks->jb_oldestwrseq)
4192			break;
4193		free_jseg(jseg, jblocks);
4194	}
4195	/*
4196	 * If we exited the loop above we still must discover the
4197	 * oldest valid segment.
4198	 */
4199	if (jseg)
4200		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4201		     jseg = TAILQ_NEXT(jseg, js_next))
4202			if (jseg->js_refs != 0)
4203				break;
4204	jblocks->jb_oldestseg = jseg;
4205	/*
4206	 * The journal has no valid records but some jsegs may still be
4207	 * waiting on oldestwrseq to advance.  We force a small record
4208	 * out to permit these lingering records to be reclaimed.
4209	 */
4210	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4211		jblocks->jb_needseg = 1;
4212}
4213
4214/*
4215 * Release one reference to a jseg and free it if the count reaches 0.  This
4216 * should eventually reclaim journal space as well.
4217 */
4218static void
4219rele_jseg(jseg)
4220	struct jseg *jseg;
4221{
4222
4223	KASSERT(jseg->js_refs > 0,
4224	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4225	if (--jseg->js_refs != 0)
4226		return;
4227	free_jsegs(jseg->js_jblocks);
4228}
4229
4230/*
4231 * Release a jsegdep and decrement the jseg count.
4232 */
4233static void
4234free_jsegdep(jsegdep)
4235	struct jsegdep *jsegdep;
4236{
4237
4238	if (jsegdep->jd_seg)
4239		rele_jseg(jsegdep->jd_seg);
4240	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4241}
4242
4243/*
4244 * Wait for a journal item to make it to disk.  Initiate journal processing
4245 * if required.
4246 */
4247static int
4248jwait(wk, waitfor)
4249	struct worklist *wk;
4250	int waitfor;
4251{
4252
4253	/*
4254	 * Blocking journal waits cause slow synchronous behavior.  Record
4255	 * stats on the frequency of these blocking operations.
4256	 */
4257	if (waitfor == MNT_WAIT) {
4258		stat_journal_wait++;
4259		switch (wk->wk_type) {
4260		case D_JREMREF:
4261		case D_JMVREF:
4262			stat_jwait_filepage++;
4263			break;
4264		case D_JTRUNC:
4265		case D_JFREEBLK:
4266			stat_jwait_freeblks++;
4267			break;
4268		case D_JNEWBLK:
4269			stat_jwait_newblk++;
4270			break;
4271		case D_JADDREF:
4272			stat_jwait_inode++;
4273			break;
4274		default:
4275			break;
4276		}
4277	}
4278	/*
4279	 * If IO has not started we process the journal.  We can't mark the
4280	 * worklist item as IOWAITING because we drop the lock while
4281	 * processing the journal and the worklist entry may be freed after
4282	 * this point.  The caller may call back in and re-issue the request.
4283	 */
4284	if ((wk->wk_state & INPROGRESS) == 0) {
4285		softdep_process_journal(wk->wk_mp, wk, waitfor);
4286		if (waitfor != MNT_WAIT)
4287			return (EBUSY);
4288		return (0);
4289	}
4290	if (waitfor != MNT_WAIT)
4291		return (EBUSY);
4292	wait_worklist(wk, "jwait");
4293	return (0);
4294}
4295
4296/*
4297 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4298 * appropriate.  This is a convenience function to reduce duplicate code
4299 * for the setup and revert functions below.
4300 */
4301static struct inodedep *
4302inodedep_lookup_ip(ip)
4303	struct inode *ip;
4304{
4305	struct inodedep *inodedep;
4306
4307	KASSERT(ip->i_nlink >= ip->i_effnlink,
4308	    ("inodedep_lookup_ip: bad delta"));
4309	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
4310	    DEPALLOC, &inodedep);
4311	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4312
4313	return (inodedep);
4314}
4315
4316/*
4317 * Called prior to creating a new inode and linking it to a directory.  The
4318 * jaddref structure must already be allocated by softdep_setup_inomapdep
4319 * and it is discovered here so we can initialize the mode and update
4320 * nlinkdelta.
4321 */
4322void
4323softdep_setup_create(dp, ip)
4324	struct inode *dp;
4325	struct inode *ip;
4326{
4327	struct inodedep *inodedep;
4328	struct jaddref *jaddref;
4329	struct vnode *dvp;
4330
4331	KASSERT(ip->i_nlink == 1,
4332	    ("softdep_setup_create: Invalid link count."));
4333	dvp = ITOV(dp);
4334	ACQUIRE_LOCK(&lk);
4335	inodedep = inodedep_lookup_ip(ip);
4336	if (DOINGSUJ(dvp)) {
4337		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4338		    inoreflst);
4339		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4340		    ("softdep_setup_create: No addref structure present."));
4341	}
4342	softdep_prelink(dvp, NULL);
4343	FREE_LOCK(&lk);
4344}
4345
4346/*
4347 * Create a jaddref structure to track the addition of a DOTDOT link when
4348 * we are reparenting an inode as part of a rename.  This jaddref will be
4349 * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4350 * non-journaling softdep.
4351 */
4352void
4353softdep_setup_dotdot_link(dp, ip)
4354	struct inode *dp;
4355	struct inode *ip;
4356{
4357	struct inodedep *inodedep;
4358	struct jaddref *jaddref;
4359	struct vnode *dvp;
4360	struct vnode *vp;
4361
4362	dvp = ITOV(dp);
4363	vp = ITOV(ip);
4364	jaddref = NULL;
4365	/*
4366	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4367	 * is used as a normal link would be.
4368	 */
4369	if (DOINGSUJ(dvp))
4370		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4371		    dp->i_effnlink - 1, dp->i_mode);
4372	ACQUIRE_LOCK(&lk);
4373	inodedep = inodedep_lookup_ip(dp);
4374	if (jaddref)
4375		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4376		    if_deps);
4377	softdep_prelink(dvp, ITOV(ip));
4378	FREE_LOCK(&lk);
4379}
4380
4381/*
4382 * Create a jaddref structure to track a new link to an inode.  The directory
4383 * offset is not known until softdep_setup_directory_add or
4384 * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4385 * softdep.
4386 */
4387void
4388softdep_setup_link(dp, ip)
4389	struct inode *dp;
4390	struct inode *ip;
4391{
4392	struct inodedep *inodedep;
4393	struct jaddref *jaddref;
4394	struct vnode *dvp;
4395
4396	dvp = ITOV(dp);
4397	jaddref = NULL;
4398	if (DOINGSUJ(dvp))
4399		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4400		    ip->i_mode);
4401	ACQUIRE_LOCK(&lk);
4402	inodedep = inodedep_lookup_ip(ip);
4403	if (jaddref)
4404		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4405		    if_deps);
4406	softdep_prelink(dvp, ITOV(ip));
4407	FREE_LOCK(&lk);
4408}
4409
4410/*
4411 * Called to create the jaddref structures to track . and .. references as
4412 * well as lookup and further initialize the incomplete jaddref created
4413 * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4414 * nlinkdelta for non-journaling softdep.
4415 */
4416void
4417softdep_setup_mkdir(dp, ip)
4418	struct inode *dp;
4419	struct inode *ip;
4420{
4421	struct inodedep *inodedep;
4422	struct jaddref *dotdotaddref;
4423	struct jaddref *dotaddref;
4424	struct jaddref *jaddref;
4425	struct vnode *dvp;
4426
4427	dvp = ITOV(dp);
4428	dotaddref = dotdotaddref = NULL;
4429	if (DOINGSUJ(dvp)) {
4430		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4431		    ip->i_mode);
4432		dotaddref->ja_state |= MKDIR_BODY;
4433		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4434		    dp->i_effnlink - 1, dp->i_mode);
4435		dotdotaddref->ja_state |= MKDIR_PARENT;
4436	}
4437	ACQUIRE_LOCK(&lk);
4438	inodedep = inodedep_lookup_ip(ip);
4439	if (DOINGSUJ(dvp)) {
4440		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4441		    inoreflst);
4442		KASSERT(jaddref != NULL,
4443		    ("softdep_setup_mkdir: No addref structure present."));
4444		KASSERT(jaddref->ja_parent == dp->i_number,
4445		    ("softdep_setup_mkdir: bad parent %d",
4446		    jaddref->ja_parent));
4447		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4448		    if_deps);
4449	}
4450	inodedep = inodedep_lookup_ip(dp);
4451	if (DOINGSUJ(dvp))
4452		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4453		    &dotdotaddref->ja_ref, if_deps);
4454	softdep_prelink(ITOV(dp), NULL);
4455	FREE_LOCK(&lk);
4456}
4457
4458/*
4459 * Called to track nlinkdelta of the inode and parent directories prior to
4460 * unlinking a directory.
4461 */
4462void
4463softdep_setup_rmdir(dp, ip)
4464	struct inode *dp;
4465	struct inode *ip;
4466{
4467	struct vnode *dvp;
4468
4469	dvp = ITOV(dp);
4470	ACQUIRE_LOCK(&lk);
4471	(void) inodedep_lookup_ip(ip);
4472	(void) inodedep_lookup_ip(dp);
4473	softdep_prelink(dvp, ITOV(ip));
4474	FREE_LOCK(&lk);
4475}
4476
4477/*
4478 * Called to track nlinkdelta of the inode and parent directories prior to
4479 * unlink.
4480 */
4481void
4482softdep_setup_unlink(dp, ip)
4483	struct inode *dp;
4484	struct inode *ip;
4485{
4486	struct vnode *dvp;
4487
4488	dvp = ITOV(dp);
4489	ACQUIRE_LOCK(&lk);
4490	(void) inodedep_lookup_ip(ip);
4491	(void) inodedep_lookup_ip(dp);
4492	softdep_prelink(dvp, ITOV(ip));
4493	FREE_LOCK(&lk);
4494}
4495
4496/*
4497 * Called to release the journal structures created by a failed non-directory
4498 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4499 */
4500void
4501softdep_revert_create(dp, ip)
4502	struct inode *dp;
4503	struct inode *ip;
4504{
4505	struct inodedep *inodedep;
4506	struct jaddref *jaddref;
4507	struct vnode *dvp;
4508
4509	dvp = ITOV(dp);
4510	ACQUIRE_LOCK(&lk);
4511	inodedep = inodedep_lookup_ip(ip);
4512	if (DOINGSUJ(dvp)) {
4513		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4514		    inoreflst);
4515		KASSERT(jaddref->ja_parent == dp->i_number,
4516		    ("softdep_revert_create: addref parent mismatch"));
4517		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4518	}
4519	FREE_LOCK(&lk);
4520}
4521
4522/*
4523 * Called to release the journal structures created by a failed dotdot link
4524 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4525 */
4526void
4527softdep_revert_dotdot_link(dp, ip)
4528	struct inode *dp;
4529	struct inode *ip;
4530{
4531	struct inodedep *inodedep;
4532	struct jaddref *jaddref;
4533	struct vnode *dvp;
4534
4535	dvp = ITOV(dp);
4536	ACQUIRE_LOCK(&lk);
4537	inodedep = inodedep_lookup_ip(dp);
4538	if (DOINGSUJ(dvp)) {
4539		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4540		    inoreflst);
4541		KASSERT(jaddref->ja_parent == ip->i_number,
4542		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4543		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4544	}
4545	FREE_LOCK(&lk);
4546}
4547
4548/*
4549 * Called to release the journal structures created by a failed link
4550 * addition.  Adjusts nlinkdelta for non-journaling softdep.
4551 */
4552void
4553softdep_revert_link(dp, ip)
4554	struct inode *dp;
4555	struct inode *ip;
4556{
4557	struct inodedep *inodedep;
4558	struct jaddref *jaddref;
4559	struct vnode *dvp;
4560
4561	dvp = ITOV(dp);
4562	ACQUIRE_LOCK(&lk);
4563	inodedep = inodedep_lookup_ip(ip);
4564	if (DOINGSUJ(dvp)) {
4565		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4566		    inoreflst);
4567		KASSERT(jaddref->ja_parent == dp->i_number,
4568		    ("softdep_revert_link: addref parent mismatch"));
4569		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4570	}
4571	FREE_LOCK(&lk);
4572}
4573
4574/*
4575 * Called to release the journal structures created by a failed mkdir
4576 * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4577 */
4578void
4579softdep_revert_mkdir(dp, ip)
4580	struct inode *dp;
4581	struct inode *ip;
4582{
4583	struct inodedep *inodedep;
4584	struct jaddref *jaddref;
4585	struct jaddref *dotaddref;
4586	struct vnode *dvp;
4587
4588	dvp = ITOV(dp);
4589
4590	ACQUIRE_LOCK(&lk);
4591	inodedep = inodedep_lookup_ip(dp);
4592	if (DOINGSUJ(dvp)) {
4593		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4594		    inoreflst);
4595		KASSERT(jaddref->ja_parent == ip->i_number,
4596		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4597		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4598	}
4599	inodedep = inodedep_lookup_ip(ip);
4600	if (DOINGSUJ(dvp)) {
4601		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4602		    inoreflst);
4603		KASSERT(jaddref->ja_parent == dp->i_number,
4604		    ("softdep_revert_mkdir: addref parent mismatch"));
4605		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4606		    inoreflst, if_deps);
4607		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4608		KASSERT(dotaddref->ja_parent == ip->i_number,
4609		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4610		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4611	}
4612	FREE_LOCK(&lk);
4613}
4614
4615/*
4616 * Called to correct nlinkdelta after a failed rmdir.
4617 */
4618void
4619softdep_revert_rmdir(dp, ip)
4620	struct inode *dp;
4621	struct inode *ip;
4622{
4623
4624	ACQUIRE_LOCK(&lk);
4625	(void) inodedep_lookup_ip(ip);
4626	(void) inodedep_lookup_ip(dp);
4627	FREE_LOCK(&lk);
4628}
4629
4630/*
4631 * Protecting the freemaps (or bitmaps).
4632 *
4633 * To eliminate the need to execute fsck before mounting a filesystem
4634 * after a power failure, one must (conservatively) guarantee that the
4635 * on-disk copy of the bitmaps never indicate that a live inode or block is
4636 * free.  So, when a block or inode is allocated, the bitmap should be
4637 * updated (on disk) before any new pointers.  When a block or inode is
4638 * freed, the bitmap should not be updated until all pointers have been
4639 * reset.  The latter dependency is handled by the delayed de-allocation
4640 * approach described below for block and inode de-allocation.  The former
4641 * dependency is handled by calling the following procedure when a block or
4642 * inode is allocated. When an inode is allocated an "inodedep" is created
4643 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4644 * Each "inodedep" is also inserted into the hash indexing structure so
4645 * that any additional link additions can be made dependent on the inode
4646 * allocation.
4647 *
4648 * The ufs filesystem maintains a number of free block counts (e.g., per
4649 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4650 * in addition to the bitmaps.  These counts are used to improve efficiency
4651 * during allocation and therefore must be consistent with the bitmaps.
4652 * There is no convenient way to guarantee post-crash consistency of these
4653 * counts with simple update ordering, for two main reasons: (1) The counts
4654 * and bitmaps for a single cylinder group block are not in the same disk
4655 * sector.  If a disk write is interrupted (e.g., by power failure), one may
4656 * be written and the other not.  (2) Some of the counts are located in the
4657 * superblock rather than the cylinder group block. So, we focus our soft
4658 * updates implementation on protecting the bitmaps. When mounting a
4659 * filesystem, we recompute the auxiliary counts from the bitmaps.
4660 */
4661
4662/*
4663 * Called just after updating the cylinder group block to allocate an inode.
4664 */
4665void
4666softdep_setup_inomapdep(bp, ip, newinum, mode)
4667	struct buf *bp;		/* buffer for cylgroup block with inode map */
4668	struct inode *ip;	/* inode related to allocation */
4669	ino_t newinum;		/* new inode number being allocated */
4670	int mode;
4671{
4672	struct inodedep *inodedep;
4673	struct bmsafemap *bmsafemap;
4674	struct jaddref *jaddref;
4675	struct mount *mp;
4676	struct fs *fs;
4677
4678	mp = UFSTOVFS(ip->i_ump);
4679	fs = ip->i_ump->um_fs;
4680	jaddref = NULL;
4681
4682	/*
4683	 * Allocate the journal reference add structure so that the bitmap
4684	 * can be dependent on it.
4685	 */
4686	if (MOUNTEDSUJ(mp)) {
4687		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4688		jaddref->ja_state |= NEWBLOCK;
4689	}
4690
4691	/*
4692	 * Create a dependency for the newly allocated inode.
4693	 * Panic if it already exists as something is seriously wrong.
4694	 * Otherwise add it to the dependency list for the buffer holding
4695	 * the cylinder group map from which it was allocated.
4696	 */
4697	ACQUIRE_LOCK(&lk);
4698	if ((inodedep_lookup(mp, newinum, DEPALLOC|NODELAY, &inodedep)))
4699		panic("softdep_setup_inomapdep: dependency %p for new"
4700		    "inode already exists", inodedep);
4701	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum));
4702	if (jaddref) {
4703		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4704		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4705		    if_deps);
4706	} else {
4707		inodedep->id_state |= ONDEPLIST;
4708		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4709	}
4710	inodedep->id_bmsafemap = bmsafemap;
4711	inodedep->id_state &= ~DEPCOMPLETE;
4712	FREE_LOCK(&lk);
4713}
4714
4715/*
4716 * Called just after updating the cylinder group block to
4717 * allocate block or fragment.
4718 */
4719void
4720softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4721	struct buf *bp;		/* buffer for cylgroup block with block map */
4722	struct mount *mp;	/* filesystem doing allocation */
4723	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4724	int frags;		/* Number of fragments. */
4725	int oldfrags;		/* Previous number of fragments for extend. */
4726{
4727	struct newblk *newblk;
4728	struct bmsafemap *bmsafemap;
4729	struct jnewblk *jnewblk;
4730	struct fs *fs;
4731
4732	fs = VFSTOUFS(mp)->um_fs;
4733	jnewblk = NULL;
4734	/*
4735	 * Create a dependency for the newly allocated block.
4736	 * Add it to the dependency list for the buffer holding
4737	 * the cylinder group map from which it was allocated.
4738	 */
4739	if (MOUNTEDSUJ(mp)) {
4740		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4741		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4742		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4743		jnewblk->jn_state = ATTACHED;
4744		jnewblk->jn_blkno = newblkno;
4745		jnewblk->jn_frags = frags;
4746		jnewblk->jn_oldfrags = oldfrags;
4747#ifdef SUJ_DEBUG
4748		{
4749			struct cg *cgp;
4750			uint8_t *blksfree;
4751			long bno;
4752			int i;
4753
4754			cgp = (struct cg *)bp->b_data;
4755			blksfree = cg_blksfree(cgp);
4756			bno = dtogd(fs, jnewblk->jn_blkno);
4757			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4758			    i++) {
4759				if (isset(blksfree, bno + i))
4760					panic("softdep_setup_blkmapdep: "
4761					    "free fragment %d from %d-%d "
4762					    "state 0x%X dep %p", i,
4763					    jnewblk->jn_oldfrags,
4764					    jnewblk->jn_frags,
4765					    jnewblk->jn_state,
4766					    jnewblk->jn_dep);
4767			}
4768		}
4769#endif
4770	}
4771	ACQUIRE_LOCK(&lk);
4772	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4773		panic("softdep_setup_blkmapdep: found block");
4774	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4775	    dtog(fs, newblkno));
4776	if (jnewblk) {
4777		jnewblk->jn_dep = (struct worklist *)newblk;
4778		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4779	} else {
4780		newblk->nb_state |= ONDEPLIST;
4781		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4782	}
4783	newblk->nb_bmsafemap = bmsafemap;
4784	newblk->nb_jnewblk = jnewblk;
4785	FREE_LOCK(&lk);
4786}
4787
4788#define	BMSAFEMAP_HASH(fs, cg) \
4789      (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4790
4791static int
4792bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4793	struct bmsafemap_hashhead *bmsafemaphd;
4794	struct mount *mp;
4795	int cg;
4796	struct bmsafemap **bmsafemapp;
4797{
4798	struct bmsafemap *bmsafemap;
4799
4800	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4801		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4802			break;
4803	if (bmsafemap) {
4804		*bmsafemapp = bmsafemap;
4805		return (1);
4806	}
4807	*bmsafemapp = NULL;
4808
4809	return (0);
4810}
4811
4812/*
4813 * Find the bmsafemap associated with a cylinder group buffer.
4814 * If none exists, create one. The buffer must be locked when
4815 * this routine is called and this routine must be called with
4816 * splbio interrupts blocked.
4817 */
4818static struct bmsafemap *
4819bmsafemap_lookup(mp, bp, cg)
4820	struct mount *mp;
4821	struct buf *bp;
4822	int cg;
4823{
4824	struct bmsafemap_hashhead *bmsafemaphd;
4825	struct bmsafemap *bmsafemap, *collision;
4826	struct worklist *wk;
4827	struct fs *fs;
4828
4829	mtx_assert(&lk, MA_OWNED);
4830	if (bp)
4831		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4832			if (wk->wk_type == D_BMSAFEMAP)
4833				return (WK_BMSAFEMAP(wk));
4834	fs = VFSTOUFS(mp)->um_fs;
4835	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4836	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1)
4837		return (bmsafemap);
4838	FREE_LOCK(&lk);
4839	bmsafemap = malloc(sizeof(struct bmsafemap),
4840		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4841	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4842	bmsafemap->sm_buf = bp;
4843	LIST_INIT(&bmsafemap->sm_inodedephd);
4844	LIST_INIT(&bmsafemap->sm_inodedepwr);
4845	LIST_INIT(&bmsafemap->sm_newblkhd);
4846	LIST_INIT(&bmsafemap->sm_newblkwr);
4847	LIST_INIT(&bmsafemap->sm_jaddrefhd);
4848	LIST_INIT(&bmsafemap->sm_jnewblkhd);
4849	LIST_INIT(&bmsafemap->sm_freehd);
4850	LIST_INIT(&bmsafemap->sm_freewr);
4851	ACQUIRE_LOCK(&lk);
4852	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
4853		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4854		return (collision);
4855	}
4856	bmsafemap->sm_cg = cg;
4857	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
4858	LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next);
4859	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
4860	return (bmsafemap);
4861}
4862
4863/*
4864 * Direct block allocation dependencies.
4865 *
4866 * When a new block is allocated, the corresponding disk locations must be
4867 * initialized (with zeros or new data) before the on-disk inode points to
4868 * them.  Also, the freemap from which the block was allocated must be
4869 * updated (on disk) before the inode's pointer. These two dependencies are
4870 * independent of each other and are needed for all file blocks and indirect
4871 * blocks that are pointed to directly by the inode.  Just before the
4872 * "in-core" version of the inode is updated with a newly allocated block
4873 * number, a procedure (below) is called to setup allocation dependency
4874 * structures.  These structures are removed when the corresponding
4875 * dependencies are satisfied or when the block allocation becomes obsolete
4876 * (i.e., the file is deleted, the block is de-allocated, or the block is a
4877 * fragment that gets upgraded).  All of these cases are handled in
4878 * procedures described later.
4879 *
4880 * When a file extension causes a fragment to be upgraded, either to a larger
4881 * fragment or to a full block, the on-disk location may change (if the
4882 * previous fragment could not simply be extended). In this case, the old
4883 * fragment must be de-allocated, but not until after the inode's pointer has
4884 * been updated. In most cases, this is handled by later procedures, which
4885 * will construct a "freefrag" structure to be added to the workitem queue
4886 * when the inode update is complete (or obsolete).  The main exception to
4887 * this is when an allocation occurs while a pending allocation dependency
4888 * (for the same block pointer) remains.  This case is handled in the main
4889 * allocation dependency setup procedure by immediately freeing the
4890 * unreferenced fragments.
4891 */
4892void
4893softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4894	struct inode *ip;	/* inode to which block is being added */
4895	ufs_lbn_t off;		/* block pointer within inode */
4896	ufs2_daddr_t newblkno;	/* disk block number being added */
4897	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
4898	long newsize;		/* size of new block */
4899	long oldsize;		/* size of new block */
4900	struct buf *bp;		/* bp for allocated block */
4901{
4902	struct allocdirect *adp, *oldadp;
4903	struct allocdirectlst *adphead;
4904	struct freefrag *freefrag;
4905	struct inodedep *inodedep;
4906	struct pagedep *pagedep;
4907	struct jnewblk *jnewblk;
4908	struct newblk *newblk;
4909	struct mount *mp;
4910	ufs_lbn_t lbn;
4911
4912	lbn = bp->b_lblkno;
4913	mp = UFSTOVFS(ip->i_ump);
4914	if (oldblkno && oldblkno != newblkno)
4915		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4916	else
4917		freefrag = NULL;
4918
4919	ACQUIRE_LOCK(&lk);
4920	if (off >= NDADDR) {
4921		if (lbn > 0)
4922			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
4923			    lbn, off);
4924		/* allocating an indirect block */
4925		if (oldblkno != 0)
4926			panic("softdep_setup_allocdirect: non-zero indir");
4927	} else {
4928		if (off != lbn)
4929			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
4930			    lbn, off);
4931		/*
4932		 * Allocating a direct block.
4933		 *
4934		 * If we are allocating a directory block, then we must
4935		 * allocate an associated pagedep to track additions and
4936		 * deletions.
4937		 */
4938		if ((ip->i_mode & IFMT) == IFDIR)
4939			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
4940			    &pagedep);
4941	}
4942	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4943		panic("softdep_setup_allocdirect: lost block");
4944	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4945	    ("softdep_setup_allocdirect: newblk already initialized"));
4946	/*
4947	 * Convert the newblk to an allocdirect.
4948	 */
4949	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4950	adp = (struct allocdirect *)newblk;
4951	newblk->nb_freefrag = freefrag;
4952	adp->ad_offset = off;
4953	adp->ad_oldblkno = oldblkno;
4954	adp->ad_newsize = newsize;
4955	adp->ad_oldsize = oldsize;
4956
4957	/*
4958	 * Finish initializing the journal.
4959	 */
4960	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4961		jnewblk->jn_ino = ip->i_number;
4962		jnewblk->jn_lbn = lbn;
4963		add_to_journal(&jnewblk->jn_list);
4964	}
4965	if (freefrag && freefrag->ff_jdep != NULL &&
4966	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
4967		add_to_journal(freefrag->ff_jdep);
4968	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4969	adp->ad_inodedep = inodedep;
4970
4971	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4972	/*
4973	 * The list of allocdirects must be kept in sorted and ascending
4974	 * order so that the rollback routines can quickly determine the
4975	 * first uncommitted block (the size of the file stored on disk
4976	 * ends at the end of the lowest committed fragment, or if there
4977	 * are no fragments, at the end of the highest committed block).
4978	 * Since files generally grow, the typical case is that the new
4979	 * block is to be added at the end of the list. We speed this
4980	 * special case by checking against the last allocdirect in the
4981	 * list before laboriously traversing the list looking for the
4982	 * insertion point.
4983	 */
4984	adphead = &inodedep->id_newinoupdt;
4985	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4986	if (oldadp == NULL || oldadp->ad_offset <= off) {
4987		/* insert at end of list */
4988		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4989		if (oldadp != NULL && oldadp->ad_offset == off)
4990			allocdirect_merge(adphead, adp, oldadp);
4991		FREE_LOCK(&lk);
4992		return;
4993	}
4994	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4995		if (oldadp->ad_offset >= off)
4996			break;
4997	}
4998	if (oldadp == NULL)
4999		panic("softdep_setup_allocdirect: lost entry");
5000	/* insert in middle of list */
5001	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5002	if (oldadp->ad_offset == off)
5003		allocdirect_merge(adphead, adp, oldadp);
5004
5005	FREE_LOCK(&lk);
5006}
5007
5008/*
5009 * Merge a newer and older journal record to be stored either in a
5010 * newblock or freefrag.  This handles aggregating journal records for
5011 * fragment allocation into a second record as well as replacing a
5012 * journal free with an aborted journal allocation.  A segment for the
5013 * oldest record will be placed on wkhd if it has been written.  If not
5014 * the segment for the newer record will suffice.
5015 */
5016static struct worklist *
5017jnewblk_merge(new, old, wkhd)
5018	struct worklist *new;
5019	struct worklist *old;
5020	struct workhead *wkhd;
5021{
5022	struct jnewblk *njnewblk;
5023	struct jnewblk *jnewblk;
5024
5025	/* Handle NULLs to simplify callers. */
5026	if (new == NULL)
5027		return (old);
5028	if (old == NULL)
5029		return (new);
5030	/* Replace a jfreefrag with a jnewblk. */
5031	if (new->wk_type == D_JFREEFRAG) {
5032		cancel_jfreefrag(WK_JFREEFRAG(new));
5033		return (old);
5034	}
5035	/*
5036	 * Handle merging of two jnewblk records that describe
5037	 * different sets of fragments in the same block.
5038	 */
5039	jnewblk = WK_JNEWBLK(old);
5040	njnewblk = WK_JNEWBLK(new);
5041	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5042		panic("jnewblk_merge: Merging disparate blocks.");
5043	/*
5044	 * The record may be rolled back in the cg.
5045	 */
5046	if (jnewblk->jn_state & UNDONE) {
5047		jnewblk->jn_state &= ~UNDONE;
5048		njnewblk->jn_state |= UNDONE;
5049		njnewblk->jn_state &= ~ATTACHED;
5050	}
5051	/*
5052	 * We modify the newer addref and free the older so that if neither
5053	 * has been written the most up-to-date copy will be on disk.  If
5054	 * both have been written but rolled back we only temporarily need
5055	 * one of them to fix the bits when the cg write completes.
5056	 */
5057	jnewblk->jn_state |= ATTACHED | COMPLETE;
5058	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5059	cancel_jnewblk(jnewblk, wkhd);
5060	WORKLIST_REMOVE(&jnewblk->jn_list);
5061	free_jnewblk(jnewblk);
5062	return (new);
5063}
5064
5065/*
5066 * Replace an old allocdirect dependency with a newer one.
5067 * This routine must be called with splbio interrupts blocked.
5068 */
5069static void
5070allocdirect_merge(adphead, newadp, oldadp)
5071	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5072	struct allocdirect *newadp;	/* allocdirect being added */
5073	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5074{
5075	struct worklist *wk;
5076	struct freefrag *freefrag;
5077
5078	freefrag = NULL;
5079	mtx_assert(&lk, MA_OWNED);
5080	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5081	    newadp->ad_oldsize != oldadp->ad_newsize ||
5082	    newadp->ad_offset >= NDADDR)
5083		panic("%s %jd != new %jd || old size %ld != new %ld",
5084		    "allocdirect_merge: old blkno",
5085		    (intmax_t)newadp->ad_oldblkno,
5086		    (intmax_t)oldadp->ad_newblkno,
5087		    newadp->ad_oldsize, oldadp->ad_newsize);
5088	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5089	newadp->ad_oldsize = oldadp->ad_oldsize;
5090	/*
5091	 * If the old dependency had a fragment to free or had never
5092	 * previously had a block allocated, then the new dependency
5093	 * can immediately post its freefrag and adopt the old freefrag.
5094	 * This action is done by swapping the freefrag dependencies.
5095	 * The new dependency gains the old one's freefrag, and the
5096	 * old one gets the new one and then immediately puts it on
5097	 * the worklist when it is freed by free_newblk. It is
5098	 * not possible to do this swap when the old dependency had a
5099	 * non-zero size but no previous fragment to free. This condition
5100	 * arises when the new block is an extension of the old block.
5101	 * Here, the first part of the fragment allocated to the new
5102	 * dependency is part of the block currently claimed on disk by
5103	 * the old dependency, so cannot legitimately be freed until the
5104	 * conditions for the new dependency are fulfilled.
5105	 */
5106	freefrag = newadp->ad_freefrag;
5107	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5108		newadp->ad_freefrag = oldadp->ad_freefrag;
5109		oldadp->ad_freefrag = freefrag;
5110	}
5111	/*
5112	 * If we are tracking a new directory-block allocation,
5113	 * move it from the old allocdirect to the new allocdirect.
5114	 */
5115	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5116		WORKLIST_REMOVE(wk);
5117		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5118			panic("allocdirect_merge: extra newdirblk");
5119		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5120	}
5121	TAILQ_REMOVE(adphead, oldadp, ad_next);
5122	/*
5123	 * We need to move any journal dependencies over to the freefrag
5124	 * that releases this block if it exists.  Otherwise we are
5125	 * extending an existing block and we'll wait until that is
5126	 * complete to release the journal space and extend the
5127	 * new journal to cover this old space as well.
5128	 */
5129	if (freefrag == NULL) {
5130		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5131			panic("allocdirect_merge: %jd != %jd",
5132			    oldadp->ad_newblkno, newadp->ad_newblkno);
5133		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5134		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5135		    &oldadp->ad_block.nb_jnewblk->jn_list,
5136		    &newadp->ad_block.nb_jwork);
5137		oldadp->ad_block.nb_jnewblk = NULL;
5138		cancel_newblk(&oldadp->ad_block, NULL,
5139		    &newadp->ad_block.nb_jwork);
5140	} else {
5141		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5142		    &freefrag->ff_list, &freefrag->ff_jwork);
5143		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5144		    &freefrag->ff_jwork);
5145	}
5146	free_newblk(&oldadp->ad_block);
5147}
5148
5149/*
5150 * Allocate a jfreefrag structure to journal a single block free.
5151 */
5152static struct jfreefrag *
5153newjfreefrag(freefrag, ip, blkno, size, lbn)
5154	struct freefrag *freefrag;
5155	struct inode *ip;
5156	ufs2_daddr_t blkno;
5157	long size;
5158	ufs_lbn_t lbn;
5159{
5160	struct jfreefrag *jfreefrag;
5161	struct fs *fs;
5162
5163	fs = ip->i_fs;
5164	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5165	    M_SOFTDEP_FLAGS);
5166	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5167	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5168	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5169	jfreefrag->fr_ino = ip->i_number;
5170	jfreefrag->fr_lbn = lbn;
5171	jfreefrag->fr_blkno = blkno;
5172	jfreefrag->fr_frags = numfrags(fs, size);
5173	jfreefrag->fr_freefrag = freefrag;
5174
5175	return (jfreefrag);
5176}
5177
5178/*
5179 * Allocate a new freefrag structure.
5180 */
5181static struct freefrag *
5182newfreefrag(ip, blkno, size, lbn)
5183	struct inode *ip;
5184	ufs2_daddr_t blkno;
5185	long size;
5186	ufs_lbn_t lbn;
5187{
5188	struct freefrag *freefrag;
5189	struct fs *fs;
5190
5191	fs = ip->i_fs;
5192	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5193		panic("newfreefrag: frag size");
5194	freefrag = malloc(sizeof(struct freefrag),
5195	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5196	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5197	freefrag->ff_state = ATTACHED;
5198	LIST_INIT(&freefrag->ff_jwork);
5199	freefrag->ff_inum = ip->i_number;
5200	freefrag->ff_vtype = ITOV(ip)->v_type;
5201	freefrag->ff_blkno = blkno;
5202	freefrag->ff_fragsize = size;
5203
5204	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5205		freefrag->ff_jdep = (struct worklist *)
5206		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5207	} else {
5208		freefrag->ff_state |= DEPCOMPLETE;
5209		freefrag->ff_jdep = NULL;
5210	}
5211
5212	return (freefrag);
5213}
5214
5215/*
5216 * This workitem de-allocates fragments that were replaced during
5217 * file block allocation.
5218 */
5219static void
5220handle_workitem_freefrag(freefrag)
5221	struct freefrag *freefrag;
5222{
5223	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5224	struct workhead wkhd;
5225
5226	/*
5227	 * It would be illegal to add new completion items to the
5228	 * freefrag after it was schedule to be done so it must be
5229	 * safe to modify the list head here.
5230	 */
5231	LIST_INIT(&wkhd);
5232	ACQUIRE_LOCK(&lk);
5233	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5234	/*
5235	 * If the journal has not been written we must cancel it here.
5236	 */
5237	if (freefrag->ff_jdep) {
5238		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5239			panic("handle_workitem_freefrag: Unexpected type %d\n",
5240			    freefrag->ff_jdep->wk_type);
5241		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5242	}
5243	FREE_LOCK(&lk);
5244	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5245	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5246	ACQUIRE_LOCK(&lk);
5247	WORKITEM_FREE(freefrag, D_FREEFRAG);
5248	FREE_LOCK(&lk);
5249}
5250
5251/*
5252 * Set up a dependency structure for an external attributes data block.
5253 * This routine follows much of the structure of softdep_setup_allocdirect.
5254 * See the description of softdep_setup_allocdirect above for details.
5255 */
5256void
5257softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5258	struct inode *ip;
5259	ufs_lbn_t off;
5260	ufs2_daddr_t newblkno;
5261	ufs2_daddr_t oldblkno;
5262	long newsize;
5263	long oldsize;
5264	struct buf *bp;
5265{
5266	struct allocdirect *adp, *oldadp;
5267	struct allocdirectlst *adphead;
5268	struct freefrag *freefrag;
5269	struct inodedep *inodedep;
5270	struct jnewblk *jnewblk;
5271	struct newblk *newblk;
5272	struct mount *mp;
5273	ufs_lbn_t lbn;
5274
5275	if (off >= NXADDR)
5276		panic("softdep_setup_allocext: lbn %lld > NXADDR",
5277		    (long long)off);
5278
5279	lbn = bp->b_lblkno;
5280	mp = UFSTOVFS(ip->i_ump);
5281	if (oldblkno && oldblkno != newblkno)
5282		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5283	else
5284		freefrag = NULL;
5285
5286	ACQUIRE_LOCK(&lk);
5287	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5288		panic("softdep_setup_allocext: lost block");
5289	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5290	    ("softdep_setup_allocext: newblk already initialized"));
5291	/*
5292	 * Convert the newblk to an allocdirect.
5293	 */
5294	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5295	adp = (struct allocdirect *)newblk;
5296	newblk->nb_freefrag = freefrag;
5297	adp->ad_offset = off;
5298	adp->ad_oldblkno = oldblkno;
5299	adp->ad_newsize = newsize;
5300	adp->ad_oldsize = oldsize;
5301	adp->ad_state |=  EXTDATA;
5302
5303	/*
5304	 * Finish initializing the journal.
5305	 */
5306	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5307		jnewblk->jn_ino = ip->i_number;
5308		jnewblk->jn_lbn = lbn;
5309		add_to_journal(&jnewblk->jn_list);
5310	}
5311	if (freefrag && freefrag->ff_jdep != NULL &&
5312	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5313		add_to_journal(freefrag->ff_jdep);
5314	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5315	adp->ad_inodedep = inodedep;
5316
5317	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5318	/*
5319	 * The list of allocdirects must be kept in sorted and ascending
5320	 * order so that the rollback routines can quickly determine the
5321	 * first uncommitted block (the size of the file stored on disk
5322	 * ends at the end of the lowest committed fragment, or if there
5323	 * are no fragments, at the end of the highest committed block).
5324	 * Since files generally grow, the typical case is that the new
5325	 * block is to be added at the end of the list. We speed this
5326	 * special case by checking against the last allocdirect in the
5327	 * list before laboriously traversing the list looking for the
5328	 * insertion point.
5329	 */
5330	adphead = &inodedep->id_newextupdt;
5331	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5332	if (oldadp == NULL || oldadp->ad_offset <= off) {
5333		/* insert at end of list */
5334		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5335		if (oldadp != NULL && oldadp->ad_offset == off)
5336			allocdirect_merge(adphead, adp, oldadp);
5337		FREE_LOCK(&lk);
5338		return;
5339	}
5340	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5341		if (oldadp->ad_offset >= off)
5342			break;
5343	}
5344	if (oldadp == NULL)
5345		panic("softdep_setup_allocext: lost entry");
5346	/* insert in middle of list */
5347	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5348	if (oldadp->ad_offset == off)
5349		allocdirect_merge(adphead, adp, oldadp);
5350	FREE_LOCK(&lk);
5351}
5352
5353/*
5354 * Indirect block allocation dependencies.
5355 *
5356 * The same dependencies that exist for a direct block also exist when
5357 * a new block is allocated and pointed to by an entry in a block of
5358 * indirect pointers. The undo/redo states described above are also
5359 * used here. Because an indirect block contains many pointers that
5360 * may have dependencies, a second copy of the entire in-memory indirect
5361 * block is kept. The buffer cache copy is always completely up-to-date.
5362 * The second copy, which is used only as a source for disk writes,
5363 * contains only the safe pointers (i.e., those that have no remaining
5364 * update dependencies). The second copy is freed when all pointers
5365 * are safe. The cache is not allowed to replace indirect blocks with
5366 * pending update dependencies. If a buffer containing an indirect
5367 * block with dependencies is written, these routines will mark it
5368 * dirty again. It can only be successfully written once all the
5369 * dependencies are removed. The ffs_fsync routine in conjunction with
5370 * softdep_sync_metadata work together to get all the dependencies
5371 * removed so that a file can be successfully written to disk. Three
5372 * procedures are used when setting up indirect block pointer
5373 * dependencies. The division is necessary because of the organization
5374 * of the "balloc" routine and because of the distinction between file
5375 * pages and file metadata blocks.
5376 */
5377
5378/*
5379 * Allocate a new allocindir structure.
5380 */
5381static struct allocindir *
5382newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5383	struct inode *ip;	/* inode for file being extended */
5384	int ptrno;		/* offset of pointer in indirect block */
5385	ufs2_daddr_t newblkno;	/* disk block number being added */
5386	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5387	ufs_lbn_t lbn;
5388{
5389	struct newblk *newblk;
5390	struct allocindir *aip;
5391	struct freefrag *freefrag;
5392	struct jnewblk *jnewblk;
5393
5394	if (oldblkno)
5395		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5396	else
5397		freefrag = NULL;
5398	ACQUIRE_LOCK(&lk);
5399	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5400		panic("new_allocindir: lost block");
5401	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5402	    ("newallocindir: newblk already initialized"));
5403	newblk->nb_list.wk_type = D_ALLOCINDIR;
5404	newblk->nb_freefrag = freefrag;
5405	aip = (struct allocindir *)newblk;
5406	aip->ai_offset = ptrno;
5407	aip->ai_oldblkno = oldblkno;
5408	aip->ai_lbn = lbn;
5409	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5410		jnewblk->jn_ino = ip->i_number;
5411		jnewblk->jn_lbn = lbn;
5412		add_to_journal(&jnewblk->jn_list);
5413	}
5414	if (freefrag && freefrag->ff_jdep != NULL &&
5415	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5416		add_to_journal(freefrag->ff_jdep);
5417	return (aip);
5418}
5419
5420/*
5421 * Called just before setting an indirect block pointer
5422 * to a newly allocated file page.
5423 */
5424void
5425softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5426	struct inode *ip;	/* inode for file being extended */
5427	ufs_lbn_t lbn;		/* allocated block number within file */
5428	struct buf *bp;		/* buffer with indirect blk referencing page */
5429	int ptrno;		/* offset of pointer in indirect block */
5430	ufs2_daddr_t newblkno;	/* disk block number being added */
5431	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5432	struct buf *nbp;	/* buffer holding allocated page */
5433{
5434	struct inodedep *inodedep;
5435	struct freefrag *freefrag;
5436	struct allocindir *aip;
5437	struct pagedep *pagedep;
5438	struct mount *mp;
5439
5440	if (lbn != nbp->b_lblkno)
5441		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5442		    lbn, bp->b_lblkno);
5443	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5444	mp = UFSTOVFS(ip->i_ump);
5445	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5446	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5447	/*
5448	 * If we are allocating a directory page, then we must
5449	 * allocate an associated pagedep to track additions and
5450	 * deletions.
5451	 */
5452	if ((ip->i_mode & IFMT) == IFDIR)
5453		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5454	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5455	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5456	FREE_LOCK(&lk);
5457	if (freefrag)
5458		handle_workitem_freefrag(freefrag);
5459}
5460
5461/*
5462 * Called just before setting an indirect block pointer to a
5463 * newly allocated indirect block.
5464 */
5465void
5466softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5467	struct buf *nbp;	/* newly allocated indirect block */
5468	struct inode *ip;	/* inode for file being extended */
5469	struct buf *bp;		/* indirect block referencing allocated block */
5470	int ptrno;		/* offset of pointer in indirect block */
5471	ufs2_daddr_t newblkno;	/* disk block number being added */
5472{
5473	struct inodedep *inodedep;
5474	struct allocindir *aip;
5475	ufs_lbn_t lbn;
5476
5477	lbn = nbp->b_lblkno;
5478	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5479	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5480	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
5481	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5482	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5483		panic("softdep_setup_allocindir_meta: Block already existed");
5484	FREE_LOCK(&lk);
5485}
5486
5487static void
5488indirdep_complete(indirdep)
5489	struct indirdep *indirdep;
5490{
5491	struct allocindir *aip;
5492
5493	LIST_REMOVE(indirdep, ir_next);
5494	indirdep->ir_state |= DEPCOMPLETE;
5495
5496	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5497		LIST_REMOVE(aip, ai_next);
5498		free_newblk(&aip->ai_block);
5499	}
5500	/*
5501	 * If this indirdep is not attached to a buf it was simply waiting
5502	 * on completion to clear completehd.  free_indirdep() asserts
5503	 * that nothing is dangling.
5504	 */
5505	if ((indirdep->ir_state & ONWORKLIST) == 0)
5506		free_indirdep(indirdep);
5507}
5508
5509static struct indirdep *
5510indirdep_lookup(mp, ip, bp)
5511	struct mount *mp;
5512	struct inode *ip;
5513	struct buf *bp;
5514{
5515	struct indirdep *indirdep, *newindirdep;
5516	struct newblk *newblk;
5517	struct worklist *wk;
5518	struct fs *fs;
5519	ufs2_daddr_t blkno;
5520
5521	mtx_assert(&lk, MA_OWNED);
5522	indirdep = NULL;
5523	newindirdep = NULL;
5524	fs = ip->i_fs;
5525	for (;;) {
5526		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5527			if (wk->wk_type != D_INDIRDEP)
5528				continue;
5529			indirdep = WK_INDIRDEP(wk);
5530			break;
5531		}
5532		/* Found on the buffer worklist, no new structure to free. */
5533		if (indirdep != NULL && newindirdep == NULL)
5534			return (indirdep);
5535		if (indirdep != NULL && newindirdep != NULL)
5536			panic("indirdep_lookup: simultaneous create");
5537		/* None found on the buffer and a new structure is ready. */
5538		if (indirdep == NULL && newindirdep != NULL)
5539			break;
5540		/* None found and no new structure available. */
5541		FREE_LOCK(&lk);
5542		newindirdep = malloc(sizeof(struct indirdep),
5543		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5544		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5545		newindirdep->ir_state = ATTACHED;
5546		if (ip->i_ump->um_fstype == UFS1)
5547			newindirdep->ir_state |= UFS1FMT;
5548		TAILQ_INIT(&newindirdep->ir_trunc);
5549		newindirdep->ir_saveddata = NULL;
5550		LIST_INIT(&newindirdep->ir_deplisthd);
5551		LIST_INIT(&newindirdep->ir_donehd);
5552		LIST_INIT(&newindirdep->ir_writehd);
5553		LIST_INIT(&newindirdep->ir_completehd);
5554		if (bp->b_blkno == bp->b_lblkno) {
5555			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5556			    NULL, NULL);
5557			bp->b_blkno = blkno;
5558		}
5559		newindirdep->ir_freeblks = NULL;
5560		newindirdep->ir_savebp =
5561		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5562		newindirdep->ir_bp = bp;
5563		BUF_KERNPROC(newindirdep->ir_savebp);
5564		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5565		ACQUIRE_LOCK(&lk);
5566	}
5567	indirdep = newindirdep;
5568	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5569	/*
5570	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5571	 * that we don't free dependencies until the pointers are valid.
5572	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5573	 * than using the hash.
5574	 */
5575	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5576		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5577	else
5578		indirdep->ir_state |= DEPCOMPLETE;
5579	return (indirdep);
5580}
5581
5582/*
5583 * Called to finish the allocation of the "aip" allocated
5584 * by one of the two routines above.
5585 */
5586static struct freefrag *
5587setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5588	struct buf *bp;		/* in-memory copy of the indirect block */
5589	struct inode *ip;	/* inode for file being extended */
5590	struct inodedep *inodedep; /* Inodedep for ip */
5591	struct allocindir *aip;	/* allocindir allocated by the above routines */
5592	ufs_lbn_t lbn;		/* Logical block number for this block. */
5593{
5594	struct fs *fs;
5595	struct indirdep *indirdep;
5596	struct allocindir *oldaip;
5597	struct freefrag *freefrag;
5598	struct mount *mp;
5599
5600	mtx_assert(&lk, MA_OWNED);
5601	mp = UFSTOVFS(ip->i_ump);
5602	fs = ip->i_fs;
5603	if (bp->b_lblkno >= 0)
5604		panic("setup_allocindir_phase2: not indir blk");
5605	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5606	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5607	indirdep = indirdep_lookup(mp, ip, bp);
5608	KASSERT(indirdep->ir_savebp != NULL,
5609	    ("setup_allocindir_phase2 NULL ir_savebp"));
5610	aip->ai_indirdep = indirdep;
5611	/*
5612	 * Check for an unwritten dependency for this indirect offset.  If
5613	 * there is, merge the old dependency into the new one.  This happens
5614	 * as a result of reallocblk only.
5615	 */
5616	freefrag = NULL;
5617	if (aip->ai_oldblkno != 0) {
5618		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5619			if (oldaip->ai_offset == aip->ai_offset) {
5620				freefrag = allocindir_merge(aip, oldaip);
5621				goto done;
5622			}
5623		}
5624		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5625			if (oldaip->ai_offset == aip->ai_offset) {
5626				freefrag = allocindir_merge(aip, oldaip);
5627				goto done;
5628			}
5629		}
5630	}
5631done:
5632	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5633	return (freefrag);
5634}
5635
5636/*
5637 * Merge two allocindirs which refer to the same block.  Move newblock
5638 * dependencies and setup the freefrags appropriately.
5639 */
5640static struct freefrag *
5641allocindir_merge(aip, oldaip)
5642	struct allocindir *aip;
5643	struct allocindir *oldaip;
5644{
5645	struct freefrag *freefrag;
5646	struct worklist *wk;
5647
5648	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5649		panic("allocindir_merge: blkno");
5650	aip->ai_oldblkno = oldaip->ai_oldblkno;
5651	freefrag = aip->ai_freefrag;
5652	aip->ai_freefrag = oldaip->ai_freefrag;
5653	oldaip->ai_freefrag = NULL;
5654	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5655	/*
5656	 * If we are tracking a new directory-block allocation,
5657	 * move it from the old allocindir to the new allocindir.
5658	 */
5659	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5660		WORKLIST_REMOVE(wk);
5661		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5662			panic("allocindir_merge: extra newdirblk");
5663		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5664	}
5665	/*
5666	 * We can skip journaling for this freefrag and just complete
5667	 * any pending journal work for the allocindir that is being
5668	 * removed after the freefrag completes.
5669	 */
5670	if (freefrag->ff_jdep)
5671		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5672	LIST_REMOVE(oldaip, ai_next);
5673	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5674	    &freefrag->ff_list, &freefrag->ff_jwork);
5675	free_newblk(&oldaip->ai_block);
5676
5677	return (freefrag);
5678}
5679
5680static inline void
5681setup_freedirect(freeblks, ip, i, needj)
5682	struct freeblks *freeblks;
5683	struct inode *ip;
5684	int i;
5685	int needj;
5686{
5687	ufs2_daddr_t blkno;
5688	int frags;
5689
5690	blkno = DIP(ip, i_db[i]);
5691	if (blkno == 0)
5692		return;
5693	DIP_SET(ip, i_db[i], 0);
5694	frags = sblksize(ip->i_fs, ip->i_size, i);
5695	frags = numfrags(ip->i_fs, frags);
5696	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5697}
5698
5699static inline void
5700setup_freeext(freeblks, ip, i, needj)
5701	struct freeblks *freeblks;
5702	struct inode *ip;
5703	int i;
5704	int needj;
5705{
5706	ufs2_daddr_t blkno;
5707	int frags;
5708
5709	blkno = ip->i_din2->di_extb[i];
5710	if (blkno == 0)
5711		return;
5712	ip->i_din2->di_extb[i] = 0;
5713	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5714	frags = numfrags(ip->i_fs, frags);
5715	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5716}
5717
5718static inline void
5719setup_freeindir(freeblks, ip, i, lbn, needj)
5720	struct freeblks *freeblks;
5721	struct inode *ip;
5722	int i;
5723	ufs_lbn_t lbn;
5724	int needj;
5725{
5726	ufs2_daddr_t blkno;
5727
5728	blkno = DIP(ip, i_ib[i]);
5729	if (blkno == 0)
5730		return;
5731	DIP_SET(ip, i_ib[i], 0);
5732	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5733	    0, needj);
5734}
5735
5736static inline struct freeblks *
5737newfreeblks(mp, ip)
5738	struct mount *mp;
5739	struct inode *ip;
5740{
5741	struct freeblks *freeblks;
5742
5743	freeblks = malloc(sizeof(struct freeblks),
5744		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5745	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5746	LIST_INIT(&freeblks->fb_jblkdephd);
5747	LIST_INIT(&freeblks->fb_jwork);
5748	freeblks->fb_ref = 0;
5749	freeblks->fb_cgwait = 0;
5750	freeblks->fb_state = ATTACHED;
5751	freeblks->fb_uid = ip->i_uid;
5752	freeblks->fb_inum = ip->i_number;
5753	freeblks->fb_vtype = ITOV(ip)->v_type;
5754	freeblks->fb_modrev = DIP(ip, i_modrev);
5755	freeblks->fb_devvp = ip->i_devvp;
5756	freeblks->fb_chkcnt = 0;
5757	freeblks->fb_len = 0;
5758
5759	return (freeblks);
5760}
5761
5762static void
5763trunc_indirdep(indirdep, freeblks, bp, off)
5764	struct indirdep *indirdep;
5765	struct freeblks *freeblks;
5766	struct buf *bp;
5767	int off;
5768{
5769	struct allocindir *aip, *aipn;
5770
5771	/*
5772	 * The first set of allocindirs won't be in savedbp.
5773	 */
5774	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
5775		if (aip->ai_offset > off)
5776			cancel_allocindir(aip, bp, freeblks, 1);
5777	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
5778		if (aip->ai_offset > off)
5779			cancel_allocindir(aip, bp, freeblks, 1);
5780	/*
5781	 * These will exist in savedbp.
5782	 */
5783	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
5784		if (aip->ai_offset > off)
5785			cancel_allocindir(aip, NULL, freeblks, 0);
5786	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
5787		if (aip->ai_offset > off)
5788			cancel_allocindir(aip, NULL, freeblks, 0);
5789}
5790
5791/*
5792 * Follow the chain of indirects down to lastlbn creating a freework
5793 * structure for each.  This will be used to start indir_trunc() at
5794 * the right offset and create the journal records for the parrtial
5795 * truncation.  A second step will handle the truncated dependencies.
5796 */
5797static int
5798setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
5799	struct freeblks *freeblks;
5800	struct inode *ip;
5801	ufs_lbn_t lbn;
5802	ufs_lbn_t lastlbn;
5803	ufs2_daddr_t blkno;
5804{
5805	struct indirdep *indirdep;
5806	struct indirdep *indirn;
5807	struct freework *freework;
5808	struct newblk *newblk;
5809	struct mount *mp;
5810	struct buf *bp;
5811	uint8_t *start;
5812	uint8_t *end;
5813	ufs_lbn_t lbnadd;
5814	int level;
5815	int error;
5816	int off;
5817
5818
5819	freework = NULL;
5820	if (blkno == 0)
5821		return (0);
5822	mp = freeblks->fb_list.wk_mp;
5823	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
5824	if ((bp->b_flags & B_CACHE) == 0) {
5825		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
5826		bp->b_iocmd = BIO_READ;
5827		bp->b_flags &= ~B_INVAL;
5828		bp->b_ioflags &= ~BIO_ERROR;
5829		vfs_busy_pages(bp, 0);
5830		bp->b_iooffset = dbtob(bp->b_blkno);
5831		bstrategy(bp);
5832		curthread->td_ru.ru_inblock++;
5833		error = bufwait(bp);
5834		if (error) {
5835			brelse(bp);
5836			return (error);
5837		}
5838	}
5839	level = lbn_level(lbn);
5840	lbnadd = lbn_offset(ip->i_fs, level);
5841	/*
5842	 * Compute the offset of the last block we want to keep.  Store
5843	 * in the freework the first block we want to completely free.
5844	 */
5845	off = (lastlbn - -(lbn + level)) / lbnadd;
5846	if (off + 1 == NINDIR(ip->i_fs))
5847		goto nowork;
5848	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
5849	    0);
5850	/*
5851	 * Link the freework into the indirdep.  This will prevent any new
5852	 * allocations from proceeding until we are finished with the
5853	 * truncate and the block is written.
5854	 */
5855	ACQUIRE_LOCK(&lk);
5856	indirdep = indirdep_lookup(mp, ip, bp);
5857	if (indirdep->ir_freeblks)
5858		panic("setup_trunc_indir: indirdep already truncated.");
5859	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
5860	freework->fw_indir = indirdep;
5861	/*
5862	 * Cancel any allocindirs that will not make it to disk.
5863	 * We have to do this for all copies of the indirdep that
5864	 * live on this newblk.
5865	 */
5866	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
5867		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
5868		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
5869			trunc_indirdep(indirn, freeblks, bp, off);
5870	} else
5871		trunc_indirdep(indirdep, freeblks, bp, off);
5872	FREE_LOCK(&lk);
5873	/*
5874	 * Creation is protected by the buf lock. The saveddata is only
5875	 * needed if a full truncation follows a partial truncation but it
5876	 * is difficult to allocate in that case so we fetch it anyway.
5877	 */
5878	if (indirdep->ir_saveddata == NULL)
5879		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
5880		    M_SOFTDEP_FLAGS);
5881nowork:
5882	/* Fetch the blkno of the child and the zero start offset. */
5883	if (ip->i_ump->um_fstype == UFS1) {
5884		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
5885		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
5886	} else {
5887		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
5888		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
5889	}
5890	if (freework) {
5891		/* Zero the truncated pointers. */
5892		end = bp->b_data + bp->b_bcount;
5893		bzero(start, end - start);
5894		bdwrite(bp);
5895	} else
5896		bqrelse(bp);
5897	if (level == 0)
5898		return (0);
5899	lbn++; /* adjust level */
5900	lbn -= (off * lbnadd);
5901	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
5902}
5903
5904/*
5905 * Complete the partial truncation of an indirect block setup by
5906 * setup_trunc_indir().  This zeros the truncated pointers in the saved
5907 * copy and writes them to disk before the freeblks is allowed to complete.
5908 */
5909static void
5910complete_trunc_indir(freework)
5911	struct freework *freework;
5912{
5913	struct freework *fwn;
5914	struct indirdep *indirdep;
5915	struct buf *bp;
5916	uintptr_t start;
5917	int count;
5918
5919	indirdep = freework->fw_indir;
5920	for (;;) {
5921		bp = indirdep->ir_bp;
5922		/* See if the block was discarded. */
5923		if (bp == NULL)
5924			break;
5925		/* Inline part of getdirtybuf().  We dont want bremfree. */
5926		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
5927			break;
5928		if (BUF_LOCK(bp,
5929		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0)
5930			BUF_UNLOCK(bp);
5931		ACQUIRE_LOCK(&lk);
5932	}
5933	mtx_assert(&lk, MA_OWNED);
5934	freework->fw_state |= DEPCOMPLETE;
5935	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
5936	/*
5937	 * Zero the pointers in the saved copy.
5938	 */
5939	if (indirdep->ir_state & UFS1FMT)
5940		start = sizeof(ufs1_daddr_t);
5941	else
5942		start = sizeof(ufs2_daddr_t);
5943	start *= freework->fw_start;
5944	count = indirdep->ir_savebp->b_bcount - start;
5945	start += (uintptr_t)indirdep->ir_savebp->b_data;
5946	bzero((char *)start, count);
5947	/*
5948	 * We need to start the next truncation in the list if it has not
5949	 * been started yet.
5950	 */
5951	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
5952	if (fwn != NULL) {
5953		if (fwn->fw_freeblks == indirdep->ir_freeblks)
5954			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
5955		if ((fwn->fw_state & ONWORKLIST) == 0)
5956			freework_enqueue(fwn);
5957	}
5958	/*
5959	 * If bp is NULL the block was fully truncated, restore
5960	 * the saved block list otherwise free it if it is no
5961	 * longer needed.
5962	 */
5963	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
5964		if (bp == NULL)
5965			bcopy(indirdep->ir_saveddata,
5966			    indirdep->ir_savebp->b_data,
5967			    indirdep->ir_savebp->b_bcount);
5968		free(indirdep->ir_saveddata, M_INDIRDEP);
5969		indirdep->ir_saveddata = NULL;
5970	}
5971	/*
5972	 * When bp is NULL there is a full truncation pending.  We
5973	 * must wait for this full truncation to be journaled before
5974	 * we can release this freework because the disk pointers will
5975	 * never be written as zero.
5976	 */
5977	if (bp == NULL)  {
5978		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
5979			handle_written_freework(freework);
5980		else
5981			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
5982			   &freework->fw_list);
5983	} else {
5984		/* Complete when the real copy is written. */
5985		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
5986		BUF_UNLOCK(bp);
5987	}
5988}
5989
5990/*
5991 * Calculate the number of blocks we are going to release where datablocks
5992 * is the current total and length is the new file size.
5993 */
5994ufs2_daddr_t
5995blkcount(fs, datablocks, length)
5996	struct fs *fs;
5997	ufs2_daddr_t datablocks;
5998	off_t length;
5999{
6000	off_t totblks, numblks;
6001
6002	totblks = 0;
6003	numblks = howmany(length, fs->fs_bsize);
6004	if (numblks <= NDADDR) {
6005		totblks = howmany(length, fs->fs_fsize);
6006		goto out;
6007	}
6008        totblks = blkstofrags(fs, numblks);
6009	numblks -= NDADDR;
6010	/*
6011	 * Count all single, then double, then triple indirects required.
6012	 * Subtracting one indirects worth of blocks for each pass
6013	 * acknowledges one of each pointed to by the inode.
6014	 */
6015	for (;;) {
6016		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6017		numblks -= NINDIR(fs);
6018		if (numblks <= 0)
6019			break;
6020		numblks = howmany(numblks, NINDIR(fs));
6021	}
6022out:
6023	totblks = fsbtodb(fs, totblks);
6024	/*
6025	 * Handle sparse files.  We can't reclaim more blocks than the inode
6026	 * references.  We will correct it later in handle_complete_freeblks()
6027	 * when we know the real count.
6028	 */
6029	if (totblks > datablocks)
6030		return (0);
6031	return (datablocks - totblks);
6032}
6033
6034/*
6035 * Handle freeblocks for journaled softupdate filesystems.
6036 *
6037 * Contrary to normal softupdates, we must preserve the block pointers in
6038 * indirects until their subordinates are free.  This is to avoid journaling
6039 * every block that is freed which may consume more space than the journal
6040 * itself.  The recovery program will see the free block journals at the
6041 * base of the truncated area and traverse them to reclaim space.  The
6042 * pointers in the inode may be cleared immediately after the journal
6043 * records are written because each direct and indirect pointer in the
6044 * inode is recorded in a journal.  This permits full truncation to proceed
6045 * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6046 *
6047 * The algorithm is as follows:
6048 * 1) Traverse the in-memory state and create journal entries to release
6049 *    the relevant blocks and full indirect trees.
6050 * 2) Traverse the indirect block chain adding partial truncation freework
6051 *    records to indirects in the path to lastlbn.  The freework will
6052 *    prevent new allocation dependencies from being satisfied in this
6053 *    indirect until the truncation completes.
6054 * 3) Read and lock the inode block, performing an update with the new size
6055 *    and pointers.  This prevents truncated data from becoming valid on
6056 *    disk through step 4.
6057 * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6058 *    eliminate journal work for those records that do not require it.
6059 * 5) Schedule the journal records to be written followed by the inode block.
6060 * 6) Allocate any necessary frags for the end of file.
6061 * 7) Zero any partially truncated blocks.
6062 *
6063 * From this truncation proceeds asynchronously using the freework and
6064 * indir_trunc machinery.  The file will not be extended again into a
6065 * partially truncated indirect block until all work is completed but
6066 * the normal dependency mechanism ensures that it is rolled back/forward
6067 * as appropriate.  Further truncation may occur without delay and is
6068 * serialized in indir_trunc().
6069 */
6070void
6071softdep_journal_freeblocks(ip, cred, length, flags)
6072	struct inode *ip;	/* The inode whose length is to be reduced */
6073	struct ucred *cred;
6074	off_t length;		/* The new length for the file */
6075	int flags;		/* IO_EXT and/or IO_NORMAL */
6076{
6077	struct freeblks *freeblks, *fbn;
6078	struct inodedep *inodedep;
6079	struct jblkdep *jblkdep;
6080	struct allocdirect *adp, *adpn;
6081	struct fs *fs;
6082	struct buf *bp;
6083	struct vnode *vp;
6084	struct mount *mp;
6085	ufs2_daddr_t extblocks, datablocks;
6086	ufs_lbn_t tmpval, lbn, lastlbn;
6087	int frags;
6088	int lastoff, iboff;
6089	int allocblock;
6090	int error, i;
6091	int needj;
6092
6093	fs = ip->i_fs;
6094	mp = UFSTOVFS(ip->i_ump);
6095	vp = ITOV(ip);
6096	needj = 1;
6097	iboff = -1;
6098	allocblock = 0;
6099	extblocks = 0;
6100	datablocks = 0;
6101	frags = 0;
6102	freeblks = newfreeblks(mp, ip);
6103	ACQUIRE_LOCK(&lk);
6104	/*
6105	 * If we're truncating a removed file that will never be written
6106	 * we don't need to journal the block frees.  The canceled journals
6107	 * for the allocations will suffice.
6108	 */
6109	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6110	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6111	    length == 0)
6112		needj = 0;
6113	FREE_LOCK(&lk);
6114	/*
6115	 * Calculate the lbn that we are truncating to.  This results in -1
6116	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6117	 * to keep, not the first lbn we want to truncate.
6118	 */
6119	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6120	lastoff = blkoff(fs, length);
6121	/*
6122	 * Compute frags we are keeping in lastlbn.  0 means all.
6123	 */
6124	if (lastlbn >= 0 && lastlbn < NDADDR) {
6125		frags = fragroundup(fs, lastoff);
6126		/* adp offset of last valid allocdirect. */
6127		iboff = lastlbn;
6128	} else if (lastlbn > 0)
6129		iboff = NDADDR;
6130	if (fs->fs_magic == FS_UFS2_MAGIC)
6131		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6132	/*
6133	 * Handle normal data blocks and indirects.  This section saves
6134	 * values used after the inode update to complete frag and indirect
6135	 * truncation.
6136	 */
6137	if ((flags & IO_NORMAL) != 0) {
6138		/*
6139		 * Handle truncation of whole direct and indirect blocks.
6140		 */
6141		for (i = iboff + 1; i < NDADDR; i++)
6142			setup_freedirect(freeblks, ip, i, needj);
6143		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6144		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6145			/* Release a whole indirect tree. */
6146			if (lbn > lastlbn) {
6147				setup_freeindir(freeblks, ip, i, -lbn -i,
6148				    needj);
6149				continue;
6150			}
6151			iboff = i + NDADDR;
6152			/*
6153			 * Traverse partially truncated indirect tree.
6154			 */
6155			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6156				setup_trunc_indir(freeblks, ip, -lbn - i,
6157				    lastlbn, DIP(ip, i_ib[i]));
6158		}
6159		/*
6160		 * Handle partial truncation to a frag boundary.
6161		 */
6162		if (frags) {
6163			ufs2_daddr_t blkno;
6164			long oldfrags;
6165
6166			oldfrags = blksize(fs, ip, lastlbn);
6167			blkno = DIP(ip, i_db[lastlbn]);
6168			if (blkno && oldfrags != frags) {
6169				oldfrags -= frags;
6170				oldfrags = numfrags(ip->i_fs, oldfrags);
6171				blkno += numfrags(ip->i_fs, frags);
6172				newfreework(ip->i_ump, freeblks, NULL, lastlbn,
6173				    blkno, oldfrags, 0, needj);
6174			} else if (blkno == 0)
6175				allocblock = 1;
6176		}
6177		/*
6178		 * Add a journal record for partial truncate if we are
6179		 * handling indirect blocks.  Non-indirects need no extra
6180		 * journaling.
6181		 */
6182		if (length != 0 && lastlbn >= NDADDR) {
6183			ip->i_flag |= IN_TRUNCATED;
6184			newjtrunc(freeblks, length, 0);
6185		}
6186		ip->i_size = length;
6187		DIP_SET(ip, i_size, ip->i_size);
6188		datablocks = DIP(ip, i_blocks) - extblocks;
6189		if (length != 0)
6190			datablocks = blkcount(ip->i_fs, datablocks, length);
6191		freeblks->fb_len = length;
6192	}
6193	if ((flags & IO_EXT) != 0) {
6194		for (i = 0; i < NXADDR; i++)
6195			setup_freeext(freeblks, ip, i, needj);
6196		ip->i_din2->di_extsize = 0;
6197		datablocks += extblocks;
6198	}
6199#ifdef QUOTA
6200	/* Reference the quotas in case the block count is wrong in the end. */
6201	quotaref(vp, freeblks->fb_quota);
6202	(void) chkdq(ip, -datablocks, NOCRED, 0);
6203#endif
6204	freeblks->fb_chkcnt = -datablocks;
6205	UFS_LOCK(ip->i_ump);
6206	fs->fs_pendingblocks += datablocks;
6207	UFS_UNLOCK(ip->i_ump);
6208	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6209	/*
6210	 * Handle truncation of incomplete alloc direct dependencies.  We
6211	 * hold the inode block locked to prevent incomplete dependencies
6212	 * from reaching the disk while we are eliminating those that
6213	 * have been truncated.  This is a partially inlined ffs_update().
6214	 */
6215	ufs_itimes(vp);
6216	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6217	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6218	    (int)fs->fs_bsize, cred, &bp);
6219	if (error) {
6220		brelse(bp);
6221		softdep_error("softdep_journal_freeblocks", error);
6222		return;
6223	}
6224	if (bp->b_bufsize == fs->fs_bsize)
6225		bp->b_flags |= B_CLUSTEROK;
6226	softdep_update_inodeblock(ip, bp, 0);
6227	if (ip->i_ump->um_fstype == UFS1)
6228		*((struct ufs1_dinode *)bp->b_data +
6229		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6230	else
6231		*((struct ufs2_dinode *)bp->b_data +
6232		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6233	ACQUIRE_LOCK(&lk);
6234	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6235	if ((inodedep->id_state & IOSTARTED) != 0)
6236		panic("softdep_setup_freeblocks: inode busy");
6237	/*
6238	 * Add the freeblks structure to the list of operations that
6239	 * must await the zero'ed inode being written to disk. If we
6240	 * still have a bitmap dependency (needj), then the inode
6241	 * has never been written to disk, so we can process the
6242	 * freeblks below once we have deleted the dependencies.
6243	 */
6244	if (needj)
6245		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6246	else
6247		freeblks->fb_state |= COMPLETE;
6248	if ((flags & IO_NORMAL) != 0) {
6249		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6250			if (adp->ad_offset > iboff)
6251				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6252				    freeblks);
6253			/*
6254			 * Truncate the allocdirect.  We could eliminate
6255			 * or modify journal records as well.
6256			 */
6257			else if (adp->ad_offset == iboff && frags)
6258				adp->ad_newsize = frags;
6259		}
6260	}
6261	if ((flags & IO_EXT) != 0)
6262		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6263			cancel_allocdirect(&inodedep->id_extupdt, adp,
6264			    freeblks);
6265	/*
6266	 * Add journal work.
6267	 */
6268	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6269		add_to_journal(&jblkdep->jb_list);
6270	FREE_LOCK(&lk);
6271	bdwrite(bp);
6272	/*
6273	 * Truncate dependency structures beyond length.
6274	 */
6275	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6276	/*
6277	 * This is only set when we need to allocate a fragment because
6278	 * none existed at the end of a frag-sized file.  It handles only
6279	 * allocating a new, zero filled block.
6280	 */
6281	if (allocblock) {
6282		ip->i_size = length - lastoff;
6283		DIP_SET(ip, i_size, ip->i_size);
6284		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6285		if (error != 0) {
6286			softdep_error("softdep_journal_freeblks", error);
6287			return;
6288		}
6289		ip->i_size = length;
6290		DIP_SET(ip, i_size, length);
6291		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6292		allocbuf(bp, frags);
6293		ffs_update(vp, MNT_NOWAIT);
6294		bawrite(bp);
6295	} else if (lastoff != 0 && vp->v_type != VDIR) {
6296		int size;
6297
6298		/*
6299		 * Zero the end of a truncated frag or block.
6300		 */
6301		size = sblksize(fs, length, lastlbn);
6302		error = bread(vp, lastlbn, size, cred, &bp);
6303		if (error) {
6304			softdep_error("softdep_journal_freeblks", error);
6305			return;
6306		}
6307		bzero((char *)bp->b_data + lastoff, size - lastoff);
6308		bawrite(bp);
6309
6310	}
6311	ACQUIRE_LOCK(&lk);
6312	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6313	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6314	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6315	/*
6316	 * We zero earlier truncations so they don't erroneously
6317	 * update i_blocks.
6318	 */
6319	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6320		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6321			fbn->fb_len = 0;
6322	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6323	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6324		freeblks->fb_state |= INPROGRESS;
6325	else
6326		freeblks = NULL;
6327	FREE_LOCK(&lk);
6328	if (freeblks)
6329		handle_workitem_freeblocks(freeblks, 0);
6330	trunc_pages(ip, length, extblocks, flags);
6331
6332}
6333
6334/*
6335 * Flush a JOP_SYNC to the journal.
6336 */
6337void
6338softdep_journal_fsync(ip)
6339	struct inode *ip;
6340{
6341	struct jfsync *jfsync;
6342
6343	if ((ip->i_flag & IN_TRUNCATED) == 0)
6344		return;
6345	ip->i_flag &= ~IN_TRUNCATED;
6346	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6347	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6348	jfsync->jfs_size = ip->i_size;
6349	jfsync->jfs_ino = ip->i_number;
6350	ACQUIRE_LOCK(&lk);
6351	add_to_journal(&jfsync->jfs_list);
6352	jwait(&jfsync->jfs_list, MNT_WAIT);
6353	FREE_LOCK(&lk);
6354}
6355
6356/*
6357 * Block de-allocation dependencies.
6358 *
6359 * When blocks are de-allocated, the on-disk pointers must be nullified before
6360 * the blocks are made available for use by other files.  (The true
6361 * requirement is that old pointers must be nullified before new on-disk
6362 * pointers are set.  We chose this slightly more stringent requirement to
6363 * reduce complexity.) Our implementation handles this dependency by updating
6364 * the inode (or indirect block) appropriately but delaying the actual block
6365 * de-allocation (i.e., freemap and free space count manipulation) until
6366 * after the updated versions reach stable storage.  After the disk is
6367 * updated, the blocks can be safely de-allocated whenever it is convenient.
6368 * This implementation handles only the common case of reducing a file's
6369 * length to zero. Other cases are handled by the conventional synchronous
6370 * write approach.
6371 *
6372 * The ffs implementation with which we worked double-checks
6373 * the state of the block pointers and file size as it reduces
6374 * a file's length.  Some of this code is replicated here in our
6375 * soft updates implementation.  The freeblks->fb_chkcnt field is
6376 * used to transfer a part of this information to the procedure
6377 * that eventually de-allocates the blocks.
6378 *
6379 * This routine should be called from the routine that shortens
6380 * a file's length, before the inode's size or block pointers
6381 * are modified. It will save the block pointer information for
6382 * later release and zero the inode so that the calling routine
6383 * can release it.
6384 */
6385void
6386softdep_setup_freeblocks(ip, length, flags)
6387	struct inode *ip;	/* The inode whose length is to be reduced */
6388	off_t length;		/* The new length for the file */
6389	int flags;		/* IO_EXT and/or IO_NORMAL */
6390{
6391	struct ufs1_dinode *dp1;
6392	struct ufs2_dinode *dp2;
6393	struct freeblks *freeblks;
6394	struct inodedep *inodedep;
6395	struct allocdirect *adp;
6396	struct buf *bp;
6397	struct fs *fs;
6398	ufs2_daddr_t extblocks, datablocks;
6399	struct mount *mp;
6400	int i, delay, error;
6401	ufs_lbn_t tmpval;
6402	ufs_lbn_t lbn;
6403
6404	fs = ip->i_fs;
6405	mp = UFSTOVFS(ip->i_ump);
6406	if (length != 0)
6407		panic("softdep_setup_freeblocks: non-zero length");
6408	freeblks = newfreeblks(mp, ip);
6409	extblocks = 0;
6410	datablocks = 0;
6411	if (fs->fs_magic == FS_UFS2_MAGIC)
6412		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6413	if ((flags & IO_NORMAL) != 0) {
6414		for (i = 0; i < NDADDR; i++)
6415			setup_freedirect(freeblks, ip, i, 0);
6416		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6417		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6418			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6419		ip->i_size = 0;
6420		DIP_SET(ip, i_size, 0);
6421		datablocks = DIP(ip, i_blocks) - extblocks;
6422	}
6423	if ((flags & IO_EXT) != 0) {
6424		for (i = 0; i < NXADDR; i++)
6425			setup_freeext(freeblks, ip, i, 0);
6426		ip->i_din2->di_extsize = 0;
6427		datablocks += extblocks;
6428	}
6429#ifdef QUOTA
6430	/* Reference the quotas in case the block count is wrong in the end. */
6431	quotaref(vp, freeblks->fb_quota);
6432	(void) chkdq(ip, -datablocks, NOCRED, 0);
6433#endif
6434	freeblks->fb_chkcnt = -datablocks;
6435	UFS_LOCK(ip->i_ump);
6436	fs->fs_pendingblocks += datablocks;
6437	UFS_UNLOCK(ip->i_ump);
6438	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6439	/*
6440	 * Push the zero'ed inode to to its disk buffer so that we are free
6441	 * to delete its dependencies below. Once the dependencies are gone
6442	 * the buffer can be safely released.
6443	 */
6444	if ((error = bread(ip->i_devvp,
6445	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6446	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6447		brelse(bp);
6448		softdep_error("softdep_setup_freeblocks", error);
6449	}
6450	if (ip->i_ump->um_fstype == UFS1) {
6451		dp1 = ((struct ufs1_dinode *)bp->b_data +
6452		    ino_to_fsbo(fs, ip->i_number));
6453		ip->i_din1->di_freelink = dp1->di_freelink;
6454		*dp1 = *ip->i_din1;
6455	} else {
6456		dp2 = ((struct ufs2_dinode *)bp->b_data +
6457		    ino_to_fsbo(fs, ip->i_number));
6458		ip->i_din2->di_freelink = dp2->di_freelink;
6459		*dp2 = *ip->i_din2;
6460	}
6461	/*
6462	 * Find and eliminate any inode dependencies.
6463	 */
6464	ACQUIRE_LOCK(&lk);
6465	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6466	if ((inodedep->id_state & IOSTARTED) != 0)
6467		panic("softdep_setup_freeblocks: inode busy");
6468	/*
6469	 * Add the freeblks structure to the list of operations that
6470	 * must await the zero'ed inode being written to disk. If we
6471	 * still have a bitmap dependency (delay == 0), then the inode
6472	 * has never been written to disk, so we can process the
6473	 * freeblks below once we have deleted the dependencies.
6474	 */
6475	delay = (inodedep->id_state & DEPCOMPLETE);
6476	if (delay)
6477		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6478	else
6479		freeblks->fb_state |= COMPLETE;
6480	/*
6481	 * Because the file length has been truncated to zero, any
6482	 * pending block allocation dependency structures associated
6483	 * with this inode are obsolete and can simply be de-allocated.
6484	 * We must first merge the two dependency lists to get rid of
6485	 * any duplicate freefrag structures, then purge the merged list.
6486	 * If we still have a bitmap dependency, then the inode has never
6487	 * been written to disk, so we can free any fragments without delay.
6488	 */
6489	if (flags & IO_NORMAL) {
6490		merge_inode_lists(&inodedep->id_newinoupdt,
6491		    &inodedep->id_inoupdt);
6492		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6493			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6494			    freeblks);
6495	}
6496	if (flags & IO_EXT) {
6497		merge_inode_lists(&inodedep->id_newextupdt,
6498		    &inodedep->id_extupdt);
6499		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6500			cancel_allocdirect(&inodedep->id_extupdt, adp,
6501			    freeblks);
6502	}
6503	FREE_LOCK(&lk);
6504	bdwrite(bp);
6505	trunc_dependencies(ip, freeblks, -1, 0, flags);
6506	ACQUIRE_LOCK(&lk);
6507	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6508		(void) free_inodedep(inodedep);
6509	freeblks->fb_state |= DEPCOMPLETE;
6510	/*
6511	 * If the inode with zeroed block pointers is now on disk
6512	 * we can start freeing blocks.
6513	 */
6514	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6515		freeblks->fb_state |= INPROGRESS;
6516	else
6517		freeblks = NULL;
6518	FREE_LOCK(&lk);
6519	if (freeblks)
6520		handle_workitem_freeblocks(freeblks, 0);
6521	trunc_pages(ip, length, extblocks, flags);
6522}
6523
6524/*
6525 * Eliminate pages from the page cache that back parts of this inode and
6526 * adjust the vnode pager's idea of our size.  This prevents stale data
6527 * from hanging around in the page cache.
6528 */
6529static void
6530trunc_pages(ip, length, extblocks, flags)
6531	struct inode *ip;
6532	off_t length;
6533	ufs2_daddr_t extblocks;
6534	int flags;
6535{
6536	struct vnode *vp;
6537	struct fs *fs;
6538	ufs_lbn_t lbn;
6539	off_t end, extend;
6540
6541	vp = ITOV(ip);
6542	fs = ip->i_fs;
6543	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6544	if ((flags & IO_EXT) != 0)
6545		vn_pages_remove(vp, extend, 0);
6546	if ((flags & IO_NORMAL) == 0)
6547		return;
6548	BO_LOCK(&vp->v_bufobj);
6549	drain_output(vp);
6550	BO_UNLOCK(&vp->v_bufobj);
6551	/*
6552	 * The vnode pager eliminates file pages we eliminate indirects
6553	 * below.
6554	 */
6555	vnode_pager_setsize(vp, length);
6556	/*
6557	 * Calculate the end based on the last indirect we want to keep.  If
6558	 * the block extends into indirects we can just use the negative of
6559	 * its lbn.  Doubles and triples exist at lower numbers so we must
6560	 * be careful not to remove those, if they exist.  double and triple
6561	 * indirect lbns do not overlap with others so it is not important
6562	 * to verify how many levels are required.
6563	 */
6564	lbn = lblkno(fs, length);
6565	if (lbn >= NDADDR) {
6566		/* Calculate the virtual lbn of the triple indirect. */
6567		lbn = -lbn - (NIADDR - 1);
6568		end = OFF_TO_IDX(lblktosize(fs, lbn));
6569	} else
6570		end = extend;
6571	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6572}
6573
6574/*
6575 * See if the buf bp is in the range eliminated by truncation.
6576 */
6577static int
6578trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6579	struct buf *bp;
6580	int *blkoffp;
6581	ufs_lbn_t lastlbn;
6582	int lastoff;
6583	int flags;
6584{
6585	ufs_lbn_t lbn;
6586
6587	*blkoffp = 0;
6588	/* Only match ext/normal blocks as appropriate. */
6589	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6590	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6591		return (0);
6592	/* ALTDATA is always a full truncation. */
6593	if ((bp->b_xflags & BX_ALTDATA) != 0)
6594		return (1);
6595	/* -1 is full truncation. */
6596	if (lastlbn == -1)
6597		return (1);
6598	/*
6599	 * If this is a partial truncate we only want those
6600	 * blocks and indirect blocks that cover the range
6601	 * we're after.
6602	 */
6603	lbn = bp->b_lblkno;
6604	if (lbn < 0)
6605		lbn = -(lbn + lbn_level(lbn));
6606	if (lbn < lastlbn)
6607		return (0);
6608	/* Here we only truncate lblkno if it's partial. */
6609	if (lbn == lastlbn) {
6610		if (lastoff == 0)
6611			return (0);
6612		*blkoffp = lastoff;
6613	}
6614	return (1);
6615}
6616
6617/*
6618 * Eliminate any dependencies that exist in memory beyond lblkno:off
6619 */
6620static void
6621trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6622	struct inode *ip;
6623	struct freeblks *freeblks;
6624	ufs_lbn_t lastlbn;
6625	int lastoff;
6626	int flags;
6627{
6628	struct bufobj *bo;
6629	struct vnode *vp;
6630	struct buf *bp;
6631	struct fs *fs;
6632	int blkoff;
6633
6634	/*
6635	 * We must wait for any I/O in progress to finish so that
6636	 * all potential buffers on the dirty list will be visible.
6637	 * Once they are all there, walk the list and get rid of
6638	 * any dependencies.
6639	 */
6640	fs = ip->i_fs;
6641	vp = ITOV(ip);
6642	bo = &vp->v_bufobj;
6643	BO_LOCK(bo);
6644	drain_output(vp);
6645	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6646		bp->b_vflags &= ~BV_SCANNED;
6647restart:
6648	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6649		if (bp->b_vflags & BV_SCANNED)
6650			continue;
6651		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6652			bp->b_vflags |= BV_SCANNED;
6653			continue;
6654		}
6655		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
6656			goto restart;
6657		BO_UNLOCK(bo);
6658		if (deallocate_dependencies(bp, freeblks, blkoff))
6659			bqrelse(bp);
6660		else
6661			brelse(bp);
6662		BO_LOCK(bo);
6663		goto restart;
6664	}
6665	/*
6666	 * Now do the work of vtruncbuf while also matching indirect blocks.
6667	 */
6668	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6669		bp->b_vflags &= ~BV_SCANNED;
6670cleanrestart:
6671	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6672		if (bp->b_vflags & BV_SCANNED)
6673			continue;
6674		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6675			bp->b_vflags |= BV_SCANNED;
6676			continue;
6677		}
6678		if (BUF_LOCK(bp,
6679		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6680		    BO_MTX(bo)) == ENOLCK) {
6681			BO_LOCK(bo);
6682			goto cleanrestart;
6683		}
6684		bp->b_vflags |= BV_SCANNED;
6685		BO_LOCK(bo);
6686		bremfree(bp);
6687		BO_UNLOCK(bo);
6688		if (blkoff != 0) {
6689			allocbuf(bp, blkoff);
6690			bqrelse(bp);
6691		} else {
6692			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6693			brelse(bp);
6694		}
6695		BO_LOCK(bo);
6696		goto cleanrestart;
6697	}
6698	drain_output(vp);
6699	BO_UNLOCK(bo);
6700}
6701
6702static int
6703cancel_pagedep(pagedep, freeblks, blkoff)
6704	struct pagedep *pagedep;
6705	struct freeblks *freeblks;
6706	int blkoff;
6707{
6708	struct jremref *jremref;
6709	struct jmvref *jmvref;
6710	struct dirrem *dirrem, *tmp;
6711	int i;
6712
6713	/*
6714	 * Copy any directory remove dependencies to the list
6715	 * to be processed after the freeblks proceeds.  If
6716	 * directory entry never made it to disk they
6717	 * can be dumped directly onto the work list.
6718	 */
6719	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6720		/* Skip this directory removal if it is intended to remain. */
6721		if (dirrem->dm_offset < blkoff)
6722			continue;
6723		/*
6724		 * If there are any dirrems we wait for the journal write
6725		 * to complete and then restart the buf scan as the lock
6726		 * has been dropped.
6727		 */
6728		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6729			jwait(&jremref->jr_list, MNT_WAIT);
6730			return (ERESTART);
6731		}
6732		LIST_REMOVE(dirrem, dm_next);
6733		dirrem->dm_dirinum = pagedep->pd_ino;
6734		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6735	}
6736	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6737		jwait(&jmvref->jm_list, MNT_WAIT);
6738		return (ERESTART);
6739	}
6740	/*
6741	 * When we're partially truncating a pagedep we just want to flush
6742	 * journal entries and return.  There can not be any adds in the
6743	 * truncated portion of the directory and newblk must remain if
6744	 * part of the block remains.
6745	 */
6746	if (blkoff != 0) {
6747		struct diradd *dap;
6748
6749		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6750			if (dap->da_offset > blkoff)
6751				panic("cancel_pagedep: diradd %p off %d > %d",
6752				    dap, dap->da_offset, blkoff);
6753		for (i = 0; i < DAHASHSZ; i++)
6754			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
6755				if (dap->da_offset > blkoff)
6756					panic("cancel_pagedep: diradd %p off %d > %d",
6757					    dap, dap->da_offset, blkoff);
6758		return (0);
6759	}
6760	/*
6761	 * There should be no directory add dependencies present
6762	 * as the directory could not be truncated until all
6763	 * children were removed.
6764	 */
6765	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
6766	    ("deallocate_dependencies: pendinghd != NULL"));
6767	for (i = 0; i < DAHASHSZ; i++)
6768		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
6769		    ("deallocate_dependencies: diraddhd != NULL"));
6770	if ((pagedep->pd_state & NEWBLOCK) != 0)
6771		free_newdirblk(pagedep->pd_newdirblk);
6772	if (free_pagedep(pagedep) == 0)
6773		panic("Failed to free pagedep %p", pagedep);
6774	return (0);
6775}
6776
6777/*
6778 * Reclaim any dependency structures from a buffer that is about to
6779 * be reallocated to a new vnode. The buffer must be locked, thus,
6780 * no I/O completion operations can occur while we are manipulating
6781 * its associated dependencies. The mutex is held so that other I/O's
6782 * associated with related dependencies do not occur.
6783 */
6784static int
6785deallocate_dependencies(bp, freeblks, off)
6786	struct buf *bp;
6787	struct freeblks *freeblks;
6788	int off;
6789{
6790	struct indirdep *indirdep;
6791	struct pagedep *pagedep;
6792	struct allocdirect *adp;
6793	struct worklist *wk, *wkn;
6794
6795	ACQUIRE_LOCK(&lk);
6796	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
6797		switch (wk->wk_type) {
6798		case D_INDIRDEP:
6799			indirdep = WK_INDIRDEP(wk);
6800			if (bp->b_lblkno >= 0 ||
6801			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
6802				panic("deallocate_dependencies: not indir");
6803			cancel_indirdep(indirdep, bp, freeblks);
6804			continue;
6805
6806		case D_PAGEDEP:
6807			pagedep = WK_PAGEDEP(wk);
6808			if (cancel_pagedep(pagedep, freeblks, off)) {
6809				FREE_LOCK(&lk);
6810				return (ERESTART);
6811			}
6812			continue;
6813
6814		case D_ALLOCINDIR:
6815			/*
6816			 * Simply remove the allocindir, we'll find it via
6817			 * the indirdep where we can clear pointers if
6818			 * needed.
6819			 */
6820			WORKLIST_REMOVE(wk);
6821			continue;
6822
6823		case D_FREEWORK:
6824			/*
6825			 * A truncation is waiting for the zero'd pointers
6826			 * to be written.  It can be freed when the freeblks
6827			 * is journaled.
6828			 */
6829			WORKLIST_REMOVE(wk);
6830			wk->wk_state |= ONDEPLIST;
6831			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6832			break;
6833
6834		case D_ALLOCDIRECT:
6835			adp = WK_ALLOCDIRECT(wk);
6836			if (off != 0)
6837				continue;
6838			/* FALLTHROUGH */
6839		default:
6840			panic("deallocate_dependencies: Unexpected type %s",
6841			    TYPENAME(wk->wk_type));
6842			/* NOTREACHED */
6843		}
6844	}
6845	FREE_LOCK(&lk);
6846	/*
6847	 * Don't throw away this buf, we were partially truncating and
6848	 * some deps may always remain.
6849	 */
6850	if (off) {
6851		allocbuf(bp, off);
6852		bp->b_vflags |= BV_SCANNED;
6853		return (EBUSY);
6854	}
6855	bp->b_flags |= B_INVAL | B_NOCACHE;
6856
6857	return (0);
6858}
6859
6860/*
6861 * An allocdirect is being canceled due to a truncate.  We must make sure
6862 * the journal entry is released in concert with the blkfree that releases
6863 * the storage.  Completed journal entries must not be released until the
6864 * space is no longer pointed to by the inode or in the bitmap.
6865 */
6866static void
6867cancel_allocdirect(adphead, adp, freeblks)
6868	struct allocdirectlst *adphead;
6869	struct allocdirect *adp;
6870	struct freeblks *freeblks;
6871{
6872	struct freework *freework;
6873	struct newblk *newblk;
6874	struct worklist *wk;
6875
6876	TAILQ_REMOVE(adphead, adp, ad_next);
6877	newblk = (struct newblk *)adp;
6878	freework = NULL;
6879	/*
6880	 * Find the correct freework structure.
6881	 */
6882	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
6883		if (wk->wk_type != D_FREEWORK)
6884			continue;
6885		freework = WK_FREEWORK(wk);
6886		if (freework->fw_blkno == newblk->nb_newblkno)
6887			break;
6888	}
6889	if (freework == NULL)
6890		panic("cancel_allocdirect: Freework not found");
6891	/*
6892	 * If a newblk exists at all we still have the journal entry that
6893	 * initiated the allocation so we do not need to journal the free.
6894	 */
6895	cancel_jfreeblk(freeblks, freework->fw_blkno);
6896	/*
6897	 * If the journal hasn't been written the jnewblk must be passed
6898	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
6899	 * this by linking the journal dependency into the freework to be
6900	 * freed when freework_freeblock() is called.  If the journal has
6901	 * been written we can simply reclaim the journal space when the
6902	 * freeblks work is complete.
6903	 */
6904	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
6905	    &freeblks->fb_jwork);
6906	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
6907}
6908
6909
6910/*
6911 * Cancel a new block allocation.  May be an indirect or direct block.  We
6912 * remove it from various lists and return any journal record that needs to
6913 * be resolved by the caller.
6914 *
6915 * A special consideration is made for indirects which were never pointed
6916 * at on disk and will never be found once this block is released.
6917 */
6918static struct jnewblk *
6919cancel_newblk(newblk, wk, wkhd)
6920	struct newblk *newblk;
6921	struct worklist *wk;
6922	struct workhead *wkhd;
6923{
6924	struct jnewblk *jnewblk;
6925
6926	newblk->nb_state |= GOINGAWAY;
6927	/*
6928	 * Previously we traversed the completedhd on each indirdep
6929	 * attached to this newblk to cancel them and gather journal
6930	 * work.  Since we need only the oldest journal segment and
6931	 * the lowest point on the tree will always have the oldest
6932	 * journal segment we are free to release the segments
6933	 * of any subordinates and may leave the indirdep list to
6934	 * indirdep_complete() when this newblk is freed.
6935	 */
6936	if (newblk->nb_state & ONDEPLIST) {
6937		newblk->nb_state &= ~ONDEPLIST;
6938		LIST_REMOVE(newblk, nb_deps);
6939	}
6940	if (newblk->nb_state & ONWORKLIST)
6941		WORKLIST_REMOVE(&newblk->nb_list);
6942	/*
6943	 * If the journal entry hasn't been written we save a pointer to
6944	 * the dependency that frees it until it is written or the
6945	 * superseding operation completes.
6946	 */
6947	jnewblk = newblk->nb_jnewblk;
6948	if (jnewblk != NULL && wk != NULL) {
6949		newblk->nb_jnewblk = NULL;
6950		jnewblk->jn_dep = wk;
6951	}
6952	if (!LIST_EMPTY(&newblk->nb_jwork))
6953		jwork_move(wkhd, &newblk->nb_jwork);
6954	/*
6955	 * When truncating we must free the newdirblk early to remove
6956	 * the pagedep from the hash before returning.
6957	 */
6958	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
6959		free_newdirblk(WK_NEWDIRBLK(wk));
6960	if (!LIST_EMPTY(&newblk->nb_newdirblk))
6961		panic("cancel_newblk: extra newdirblk");
6962
6963	return (jnewblk);
6964}
6965
6966/*
6967 * Schedule the freefrag associated with a newblk to be released once
6968 * the pointers are written and the previous block is no longer needed.
6969 */
6970static void
6971newblk_freefrag(newblk)
6972	struct newblk *newblk;
6973{
6974	struct freefrag *freefrag;
6975
6976	if (newblk->nb_freefrag == NULL)
6977		return;
6978	freefrag = newblk->nb_freefrag;
6979	newblk->nb_freefrag = NULL;
6980	freefrag->ff_state |= COMPLETE;
6981	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
6982		add_to_worklist(&freefrag->ff_list, 0);
6983}
6984
6985/*
6986 * Free a newblk. Generate a new freefrag work request if appropriate.
6987 * This must be called after the inode pointer and any direct block pointers
6988 * are valid or fully removed via truncate or frag extension.
6989 */
6990static void
6991free_newblk(newblk)
6992	struct newblk *newblk;
6993{
6994	struct indirdep *indirdep;
6995	struct worklist *wk;
6996
6997	KASSERT(newblk->nb_jnewblk == NULL,
6998	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
6999	mtx_assert(&lk, MA_OWNED);
7000	newblk_freefrag(newblk);
7001	if (newblk->nb_state & ONDEPLIST)
7002		LIST_REMOVE(newblk, nb_deps);
7003	if (newblk->nb_state & ONWORKLIST)
7004		WORKLIST_REMOVE(&newblk->nb_list);
7005	LIST_REMOVE(newblk, nb_hash);
7006	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7007		free_newdirblk(WK_NEWDIRBLK(wk));
7008	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7009		panic("free_newblk: extra newdirblk");
7010	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7011		indirdep_complete(indirdep);
7012	handle_jwork(&newblk->nb_jwork);
7013	newblk->nb_list.wk_type = D_NEWBLK;
7014	WORKITEM_FREE(newblk, D_NEWBLK);
7015}
7016
7017/*
7018 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7019 * This routine must be called with splbio interrupts blocked.
7020 */
7021static void
7022free_newdirblk(newdirblk)
7023	struct newdirblk *newdirblk;
7024{
7025	struct pagedep *pagedep;
7026	struct diradd *dap;
7027	struct worklist *wk;
7028
7029	mtx_assert(&lk, MA_OWNED);
7030	WORKLIST_REMOVE(&newdirblk->db_list);
7031	/*
7032	 * If the pagedep is still linked onto the directory buffer
7033	 * dependency chain, then some of the entries on the
7034	 * pd_pendinghd list may not be committed to disk yet. In
7035	 * this case, we will simply clear the NEWBLOCK flag and
7036	 * let the pd_pendinghd list be processed when the pagedep
7037	 * is next written. If the pagedep is no longer on the buffer
7038	 * dependency chain, then all the entries on the pd_pending
7039	 * list are committed to disk and we can free them here.
7040	 */
7041	pagedep = newdirblk->db_pagedep;
7042	pagedep->pd_state &= ~NEWBLOCK;
7043	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7044		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7045			free_diradd(dap, NULL);
7046		/*
7047		 * If no dependencies remain, the pagedep will be freed.
7048		 */
7049		free_pagedep(pagedep);
7050	}
7051	/* Should only ever be one item in the list. */
7052	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7053		WORKLIST_REMOVE(wk);
7054		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7055	}
7056	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7057}
7058
7059/*
7060 * Prepare an inode to be freed. The actual free operation is not
7061 * done until the zero'ed inode has been written to disk.
7062 */
7063void
7064softdep_freefile(pvp, ino, mode)
7065	struct vnode *pvp;
7066	ino_t ino;
7067	int mode;
7068{
7069	struct inode *ip = VTOI(pvp);
7070	struct inodedep *inodedep;
7071	struct freefile *freefile;
7072	struct freeblks *freeblks;
7073
7074	/*
7075	 * This sets up the inode de-allocation dependency.
7076	 */
7077	freefile = malloc(sizeof(struct freefile),
7078		M_FREEFILE, M_SOFTDEP_FLAGS);
7079	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7080	freefile->fx_mode = mode;
7081	freefile->fx_oldinum = ino;
7082	freefile->fx_devvp = ip->i_devvp;
7083	LIST_INIT(&freefile->fx_jwork);
7084	UFS_LOCK(ip->i_ump);
7085	ip->i_fs->fs_pendinginodes += 1;
7086	UFS_UNLOCK(ip->i_ump);
7087
7088	/*
7089	 * If the inodedep does not exist, then the zero'ed inode has
7090	 * been written to disk. If the allocated inode has never been
7091	 * written to disk, then the on-disk inode is zero'ed. In either
7092	 * case we can free the file immediately.  If the journal was
7093	 * canceled before being written the inode will never make it to
7094	 * disk and we must send the canceled journal entrys to
7095	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7096	 * Any blocks waiting on the inode to write can be safely freed
7097	 * here as it will never been written.
7098	 */
7099	ACQUIRE_LOCK(&lk);
7100	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7101	if (inodedep) {
7102		/*
7103		 * Clear out freeblks that no longer need to reference
7104		 * this inode.
7105		 */
7106		while ((freeblks =
7107		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7108			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7109			    fb_next);
7110			freeblks->fb_state &= ~ONDEPLIST;
7111		}
7112		/*
7113		 * Remove this inode from the unlinked list.
7114		 */
7115		if (inodedep->id_state & UNLINKED) {
7116			/*
7117			 * Save the journal work to be freed with the bitmap
7118			 * before we clear UNLINKED.  Otherwise it can be lost
7119			 * if the inode block is written.
7120			 */
7121			handle_bufwait(inodedep, &freefile->fx_jwork);
7122			clear_unlinked_inodedep(inodedep);
7123			/* Re-acquire inodedep as we've dropped lk. */
7124			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7125		}
7126	}
7127	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7128		FREE_LOCK(&lk);
7129		handle_workitem_freefile(freefile);
7130		return;
7131	}
7132	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7133		inodedep->id_state |= GOINGAWAY;
7134	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7135	FREE_LOCK(&lk);
7136	if (ip->i_number == ino)
7137		ip->i_flag |= IN_MODIFIED;
7138}
7139
7140/*
7141 * Check to see if an inode has never been written to disk. If
7142 * so free the inodedep and return success, otherwise return failure.
7143 * This routine must be called with splbio interrupts blocked.
7144 *
7145 * If we still have a bitmap dependency, then the inode has never
7146 * been written to disk. Drop the dependency as it is no longer
7147 * necessary since the inode is being deallocated. We set the
7148 * ALLCOMPLETE flags since the bitmap now properly shows that the
7149 * inode is not allocated. Even if the inode is actively being
7150 * written, it has been rolled back to its zero'ed state, so we
7151 * are ensured that a zero inode is what is on the disk. For short
7152 * lived files, this change will usually result in removing all the
7153 * dependencies from the inode so that it can be freed immediately.
7154 */
7155static int
7156check_inode_unwritten(inodedep)
7157	struct inodedep *inodedep;
7158{
7159
7160	mtx_assert(&lk, MA_OWNED);
7161
7162	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7163	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7164	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7165	    !LIST_EMPTY(&inodedep->id_inowait) ||
7166	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7167	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7168	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7169	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7170	    inodedep->id_mkdiradd != NULL ||
7171	    inodedep->id_nlinkdelta != 0)
7172		return (0);
7173	/*
7174	 * Another process might be in initiate_write_inodeblock_ufs[12]
7175	 * trying to allocate memory without holding "Softdep Lock".
7176	 */
7177	if ((inodedep->id_state & IOSTARTED) != 0 &&
7178	    inodedep->id_savedino1 == NULL)
7179		return (0);
7180
7181	if (inodedep->id_state & ONDEPLIST)
7182		LIST_REMOVE(inodedep, id_deps);
7183	inodedep->id_state &= ~ONDEPLIST;
7184	inodedep->id_state |= ALLCOMPLETE;
7185	inodedep->id_bmsafemap = NULL;
7186	if (inodedep->id_state & ONWORKLIST)
7187		WORKLIST_REMOVE(&inodedep->id_list);
7188	if (inodedep->id_savedino1 != NULL) {
7189		free(inodedep->id_savedino1, M_SAVEDINO);
7190		inodedep->id_savedino1 = NULL;
7191	}
7192	if (free_inodedep(inodedep) == 0)
7193		panic("check_inode_unwritten: busy inode");
7194	return (1);
7195}
7196
7197/*
7198 * Try to free an inodedep structure. Return 1 if it could be freed.
7199 */
7200static int
7201free_inodedep(inodedep)
7202	struct inodedep *inodedep;
7203{
7204
7205	mtx_assert(&lk, MA_OWNED);
7206	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7207	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7208	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7209	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7210	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7211	    !LIST_EMPTY(&inodedep->id_inowait) ||
7212	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7213	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7214	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7215	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7216	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7217	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7218	    inodedep->id_mkdiradd != NULL ||
7219	    inodedep->id_nlinkdelta != 0 ||
7220	    inodedep->id_savedino1 != NULL)
7221		return (0);
7222	if (inodedep->id_state & ONDEPLIST)
7223		LIST_REMOVE(inodedep, id_deps);
7224	LIST_REMOVE(inodedep, id_hash);
7225	WORKITEM_FREE(inodedep, D_INODEDEP);
7226	return (1);
7227}
7228
7229/*
7230 * Free the block referenced by a freework structure.  The parent freeblks
7231 * structure is released and completed when the final cg bitmap reaches
7232 * the disk.  This routine may be freeing a jnewblk which never made it to
7233 * disk in which case we do not have to wait as the operation is undone
7234 * in memory immediately.
7235 */
7236static void
7237freework_freeblock(freework)
7238	struct freework *freework;
7239{
7240	struct freeblks *freeblks;
7241	struct jnewblk *jnewblk;
7242	struct ufsmount *ump;
7243	struct workhead wkhd;
7244	struct fs *fs;
7245	int bsize;
7246	int needj;
7247
7248	mtx_assert(&lk, MA_OWNED);
7249	/*
7250	 * Handle partial truncate separately.
7251	 */
7252	if (freework->fw_indir) {
7253		complete_trunc_indir(freework);
7254		return;
7255	}
7256	freeblks = freework->fw_freeblks;
7257	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7258	fs = ump->um_fs;
7259	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7260	bsize = lfragtosize(fs, freework->fw_frags);
7261	LIST_INIT(&wkhd);
7262	/*
7263	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7264	 * on the indirblk hashtable and prevents premature freeing.
7265	 */
7266	freework->fw_state |= DEPCOMPLETE;
7267	/*
7268	 * SUJ needs to wait for the segment referencing freed indirect
7269	 * blocks to expire so that we know the checker will not confuse
7270	 * a re-allocated indirect block with its old contents.
7271	 */
7272	if (needj && freework->fw_lbn <= -NDADDR)
7273		indirblk_insert(freework);
7274	/*
7275	 * If we are canceling an existing jnewblk pass it to the free
7276	 * routine, otherwise pass the freeblk which will ultimately
7277	 * release the freeblks.  If we're not journaling, we can just
7278	 * free the freeblks immediately.
7279	 */
7280	jnewblk = freework->fw_jnewblk;
7281	if (jnewblk != NULL) {
7282		cancel_jnewblk(jnewblk, &wkhd);
7283		needj = 0;
7284	} else if (needj) {
7285		freework->fw_state |= DELAYEDFREE;
7286		freeblks->fb_cgwait++;
7287		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7288	}
7289	FREE_LOCK(&lk);
7290	freeblks_free(ump, freeblks, btodb(bsize));
7291	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7292	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7293	ACQUIRE_LOCK(&lk);
7294	/*
7295	 * The jnewblk will be discarded and the bits in the map never
7296	 * made it to disk.  We can immediately free the freeblk.
7297	 */
7298	if (needj == 0)
7299		handle_written_freework(freework);
7300}
7301
7302/*
7303 * We enqueue freework items that need processing back on the freeblks and
7304 * add the freeblks to the worklist.  This makes it easier to find all work
7305 * required to flush a truncation in process_truncates().
7306 */
7307static void
7308freework_enqueue(freework)
7309	struct freework *freework;
7310{
7311	struct freeblks *freeblks;
7312
7313	freeblks = freework->fw_freeblks;
7314	if ((freework->fw_state & INPROGRESS) == 0)
7315		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7316	if ((freeblks->fb_state &
7317	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7318	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7319		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7320}
7321
7322/*
7323 * Start, continue, or finish the process of freeing an indirect block tree.
7324 * The free operation may be paused at any point with fw_off containing the
7325 * offset to restart from.  This enables us to implement some flow control
7326 * for large truncates which may fan out and generate a huge number of
7327 * dependencies.
7328 */
7329static void
7330handle_workitem_indirblk(freework)
7331	struct freework *freework;
7332{
7333	struct freeblks *freeblks;
7334	struct ufsmount *ump;
7335	struct fs *fs;
7336
7337	freeblks = freework->fw_freeblks;
7338	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7339	fs = ump->um_fs;
7340	if (freework->fw_state & DEPCOMPLETE) {
7341		handle_written_freework(freework);
7342		return;
7343	}
7344	if (freework->fw_off == NINDIR(fs)) {
7345		freework_freeblock(freework);
7346		return;
7347	}
7348	freework->fw_state |= INPROGRESS;
7349	FREE_LOCK(&lk);
7350	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7351	    freework->fw_lbn);
7352	ACQUIRE_LOCK(&lk);
7353}
7354
7355/*
7356 * Called when a freework structure attached to a cg buf is written.  The
7357 * ref on either the parent or the freeblks structure is released and
7358 * the freeblks is added back to the worklist if there is more work to do.
7359 */
7360static void
7361handle_written_freework(freework)
7362	struct freework *freework;
7363{
7364	struct freeblks *freeblks;
7365	struct freework *parent;
7366
7367	freeblks = freework->fw_freeblks;
7368	parent = freework->fw_parent;
7369	if (freework->fw_state & DELAYEDFREE)
7370		freeblks->fb_cgwait--;
7371	freework->fw_state |= COMPLETE;
7372	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7373		WORKITEM_FREE(freework, D_FREEWORK);
7374	if (parent) {
7375		if (--parent->fw_ref == 0)
7376			freework_enqueue(parent);
7377		return;
7378	}
7379	if (--freeblks->fb_ref != 0)
7380		return;
7381	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7382	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7383		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7384}
7385
7386/*
7387 * This workitem routine performs the block de-allocation.
7388 * The workitem is added to the pending list after the updated
7389 * inode block has been written to disk.  As mentioned above,
7390 * checks regarding the number of blocks de-allocated (compared
7391 * to the number of blocks allocated for the file) are also
7392 * performed in this function.
7393 */
7394static int
7395handle_workitem_freeblocks(freeblks, flags)
7396	struct freeblks *freeblks;
7397	int flags;
7398{
7399	struct freework *freework;
7400	struct newblk *newblk;
7401	struct allocindir *aip;
7402	struct ufsmount *ump;
7403	struct worklist *wk;
7404
7405	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7406	    ("handle_workitem_freeblocks: Journal entries not written."));
7407	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7408	ACQUIRE_LOCK(&lk);
7409	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7410		WORKLIST_REMOVE(wk);
7411		switch (wk->wk_type) {
7412		case D_DIRREM:
7413			wk->wk_state |= COMPLETE;
7414			add_to_worklist(wk, 0);
7415			continue;
7416
7417		case D_ALLOCDIRECT:
7418			free_newblk(WK_NEWBLK(wk));
7419			continue;
7420
7421		case D_ALLOCINDIR:
7422			aip = WK_ALLOCINDIR(wk);
7423			freework = NULL;
7424			if (aip->ai_state & DELAYEDFREE) {
7425				FREE_LOCK(&lk);
7426				freework = newfreework(ump, freeblks, NULL,
7427				    aip->ai_lbn, aip->ai_newblkno,
7428				    ump->um_fs->fs_frag, 0, 0);
7429				ACQUIRE_LOCK(&lk);
7430			}
7431			newblk = WK_NEWBLK(wk);
7432			if (newblk->nb_jnewblk) {
7433				freework->fw_jnewblk = newblk->nb_jnewblk;
7434				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7435				newblk->nb_jnewblk = NULL;
7436			}
7437			free_newblk(newblk);
7438			continue;
7439
7440		case D_FREEWORK:
7441			freework = WK_FREEWORK(wk);
7442			if (freework->fw_lbn <= -NDADDR)
7443				handle_workitem_indirblk(freework);
7444			else
7445				freework_freeblock(freework);
7446			continue;
7447		default:
7448			panic("handle_workitem_freeblocks: Unknown type %s",
7449			    TYPENAME(wk->wk_type));
7450		}
7451	}
7452	if (freeblks->fb_ref != 0) {
7453		freeblks->fb_state &= ~INPROGRESS;
7454		wake_worklist(&freeblks->fb_list);
7455		freeblks = NULL;
7456	}
7457	FREE_LOCK(&lk);
7458	if (freeblks)
7459		return handle_complete_freeblocks(freeblks, flags);
7460	return (0);
7461}
7462
7463/*
7464 * Handle completion of block free via truncate.  This allows fs_pending
7465 * to track the actual free block count more closely than if we only updated
7466 * it at the end.  We must be careful to handle cases where the block count
7467 * on free was incorrect.
7468 */
7469static void
7470freeblks_free(ump, freeblks, blocks)
7471	struct ufsmount *ump;
7472	struct freeblks *freeblks;
7473	int blocks;
7474{
7475	struct fs *fs;
7476	ufs2_daddr_t remain;
7477
7478	UFS_LOCK(ump);
7479	remain = -freeblks->fb_chkcnt;
7480	freeblks->fb_chkcnt += blocks;
7481	if (remain > 0) {
7482		if (remain < blocks)
7483			blocks = remain;
7484		fs = ump->um_fs;
7485		fs->fs_pendingblocks -= blocks;
7486	}
7487	UFS_UNLOCK(ump);
7488}
7489
7490/*
7491 * Once all of the freework workitems are complete we can retire the
7492 * freeblocks dependency and any journal work awaiting completion.  This
7493 * can not be called until all other dependencies are stable on disk.
7494 */
7495static int
7496handle_complete_freeblocks(freeblks, flags)
7497	struct freeblks *freeblks;
7498	int flags;
7499{
7500	struct inodedep *inodedep;
7501	struct inode *ip;
7502	struct vnode *vp;
7503	struct fs *fs;
7504	struct ufsmount *ump;
7505	ufs2_daddr_t spare;
7506
7507	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7508	fs = ump->um_fs;
7509	flags = LK_EXCLUSIVE | flags;
7510	spare = freeblks->fb_chkcnt;
7511
7512	/*
7513	 * If we did not release the expected number of blocks we may have
7514	 * to adjust the inode block count here.  Only do so if it wasn't
7515	 * a truncation to zero and the modrev still matches.
7516	 */
7517	if (spare && freeblks->fb_len != 0) {
7518		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7519		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7520			return (EBUSY);
7521		ip = VTOI(vp);
7522		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7523			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7524			ip->i_flag |= IN_CHANGE;
7525			/*
7526			 * We must wait so this happens before the
7527			 * journal is reclaimed.
7528			 */
7529			ffs_update(vp, 1);
7530		}
7531		vput(vp);
7532	}
7533	if (spare < 0) {
7534		UFS_LOCK(ump);
7535		fs->fs_pendingblocks += spare;
7536		UFS_UNLOCK(ump);
7537	}
7538#ifdef QUOTA
7539	/* Handle spare. */
7540	if (spare)
7541		quotaadj(freeblks->fb_quota, ump, -spare);
7542	quotarele(freeblks->fb_quota);
7543#endif
7544	ACQUIRE_LOCK(&lk);
7545	if (freeblks->fb_state & ONDEPLIST) {
7546		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7547		    0, &inodedep);
7548		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7549		freeblks->fb_state &= ~ONDEPLIST;
7550		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7551			free_inodedep(inodedep);
7552	}
7553	/*
7554	 * All of the freeblock deps must be complete prior to this call
7555	 * so it's now safe to complete earlier outstanding journal entries.
7556	 */
7557	handle_jwork(&freeblks->fb_jwork);
7558	WORKITEM_FREE(freeblks, D_FREEBLKS);
7559	FREE_LOCK(&lk);
7560	return (0);
7561}
7562
7563/*
7564 * Release blocks associated with the freeblks and stored in the indirect
7565 * block dbn. If level is greater than SINGLE, the block is an indirect block
7566 * and recursive calls to indirtrunc must be used to cleanse other indirect
7567 * blocks.
7568 *
7569 * This handles partial and complete truncation of blocks.  Partial is noted
7570 * with goingaway == 0.  In this case the freework is completed after the
7571 * zero'd indirects are written to disk.  For full truncation the freework
7572 * is completed after the block is freed.
7573 */
7574static void
7575indir_trunc(freework, dbn, lbn)
7576	struct freework *freework;
7577	ufs2_daddr_t dbn;
7578	ufs_lbn_t lbn;
7579{
7580	struct freework *nfreework;
7581	struct workhead wkhd;
7582	struct freeblks *freeblks;
7583	struct buf *bp;
7584	struct fs *fs;
7585	struct indirdep *indirdep;
7586	struct ufsmount *ump;
7587	ufs1_daddr_t *bap1 = 0;
7588	ufs2_daddr_t nb, nnb, *bap2 = 0;
7589	ufs_lbn_t lbnadd, nlbn;
7590	int i, nblocks, ufs1fmt;
7591	int freedblocks;
7592	int goingaway;
7593	int freedeps;
7594	int needj;
7595	int level;
7596	int cnt;
7597
7598	freeblks = freework->fw_freeblks;
7599	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7600	fs = ump->um_fs;
7601	/*
7602	 * Get buffer of block pointers to be freed.  There are three cases:
7603	 *
7604	 * 1) Partial truncate caches the indirdep pointer in the freework
7605	 *    which provides us a back copy to the save bp which holds the
7606	 *    pointers we want to clear.  When this completes the zero
7607	 *    pointers are written to the real copy.
7608	 * 2) The indirect is being completely truncated, cancel_indirdep()
7609	 *    eliminated the real copy and placed the indirdep on the saved
7610	 *    copy.  The indirdep and buf are discarded when this completes.
7611	 * 3) The indirect was not in memory, we read a copy off of the disk
7612	 *    using the devvp and drop and invalidate the buffer when we're
7613	 *    done.
7614	 */
7615	goingaway = 1;
7616	indirdep = NULL;
7617	if (freework->fw_indir != NULL) {
7618		goingaway = 0;
7619		indirdep = freework->fw_indir;
7620		bp = indirdep->ir_savebp;
7621		if (bp == NULL || bp->b_blkno != dbn)
7622			panic("indir_trunc: Bad saved buf %p blkno %jd",
7623			    bp, (intmax_t)dbn);
7624	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7625		/*
7626		 * The lock prevents the buf dep list from changing and
7627	 	 * indirects on devvp should only ever have one dependency.
7628		 */
7629		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7630		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7631			panic("indir_trunc: Bad indirdep %p from buf %p",
7632			    indirdep, bp);
7633	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7634	    NOCRED, &bp) != 0) {
7635		brelse(bp);
7636		return;
7637	}
7638	ACQUIRE_LOCK(&lk);
7639	/* Protects against a race with complete_trunc_indir(). */
7640	freework->fw_state &= ~INPROGRESS;
7641	/*
7642	 * If we have an indirdep we need to enforce the truncation order
7643	 * and discard it when it is complete.
7644	 */
7645	if (indirdep) {
7646		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7647		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7648			/*
7649			 * Add the complete truncate to the list on the
7650			 * indirdep to enforce in-order processing.
7651			 */
7652			if (freework->fw_indir == NULL)
7653				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7654				    freework, fw_next);
7655			FREE_LOCK(&lk);
7656			return;
7657		}
7658		/*
7659		 * If we're goingaway, free the indirdep.  Otherwise it will
7660		 * linger until the write completes.
7661		 */
7662		if (goingaway) {
7663			free_indirdep(indirdep);
7664			ump->um_numindirdeps -= 1;
7665		}
7666	}
7667	FREE_LOCK(&lk);
7668	/* Initialize pointers depending on block size. */
7669	if (ump->um_fstype == UFS1) {
7670		bap1 = (ufs1_daddr_t *)bp->b_data;
7671		nb = bap1[freework->fw_off];
7672		ufs1fmt = 1;
7673	} else {
7674		bap2 = (ufs2_daddr_t *)bp->b_data;
7675		nb = bap2[freework->fw_off];
7676		ufs1fmt = 0;
7677	}
7678	level = lbn_level(lbn);
7679	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7680	lbnadd = lbn_offset(fs, level);
7681	nblocks = btodb(fs->fs_bsize);
7682	nfreework = freework;
7683	freedeps = 0;
7684	cnt = 0;
7685	/*
7686	 * Reclaim blocks.  Traverses into nested indirect levels and
7687	 * arranges for the current level to be freed when subordinates
7688	 * are free when journaling.
7689	 */
7690	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7691		if (i != NINDIR(fs) - 1) {
7692			if (ufs1fmt)
7693				nnb = bap1[i+1];
7694			else
7695				nnb = bap2[i+1];
7696		} else
7697			nnb = 0;
7698		if (nb == 0)
7699			continue;
7700		cnt++;
7701		if (level != 0) {
7702			nlbn = (lbn + 1) - (i * lbnadd);
7703			if (needj != 0) {
7704				nfreework = newfreework(ump, freeblks, freework,
7705				    nlbn, nb, fs->fs_frag, 0, 0);
7706				freedeps++;
7707			}
7708			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7709		} else {
7710			struct freedep *freedep;
7711
7712			/*
7713			 * Attempt to aggregate freedep dependencies for
7714			 * all blocks being released to the same CG.
7715			 */
7716			LIST_INIT(&wkhd);
7717			if (needj != 0 &&
7718			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7719				freedep = newfreedep(freework);
7720				WORKLIST_INSERT_UNLOCKED(&wkhd,
7721				    &freedep->fd_list);
7722				freedeps++;
7723			}
7724			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
7725			    fs->fs_bsize, freeblks->fb_inum,
7726			    freeblks->fb_vtype, &wkhd);
7727		}
7728	}
7729	if (goingaway) {
7730		bp->b_flags |= B_INVAL | B_NOCACHE;
7731		brelse(bp);
7732	}
7733	freedblocks = 0;
7734	if (level == 0)
7735		freedblocks = (nblocks * cnt);
7736	if (needj == 0)
7737		freedblocks += nblocks;
7738	freeblks_free(ump, freeblks, freedblocks);
7739	/*
7740	 * If we are journaling set up the ref counts and offset so this
7741	 * indirect can be completed when its children are free.
7742	 */
7743	if (needj) {
7744		ACQUIRE_LOCK(&lk);
7745		freework->fw_off = i;
7746		freework->fw_ref += freedeps;
7747		freework->fw_ref -= NINDIR(fs) + 1;
7748		if (level == 0)
7749			freeblks->fb_cgwait += freedeps;
7750		if (freework->fw_ref == 0)
7751			freework_freeblock(freework);
7752		FREE_LOCK(&lk);
7753		return;
7754	}
7755	/*
7756	 * If we're not journaling we can free the indirect now.
7757	 */
7758	dbn = dbtofsb(fs, dbn);
7759	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
7760	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
7761	/* Non SUJ softdep does single-threaded truncations. */
7762	if (freework->fw_blkno == dbn) {
7763		freework->fw_state |= ALLCOMPLETE;
7764		ACQUIRE_LOCK(&lk);
7765		handle_written_freework(freework);
7766		FREE_LOCK(&lk);
7767	}
7768	return;
7769}
7770
7771/*
7772 * Cancel an allocindir when it is removed via truncation.  When bp is not
7773 * NULL the indirect never appeared on disk and is scheduled to be freed
7774 * independently of the indir so we can more easily track journal work.
7775 */
7776static void
7777cancel_allocindir(aip, bp, freeblks, trunc)
7778	struct allocindir *aip;
7779	struct buf *bp;
7780	struct freeblks *freeblks;
7781	int trunc;
7782{
7783	struct indirdep *indirdep;
7784	struct freefrag *freefrag;
7785	struct newblk *newblk;
7786
7787	newblk = (struct newblk *)aip;
7788	LIST_REMOVE(aip, ai_next);
7789	/*
7790	 * We must eliminate the pointer in bp if it must be freed on its
7791	 * own due to partial truncate or pending journal work.
7792	 */
7793	if (bp && (trunc || newblk->nb_jnewblk)) {
7794		/*
7795		 * Clear the pointer and mark the aip to be freed
7796		 * directly if it never existed on disk.
7797		 */
7798		aip->ai_state |= DELAYEDFREE;
7799		indirdep = aip->ai_indirdep;
7800		if (indirdep->ir_state & UFS1FMT)
7801			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
7802		else
7803			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
7804	}
7805	/*
7806	 * When truncating the previous pointer will be freed via
7807	 * savedbp.  Eliminate the freefrag which would dup free.
7808	 */
7809	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
7810		newblk->nb_freefrag = NULL;
7811		if (freefrag->ff_jdep)
7812			cancel_jfreefrag(
7813			    WK_JFREEFRAG(freefrag->ff_jdep));
7814		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
7815		WORKITEM_FREE(freefrag, D_FREEFRAG);
7816	}
7817	/*
7818	 * If the journal hasn't been written the jnewblk must be passed
7819	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7820	 * this by leaving the journal dependency on the newblk to be freed
7821	 * when a freework is created in handle_workitem_freeblocks().
7822	 */
7823	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
7824	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7825}
7826
7827/*
7828 * Create the mkdir dependencies for . and .. in a new directory.  Link them
7829 * in to a newdirblk so any subsequent additions are tracked properly.  The
7830 * caller is responsible for adding the mkdir1 dependency to the journal
7831 * and updating id_mkdiradd.  This function returns with lk held.
7832 */
7833static struct mkdir *
7834setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
7835	struct diradd *dap;
7836	ino_t newinum;
7837	ino_t dinum;
7838	struct buf *newdirbp;
7839	struct mkdir **mkdirp;
7840{
7841	struct newblk *newblk;
7842	struct pagedep *pagedep;
7843	struct inodedep *inodedep;
7844	struct newdirblk *newdirblk = 0;
7845	struct mkdir *mkdir1, *mkdir2;
7846	struct worklist *wk;
7847	struct jaddref *jaddref;
7848	struct mount *mp;
7849
7850	mp = dap->da_list.wk_mp;
7851	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
7852	    M_SOFTDEP_FLAGS);
7853	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
7854	LIST_INIT(&newdirblk->db_mkdir);
7855	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
7856	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
7857	mkdir1->md_state = ATTACHED | MKDIR_BODY;
7858	mkdir1->md_diradd = dap;
7859	mkdir1->md_jaddref = NULL;
7860	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
7861	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
7862	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
7863	mkdir2->md_diradd = dap;
7864	mkdir2->md_jaddref = NULL;
7865	if (MOUNTEDSUJ(mp) == 0) {
7866		mkdir1->md_state |= DEPCOMPLETE;
7867		mkdir2->md_state |= DEPCOMPLETE;
7868	}
7869	/*
7870	 * Dependency on "." and ".." being written to disk.
7871	 */
7872	mkdir1->md_buf = newdirbp;
7873	ACQUIRE_LOCK(&lk);
7874	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
7875	/*
7876	 * We must link the pagedep, allocdirect, and newdirblk for
7877	 * the initial file page so the pointer to the new directory
7878	 * is not written until the directory contents are live and
7879	 * any subsequent additions are not marked live until the
7880	 * block is reachable via the inode.
7881	 */
7882	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
7883		panic("setup_newdir: lost pagedep");
7884	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
7885		if (wk->wk_type == D_ALLOCDIRECT)
7886			break;
7887	if (wk == NULL)
7888		panic("setup_newdir: lost allocdirect");
7889	if (pagedep->pd_state & NEWBLOCK)
7890		panic("setup_newdir: NEWBLOCK already set");
7891	newblk = WK_NEWBLK(wk);
7892	pagedep->pd_state |= NEWBLOCK;
7893	pagedep->pd_newdirblk = newdirblk;
7894	newdirblk->db_pagedep = pagedep;
7895	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
7896	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
7897	/*
7898	 * Look up the inodedep for the parent directory so that we
7899	 * can link mkdir2 into the pending dotdot jaddref or
7900	 * the inode write if there is none.  If the inode is
7901	 * ALLCOMPLETE and no jaddref is present all dependencies have
7902	 * been satisfied and mkdir2 can be freed.
7903	 */
7904	inodedep_lookup(mp, dinum, 0, &inodedep);
7905	if (MOUNTEDSUJ(mp)) {
7906		if (inodedep == NULL)
7907			panic("setup_newdir: Lost parent.");
7908		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
7909		    inoreflst);
7910		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
7911		    (jaddref->ja_state & MKDIR_PARENT),
7912		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
7913		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
7914		mkdir2->md_jaddref = jaddref;
7915		jaddref->ja_mkdir = mkdir2;
7916	} else if (inodedep == NULL ||
7917	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
7918		dap->da_state &= ~MKDIR_PARENT;
7919		WORKITEM_FREE(mkdir2, D_MKDIR);
7920	} else {
7921		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
7922		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
7923	}
7924	*mkdirp = mkdir2;
7925
7926	return (mkdir1);
7927}
7928
7929/*
7930 * Directory entry addition dependencies.
7931 *
7932 * When adding a new directory entry, the inode (with its incremented link
7933 * count) must be written to disk before the directory entry's pointer to it.
7934 * Also, if the inode is newly allocated, the corresponding freemap must be
7935 * updated (on disk) before the directory entry's pointer. These requirements
7936 * are met via undo/redo on the directory entry's pointer, which consists
7937 * simply of the inode number.
7938 *
7939 * As directory entries are added and deleted, the free space within a
7940 * directory block can become fragmented.  The ufs filesystem will compact
7941 * a fragmented directory block to make space for a new entry. When this
7942 * occurs, the offsets of previously added entries change. Any "diradd"
7943 * dependency structures corresponding to these entries must be updated with
7944 * the new offsets.
7945 */
7946
7947/*
7948 * This routine is called after the in-memory inode's link
7949 * count has been incremented, but before the directory entry's
7950 * pointer to the inode has been set.
7951 */
7952int
7953softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
7954	struct buf *bp;		/* buffer containing directory block */
7955	struct inode *dp;	/* inode for directory */
7956	off_t diroffset;	/* offset of new entry in directory */
7957	ino_t newinum;		/* inode referenced by new directory entry */
7958	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
7959	int isnewblk;		/* entry is in a newly allocated block */
7960{
7961	int offset;		/* offset of new entry within directory block */
7962	ufs_lbn_t lbn;		/* block in directory containing new entry */
7963	struct fs *fs;
7964	struct diradd *dap;
7965	struct newblk *newblk;
7966	struct pagedep *pagedep;
7967	struct inodedep *inodedep;
7968	struct newdirblk *newdirblk = 0;
7969	struct mkdir *mkdir1, *mkdir2;
7970	struct jaddref *jaddref;
7971	struct mount *mp;
7972	int isindir;
7973
7974	/*
7975	 * Whiteouts have no dependencies.
7976	 */
7977	if (newinum == WINO) {
7978		if (newdirbp != NULL)
7979			bdwrite(newdirbp);
7980		return (0);
7981	}
7982	jaddref = NULL;
7983	mkdir1 = mkdir2 = NULL;
7984	mp = UFSTOVFS(dp->i_ump);
7985	fs = dp->i_fs;
7986	lbn = lblkno(fs, diroffset);
7987	offset = blkoff(fs, diroffset);
7988	dap = malloc(sizeof(struct diradd), M_DIRADD,
7989		M_SOFTDEP_FLAGS|M_ZERO);
7990	workitem_alloc(&dap->da_list, D_DIRADD, mp);
7991	dap->da_offset = offset;
7992	dap->da_newinum = newinum;
7993	dap->da_state = ATTACHED;
7994	LIST_INIT(&dap->da_jwork);
7995	isindir = bp->b_lblkno >= NDADDR;
7996	if (isnewblk &&
7997	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
7998		newdirblk = malloc(sizeof(struct newdirblk),
7999		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8000		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8001		LIST_INIT(&newdirblk->db_mkdir);
8002	}
8003	/*
8004	 * If we're creating a new directory setup the dependencies and set
8005	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8006	 * we can move on.
8007	 */
8008	if (newdirbp == NULL) {
8009		dap->da_state |= DEPCOMPLETE;
8010		ACQUIRE_LOCK(&lk);
8011	} else {
8012		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8013		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8014		    &mkdir2);
8015	}
8016	/*
8017	 * Link into parent directory pagedep to await its being written.
8018	 */
8019	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8020#ifdef DEBUG
8021	if (diradd_lookup(pagedep, offset) != NULL)
8022		panic("softdep_setup_directory_add: %p already at off %d\n",
8023		    diradd_lookup(pagedep, offset), offset);
8024#endif
8025	dap->da_pagedep = pagedep;
8026	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8027	    da_pdlist);
8028	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8029	/*
8030	 * If we're journaling, link the diradd into the jaddref so it
8031	 * may be completed after the journal entry is written.  Otherwise,
8032	 * link the diradd into its inodedep.  If the inode is not yet
8033	 * written place it on the bufwait list, otherwise do the post-inode
8034	 * write processing to put it on the id_pendinghd list.
8035	 */
8036	if (MOUNTEDSUJ(mp)) {
8037		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8038		    inoreflst);
8039		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8040		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8041		jaddref->ja_diroff = diroffset;
8042		jaddref->ja_diradd = dap;
8043		add_to_journal(&jaddref->ja_list);
8044	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8045		diradd_inode_written(dap, inodedep);
8046	else
8047		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8048	/*
8049	 * Add the journal entries for . and .. links now that the primary
8050	 * link is written.
8051	 */
8052	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8053		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8054		    inoreflst, if_deps);
8055		KASSERT(jaddref != NULL &&
8056		    jaddref->ja_ino == jaddref->ja_parent &&
8057		    (jaddref->ja_state & MKDIR_BODY),
8058		    ("softdep_setup_directory_add: bad dot jaddref %p",
8059		    jaddref));
8060		mkdir1->md_jaddref = jaddref;
8061		jaddref->ja_mkdir = mkdir1;
8062		/*
8063		 * It is important that the dotdot journal entry
8064		 * is added prior to the dot entry since dot writes
8065		 * both the dot and dotdot links.  These both must
8066		 * be added after the primary link for the journal
8067		 * to remain consistent.
8068		 */
8069		add_to_journal(&mkdir2->md_jaddref->ja_list);
8070		add_to_journal(&jaddref->ja_list);
8071	}
8072	/*
8073	 * If we are adding a new directory remember this diradd so that if
8074	 * we rename it we can keep the dot and dotdot dependencies.  If
8075	 * we are adding a new name for an inode that has a mkdiradd we
8076	 * must be in rename and we have to move the dot and dotdot
8077	 * dependencies to this new name.  The old name is being orphaned
8078	 * soon.
8079	 */
8080	if (mkdir1 != NULL) {
8081		if (inodedep->id_mkdiradd != NULL)
8082			panic("softdep_setup_directory_add: Existing mkdir");
8083		inodedep->id_mkdiradd = dap;
8084	} else if (inodedep->id_mkdiradd)
8085		merge_diradd(inodedep, dap);
8086	if (newdirblk) {
8087		/*
8088		 * There is nothing to do if we are already tracking
8089		 * this block.
8090		 */
8091		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8092			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8093			FREE_LOCK(&lk);
8094			return (0);
8095		}
8096		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8097		    == 0)
8098			panic("softdep_setup_directory_add: lost entry");
8099		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8100		pagedep->pd_state |= NEWBLOCK;
8101		pagedep->pd_newdirblk = newdirblk;
8102		newdirblk->db_pagedep = pagedep;
8103		FREE_LOCK(&lk);
8104		/*
8105		 * If we extended into an indirect signal direnter to sync.
8106		 */
8107		if (isindir)
8108			return (1);
8109		return (0);
8110	}
8111	FREE_LOCK(&lk);
8112	return (0);
8113}
8114
8115/*
8116 * This procedure is called to change the offset of a directory
8117 * entry when compacting a directory block which must be owned
8118 * exclusively by the caller. Note that the actual entry movement
8119 * must be done in this procedure to ensure that no I/O completions
8120 * occur while the move is in progress.
8121 */
8122void
8123softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8124	struct buf *bp;		/* Buffer holding directory block. */
8125	struct inode *dp;	/* inode for directory */
8126	caddr_t base;		/* address of dp->i_offset */
8127	caddr_t oldloc;		/* address of old directory location */
8128	caddr_t newloc;		/* address of new directory location */
8129	int entrysize;		/* size of directory entry */
8130{
8131	int offset, oldoffset, newoffset;
8132	struct pagedep *pagedep;
8133	struct jmvref *jmvref;
8134	struct diradd *dap;
8135	struct direct *de;
8136	struct mount *mp;
8137	ufs_lbn_t lbn;
8138	int flags;
8139
8140	mp = UFSTOVFS(dp->i_ump);
8141	de = (struct direct *)oldloc;
8142	jmvref = NULL;
8143	flags = 0;
8144	/*
8145	 * Moves are always journaled as it would be too complex to
8146	 * determine if any affected adds or removes are present in the
8147	 * journal.
8148	 */
8149	if (MOUNTEDSUJ(mp)) {
8150		flags = DEPALLOC;
8151		jmvref = newjmvref(dp, de->d_ino,
8152		    dp->i_offset + (oldloc - base),
8153		    dp->i_offset + (newloc - base));
8154	}
8155	lbn = lblkno(dp->i_fs, dp->i_offset);
8156	offset = blkoff(dp->i_fs, dp->i_offset);
8157	oldoffset = offset + (oldloc - base);
8158	newoffset = offset + (newloc - base);
8159	ACQUIRE_LOCK(&lk);
8160	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8161		goto done;
8162	dap = diradd_lookup(pagedep, oldoffset);
8163	if (dap) {
8164		dap->da_offset = newoffset;
8165		newoffset = DIRADDHASH(newoffset);
8166		oldoffset = DIRADDHASH(oldoffset);
8167		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8168		    newoffset != oldoffset) {
8169			LIST_REMOVE(dap, da_pdlist);
8170			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8171			    dap, da_pdlist);
8172		}
8173	}
8174done:
8175	if (jmvref) {
8176		jmvref->jm_pagedep = pagedep;
8177		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8178		add_to_journal(&jmvref->jm_list);
8179	}
8180	bcopy(oldloc, newloc, entrysize);
8181	FREE_LOCK(&lk);
8182}
8183
8184/*
8185 * Move the mkdir dependencies and journal work from one diradd to another
8186 * when renaming a directory.  The new name must depend on the mkdir deps
8187 * completing as the old name did.  Directories can only have one valid link
8188 * at a time so one must be canonical.
8189 */
8190static void
8191merge_diradd(inodedep, newdap)
8192	struct inodedep *inodedep;
8193	struct diradd *newdap;
8194{
8195	struct diradd *olddap;
8196	struct mkdir *mkdir, *nextmd;
8197	short state;
8198
8199	olddap = inodedep->id_mkdiradd;
8200	inodedep->id_mkdiradd = newdap;
8201	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8202		newdap->da_state &= ~DEPCOMPLETE;
8203		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8204			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8205			if (mkdir->md_diradd != olddap)
8206				continue;
8207			mkdir->md_diradd = newdap;
8208			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8209			newdap->da_state |= state;
8210			olddap->da_state &= ~state;
8211			if ((olddap->da_state &
8212			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8213				break;
8214		}
8215		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8216			panic("merge_diradd: unfound ref");
8217	}
8218	/*
8219	 * Any mkdir related journal items are not safe to be freed until
8220	 * the new name is stable.
8221	 */
8222	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8223	olddap->da_state |= DEPCOMPLETE;
8224	complete_diradd(olddap);
8225}
8226
8227/*
8228 * Move the diradd to the pending list when all diradd dependencies are
8229 * complete.
8230 */
8231static void
8232complete_diradd(dap)
8233	struct diradd *dap;
8234{
8235	struct pagedep *pagedep;
8236
8237	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8238		if (dap->da_state & DIRCHG)
8239			pagedep = dap->da_previous->dm_pagedep;
8240		else
8241			pagedep = dap->da_pagedep;
8242		LIST_REMOVE(dap, da_pdlist);
8243		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8244	}
8245}
8246
8247/*
8248 * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8249 * add entries and conditonally journal the remove.
8250 */
8251static void
8252cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8253	struct diradd *dap;
8254	struct dirrem *dirrem;
8255	struct jremref *jremref;
8256	struct jremref *dotremref;
8257	struct jremref *dotdotremref;
8258{
8259	struct inodedep *inodedep;
8260	struct jaddref *jaddref;
8261	struct inoref *inoref;
8262	struct mkdir *mkdir;
8263
8264	/*
8265	 * If no remove references were allocated we're on a non-journaled
8266	 * filesystem and can skip the cancel step.
8267	 */
8268	if (jremref == NULL) {
8269		free_diradd(dap, NULL);
8270		return;
8271	}
8272	/*
8273	 * Cancel the primary name an free it if it does not require
8274	 * journaling.
8275	 */
8276	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8277	    0, &inodedep) != 0) {
8278		/* Abort the addref that reference this diradd.  */
8279		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8280			if (inoref->if_list.wk_type != D_JADDREF)
8281				continue;
8282			jaddref = (struct jaddref *)inoref;
8283			if (jaddref->ja_diradd != dap)
8284				continue;
8285			if (cancel_jaddref(jaddref, inodedep,
8286			    &dirrem->dm_jwork) == 0) {
8287				free_jremref(jremref);
8288				jremref = NULL;
8289			}
8290			break;
8291		}
8292	}
8293	/*
8294	 * Cancel subordinate names and free them if they do not require
8295	 * journaling.
8296	 */
8297	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8298		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
8299			if (mkdir->md_diradd != dap)
8300				continue;
8301			if ((jaddref = mkdir->md_jaddref) == NULL)
8302				continue;
8303			mkdir->md_jaddref = NULL;
8304			if (mkdir->md_state & MKDIR_PARENT) {
8305				if (cancel_jaddref(jaddref, NULL,
8306				    &dirrem->dm_jwork) == 0) {
8307					free_jremref(dotdotremref);
8308					dotdotremref = NULL;
8309				}
8310			} else {
8311				if (cancel_jaddref(jaddref, inodedep,
8312				    &dirrem->dm_jwork) == 0) {
8313					free_jremref(dotremref);
8314					dotremref = NULL;
8315				}
8316			}
8317		}
8318	}
8319
8320	if (jremref)
8321		journal_jremref(dirrem, jremref, inodedep);
8322	if (dotremref)
8323		journal_jremref(dirrem, dotremref, inodedep);
8324	if (dotdotremref)
8325		journal_jremref(dirrem, dotdotremref, NULL);
8326	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8327	free_diradd(dap, &dirrem->dm_jwork);
8328}
8329
8330/*
8331 * Free a diradd dependency structure. This routine must be called
8332 * with splbio interrupts blocked.
8333 */
8334static void
8335free_diradd(dap, wkhd)
8336	struct diradd *dap;
8337	struct workhead *wkhd;
8338{
8339	struct dirrem *dirrem;
8340	struct pagedep *pagedep;
8341	struct inodedep *inodedep;
8342	struct mkdir *mkdir, *nextmd;
8343
8344	mtx_assert(&lk, MA_OWNED);
8345	LIST_REMOVE(dap, da_pdlist);
8346	if (dap->da_state & ONWORKLIST)
8347		WORKLIST_REMOVE(&dap->da_list);
8348	if ((dap->da_state & DIRCHG) == 0) {
8349		pagedep = dap->da_pagedep;
8350	} else {
8351		dirrem = dap->da_previous;
8352		pagedep = dirrem->dm_pagedep;
8353		dirrem->dm_dirinum = pagedep->pd_ino;
8354		dirrem->dm_state |= COMPLETE;
8355		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8356			add_to_worklist(&dirrem->dm_list, 0);
8357	}
8358	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8359	    0, &inodedep) != 0)
8360		if (inodedep->id_mkdiradd == dap)
8361			inodedep->id_mkdiradd = NULL;
8362	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8363		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8364			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8365			if (mkdir->md_diradd != dap)
8366				continue;
8367			dap->da_state &=
8368			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8369			LIST_REMOVE(mkdir, md_mkdirs);
8370			if (mkdir->md_state & ONWORKLIST)
8371				WORKLIST_REMOVE(&mkdir->md_list);
8372			if (mkdir->md_jaddref != NULL)
8373				panic("free_diradd: Unexpected jaddref");
8374			WORKITEM_FREE(mkdir, D_MKDIR);
8375			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8376				break;
8377		}
8378		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8379			panic("free_diradd: unfound ref");
8380	}
8381	if (inodedep)
8382		free_inodedep(inodedep);
8383	/*
8384	 * Free any journal segments waiting for the directory write.
8385	 */
8386	handle_jwork(&dap->da_jwork);
8387	WORKITEM_FREE(dap, D_DIRADD);
8388}
8389
8390/*
8391 * Directory entry removal dependencies.
8392 *
8393 * When removing a directory entry, the entry's inode pointer must be
8394 * zero'ed on disk before the corresponding inode's link count is decremented
8395 * (possibly freeing the inode for re-use). This dependency is handled by
8396 * updating the directory entry but delaying the inode count reduction until
8397 * after the directory block has been written to disk. After this point, the
8398 * inode count can be decremented whenever it is convenient.
8399 */
8400
8401/*
8402 * This routine should be called immediately after removing
8403 * a directory entry.  The inode's link count should not be
8404 * decremented by the calling procedure -- the soft updates
8405 * code will do this task when it is safe.
8406 */
8407void
8408softdep_setup_remove(bp, dp, ip, isrmdir)
8409	struct buf *bp;		/* buffer containing directory block */
8410	struct inode *dp;	/* inode for the directory being modified */
8411	struct inode *ip;	/* inode for directory entry being removed */
8412	int isrmdir;		/* indicates if doing RMDIR */
8413{
8414	struct dirrem *dirrem, *prevdirrem;
8415	struct inodedep *inodedep;
8416	int direct;
8417
8418	/*
8419	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8420	 * newdirrem() to setup the full directory remove which requires
8421	 * isrmdir > 1.
8422	 */
8423	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8424	/*
8425	 * Add the dirrem to the inodedep's pending remove list for quick
8426	 * discovery later.
8427	 */
8428	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8429	    &inodedep) == 0)
8430		panic("softdep_setup_remove: Lost inodedep.");
8431	dirrem->dm_state |= ONDEPLIST;
8432	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8433
8434	/*
8435	 * If the COMPLETE flag is clear, then there were no active
8436	 * entries and we want to roll back to a zeroed entry until
8437	 * the new inode is committed to disk. If the COMPLETE flag is
8438	 * set then we have deleted an entry that never made it to
8439	 * disk. If the entry we deleted resulted from a name change,
8440	 * then the old name still resides on disk. We cannot delete
8441	 * its inode (returned to us in prevdirrem) until the zeroed
8442	 * directory entry gets to disk. The new inode has never been
8443	 * referenced on the disk, so can be deleted immediately.
8444	 */
8445	if ((dirrem->dm_state & COMPLETE) == 0) {
8446		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8447		    dm_next);
8448		FREE_LOCK(&lk);
8449	} else {
8450		if (prevdirrem != NULL)
8451			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8452			    prevdirrem, dm_next);
8453		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8454		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8455		FREE_LOCK(&lk);
8456		if (direct)
8457			handle_workitem_remove(dirrem, 0);
8458	}
8459}
8460
8461/*
8462 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8463 * pd_pendinghd list of a pagedep.
8464 */
8465static struct diradd *
8466diradd_lookup(pagedep, offset)
8467	struct pagedep *pagedep;
8468	int offset;
8469{
8470	struct diradd *dap;
8471
8472	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8473		if (dap->da_offset == offset)
8474			return (dap);
8475	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8476		if (dap->da_offset == offset)
8477			return (dap);
8478	return (NULL);
8479}
8480
8481/*
8482 * Search for a .. diradd dependency in a directory that is being removed.
8483 * If the directory was renamed to a new parent we have a diradd rather
8484 * than a mkdir for the .. entry.  We need to cancel it now before
8485 * it is found in truncate().
8486 */
8487static struct jremref *
8488cancel_diradd_dotdot(ip, dirrem, jremref)
8489	struct inode *ip;
8490	struct dirrem *dirrem;
8491	struct jremref *jremref;
8492{
8493	struct pagedep *pagedep;
8494	struct diradd *dap;
8495	struct worklist *wk;
8496
8497	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8498	    &pagedep) == 0)
8499		return (jremref);
8500	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8501	if (dap == NULL)
8502		return (jremref);
8503	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8504	/*
8505	 * Mark any journal work as belonging to the parent so it is freed
8506	 * with the .. reference.
8507	 */
8508	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8509		wk->wk_state |= MKDIR_PARENT;
8510	return (NULL);
8511}
8512
8513/*
8514 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8515 * replace it with a dirrem/diradd pair as a result of re-parenting a
8516 * directory.  This ensures that we don't simultaneously have a mkdir and
8517 * a diradd for the same .. entry.
8518 */
8519static struct jremref *
8520cancel_mkdir_dotdot(ip, dirrem, jremref)
8521	struct inode *ip;
8522	struct dirrem *dirrem;
8523	struct jremref *jremref;
8524{
8525	struct inodedep *inodedep;
8526	struct jaddref *jaddref;
8527	struct mkdir *mkdir;
8528	struct diradd *dap;
8529
8530	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8531	    &inodedep) == 0)
8532		panic("cancel_mkdir_dotdot: Lost inodedep");
8533	dap = inodedep->id_mkdiradd;
8534	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8535		return (jremref);
8536	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
8537	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8538		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8539			break;
8540	if (mkdir == NULL)
8541		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8542	if ((jaddref = mkdir->md_jaddref) != NULL) {
8543		mkdir->md_jaddref = NULL;
8544		jaddref->ja_state &= ~MKDIR_PARENT;
8545		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8546		    &inodedep) == 0)
8547			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8548		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8549			journal_jremref(dirrem, jremref, inodedep);
8550			jremref = NULL;
8551		}
8552	}
8553	if (mkdir->md_state & ONWORKLIST)
8554		WORKLIST_REMOVE(&mkdir->md_list);
8555	mkdir->md_state |= ALLCOMPLETE;
8556	complete_mkdir(mkdir);
8557	return (jremref);
8558}
8559
8560static void
8561journal_jremref(dirrem, jremref, inodedep)
8562	struct dirrem *dirrem;
8563	struct jremref *jremref;
8564	struct inodedep *inodedep;
8565{
8566
8567	if (inodedep == NULL)
8568		if (inodedep_lookup(jremref->jr_list.wk_mp,
8569		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8570			panic("journal_jremref: Lost inodedep");
8571	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8572	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8573	add_to_journal(&jremref->jr_list);
8574}
8575
8576static void
8577dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8578	struct dirrem *dirrem;
8579	struct jremref *jremref;
8580	struct jremref *dotremref;
8581	struct jremref *dotdotremref;
8582{
8583	struct inodedep *inodedep;
8584
8585
8586	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8587	    &inodedep) == 0)
8588		panic("dirrem_journal: Lost inodedep");
8589	journal_jremref(dirrem, jremref, inodedep);
8590	if (dotremref)
8591		journal_jremref(dirrem, dotremref, inodedep);
8592	if (dotdotremref)
8593		journal_jremref(dirrem, dotdotremref, NULL);
8594}
8595
8596/*
8597 * Allocate a new dirrem if appropriate and return it along with
8598 * its associated pagedep. Called without a lock, returns with lock.
8599 */
8600static struct dirrem *
8601newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8602	struct buf *bp;		/* buffer containing directory block */
8603	struct inode *dp;	/* inode for the directory being modified */
8604	struct inode *ip;	/* inode for directory entry being removed */
8605	int isrmdir;		/* indicates if doing RMDIR */
8606	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8607{
8608	int offset;
8609	ufs_lbn_t lbn;
8610	struct diradd *dap;
8611	struct dirrem *dirrem;
8612	struct pagedep *pagedep;
8613	struct jremref *jremref;
8614	struct jremref *dotremref;
8615	struct jremref *dotdotremref;
8616	struct vnode *dvp;
8617
8618	/*
8619	 * Whiteouts have no deletion dependencies.
8620	 */
8621	if (ip == NULL)
8622		panic("newdirrem: whiteout");
8623	dvp = ITOV(dp);
8624	/*
8625	 * If we are over our limit, try to improve the situation.
8626	 * Limiting the number of dirrem structures will also limit
8627	 * the number of freefile and freeblks structures.
8628	 */
8629	ACQUIRE_LOCK(&lk);
8630	if (!(ip->i_flags & SF_SNAPSHOT) &&
8631	    dep_current[D_DIRREM] > max_softdeps / 2)
8632		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8633	FREE_LOCK(&lk);
8634	dirrem = malloc(sizeof(struct dirrem),
8635		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8636	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8637	LIST_INIT(&dirrem->dm_jremrefhd);
8638	LIST_INIT(&dirrem->dm_jwork);
8639	dirrem->dm_state = isrmdir ? RMDIR : 0;
8640	dirrem->dm_oldinum = ip->i_number;
8641	*prevdirremp = NULL;
8642	/*
8643	 * Allocate remove reference structures to track journal write
8644	 * dependencies.  We will always have one for the link and
8645	 * when doing directories we will always have one more for dot.
8646	 * When renaming a directory we skip the dotdot link change so
8647	 * this is not needed.
8648	 */
8649	jremref = dotremref = dotdotremref = NULL;
8650	if (DOINGSUJ(dvp)) {
8651		if (isrmdir) {
8652			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8653			    ip->i_effnlink + 2);
8654			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8655			    ip->i_effnlink + 1);
8656			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8657			    dp->i_effnlink + 1);
8658			dotdotremref->jr_state |= MKDIR_PARENT;
8659		} else
8660			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8661			    ip->i_effnlink + 1);
8662	}
8663	ACQUIRE_LOCK(&lk);
8664	lbn = lblkno(dp->i_fs, dp->i_offset);
8665	offset = blkoff(dp->i_fs, dp->i_offset);
8666	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8667	    &pagedep);
8668	dirrem->dm_pagedep = pagedep;
8669	dirrem->dm_offset = offset;
8670	/*
8671	 * If we're renaming a .. link to a new directory, cancel any
8672	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8673	 * the jremref is preserved for any potential diradd in this
8674	 * location.  This can not coincide with a rmdir.
8675	 */
8676	if (dp->i_offset == DOTDOT_OFFSET) {
8677		if (isrmdir)
8678			panic("newdirrem: .. directory change during remove?");
8679		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8680	}
8681	/*
8682	 * If we're removing a directory search for the .. dependency now and
8683	 * cancel it.  Any pending journal work will be added to the dirrem
8684	 * to be completed when the workitem remove completes.
8685	 */
8686	if (isrmdir)
8687		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8688	/*
8689	 * Check for a diradd dependency for the same directory entry.
8690	 * If present, then both dependencies become obsolete and can
8691	 * be de-allocated.
8692	 */
8693	dap = diradd_lookup(pagedep, offset);
8694	if (dap == NULL) {
8695		/*
8696		 * Link the jremref structures into the dirrem so they are
8697		 * written prior to the pagedep.
8698		 */
8699		if (jremref)
8700			dirrem_journal(dirrem, jremref, dotremref,
8701			    dotdotremref);
8702		return (dirrem);
8703	}
8704	/*
8705	 * Must be ATTACHED at this point.
8706	 */
8707	if ((dap->da_state & ATTACHED) == 0)
8708		panic("newdirrem: not ATTACHED");
8709	if (dap->da_newinum != ip->i_number)
8710		panic("newdirrem: inum %d should be %d",
8711		    ip->i_number, dap->da_newinum);
8712	/*
8713	 * If we are deleting a changed name that never made it to disk,
8714	 * then return the dirrem describing the previous inode (which
8715	 * represents the inode currently referenced from this entry on disk).
8716	 */
8717	if ((dap->da_state & DIRCHG) != 0) {
8718		*prevdirremp = dap->da_previous;
8719		dap->da_state &= ~DIRCHG;
8720		dap->da_pagedep = pagedep;
8721	}
8722	/*
8723	 * We are deleting an entry that never made it to disk.
8724	 * Mark it COMPLETE so we can delete its inode immediately.
8725	 */
8726	dirrem->dm_state |= COMPLETE;
8727	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
8728#ifdef SUJ_DEBUG
8729	if (isrmdir == 0) {
8730		struct worklist *wk;
8731
8732		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8733			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
8734				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
8735	}
8736#endif
8737
8738	return (dirrem);
8739}
8740
8741/*
8742 * Directory entry change dependencies.
8743 *
8744 * Changing an existing directory entry requires that an add operation
8745 * be completed first followed by a deletion. The semantics for the addition
8746 * are identical to the description of adding a new entry above except
8747 * that the rollback is to the old inode number rather than zero. Once
8748 * the addition dependency is completed, the removal is done as described
8749 * in the removal routine above.
8750 */
8751
8752/*
8753 * This routine should be called immediately after changing
8754 * a directory entry.  The inode's link count should not be
8755 * decremented by the calling procedure -- the soft updates
8756 * code will perform this task when it is safe.
8757 */
8758void
8759softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
8760	struct buf *bp;		/* buffer containing directory block */
8761	struct inode *dp;	/* inode for the directory being modified */
8762	struct inode *ip;	/* inode for directory entry being removed */
8763	ino_t newinum;		/* new inode number for changed entry */
8764	int isrmdir;		/* indicates if doing RMDIR */
8765{
8766	int offset;
8767	struct diradd *dap = NULL;
8768	struct dirrem *dirrem, *prevdirrem;
8769	struct pagedep *pagedep;
8770	struct inodedep *inodedep;
8771	struct jaddref *jaddref;
8772	struct mount *mp;
8773
8774	offset = blkoff(dp->i_fs, dp->i_offset);
8775	mp = UFSTOVFS(dp->i_ump);
8776
8777	/*
8778	 * Whiteouts do not need diradd dependencies.
8779	 */
8780	if (newinum != WINO) {
8781		dap = malloc(sizeof(struct diradd),
8782		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
8783		workitem_alloc(&dap->da_list, D_DIRADD, mp);
8784		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
8785		dap->da_offset = offset;
8786		dap->da_newinum = newinum;
8787		LIST_INIT(&dap->da_jwork);
8788	}
8789
8790	/*
8791	 * Allocate a new dirrem and ACQUIRE_LOCK.
8792	 */
8793	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8794	pagedep = dirrem->dm_pagedep;
8795	/*
8796	 * The possible values for isrmdir:
8797	 *	0 - non-directory file rename
8798	 *	1 - directory rename within same directory
8799	 *   inum - directory rename to new directory of given inode number
8800	 * When renaming to a new directory, we are both deleting and
8801	 * creating a new directory entry, so the link count on the new
8802	 * directory should not change. Thus we do not need the followup
8803	 * dirrem which is usually done in handle_workitem_remove. We set
8804	 * the DIRCHG flag to tell handle_workitem_remove to skip the
8805	 * followup dirrem.
8806	 */
8807	if (isrmdir > 1)
8808		dirrem->dm_state |= DIRCHG;
8809
8810	/*
8811	 * Whiteouts have no additional dependencies,
8812	 * so just put the dirrem on the correct list.
8813	 */
8814	if (newinum == WINO) {
8815		if ((dirrem->dm_state & COMPLETE) == 0) {
8816			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
8817			    dm_next);
8818		} else {
8819			dirrem->dm_dirinum = pagedep->pd_ino;
8820			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8821				add_to_worklist(&dirrem->dm_list, 0);
8822		}
8823		FREE_LOCK(&lk);
8824		return;
8825	}
8826	/*
8827	 * Add the dirrem to the inodedep's pending remove list for quick
8828	 * discovery later.  A valid nlinkdelta ensures that this lookup
8829	 * will not fail.
8830	 */
8831	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
8832		panic("softdep_setup_directory_change: Lost inodedep.");
8833	dirrem->dm_state |= ONDEPLIST;
8834	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8835
8836	/*
8837	 * If the COMPLETE flag is clear, then there were no active
8838	 * entries and we want to roll back to the previous inode until
8839	 * the new inode is committed to disk. If the COMPLETE flag is
8840	 * set, then we have deleted an entry that never made it to disk.
8841	 * If the entry we deleted resulted from a name change, then the old
8842	 * inode reference still resides on disk. Any rollback that we do
8843	 * needs to be to that old inode (returned to us in prevdirrem). If
8844	 * the entry we deleted resulted from a create, then there is
8845	 * no entry on the disk, so we want to roll back to zero rather
8846	 * than the uncommitted inode. In either of the COMPLETE cases we
8847	 * want to immediately free the unwritten and unreferenced inode.
8848	 */
8849	if ((dirrem->dm_state & COMPLETE) == 0) {
8850		dap->da_previous = dirrem;
8851	} else {
8852		if (prevdirrem != NULL) {
8853			dap->da_previous = prevdirrem;
8854		} else {
8855			dap->da_state &= ~DIRCHG;
8856			dap->da_pagedep = pagedep;
8857		}
8858		dirrem->dm_dirinum = pagedep->pd_ino;
8859		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8860			add_to_worklist(&dirrem->dm_list, 0);
8861	}
8862	/*
8863	 * Lookup the jaddref for this journal entry.  We must finish
8864	 * initializing it and make the diradd write dependent on it.
8865	 * If we're not journaling Put it on the id_bufwait list if the inode
8866	 * is not yet written. If it is written, do the post-inode write
8867	 * processing to put it on the id_pendinghd list.
8868	 */
8869	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8870	if (MOUNTEDSUJ(mp)) {
8871		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8872		    inoreflst);
8873		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8874		    ("softdep_setup_directory_change: bad jaddref %p",
8875		    jaddref));
8876		jaddref->ja_diroff = dp->i_offset;
8877		jaddref->ja_diradd = dap;
8878		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
8879		    dap, da_pdlist);
8880		add_to_journal(&jaddref->ja_list);
8881	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8882		dap->da_state |= COMPLETE;
8883		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8884		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
8885	} else {
8886		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
8887		    dap, da_pdlist);
8888		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8889	}
8890	/*
8891	 * If we're making a new name for a directory that has not been
8892	 * committed when need to move the dot and dotdot references to
8893	 * this new name.
8894	 */
8895	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
8896		merge_diradd(inodedep, dap);
8897	FREE_LOCK(&lk);
8898}
8899
8900/*
8901 * Called whenever the link count on an inode is changed.
8902 * It creates an inode dependency so that the new reference(s)
8903 * to the inode cannot be committed to disk until the updated
8904 * inode has been written.
8905 */
8906void
8907softdep_change_linkcnt(ip)
8908	struct inode *ip;	/* the inode with the increased link count */
8909{
8910	struct inodedep *inodedep;
8911
8912	ACQUIRE_LOCK(&lk);
8913	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
8914	if (ip->i_nlink < ip->i_effnlink)
8915		panic("softdep_change_linkcnt: bad delta");
8916	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
8917	FREE_LOCK(&lk);
8918}
8919
8920/*
8921 * Attach a sbdep dependency to the superblock buf so that we can keep
8922 * track of the head of the linked list of referenced but unlinked inodes.
8923 */
8924void
8925softdep_setup_sbupdate(ump, fs, bp)
8926	struct ufsmount *ump;
8927	struct fs *fs;
8928	struct buf *bp;
8929{
8930	struct sbdep *sbdep;
8931	struct worklist *wk;
8932
8933	if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0)
8934		return;
8935	LIST_FOREACH(wk, &bp->b_dep, wk_list)
8936		if (wk->wk_type == D_SBDEP)
8937			break;
8938	if (wk != NULL)
8939		return;
8940	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
8941	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
8942	sbdep->sb_fs = fs;
8943	sbdep->sb_ump = ump;
8944	ACQUIRE_LOCK(&lk);
8945	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
8946	FREE_LOCK(&lk);
8947}
8948
8949/*
8950 * Return the first unlinked inodedep which is ready to be the head of the
8951 * list.  The inodedep and all those after it must have valid next pointers.
8952 */
8953static struct inodedep *
8954first_unlinked_inodedep(ump)
8955	struct ufsmount *ump;
8956{
8957	struct inodedep *inodedep;
8958	struct inodedep *idp;
8959
8960	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
8961	    inodedep; inodedep = idp) {
8962		if ((inodedep->id_state & UNLINKNEXT) == 0)
8963			return (NULL);
8964		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
8965		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
8966			break;
8967		if ((inodedep->id_state & UNLINKPREV) == 0)
8968			panic("first_unlinked_inodedep: prev != next");
8969	}
8970	if (inodedep == NULL)
8971		return (NULL);
8972
8973	return (inodedep);
8974}
8975
8976/*
8977 * Set the sujfree unlinked head pointer prior to writing a superblock.
8978 */
8979static void
8980initiate_write_sbdep(sbdep)
8981	struct sbdep *sbdep;
8982{
8983	struct inodedep *inodedep;
8984	struct fs *bpfs;
8985	struct fs *fs;
8986
8987	bpfs = sbdep->sb_fs;
8988	fs = sbdep->sb_ump->um_fs;
8989	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
8990	if (inodedep) {
8991		fs->fs_sujfree = inodedep->id_ino;
8992		inodedep->id_state |= UNLINKPREV;
8993	} else
8994		fs->fs_sujfree = 0;
8995	bpfs->fs_sujfree = fs->fs_sujfree;
8996}
8997
8998/*
8999 * After a superblock is written determine whether it must be written again
9000 * due to a changing unlinked list head.
9001 */
9002static int
9003handle_written_sbdep(sbdep, bp)
9004	struct sbdep *sbdep;
9005	struct buf *bp;
9006{
9007	struct inodedep *inodedep;
9008	struct mount *mp;
9009	struct fs *fs;
9010
9011	fs = sbdep->sb_fs;
9012	mp = UFSTOVFS(sbdep->sb_ump);
9013	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9014	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9015	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9016		bdirty(bp);
9017		return (1);
9018	}
9019	WORKITEM_FREE(sbdep, D_SBDEP);
9020	if (fs->fs_sujfree == 0)
9021		return (0);
9022	if (inodedep_lookup(mp, fs->fs_sujfree, 0, &inodedep) == 0)
9023		panic("handle_written_sbdep: lost inodedep");
9024	/*
9025	 * Now that we have a record of this inode in stable store allow it
9026	 * to be written to free up pending work.  Inodes may see a lot of
9027	 * write activity after they are unlinked which we must not hold up.
9028	 */
9029	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9030		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9031			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9032			    inodedep, inodedep->id_state);
9033		if (inodedep->id_state & UNLINKONLIST)
9034			break;
9035		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9036	}
9037
9038	return (0);
9039}
9040
9041/*
9042 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9043 */
9044static void
9045unlinked_inodedep(mp, inodedep)
9046	struct mount *mp;
9047	struct inodedep *inodedep;
9048{
9049	struct ufsmount *ump;
9050
9051	if (MOUNTEDSUJ(mp) == 0)
9052		return;
9053	ump = VFSTOUFS(mp);
9054	ump->um_fs->fs_fmod = 1;
9055	inodedep->id_state |= UNLINKED;
9056	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9057}
9058
9059/*
9060 * Remove an inodedep from the unlinked inodedep list.  This may require
9061 * disk writes if the inode has made it that far.
9062 */
9063static void
9064clear_unlinked_inodedep(inodedep)
9065	struct inodedep *inodedep;
9066{
9067	struct ufsmount *ump;
9068	struct inodedep *idp;
9069	struct inodedep *idn;
9070	struct fs *fs;
9071	struct buf *bp;
9072	ino_t ino;
9073	ino_t nino;
9074	ino_t pino;
9075	int error;
9076
9077	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9078	fs = ump->um_fs;
9079	ino = inodedep->id_ino;
9080	error = 0;
9081	for (;;) {
9082		/*
9083		 * If nothing has yet been written simply remove us from
9084		 * the in memory list and return.  This is the most common
9085		 * case where handle_workitem_remove() loses the final
9086		 * reference.
9087		 */
9088		if ((inodedep->id_state & UNLINKLINKS) == 0)
9089			break;
9090		/*
9091		 * If we have a NEXT pointer and no PREV pointer we can simply
9092		 * clear NEXT's PREV and remove ourselves from the list.  Be
9093		 * careful not to clear PREV if the superblock points at
9094		 * next as well.
9095		 */
9096		idn = TAILQ_NEXT(inodedep, id_unlinked);
9097		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9098			if (idn && fs->fs_sujfree != idn->id_ino)
9099				idn->id_state &= ~UNLINKPREV;
9100			break;
9101		}
9102		/*
9103		 * Here we have an inodedep which is actually linked into
9104		 * the list.  We must remove it by forcing a write to the
9105		 * link before us, whether it be the superblock or an inode.
9106		 * Unfortunately the list may change while we're waiting
9107		 * on the buf lock for either resource so we must loop until
9108		 * we lock the right one.  If both the superblock and an
9109		 * inode point to this inode we must clear the inode first
9110		 * followed by the superblock.
9111		 */
9112		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9113		pino = 0;
9114		if (idp && (idp->id_state & UNLINKNEXT))
9115			pino = idp->id_ino;
9116		FREE_LOCK(&lk);
9117		if (pino == 0)
9118			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9119			    (int)fs->fs_sbsize, 0, 0, 0);
9120		else
9121			error = bread(ump->um_devvp,
9122			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9123			    (int)fs->fs_bsize, NOCRED, &bp);
9124		ACQUIRE_LOCK(&lk);
9125		if (error)
9126			break;
9127		/* If the list has changed restart the loop. */
9128		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9129		nino = 0;
9130		if (idp && (idp->id_state & UNLINKNEXT))
9131			nino = idp->id_ino;
9132		if (nino != pino ||
9133		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9134			FREE_LOCK(&lk);
9135			brelse(bp);
9136			ACQUIRE_LOCK(&lk);
9137			continue;
9138		}
9139		/*
9140		 * Remove us from the in memory list.  After this we cannot
9141		 * access the inodedep.
9142		 */
9143		idn = TAILQ_NEXT(inodedep, id_unlinked);
9144		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
9145		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9146		/*
9147		 * Determine the next inode number.
9148		 */
9149		nino = 0;
9150		if (idn) {
9151			/*
9152			 * If next isn't on the list we can just clear prev's
9153			 * state and schedule it to be fixed later.  No need
9154			 * to synchronously write if we're not in the real
9155			 * list.
9156			 */
9157			if ((idn->id_state & UNLINKPREV) == 0 && pino != 0) {
9158				idp->id_state &= ~UNLINKNEXT;
9159				if ((idp->id_state & ONWORKLIST) == 0)
9160					WORKLIST_INSERT(&bp->b_dep,
9161					    &idp->id_list);
9162				FREE_LOCK(&lk);
9163				bawrite(bp);
9164				ACQUIRE_LOCK(&lk);
9165				return;
9166			}
9167			nino = idn->id_ino;
9168		}
9169		FREE_LOCK(&lk);
9170		/*
9171		 * The predecessor's next pointer is manually updated here
9172		 * so that the NEXT flag is never cleared for an element
9173		 * that is in the list.
9174		 */
9175		if (pino == 0) {
9176			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9177			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9178			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9179			    bp);
9180		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9181			((struct ufs1_dinode *)bp->b_data +
9182			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9183		else
9184			((struct ufs2_dinode *)bp->b_data +
9185			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9186		/*
9187		 * If the bwrite fails we have no recourse to recover.  The
9188		 * filesystem is corrupted already.
9189		 */
9190		bwrite(bp);
9191		ACQUIRE_LOCK(&lk);
9192		/*
9193		 * If the superblock pointer still needs to be cleared force
9194		 * a write here.
9195		 */
9196		if (fs->fs_sujfree == ino) {
9197			FREE_LOCK(&lk);
9198			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9199			    (int)fs->fs_sbsize, 0, 0, 0);
9200			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9201			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9202			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9203			    bp);
9204			bwrite(bp);
9205			ACQUIRE_LOCK(&lk);
9206		}
9207		if (fs->fs_sujfree != ino)
9208			return;
9209		panic("clear_unlinked_inodedep: Failed to clear free head");
9210	}
9211	if (inodedep->id_ino == fs->fs_sujfree)
9212		panic("clear_unlinked_inodedep: Freeing head of free list");
9213	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
9214	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9215	return;
9216}
9217
9218/*
9219 * This workitem decrements the inode's link count.
9220 * If the link count reaches zero, the file is removed.
9221 */
9222static int
9223handle_workitem_remove(dirrem, flags)
9224	struct dirrem *dirrem;
9225	int flags;
9226{
9227	struct inodedep *inodedep;
9228	struct workhead dotdotwk;
9229	struct worklist *wk;
9230	struct ufsmount *ump;
9231	struct mount *mp;
9232	struct vnode *vp;
9233	struct inode *ip;
9234	ino_t oldinum;
9235
9236	if (dirrem->dm_state & ONWORKLIST)
9237		panic("handle_workitem_remove: dirrem %p still on worklist",
9238		    dirrem);
9239	oldinum = dirrem->dm_oldinum;
9240	mp = dirrem->dm_list.wk_mp;
9241	ump = VFSTOUFS(mp);
9242	flags |= LK_EXCLUSIVE;
9243	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9244		return (EBUSY);
9245	ip = VTOI(vp);
9246	ACQUIRE_LOCK(&lk);
9247	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9248		panic("handle_workitem_remove: lost inodedep");
9249	if (dirrem->dm_state & ONDEPLIST)
9250		LIST_REMOVE(dirrem, dm_inonext);
9251	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9252	    ("handle_workitem_remove:  Journal entries not written."));
9253
9254	/*
9255	 * Move all dependencies waiting on the remove to complete
9256	 * from the dirrem to the inode inowait list to be completed
9257	 * after the inode has been updated and written to disk.  Any
9258	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9259	 * is removed.
9260	 */
9261	LIST_INIT(&dotdotwk);
9262	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9263		WORKLIST_REMOVE(wk);
9264		if (wk->wk_state & MKDIR_PARENT) {
9265			wk->wk_state &= ~MKDIR_PARENT;
9266			WORKLIST_INSERT(&dotdotwk, wk);
9267			continue;
9268		}
9269		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9270	}
9271	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9272	/*
9273	 * Normal file deletion.
9274	 */
9275	if ((dirrem->dm_state & RMDIR) == 0) {
9276		ip->i_nlink--;
9277		DIP_SET(ip, i_nlink, ip->i_nlink);
9278		ip->i_flag |= IN_CHANGE;
9279		if (ip->i_nlink < ip->i_effnlink)
9280			panic("handle_workitem_remove: bad file delta");
9281		if (ip->i_nlink == 0)
9282			unlinked_inodedep(mp, inodedep);
9283		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9284		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9285		    ("handle_workitem_remove: worklist not empty. %s",
9286		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9287		WORKITEM_FREE(dirrem, D_DIRREM);
9288		FREE_LOCK(&lk);
9289		goto out;
9290	}
9291	/*
9292	 * Directory deletion. Decrement reference count for both the
9293	 * just deleted parent directory entry and the reference for ".".
9294	 * Arrange to have the reference count on the parent decremented
9295	 * to account for the loss of "..".
9296	 */
9297	ip->i_nlink -= 2;
9298	DIP_SET(ip, i_nlink, ip->i_nlink);
9299	ip->i_flag |= IN_CHANGE;
9300	if (ip->i_nlink < ip->i_effnlink)
9301		panic("handle_workitem_remove: bad dir delta");
9302	if (ip->i_nlink == 0)
9303		unlinked_inodedep(mp, inodedep);
9304	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9305	/*
9306	 * Rename a directory to a new parent. Since, we are both deleting
9307	 * and creating a new directory entry, the link count on the new
9308	 * directory should not change. Thus we skip the followup dirrem.
9309	 */
9310	if (dirrem->dm_state & DIRCHG) {
9311		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9312		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9313		WORKITEM_FREE(dirrem, D_DIRREM);
9314		FREE_LOCK(&lk);
9315		goto out;
9316	}
9317	dirrem->dm_state = ONDEPLIST;
9318	dirrem->dm_oldinum = dirrem->dm_dirinum;
9319	/*
9320	 * Place the dirrem on the parent's diremhd list.
9321	 */
9322	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9323		panic("handle_workitem_remove: lost dir inodedep");
9324	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9325	/*
9326	 * If the allocated inode has never been written to disk, then
9327	 * the on-disk inode is zero'ed and we can remove the file
9328	 * immediately.  When journaling if the inode has been marked
9329	 * unlinked and not DEPCOMPLETE we know it can never be written.
9330	 */
9331	inodedep_lookup(mp, oldinum, 0, &inodedep);
9332	if (inodedep == NULL ||
9333	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9334	    check_inode_unwritten(inodedep)) {
9335		FREE_LOCK(&lk);
9336		vput(vp);
9337		return handle_workitem_remove(dirrem, flags);
9338	}
9339	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9340	FREE_LOCK(&lk);
9341	ip->i_flag |= IN_CHANGE;
9342out:
9343	ffs_update(vp, 0);
9344	vput(vp);
9345	return (0);
9346}
9347
9348/*
9349 * Inode de-allocation dependencies.
9350 *
9351 * When an inode's link count is reduced to zero, it can be de-allocated. We
9352 * found it convenient to postpone de-allocation until after the inode is
9353 * written to disk with its new link count (zero).  At this point, all of the
9354 * on-disk inode's block pointers are nullified and, with careful dependency
9355 * list ordering, all dependencies related to the inode will be satisfied and
9356 * the corresponding dependency structures de-allocated.  So, if/when the
9357 * inode is reused, there will be no mixing of old dependencies with new
9358 * ones.  This artificial dependency is set up by the block de-allocation
9359 * procedure above (softdep_setup_freeblocks) and completed by the
9360 * following procedure.
9361 */
9362static void
9363handle_workitem_freefile(freefile)
9364	struct freefile *freefile;
9365{
9366	struct workhead wkhd;
9367	struct fs *fs;
9368	struct inodedep *idp;
9369	struct ufsmount *ump;
9370	int error;
9371
9372	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9373	fs = ump->um_fs;
9374#ifdef DEBUG
9375	ACQUIRE_LOCK(&lk);
9376	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9377	FREE_LOCK(&lk);
9378	if (error)
9379		panic("handle_workitem_freefile: inodedep %p survived", idp);
9380#endif
9381	UFS_LOCK(ump);
9382	fs->fs_pendinginodes -= 1;
9383	UFS_UNLOCK(ump);
9384	LIST_INIT(&wkhd);
9385	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9386	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9387	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9388		softdep_error("handle_workitem_freefile", error);
9389	ACQUIRE_LOCK(&lk);
9390	WORKITEM_FREE(freefile, D_FREEFILE);
9391	FREE_LOCK(&lk);
9392}
9393
9394
9395/*
9396 * Helper function which unlinks marker element from work list and returns
9397 * the next element on the list.
9398 */
9399static __inline struct worklist *
9400markernext(struct worklist *marker)
9401{
9402	struct worklist *next;
9403
9404	next = LIST_NEXT(marker, wk_list);
9405	LIST_REMOVE(marker, wk_list);
9406	return next;
9407}
9408
9409/*
9410 * Disk writes.
9411 *
9412 * The dependency structures constructed above are most actively used when file
9413 * system blocks are written to disk.  No constraints are placed on when a
9414 * block can be written, but unsatisfied update dependencies are made safe by
9415 * modifying (or replacing) the source memory for the duration of the disk
9416 * write.  When the disk write completes, the memory block is again brought
9417 * up-to-date.
9418 *
9419 * In-core inode structure reclamation.
9420 *
9421 * Because there are a finite number of "in-core" inode structures, they are
9422 * reused regularly.  By transferring all inode-related dependencies to the
9423 * in-memory inode block and indexing them separately (via "inodedep"s), we
9424 * can allow "in-core" inode structures to be reused at any time and avoid
9425 * any increase in contention.
9426 *
9427 * Called just before entering the device driver to initiate a new disk I/O.
9428 * The buffer must be locked, thus, no I/O completion operations can occur
9429 * while we are manipulating its associated dependencies.
9430 */
9431static void
9432softdep_disk_io_initiation(bp)
9433	struct buf *bp;		/* structure describing disk write to occur */
9434{
9435	struct worklist *wk;
9436	struct worklist marker;
9437	struct inodedep *inodedep;
9438	struct freeblks *freeblks;
9439	struct jblkdep *jblkdep;
9440	struct newblk *newblk;
9441
9442	/*
9443	 * We only care about write operations. There should never
9444	 * be dependencies for reads.
9445	 */
9446	if (bp->b_iocmd != BIO_WRITE)
9447		panic("softdep_disk_io_initiation: not write");
9448
9449	if (bp->b_vflags & BV_BKGRDINPROG)
9450		panic("softdep_disk_io_initiation: Writing buffer with "
9451		    "background write in progress: %p", bp);
9452
9453	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9454	PHOLD(curproc);			/* Don't swap out kernel stack */
9455
9456	ACQUIRE_LOCK(&lk);
9457	/*
9458	 * Do any necessary pre-I/O processing.
9459	 */
9460	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9461	     wk = markernext(&marker)) {
9462		LIST_INSERT_AFTER(wk, &marker, wk_list);
9463		switch (wk->wk_type) {
9464
9465		case D_PAGEDEP:
9466			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9467			continue;
9468
9469		case D_INODEDEP:
9470			inodedep = WK_INODEDEP(wk);
9471			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9472				initiate_write_inodeblock_ufs1(inodedep, bp);
9473			else
9474				initiate_write_inodeblock_ufs2(inodedep, bp);
9475			continue;
9476
9477		case D_INDIRDEP:
9478			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9479			continue;
9480
9481		case D_BMSAFEMAP:
9482			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9483			continue;
9484
9485		case D_JSEG:
9486			WK_JSEG(wk)->js_buf = NULL;
9487			continue;
9488
9489		case D_FREEBLKS:
9490			freeblks = WK_FREEBLKS(wk);
9491			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9492			/*
9493			 * We have to wait for the freeblks to be journaled
9494			 * before we can write an inodeblock with updated
9495			 * pointers.  Be careful to arrange the marker so
9496			 * we revisit the freeblks if it's not removed by
9497			 * the first jwait().
9498			 */
9499			if (jblkdep != NULL) {
9500				LIST_REMOVE(&marker, wk_list);
9501				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9502				jwait(&jblkdep->jb_list, MNT_WAIT);
9503			}
9504			continue;
9505		case D_ALLOCDIRECT:
9506		case D_ALLOCINDIR:
9507			/*
9508			 * We have to wait for the jnewblk to be journaled
9509			 * before we can write to a block if the contents
9510			 * may be confused with an earlier file's indirect
9511			 * at recovery time.  Handle the marker as described
9512			 * above.
9513			 */
9514			newblk = WK_NEWBLK(wk);
9515			if (newblk->nb_jnewblk != NULL &&
9516			    indirblk_lookup(newblk->nb_list.wk_mp,
9517			    newblk->nb_newblkno)) {
9518				LIST_REMOVE(&marker, wk_list);
9519				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9520				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9521			}
9522			continue;
9523
9524		case D_SBDEP:
9525			initiate_write_sbdep(WK_SBDEP(wk));
9526			continue;
9527
9528		case D_MKDIR:
9529		case D_FREEWORK:
9530		case D_FREEDEP:
9531		case D_JSEGDEP:
9532			continue;
9533
9534		default:
9535			panic("handle_disk_io_initiation: Unexpected type %s",
9536			    TYPENAME(wk->wk_type));
9537			/* NOTREACHED */
9538		}
9539	}
9540	FREE_LOCK(&lk);
9541	PRELE(curproc);			/* Allow swapout of kernel stack */
9542}
9543
9544/*
9545 * Called from within the procedure above to deal with unsatisfied
9546 * allocation dependencies in a directory. The buffer must be locked,
9547 * thus, no I/O completion operations can occur while we are
9548 * manipulating its associated dependencies.
9549 */
9550static void
9551initiate_write_filepage(pagedep, bp)
9552	struct pagedep *pagedep;
9553	struct buf *bp;
9554{
9555	struct jremref *jremref;
9556	struct jmvref *jmvref;
9557	struct dirrem *dirrem;
9558	struct diradd *dap;
9559	struct direct *ep;
9560	int i;
9561
9562	if (pagedep->pd_state & IOSTARTED) {
9563		/*
9564		 * This can only happen if there is a driver that does not
9565		 * understand chaining. Here biodone will reissue the call
9566		 * to strategy for the incomplete buffers.
9567		 */
9568		printf("initiate_write_filepage: already started\n");
9569		return;
9570	}
9571	pagedep->pd_state |= IOSTARTED;
9572	/*
9573	 * Wait for all journal remove dependencies to hit the disk.
9574	 * We can not allow any potentially conflicting directory adds
9575	 * to be visible before removes and rollback is too difficult.
9576	 * lk may be dropped and re-acquired, however we hold the buf
9577	 * locked so the dependency can not go away.
9578	 */
9579	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9580		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9581			jwait(&jremref->jr_list, MNT_WAIT);
9582	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9583		jwait(&jmvref->jm_list, MNT_WAIT);
9584	for (i = 0; i < DAHASHSZ; i++) {
9585		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9586			ep = (struct direct *)
9587			    ((char *)bp->b_data + dap->da_offset);
9588			if (ep->d_ino != dap->da_newinum)
9589				panic("%s: dir inum %d != new %d",
9590				    "initiate_write_filepage",
9591				    ep->d_ino, dap->da_newinum);
9592			if (dap->da_state & DIRCHG)
9593				ep->d_ino = dap->da_previous->dm_oldinum;
9594			else
9595				ep->d_ino = 0;
9596			dap->da_state &= ~ATTACHED;
9597			dap->da_state |= UNDONE;
9598		}
9599	}
9600}
9601
9602/*
9603 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9604 * Note that any bug fixes made to this routine must be done in the
9605 * version found below.
9606 *
9607 * Called from within the procedure above to deal with unsatisfied
9608 * allocation dependencies in an inodeblock. The buffer must be
9609 * locked, thus, no I/O completion operations can occur while we
9610 * are manipulating its associated dependencies.
9611 */
9612static void
9613initiate_write_inodeblock_ufs1(inodedep, bp)
9614	struct inodedep *inodedep;
9615	struct buf *bp;			/* The inode block */
9616{
9617	struct allocdirect *adp, *lastadp;
9618	struct ufs1_dinode *dp;
9619	struct ufs1_dinode *sip;
9620	struct inoref *inoref;
9621	struct fs *fs;
9622	ufs_lbn_t i;
9623#ifdef INVARIANTS
9624	ufs_lbn_t prevlbn = 0;
9625#endif
9626	int deplist;
9627
9628	if (inodedep->id_state & IOSTARTED)
9629		panic("initiate_write_inodeblock_ufs1: already started");
9630	inodedep->id_state |= IOSTARTED;
9631	fs = inodedep->id_fs;
9632	dp = (struct ufs1_dinode *)bp->b_data +
9633	    ino_to_fsbo(fs, inodedep->id_ino);
9634
9635	/*
9636	 * If we're on the unlinked list but have not yet written our
9637	 * next pointer initialize it here.
9638	 */
9639	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9640		struct inodedep *inon;
9641
9642		inon = TAILQ_NEXT(inodedep, id_unlinked);
9643		dp->di_freelink = inon ? inon->id_ino : 0;
9644	}
9645	/*
9646	 * If the bitmap is not yet written, then the allocated
9647	 * inode cannot be written to disk.
9648	 */
9649	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9650		if (inodedep->id_savedino1 != NULL)
9651			panic("initiate_write_inodeblock_ufs1: I/O underway");
9652		FREE_LOCK(&lk);
9653		sip = malloc(sizeof(struct ufs1_dinode),
9654		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9655		ACQUIRE_LOCK(&lk);
9656		inodedep->id_savedino1 = sip;
9657		*inodedep->id_savedino1 = *dp;
9658		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9659		dp->di_gen = inodedep->id_savedino1->di_gen;
9660		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9661		return;
9662	}
9663	/*
9664	 * If no dependencies, then there is nothing to roll back.
9665	 */
9666	inodedep->id_savedsize = dp->di_size;
9667	inodedep->id_savedextsize = 0;
9668	inodedep->id_savednlink = dp->di_nlink;
9669	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9670	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9671		return;
9672	/*
9673	 * Revert the link count to that of the first unwritten journal entry.
9674	 */
9675	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9676	if (inoref)
9677		dp->di_nlink = inoref->if_nlink;
9678	/*
9679	 * Set the dependencies to busy.
9680	 */
9681	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9682	     adp = TAILQ_NEXT(adp, ad_next)) {
9683#ifdef INVARIANTS
9684		if (deplist != 0 && prevlbn >= adp->ad_offset)
9685			panic("softdep_write_inodeblock: lbn order");
9686		prevlbn = adp->ad_offset;
9687		if (adp->ad_offset < NDADDR &&
9688		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9689			panic("%s: direct pointer #%jd mismatch %d != %jd",
9690			    "softdep_write_inodeblock",
9691			    (intmax_t)adp->ad_offset,
9692			    dp->di_db[adp->ad_offset],
9693			    (intmax_t)adp->ad_newblkno);
9694		if (adp->ad_offset >= NDADDR &&
9695		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9696			panic("%s: indirect pointer #%jd mismatch %d != %jd",
9697			    "softdep_write_inodeblock",
9698			    (intmax_t)adp->ad_offset - NDADDR,
9699			    dp->di_ib[adp->ad_offset - NDADDR],
9700			    (intmax_t)adp->ad_newblkno);
9701		deplist |= 1 << adp->ad_offset;
9702		if ((adp->ad_state & ATTACHED) == 0)
9703			panic("softdep_write_inodeblock: Unknown state 0x%x",
9704			    adp->ad_state);
9705#endif /* INVARIANTS */
9706		adp->ad_state &= ~ATTACHED;
9707		adp->ad_state |= UNDONE;
9708	}
9709	/*
9710	 * The on-disk inode cannot claim to be any larger than the last
9711	 * fragment that has been written. Otherwise, the on-disk inode
9712	 * might have fragments that were not the last block in the file
9713	 * which would corrupt the filesystem.
9714	 */
9715	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9716	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9717		if (adp->ad_offset >= NDADDR)
9718			break;
9719		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9720		/* keep going until hitting a rollback to a frag */
9721		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9722			continue;
9723		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9724		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9725#ifdef INVARIANTS
9726			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9727				panic("softdep_write_inodeblock: lost dep1");
9728#endif /* INVARIANTS */
9729			dp->di_db[i] = 0;
9730		}
9731		for (i = 0; i < NIADDR; i++) {
9732#ifdef INVARIANTS
9733			if (dp->di_ib[i] != 0 &&
9734			    (deplist & ((1 << NDADDR) << i)) == 0)
9735				panic("softdep_write_inodeblock: lost dep2");
9736#endif /* INVARIANTS */
9737			dp->di_ib[i] = 0;
9738		}
9739		return;
9740	}
9741	/*
9742	 * If we have zero'ed out the last allocated block of the file,
9743	 * roll back the size to the last currently allocated block.
9744	 * We know that this last allocated block is a full-sized as
9745	 * we already checked for fragments in the loop above.
9746	 */
9747	if (lastadp != NULL &&
9748	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9749		for (i = lastadp->ad_offset; i >= 0; i--)
9750			if (dp->di_db[i] != 0)
9751				break;
9752		dp->di_size = (i + 1) * fs->fs_bsize;
9753	}
9754	/*
9755	 * The only dependencies are for indirect blocks.
9756	 *
9757	 * The file size for indirect block additions is not guaranteed.
9758	 * Such a guarantee would be non-trivial to achieve. The conventional
9759	 * synchronous write implementation also does not make this guarantee.
9760	 * Fsck should catch and fix discrepancies. Arguably, the file size
9761	 * can be over-estimated without destroying integrity when the file
9762	 * moves into the indirect blocks (i.e., is large). If we want to
9763	 * postpone fsck, we are stuck with this argument.
9764	 */
9765	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
9766		dp->di_ib[adp->ad_offset - NDADDR] = 0;
9767}
9768
9769/*
9770 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
9771 * Note that any bug fixes made to this routine must be done in the
9772 * version found above.
9773 *
9774 * Called from within the procedure above to deal with unsatisfied
9775 * allocation dependencies in an inodeblock. The buffer must be
9776 * locked, thus, no I/O completion operations can occur while we
9777 * are manipulating its associated dependencies.
9778 */
9779static void
9780initiate_write_inodeblock_ufs2(inodedep, bp)
9781	struct inodedep *inodedep;
9782	struct buf *bp;			/* The inode block */
9783{
9784	struct allocdirect *adp, *lastadp;
9785	struct ufs2_dinode *dp;
9786	struct ufs2_dinode *sip;
9787	struct inoref *inoref;
9788	struct fs *fs;
9789	ufs_lbn_t i;
9790#ifdef INVARIANTS
9791	ufs_lbn_t prevlbn = 0;
9792#endif
9793	int deplist;
9794
9795	if (inodedep->id_state & IOSTARTED)
9796		panic("initiate_write_inodeblock_ufs2: already started");
9797	inodedep->id_state |= IOSTARTED;
9798	fs = inodedep->id_fs;
9799	dp = (struct ufs2_dinode *)bp->b_data +
9800	    ino_to_fsbo(fs, inodedep->id_ino);
9801
9802	/*
9803	 * If we're on the unlinked list but have not yet written our
9804	 * next pointer initialize it here.
9805	 */
9806	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9807		struct inodedep *inon;
9808
9809		inon = TAILQ_NEXT(inodedep, id_unlinked);
9810		dp->di_freelink = inon ? inon->id_ino : 0;
9811	}
9812	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) ==
9813	    (UNLINKED | UNLINKNEXT)) {
9814		struct inodedep *inon;
9815		ino_t freelink;
9816
9817		inon = TAILQ_NEXT(inodedep, id_unlinked);
9818		freelink = inon ? inon->id_ino : 0;
9819		if (freelink != dp->di_freelink)
9820			panic("ino %p(0x%X) %d, %d != %d",
9821			    inodedep, inodedep->id_state, inodedep->id_ino,
9822			    freelink, dp->di_freelink);
9823	}
9824	/*
9825	 * If the bitmap is not yet written, then the allocated
9826	 * inode cannot be written to disk.
9827	 */
9828	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9829		if (inodedep->id_savedino2 != NULL)
9830			panic("initiate_write_inodeblock_ufs2: I/O underway");
9831		FREE_LOCK(&lk);
9832		sip = malloc(sizeof(struct ufs2_dinode),
9833		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9834		ACQUIRE_LOCK(&lk);
9835		inodedep->id_savedino2 = sip;
9836		*inodedep->id_savedino2 = *dp;
9837		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
9838		dp->di_gen = inodedep->id_savedino2->di_gen;
9839		dp->di_freelink = inodedep->id_savedino2->di_freelink;
9840		return;
9841	}
9842	/*
9843	 * If no dependencies, then there is nothing to roll back.
9844	 */
9845	inodedep->id_savedsize = dp->di_size;
9846	inodedep->id_savedextsize = dp->di_extsize;
9847	inodedep->id_savednlink = dp->di_nlink;
9848	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9849	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
9850	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9851		return;
9852	/*
9853	 * Revert the link count to that of the first unwritten journal entry.
9854	 */
9855	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9856	if (inoref)
9857		dp->di_nlink = inoref->if_nlink;
9858
9859	/*
9860	 * Set the ext data dependencies to busy.
9861	 */
9862	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
9863	     adp = TAILQ_NEXT(adp, ad_next)) {
9864#ifdef INVARIANTS
9865		if (deplist != 0 && prevlbn >= adp->ad_offset)
9866			panic("softdep_write_inodeblock: lbn order");
9867		prevlbn = adp->ad_offset;
9868		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
9869			panic("%s: direct pointer #%jd mismatch %jd != %jd",
9870			    "softdep_write_inodeblock",
9871			    (intmax_t)adp->ad_offset,
9872			    (intmax_t)dp->di_extb[adp->ad_offset],
9873			    (intmax_t)adp->ad_newblkno);
9874		deplist |= 1 << adp->ad_offset;
9875		if ((adp->ad_state & ATTACHED) == 0)
9876			panic("softdep_write_inodeblock: Unknown state 0x%x",
9877			    adp->ad_state);
9878#endif /* INVARIANTS */
9879		adp->ad_state &= ~ATTACHED;
9880		adp->ad_state |= UNDONE;
9881	}
9882	/*
9883	 * The on-disk inode cannot claim to be any larger than the last
9884	 * fragment that has been written. Otherwise, the on-disk inode
9885	 * might have fragments that were not the last block in the ext
9886	 * data which would corrupt the filesystem.
9887	 */
9888	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
9889	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9890		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
9891		/* keep going until hitting a rollback to a frag */
9892		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9893			continue;
9894		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9895		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
9896#ifdef INVARIANTS
9897			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
9898				panic("softdep_write_inodeblock: lost dep1");
9899#endif /* INVARIANTS */
9900			dp->di_extb[i] = 0;
9901		}
9902		lastadp = NULL;
9903		break;
9904	}
9905	/*
9906	 * If we have zero'ed out the last allocated block of the ext
9907	 * data, roll back the size to the last currently allocated block.
9908	 * We know that this last allocated block is a full-sized as
9909	 * we already checked for fragments in the loop above.
9910	 */
9911	if (lastadp != NULL &&
9912	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9913		for (i = lastadp->ad_offset; i >= 0; i--)
9914			if (dp->di_extb[i] != 0)
9915				break;
9916		dp->di_extsize = (i + 1) * fs->fs_bsize;
9917	}
9918	/*
9919	 * Set the file data dependencies to busy.
9920	 */
9921	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9922	     adp = TAILQ_NEXT(adp, ad_next)) {
9923#ifdef INVARIANTS
9924		if (deplist != 0 && prevlbn >= adp->ad_offset)
9925			panic("softdep_write_inodeblock: lbn order");
9926		if ((adp->ad_state & ATTACHED) == 0)
9927			panic("inodedep %p and adp %p not attached", inodedep, adp);
9928		prevlbn = adp->ad_offset;
9929		if (adp->ad_offset < NDADDR &&
9930		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9931			panic("%s: direct pointer #%jd mismatch %jd != %jd",
9932			    "softdep_write_inodeblock",
9933			    (intmax_t)adp->ad_offset,
9934			    (intmax_t)dp->di_db[adp->ad_offset],
9935			    (intmax_t)adp->ad_newblkno);
9936		if (adp->ad_offset >= NDADDR &&
9937		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9938			panic("%s indirect pointer #%jd mismatch %jd != %jd",
9939			    "softdep_write_inodeblock:",
9940			    (intmax_t)adp->ad_offset - NDADDR,
9941			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
9942			    (intmax_t)adp->ad_newblkno);
9943		deplist |= 1 << adp->ad_offset;
9944		if ((adp->ad_state & ATTACHED) == 0)
9945			panic("softdep_write_inodeblock: Unknown state 0x%x",
9946			    adp->ad_state);
9947#endif /* INVARIANTS */
9948		adp->ad_state &= ~ATTACHED;
9949		adp->ad_state |= UNDONE;
9950	}
9951	/*
9952	 * The on-disk inode cannot claim to be any larger than the last
9953	 * fragment that has been written. Otherwise, the on-disk inode
9954	 * might have fragments that were not the last block in the file
9955	 * which would corrupt the filesystem.
9956	 */
9957	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9958	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9959		if (adp->ad_offset >= NDADDR)
9960			break;
9961		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9962		/* keep going until hitting a rollback to a frag */
9963		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9964			continue;
9965		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9966		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9967#ifdef INVARIANTS
9968			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9969				panic("softdep_write_inodeblock: lost dep2");
9970#endif /* INVARIANTS */
9971			dp->di_db[i] = 0;
9972		}
9973		for (i = 0; i < NIADDR; i++) {
9974#ifdef INVARIANTS
9975			if (dp->di_ib[i] != 0 &&
9976			    (deplist & ((1 << NDADDR) << i)) == 0)
9977				panic("softdep_write_inodeblock: lost dep3");
9978#endif /* INVARIANTS */
9979			dp->di_ib[i] = 0;
9980		}
9981		return;
9982	}
9983	/*
9984	 * If we have zero'ed out the last allocated block of the file,
9985	 * roll back the size to the last currently allocated block.
9986	 * We know that this last allocated block is a full-sized as
9987	 * we already checked for fragments in the loop above.
9988	 */
9989	if (lastadp != NULL &&
9990	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9991		for (i = lastadp->ad_offset; i >= 0; i--)
9992			if (dp->di_db[i] != 0)
9993				break;
9994		dp->di_size = (i + 1) * fs->fs_bsize;
9995	}
9996	/*
9997	 * The only dependencies are for indirect blocks.
9998	 *
9999	 * The file size for indirect block additions is not guaranteed.
10000	 * Such a guarantee would be non-trivial to achieve. The conventional
10001	 * synchronous write implementation also does not make this guarantee.
10002	 * Fsck should catch and fix discrepancies. Arguably, the file size
10003	 * can be over-estimated without destroying integrity when the file
10004	 * moves into the indirect blocks (i.e., is large). If we want to
10005	 * postpone fsck, we are stuck with this argument.
10006	 */
10007	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10008		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10009}
10010
10011/*
10012 * Cancel an indirdep as a result of truncation.  Release all of the
10013 * children allocindirs and place their journal work on the appropriate
10014 * list.
10015 */
10016static void
10017cancel_indirdep(indirdep, bp, freeblks)
10018	struct indirdep *indirdep;
10019	struct buf *bp;
10020	struct freeblks *freeblks;
10021{
10022	struct allocindir *aip;
10023
10024	/*
10025	 * None of the indirect pointers will ever be visible,
10026	 * so they can simply be tossed. GOINGAWAY ensures
10027	 * that allocated pointers will be saved in the buffer
10028	 * cache until they are freed. Note that they will
10029	 * only be able to be found by their physical address
10030	 * since the inode mapping the logical address will
10031	 * be gone. The save buffer used for the safe copy
10032	 * was allocated in setup_allocindir_phase2 using
10033	 * the physical address so it could be used for this
10034	 * purpose. Hence we swap the safe copy with the real
10035	 * copy, allowing the safe copy to be freed and holding
10036	 * on to the real copy for later use in indir_trunc.
10037	 */
10038	if (indirdep->ir_state & GOINGAWAY)
10039		panic("cancel_indirdep: already gone");
10040	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10041		indirdep->ir_state |= DEPCOMPLETE;
10042		LIST_REMOVE(indirdep, ir_next);
10043	}
10044	indirdep->ir_state |= GOINGAWAY;
10045	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
10046	/*
10047	 * Pass in bp for blocks still have journal writes
10048	 * pending so we can cancel them on their own.
10049	 */
10050	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10051		cancel_allocindir(aip, bp, freeblks, 0);
10052	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10053		cancel_allocindir(aip, NULL, freeblks, 0);
10054	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10055		cancel_allocindir(aip, NULL, freeblks, 0);
10056	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10057		cancel_allocindir(aip, NULL, freeblks, 0);
10058	/*
10059	 * If there are pending partial truncations we need to keep the
10060	 * old block copy around until they complete.  This is because
10061	 * the current b_data is not a perfect superset of the available
10062	 * blocks.
10063	 */
10064	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10065		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10066	else
10067		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10068	WORKLIST_REMOVE(&indirdep->ir_list);
10069	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10070	indirdep->ir_bp = NULL;
10071	indirdep->ir_freeblks = freeblks;
10072}
10073
10074/*
10075 * Free an indirdep once it no longer has new pointers to track.
10076 */
10077static void
10078free_indirdep(indirdep)
10079	struct indirdep *indirdep;
10080{
10081
10082	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10083	    ("free_indirdep: Indir trunc list not empty."));
10084	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10085	    ("free_indirdep: Complete head not empty."));
10086	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10087	    ("free_indirdep: write head not empty."));
10088	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10089	    ("free_indirdep: done head not empty."));
10090	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10091	    ("free_indirdep: deplist head not empty."));
10092	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10093	    ("free_indirdep: %p still on newblk list.", indirdep));
10094	KASSERT(indirdep->ir_saveddata == NULL,
10095	    ("free_indirdep: %p still has saved data.", indirdep));
10096	if (indirdep->ir_state & ONWORKLIST)
10097		WORKLIST_REMOVE(&indirdep->ir_list);
10098	WORKITEM_FREE(indirdep, D_INDIRDEP);
10099}
10100
10101/*
10102 * Called before a write to an indirdep.  This routine is responsible for
10103 * rolling back pointers to a safe state which includes only those
10104 * allocindirs which have been completed.
10105 */
10106static void
10107initiate_write_indirdep(indirdep, bp)
10108	struct indirdep *indirdep;
10109	struct buf *bp;
10110{
10111
10112	indirdep->ir_state |= IOSTARTED;
10113	if (indirdep->ir_state & GOINGAWAY)
10114		panic("disk_io_initiation: indirdep gone");
10115	/*
10116	 * If there are no remaining dependencies, this will be writing
10117	 * the real pointers.
10118	 */
10119	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10120	    TAILQ_EMPTY(&indirdep->ir_trunc))
10121		return;
10122	/*
10123	 * Replace up-to-date version with safe version.
10124	 */
10125	if (indirdep->ir_saveddata == NULL) {
10126		FREE_LOCK(&lk);
10127		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10128		    M_SOFTDEP_FLAGS);
10129		ACQUIRE_LOCK(&lk);
10130	}
10131	indirdep->ir_state &= ~ATTACHED;
10132	indirdep->ir_state |= UNDONE;
10133	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10134	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10135	    bp->b_bcount);
10136}
10137
10138/*
10139 * Called when an inode has been cleared in a cg bitmap.  This finally
10140 * eliminates any canceled jaddrefs
10141 */
10142void
10143softdep_setup_inofree(mp, bp, ino, wkhd)
10144	struct mount *mp;
10145	struct buf *bp;
10146	ino_t ino;
10147	struct workhead *wkhd;
10148{
10149	struct worklist *wk, *wkn;
10150	struct inodedep *inodedep;
10151	uint8_t *inosused;
10152	struct cg *cgp;
10153	struct fs *fs;
10154
10155	ACQUIRE_LOCK(&lk);
10156	fs = VFSTOUFS(mp)->um_fs;
10157	cgp = (struct cg *)bp->b_data;
10158	inosused = cg_inosused(cgp);
10159	if (isset(inosused, ino % fs->fs_ipg))
10160		panic("softdep_setup_inofree: inode %d not freed.", ino);
10161	if (inodedep_lookup(mp, ino, 0, &inodedep))
10162		panic("softdep_setup_inofree: ino %d has existing inodedep %p",
10163		    ino, inodedep);
10164	if (wkhd) {
10165		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10166			if (wk->wk_type != D_JADDREF)
10167				continue;
10168			WORKLIST_REMOVE(wk);
10169			/*
10170			 * We can free immediately even if the jaddref
10171			 * isn't attached in a background write as now
10172			 * the bitmaps are reconciled.
10173		 	 */
10174			wk->wk_state |= COMPLETE | ATTACHED;
10175			free_jaddref(WK_JADDREF(wk));
10176		}
10177		jwork_move(&bp->b_dep, wkhd);
10178	}
10179	FREE_LOCK(&lk);
10180}
10181
10182
10183/*
10184 * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10185 * map.  Any dependencies waiting for the write to clear are added to the
10186 * buf's list and any jnewblks that are being canceled are discarded
10187 * immediately.
10188 */
10189void
10190softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10191	struct mount *mp;
10192	struct buf *bp;
10193	ufs2_daddr_t blkno;
10194	int frags;
10195	struct workhead *wkhd;
10196{
10197	struct bmsafemap *bmsafemap;
10198	struct jnewblk *jnewblk;
10199	struct worklist *wk;
10200	struct fs *fs;
10201#ifdef SUJ_DEBUG
10202	uint8_t *blksfree;
10203	struct cg *cgp;
10204	ufs2_daddr_t jstart;
10205	ufs2_daddr_t jend;
10206	ufs2_daddr_t end;
10207	long bno;
10208	int i;
10209#endif
10210
10211	ACQUIRE_LOCK(&lk);
10212	/* Lookup the bmsafemap so we track when it is dirty. */
10213	fs = VFSTOUFS(mp)->um_fs;
10214	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
10215	/*
10216	 * Detach any jnewblks which have been canceled.  They must linger
10217	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10218	 * an unjournaled allocation from hitting the disk.
10219	 */
10220	if (wkhd) {
10221		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10222			WORKLIST_REMOVE(wk);
10223			if (wk->wk_type != D_JNEWBLK) {
10224				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10225				continue;
10226			}
10227			jnewblk = WK_JNEWBLK(wk);
10228			KASSERT(jnewblk->jn_state & GOINGAWAY,
10229			    ("softdep_setup_blkfree: jnewblk not canceled."));
10230#ifdef SUJ_DEBUG
10231			/*
10232			 * Assert that this block is free in the bitmap
10233			 * before we discard the jnewblk.
10234			 */
10235			cgp = (struct cg *)bp->b_data;
10236			blksfree = cg_blksfree(cgp);
10237			bno = dtogd(fs, jnewblk->jn_blkno);
10238			for (i = jnewblk->jn_oldfrags;
10239			    i < jnewblk->jn_frags; i++) {
10240				if (isset(blksfree, bno + i))
10241					continue;
10242				panic("softdep_setup_blkfree: not free");
10243			}
10244#endif
10245			/*
10246			 * Even if it's not attached we can free immediately
10247			 * as the new bitmap is correct.
10248			 */
10249			wk->wk_state |= COMPLETE | ATTACHED;
10250			free_jnewblk(jnewblk);
10251		}
10252	}
10253
10254#ifdef SUJ_DEBUG
10255	/*
10256	 * Assert that we are not freeing a block which has an outstanding
10257	 * allocation dependency.
10258	 */
10259	fs = VFSTOUFS(mp)->um_fs;
10260	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
10261	end = blkno + frags;
10262	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10263		/*
10264		 * Don't match against blocks that will be freed when the
10265		 * background write is done.
10266		 */
10267		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10268		    (COMPLETE | DEPCOMPLETE))
10269			continue;
10270		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10271		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10272		if ((blkno >= jstart && blkno < jend) ||
10273		    (end > jstart && end <= jend)) {
10274			printf("state 0x%X %jd - %d %d dep %p\n",
10275			    jnewblk->jn_state, jnewblk->jn_blkno,
10276			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10277			    jnewblk->jn_dep);
10278			panic("softdep_setup_blkfree: "
10279			    "%jd-%jd(%d) overlaps with %jd-%jd",
10280			    blkno, end, frags, jstart, jend);
10281		}
10282	}
10283#endif
10284	FREE_LOCK(&lk);
10285}
10286
10287/*
10288 * Revert a block allocation when the journal record that describes it
10289 * is not yet written.
10290 */
10291int
10292jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10293	struct jnewblk *jnewblk;
10294	struct fs *fs;
10295	struct cg *cgp;
10296	uint8_t *blksfree;
10297{
10298	ufs1_daddr_t fragno;
10299	long cgbno, bbase;
10300	int frags, blk;
10301	int i;
10302
10303	frags = 0;
10304	cgbno = dtogd(fs, jnewblk->jn_blkno);
10305	/*
10306	 * We have to test which frags need to be rolled back.  We may
10307	 * be operating on a stale copy when doing background writes.
10308	 */
10309	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10310		if (isclr(blksfree, cgbno + i))
10311			frags++;
10312	if (frags == 0)
10313		return (0);
10314	/*
10315	 * This is mostly ffs_blkfree() sans some validation and
10316	 * superblock updates.
10317	 */
10318	if (frags == fs->fs_frag) {
10319		fragno = fragstoblks(fs, cgbno);
10320		ffs_setblock(fs, blksfree, fragno);
10321		ffs_clusteracct(fs, cgp, fragno, 1);
10322		cgp->cg_cs.cs_nbfree++;
10323	} else {
10324		cgbno += jnewblk->jn_oldfrags;
10325		bbase = cgbno - fragnum(fs, cgbno);
10326		/* Decrement the old frags.  */
10327		blk = blkmap(fs, blksfree, bbase);
10328		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10329		/* Deallocate the fragment */
10330		for (i = 0; i < frags; i++)
10331			setbit(blksfree, cgbno + i);
10332		cgp->cg_cs.cs_nffree += frags;
10333		/* Add back in counts associated with the new frags */
10334		blk = blkmap(fs, blksfree, bbase);
10335		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10336                /* If a complete block has been reassembled, account for it. */
10337		fragno = fragstoblks(fs, bbase);
10338		if (ffs_isblock(fs, blksfree, fragno)) {
10339			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10340			ffs_clusteracct(fs, cgp, fragno, 1);
10341			cgp->cg_cs.cs_nbfree++;
10342		}
10343	}
10344	stat_jnewblk++;
10345	jnewblk->jn_state &= ~ATTACHED;
10346	jnewblk->jn_state |= UNDONE;
10347
10348	return (frags);
10349}
10350
10351static void
10352initiate_write_bmsafemap(bmsafemap, bp)
10353	struct bmsafemap *bmsafemap;
10354	struct buf *bp;			/* The cg block. */
10355{
10356	struct jaddref *jaddref;
10357	struct jnewblk *jnewblk;
10358	uint8_t *inosused;
10359	uint8_t *blksfree;
10360	struct cg *cgp;
10361	struct fs *fs;
10362	ino_t ino;
10363
10364	if (bmsafemap->sm_state & IOSTARTED)
10365		panic("initiate_write_bmsafemap: Already started\n");
10366	bmsafemap->sm_state |= IOSTARTED;
10367	/*
10368	 * Clear any inode allocations which are pending journal writes.
10369	 */
10370	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10371		cgp = (struct cg *)bp->b_data;
10372		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10373		inosused = cg_inosused(cgp);
10374		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10375			ino = jaddref->ja_ino % fs->fs_ipg;
10376			/*
10377			 * If this is a background copy the inode may not
10378			 * be marked used yet.
10379			 */
10380			if (isset(inosused, ino)) {
10381				if ((jaddref->ja_mode & IFMT) == IFDIR)
10382					cgp->cg_cs.cs_ndir--;
10383				cgp->cg_cs.cs_nifree++;
10384				clrbit(inosused, ino);
10385				jaddref->ja_state &= ~ATTACHED;
10386				jaddref->ja_state |= UNDONE;
10387				stat_jaddref++;
10388			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
10389				panic("initiate_write_bmsafemap: inode %d "
10390				    "marked free", jaddref->ja_ino);
10391		}
10392	}
10393	/*
10394	 * Clear any block allocations which are pending journal writes.
10395	 */
10396	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10397		cgp = (struct cg *)bp->b_data;
10398		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10399		blksfree = cg_blksfree(cgp);
10400		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10401			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10402				continue;
10403			if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
10404				panic("initiate_write_bmsafemap: block %jd "
10405				    "marked free", jnewblk->jn_blkno);
10406		}
10407	}
10408	/*
10409	 * Move allocation lists to the written lists so they can be
10410	 * cleared once the block write is complete.
10411	 */
10412	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10413	    inodedep, id_deps);
10414	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10415	    newblk, nb_deps);
10416	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10417	    wk_list);
10418}
10419
10420/*
10421 * This routine is called during the completion interrupt
10422 * service routine for a disk write (from the procedure called
10423 * by the device driver to inform the filesystem caches of
10424 * a request completion).  It should be called early in this
10425 * procedure, before the block is made available to other
10426 * processes or other routines are called.
10427 *
10428 */
10429static void
10430softdep_disk_write_complete(bp)
10431	struct buf *bp;		/* describes the completed disk write */
10432{
10433	struct worklist *wk;
10434	struct worklist *owk;
10435	struct workhead reattach;
10436	struct freeblks *freeblks;
10437	struct buf *sbp;
10438
10439	/*
10440	 * If an error occurred while doing the write, then the data
10441	 * has not hit the disk and the dependencies cannot be unrolled.
10442	 */
10443	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10444		return;
10445	LIST_INIT(&reattach);
10446	/*
10447	 * This lock must not be released anywhere in this code segment.
10448	 */
10449	sbp = NULL;
10450	owk = NULL;
10451	ACQUIRE_LOCK(&lk);
10452	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10453		WORKLIST_REMOVE(wk);
10454		dep_write[wk->wk_type]++;
10455		if (wk == owk)
10456			panic("duplicate worklist: %p\n", wk);
10457		owk = wk;
10458		switch (wk->wk_type) {
10459
10460		case D_PAGEDEP:
10461			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10462				WORKLIST_INSERT(&reattach, wk);
10463			continue;
10464
10465		case D_INODEDEP:
10466			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10467				WORKLIST_INSERT(&reattach, wk);
10468			continue;
10469
10470		case D_BMSAFEMAP:
10471			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10472				WORKLIST_INSERT(&reattach, wk);
10473			continue;
10474
10475		case D_MKDIR:
10476			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10477			continue;
10478
10479		case D_ALLOCDIRECT:
10480			wk->wk_state |= COMPLETE;
10481			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10482			continue;
10483
10484		case D_ALLOCINDIR:
10485			wk->wk_state |= COMPLETE;
10486			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10487			continue;
10488
10489		case D_INDIRDEP:
10490			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10491				WORKLIST_INSERT(&reattach, wk);
10492			continue;
10493
10494		case D_FREEBLKS:
10495			wk->wk_state |= COMPLETE;
10496			freeblks = WK_FREEBLKS(wk);
10497			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10498			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10499				add_to_worklist(wk, WK_NODELAY);
10500			continue;
10501
10502		case D_FREEWORK:
10503			handle_written_freework(WK_FREEWORK(wk));
10504			break;
10505
10506		case D_JSEGDEP:
10507			free_jsegdep(WK_JSEGDEP(wk));
10508			continue;
10509
10510		case D_JSEG:
10511			handle_written_jseg(WK_JSEG(wk), bp);
10512			continue;
10513
10514		case D_SBDEP:
10515			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10516				WORKLIST_INSERT(&reattach, wk);
10517			continue;
10518
10519		case D_FREEDEP:
10520			free_freedep(WK_FREEDEP(wk));
10521			continue;
10522
10523		default:
10524			panic("handle_disk_write_complete: Unknown type %s",
10525			    TYPENAME(wk->wk_type));
10526			/* NOTREACHED */
10527		}
10528	}
10529	/*
10530	 * Reattach any requests that must be redone.
10531	 */
10532	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10533		WORKLIST_REMOVE(wk);
10534		WORKLIST_INSERT(&bp->b_dep, wk);
10535	}
10536	FREE_LOCK(&lk);
10537	if (sbp)
10538		brelse(sbp);
10539}
10540
10541/*
10542 * Called from within softdep_disk_write_complete above. Note that
10543 * this routine is always called from interrupt level with further
10544 * splbio interrupts blocked.
10545 */
10546static void
10547handle_allocdirect_partdone(adp, wkhd)
10548	struct allocdirect *adp;	/* the completed allocdirect */
10549	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10550{
10551	struct allocdirectlst *listhead;
10552	struct allocdirect *listadp;
10553	struct inodedep *inodedep;
10554	long bsize;
10555
10556	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10557		return;
10558	/*
10559	 * The on-disk inode cannot claim to be any larger than the last
10560	 * fragment that has been written. Otherwise, the on-disk inode
10561	 * might have fragments that were not the last block in the file
10562	 * which would corrupt the filesystem. Thus, we cannot free any
10563	 * allocdirects after one whose ad_oldblkno claims a fragment as
10564	 * these blocks must be rolled back to zero before writing the inode.
10565	 * We check the currently active set of allocdirects in id_inoupdt
10566	 * or id_extupdt as appropriate.
10567	 */
10568	inodedep = adp->ad_inodedep;
10569	bsize = inodedep->id_fs->fs_bsize;
10570	if (adp->ad_state & EXTDATA)
10571		listhead = &inodedep->id_extupdt;
10572	else
10573		listhead = &inodedep->id_inoupdt;
10574	TAILQ_FOREACH(listadp, listhead, ad_next) {
10575		/* found our block */
10576		if (listadp == adp)
10577			break;
10578		/* continue if ad_oldlbn is not a fragment */
10579		if (listadp->ad_oldsize == 0 ||
10580		    listadp->ad_oldsize == bsize)
10581			continue;
10582		/* hit a fragment */
10583		return;
10584	}
10585	/*
10586	 * If we have reached the end of the current list without
10587	 * finding the just finished dependency, then it must be
10588	 * on the future dependency list. Future dependencies cannot
10589	 * be freed until they are moved to the current list.
10590	 */
10591	if (listadp == NULL) {
10592#ifdef DEBUG
10593		if (adp->ad_state & EXTDATA)
10594			listhead = &inodedep->id_newextupdt;
10595		else
10596			listhead = &inodedep->id_newinoupdt;
10597		TAILQ_FOREACH(listadp, listhead, ad_next)
10598			/* found our block */
10599			if (listadp == adp)
10600				break;
10601		if (listadp == NULL)
10602			panic("handle_allocdirect_partdone: lost dep");
10603#endif /* DEBUG */
10604		return;
10605	}
10606	/*
10607	 * If we have found the just finished dependency, then queue
10608	 * it along with anything that follows it that is complete.
10609	 * Since the pointer has not yet been written in the inode
10610	 * as the dependency prevents it, place the allocdirect on the
10611	 * bufwait list where it will be freed once the pointer is
10612	 * valid.
10613	 */
10614	if (wkhd == NULL)
10615		wkhd = &inodedep->id_bufwait;
10616	for (; adp; adp = listadp) {
10617		listadp = TAILQ_NEXT(adp, ad_next);
10618		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10619			return;
10620		TAILQ_REMOVE(listhead, adp, ad_next);
10621		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10622	}
10623}
10624
10625/*
10626 * Called from within softdep_disk_write_complete above.  This routine
10627 * completes successfully written allocindirs.
10628 */
10629static void
10630handle_allocindir_partdone(aip)
10631	struct allocindir *aip;		/* the completed allocindir */
10632{
10633	struct indirdep *indirdep;
10634
10635	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10636		return;
10637	indirdep = aip->ai_indirdep;
10638	LIST_REMOVE(aip, ai_next);
10639	/*
10640	 * Don't set a pointer while the buffer is undergoing IO or while
10641	 * we have active truncations.
10642	 */
10643	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10644		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10645		return;
10646	}
10647	if (indirdep->ir_state & UFS1FMT)
10648		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10649		    aip->ai_newblkno;
10650	else
10651		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10652		    aip->ai_newblkno;
10653	/*
10654	 * Await the pointer write before freeing the allocindir.
10655	 */
10656	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10657}
10658
10659/*
10660 * Release segments held on a jwork list.
10661 */
10662static void
10663handle_jwork(wkhd)
10664	struct workhead *wkhd;
10665{
10666	struct worklist *wk;
10667
10668	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10669		WORKLIST_REMOVE(wk);
10670		switch (wk->wk_type) {
10671		case D_JSEGDEP:
10672			free_jsegdep(WK_JSEGDEP(wk));
10673			continue;
10674		case D_FREEDEP:
10675			free_freedep(WK_FREEDEP(wk));
10676			continue;
10677		case D_FREEFRAG:
10678			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
10679			WORKITEM_FREE(wk, D_FREEFRAG);
10680		case D_FREEWORK:
10681			handle_written_freework(WK_FREEWORK(wk));
10682			continue;
10683		default:
10684			panic("handle_jwork: Unknown type %s\n",
10685			    TYPENAME(wk->wk_type));
10686		}
10687	}
10688}
10689
10690/*
10691 * Handle the bufwait list on an inode when it is safe to release items
10692 * held there.  This normally happens after an inode block is written but
10693 * may be delayed and handled later if there are pending journal items that
10694 * are not yet safe to be released.
10695 */
10696static struct freefile *
10697handle_bufwait(inodedep, refhd)
10698	struct inodedep *inodedep;
10699	struct workhead *refhd;
10700{
10701	struct jaddref *jaddref;
10702	struct freefile *freefile;
10703	struct worklist *wk;
10704
10705	freefile = NULL;
10706	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
10707		WORKLIST_REMOVE(wk);
10708		switch (wk->wk_type) {
10709		case D_FREEFILE:
10710			/*
10711			 * We defer adding freefile to the worklist
10712			 * until all other additions have been made to
10713			 * ensure that it will be done after all the
10714			 * old blocks have been freed.
10715			 */
10716			if (freefile != NULL)
10717				panic("handle_bufwait: freefile");
10718			freefile = WK_FREEFILE(wk);
10719			continue;
10720
10721		case D_MKDIR:
10722			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
10723			continue;
10724
10725		case D_DIRADD:
10726			diradd_inode_written(WK_DIRADD(wk), inodedep);
10727			continue;
10728
10729		case D_FREEFRAG:
10730			wk->wk_state |= COMPLETE;
10731			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
10732				add_to_worklist(wk, 0);
10733			continue;
10734
10735		case D_DIRREM:
10736			wk->wk_state |= COMPLETE;
10737			add_to_worklist(wk, 0);
10738			continue;
10739
10740		case D_ALLOCDIRECT:
10741		case D_ALLOCINDIR:
10742			free_newblk(WK_NEWBLK(wk));
10743			continue;
10744
10745		case D_JNEWBLK:
10746			wk->wk_state |= COMPLETE;
10747			free_jnewblk(WK_JNEWBLK(wk));
10748			continue;
10749
10750		/*
10751		 * Save freed journal segments and add references on
10752		 * the supplied list which will delay their release
10753		 * until the cg bitmap is cleared on disk.
10754		 */
10755		case D_JSEGDEP:
10756			if (refhd == NULL)
10757				free_jsegdep(WK_JSEGDEP(wk));
10758			else
10759				WORKLIST_INSERT(refhd, wk);
10760			continue;
10761
10762		case D_JADDREF:
10763			jaddref = WK_JADDREF(wk);
10764			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
10765			    if_deps);
10766			/*
10767			 * Transfer any jaddrefs to the list to be freed with
10768			 * the bitmap if we're handling a removed file.
10769			 */
10770			if (refhd == NULL) {
10771				wk->wk_state |= COMPLETE;
10772				free_jaddref(jaddref);
10773			} else
10774				WORKLIST_INSERT(refhd, wk);
10775			continue;
10776
10777		default:
10778			panic("handle_bufwait: Unknown type %p(%s)",
10779			    wk, TYPENAME(wk->wk_type));
10780			/* NOTREACHED */
10781		}
10782	}
10783	return (freefile);
10784}
10785/*
10786 * Called from within softdep_disk_write_complete above to restore
10787 * in-memory inode block contents to their most up-to-date state. Note
10788 * that this routine is always called from interrupt level with further
10789 * splbio interrupts blocked.
10790 */
10791static int
10792handle_written_inodeblock(inodedep, bp)
10793	struct inodedep *inodedep;
10794	struct buf *bp;		/* buffer containing the inode block */
10795{
10796	struct freefile *freefile;
10797	struct allocdirect *adp, *nextadp;
10798	struct ufs1_dinode *dp1 = NULL;
10799	struct ufs2_dinode *dp2 = NULL;
10800	struct workhead wkhd;
10801	int hadchanges, fstype;
10802	ino_t freelink;
10803
10804	LIST_INIT(&wkhd);
10805	hadchanges = 0;
10806	freefile = NULL;
10807	if ((inodedep->id_state & IOSTARTED) == 0)
10808		panic("handle_written_inodeblock: not started");
10809	inodedep->id_state &= ~IOSTARTED;
10810	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
10811		fstype = UFS1;
10812		dp1 = (struct ufs1_dinode *)bp->b_data +
10813		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
10814		freelink = dp1->di_freelink;
10815	} else {
10816		fstype = UFS2;
10817		dp2 = (struct ufs2_dinode *)bp->b_data +
10818		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
10819		freelink = dp2->di_freelink;
10820	}
10821	/*
10822	 * If we wrote a valid freelink pointer during the last write
10823	 * record it here.
10824	 */
10825	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10826		struct inodedep *inon;
10827
10828		inon = TAILQ_NEXT(inodedep, id_unlinked);
10829		if ((inon == NULL && freelink == 0) ||
10830		    (inon && inon->id_ino == freelink)) {
10831			if (inon)
10832				inon->id_state |= UNLINKPREV;
10833			inodedep->id_state |= UNLINKNEXT;
10834		} else
10835			hadchanges = 1;
10836	}
10837	/* Leave this inodeblock dirty until it's in the list. */
10838	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED)
10839		hadchanges = 1;
10840	/*
10841	 * If we had to rollback the inode allocation because of
10842	 * bitmaps being incomplete, then simply restore it.
10843	 * Keep the block dirty so that it will not be reclaimed until
10844	 * all associated dependencies have been cleared and the
10845	 * corresponding updates written to disk.
10846	 */
10847	if (inodedep->id_savedino1 != NULL) {
10848		hadchanges = 1;
10849		if (fstype == UFS1)
10850			*dp1 = *inodedep->id_savedino1;
10851		else
10852			*dp2 = *inodedep->id_savedino2;
10853		free(inodedep->id_savedino1, M_SAVEDINO);
10854		inodedep->id_savedino1 = NULL;
10855		if ((bp->b_flags & B_DELWRI) == 0)
10856			stat_inode_bitmap++;
10857		bdirty(bp);
10858		/*
10859		 * If the inode is clear here and GOINGAWAY it will never
10860		 * be written.  Process the bufwait and clear any pending
10861		 * work which may include the freefile.
10862		 */
10863		if (inodedep->id_state & GOINGAWAY)
10864			goto bufwait;
10865		return (1);
10866	}
10867	inodedep->id_state |= COMPLETE;
10868	/*
10869	 * Roll forward anything that had to be rolled back before
10870	 * the inode could be updated.
10871	 */
10872	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
10873		nextadp = TAILQ_NEXT(adp, ad_next);
10874		if (adp->ad_state & ATTACHED)
10875			panic("handle_written_inodeblock: new entry");
10876		if (fstype == UFS1) {
10877			if (adp->ad_offset < NDADDR) {
10878				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
10879					panic("%s %s #%jd mismatch %d != %jd",
10880					    "handle_written_inodeblock:",
10881					    "direct pointer",
10882					    (intmax_t)adp->ad_offset,
10883					    dp1->di_db[adp->ad_offset],
10884					    (intmax_t)adp->ad_oldblkno);
10885				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
10886			} else {
10887				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
10888					panic("%s: %s #%jd allocated as %d",
10889					    "handle_written_inodeblock",
10890					    "indirect pointer",
10891					    (intmax_t)adp->ad_offset - NDADDR,
10892					    dp1->di_ib[adp->ad_offset - NDADDR]);
10893				dp1->di_ib[adp->ad_offset - NDADDR] =
10894				    adp->ad_newblkno;
10895			}
10896		} else {
10897			if (adp->ad_offset < NDADDR) {
10898				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
10899					panic("%s: %s #%jd %s %jd != %jd",
10900					    "handle_written_inodeblock",
10901					    "direct pointer",
10902					    (intmax_t)adp->ad_offset, "mismatch",
10903					    (intmax_t)dp2->di_db[adp->ad_offset],
10904					    (intmax_t)adp->ad_oldblkno);
10905				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
10906			} else {
10907				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
10908					panic("%s: %s #%jd allocated as %jd",
10909					    "handle_written_inodeblock",
10910					    "indirect pointer",
10911					    (intmax_t)adp->ad_offset - NDADDR,
10912					    (intmax_t)
10913					    dp2->di_ib[adp->ad_offset - NDADDR]);
10914				dp2->di_ib[adp->ad_offset - NDADDR] =
10915				    adp->ad_newblkno;
10916			}
10917		}
10918		adp->ad_state &= ~UNDONE;
10919		adp->ad_state |= ATTACHED;
10920		hadchanges = 1;
10921	}
10922	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
10923		nextadp = TAILQ_NEXT(adp, ad_next);
10924		if (adp->ad_state & ATTACHED)
10925			panic("handle_written_inodeblock: new entry");
10926		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
10927			panic("%s: direct pointers #%jd %s %jd != %jd",
10928			    "handle_written_inodeblock",
10929			    (intmax_t)adp->ad_offset, "mismatch",
10930			    (intmax_t)dp2->di_extb[adp->ad_offset],
10931			    (intmax_t)adp->ad_oldblkno);
10932		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
10933		adp->ad_state &= ~UNDONE;
10934		adp->ad_state |= ATTACHED;
10935		hadchanges = 1;
10936	}
10937	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
10938		stat_direct_blk_ptrs++;
10939	/*
10940	 * Reset the file size to its most up-to-date value.
10941	 */
10942	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
10943		panic("handle_written_inodeblock: bad size");
10944	if (inodedep->id_savednlink > LINK_MAX)
10945		panic("handle_written_inodeblock: Invalid link count "
10946		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
10947	if (fstype == UFS1) {
10948		if (dp1->di_nlink != inodedep->id_savednlink) {
10949			dp1->di_nlink = inodedep->id_savednlink;
10950			hadchanges = 1;
10951		}
10952		if (dp1->di_size != inodedep->id_savedsize) {
10953			dp1->di_size = inodedep->id_savedsize;
10954			hadchanges = 1;
10955		}
10956	} else {
10957		if (dp2->di_nlink != inodedep->id_savednlink) {
10958			dp2->di_nlink = inodedep->id_savednlink;
10959			hadchanges = 1;
10960		}
10961		if (dp2->di_size != inodedep->id_savedsize) {
10962			dp2->di_size = inodedep->id_savedsize;
10963			hadchanges = 1;
10964		}
10965		if (dp2->di_extsize != inodedep->id_savedextsize) {
10966			dp2->di_extsize = inodedep->id_savedextsize;
10967			hadchanges = 1;
10968		}
10969	}
10970	inodedep->id_savedsize = -1;
10971	inodedep->id_savedextsize = -1;
10972	inodedep->id_savednlink = -1;
10973	/*
10974	 * If there were any rollbacks in the inode block, then it must be
10975	 * marked dirty so that its will eventually get written back in
10976	 * its correct form.
10977	 */
10978	if (hadchanges)
10979		bdirty(bp);
10980bufwait:
10981	/*
10982	 * Process any allocdirects that completed during the update.
10983	 */
10984	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
10985		handle_allocdirect_partdone(adp, &wkhd);
10986	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
10987		handle_allocdirect_partdone(adp, &wkhd);
10988	/*
10989	 * Process deallocations that were held pending until the
10990	 * inode had been written to disk. Freeing of the inode
10991	 * is delayed until after all blocks have been freed to
10992	 * avoid creation of new <vfsid, inum, lbn> triples
10993	 * before the old ones have been deleted.  Completely
10994	 * unlinked inodes are not processed until the unlinked
10995	 * inode list is written or the last reference is removed.
10996	 */
10997	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
10998		freefile = handle_bufwait(inodedep, NULL);
10999		if (freefile && !LIST_EMPTY(&wkhd)) {
11000			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11001			freefile = NULL;
11002		}
11003	}
11004	/*
11005	 * Move rolled forward dependency completions to the bufwait list
11006	 * now that those that were already written have been processed.
11007	 */
11008	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11009		panic("handle_written_inodeblock: bufwait but no changes");
11010	jwork_move(&inodedep->id_bufwait, &wkhd);
11011
11012	if (freefile != NULL) {
11013		/*
11014		 * If the inode is goingaway it was never written.  Fake up
11015		 * the state here so free_inodedep() can succeed.
11016		 */
11017		if (inodedep->id_state & GOINGAWAY)
11018			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11019		if (free_inodedep(inodedep) == 0)
11020			panic("handle_written_inodeblock: live inodedep %p",
11021			    inodedep);
11022		add_to_worklist(&freefile->fx_list, 0);
11023		return (0);
11024	}
11025
11026	/*
11027	 * If no outstanding dependencies, free it.
11028	 */
11029	if (free_inodedep(inodedep) ||
11030	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11031	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11032	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11033	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11034		return (0);
11035	return (hadchanges);
11036}
11037
11038static int
11039handle_written_indirdep(indirdep, bp, bpp)
11040	struct indirdep *indirdep;
11041	struct buf *bp;
11042	struct buf **bpp;
11043{
11044	struct allocindir *aip;
11045	struct buf *sbp;
11046	int chgs;
11047
11048	if (indirdep->ir_state & GOINGAWAY)
11049		panic("handle_written_indirdep: indirdep gone");
11050	if ((indirdep->ir_state & IOSTARTED) == 0)
11051		panic("handle_written_indirdep: IO not started");
11052	chgs = 0;
11053	/*
11054	 * If there were rollbacks revert them here.
11055	 */
11056	if (indirdep->ir_saveddata) {
11057		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11058		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11059			free(indirdep->ir_saveddata, M_INDIRDEP);
11060			indirdep->ir_saveddata = NULL;
11061		}
11062		chgs = 1;
11063	}
11064	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11065	indirdep->ir_state |= ATTACHED;
11066	/*
11067	 * Move allocindirs with written pointers to the completehd if
11068	 * the indirdep's pointer is not yet written.  Otherwise
11069	 * free them here.
11070	 */
11071	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11072		LIST_REMOVE(aip, ai_next);
11073		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11074			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11075			    ai_next);
11076			newblk_freefrag(&aip->ai_block);
11077			continue;
11078		}
11079		free_newblk(&aip->ai_block);
11080	}
11081	/*
11082	 * Move allocindirs that have finished dependency processing from
11083	 * the done list to the write list after updating the pointers.
11084	 */
11085	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11086		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11087			handle_allocindir_partdone(aip);
11088			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11089				panic("disk_write_complete: not gone");
11090			chgs = 1;
11091		}
11092	}
11093	/*
11094	 * Preserve the indirdep if there were any changes or if it is not
11095	 * yet valid on disk.
11096	 */
11097	if (chgs) {
11098		stat_indir_blk_ptrs++;
11099		bdirty(bp);
11100		return (1);
11101	}
11102	/*
11103	 * If there were no changes we can discard the savedbp and detach
11104	 * ourselves from the buf.  We are only carrying completed pointers
11105	 * in this case.
11106	 */
11107	sbp = indirdep->ir_savebp;
11108	sbp->b_flags |= B_INVAL | B_NOCACHE;
11109	indirdep->ir_savebp = NULL;
11110	indirdep->ir_bp = NULL;
11111	if (*bpp != NULL)
11112		panic("handle_written_indirdep: bp already exists.");
11113	*bpp = sbp;
11114	/*
11115	 * The indirdep may not be freed until its parent points at it.
11116	 */
11117	if (indirdep->ir_state & DEPCOMPLETE)
11118		free_indirdep(indirdep);
11119
11120	return (0);
11121}
11122
11123/*
11124 * Process a diradd entry after its dependent inode has been written.
11125 * This routine must be called with splbio interrupts blocked.
11126 */
11127static void
11128diradd_inode_written(dap, inodedep)
11129	struct diradd *dap;
11130	struct inodedep *inodedep;
11131{
11132
11133	dap->da_state |= COMPLETE;
11134	complete_diradd(dap);
11135	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11136}
11137
11138/*
11139 * Returns true if the bmsafemap will have rollbacks when written.  Must
11140 * only be called with lk and the buf lock on the cg held.
11141 */
11142static int
11143bmsafemap_rollbacks(bmsafemap)
11144	struct bmsafemap *bmsafemap;
11145{
11146
11147	return (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11148	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd));
11149}
11150
11151/*
11152 * Re-apply an allocation when a cg write is complete.
11153 */
11154static int
11155jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11156	struct jnewblk *jnewblk;
11157	struct fs *fs;
11158	struct cg *cgp;
11159	uint8_t *blksfree;
11160{
11161	ufs1_daddr_t fragno;
11162	ufs2_daddr_t blkno;
11163	long cgbno, bbase;
11164	int frags, blk;
11165	int i;
11166
11167	frags = 0;
11168	cgbno = dtogd(fs, jnewblk->jn_blkno);
11169	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11170		if (isclr(blksfree, cgbno + i))
11171			panic("jnewblk_rollforward: re-allocated fragment");
11172		frags++;
11173	}
11174	if (frags == fs->fs_frag) {
11175		blkno = fragstoblks(fs, cgbno);
11176		ffs_clrblock(fs, blksfree, (long)blkno);
11177		ffs_clusteracct(fs, cgp, blkno, -1);
11178		cgp->cg_cs.cs_nbfree--;
11179	} else {
11180		bbase = cgbno - fragnum(fs, cgbno);
11181		cgbno += jnewblk->jn_oldfrags;
11182                /* If a complete block had been reassembled, account for it. */
11183		fragno = fragstoblks(fs, bbase);
11184		if (ffs_isblock(fs, blksfree, fragno)) {
11185			cgp->cg_cs.cs_nffree += fs->fs_frag;
11186			ffs_clusteracct(fs, cgp, fragno, -1);
11187			cgp->cg_cs.cs_nbfree--;
11188		}
11189		/* Decrement the old frags.  */
11190		blk = blkmap(fs, blksfree, bbase);
11191		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11192		/* Allocate the fragment */
11193		for (i = 0; i < frags; i++)
11194			clrbit(blksfree, cgbno + i);
11195		cgp->cg_cs.cs_nffree -= frags;
11196		/* Add back in counts associated with the new frags */
11197		blk = blkmap(fs, blksfree, bbase);
11198		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11199	}
11200	return (frags);
11201}
11202
11203/*
11204 * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11205 * changes if it's not a background write.  Set all written dependencies
11206 * to DEPCOMPLETE and free the structure if possible.
11207 */
11208static int
11209handle_written_bmsafemap(bmsafemap, bp)
11210	struct bmsafemap *bmsafemap;
11211	struct buf *bp;
11212{
11213	struct newblk *newblk;
11214	struct inodedep *inodedep;
11215	struct jaddref *jaddref, *jatmp;
11216	struct jnewblk *jnewblk, *jntmp;
11217	struct ufsmount *ump;
11218	uint8_t *inosused;
11219	uint8_t *blksfree;
11220	struct cg *cgp;
11221	struct fs *fs;
11222	ino_t ino;
11223	int chgs;
11224
11225	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11226		panic("initiate_write_bmsafemap: Not started\n");
11227	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11228	chgs = 0;
11229	bmsafemap->sm_state &= ~IOSTARTED;
11230	/*
11231	 * Release journal work that was waiting on the write.
11232	 */
11233	handle_jwork(&bmsafemap->sm_freewr);
11234
11235	/*
11236	 * Restore unwritten inode allocation pending jaddref writes.
11237	 */
11238	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11239		cgp = (struct cg *)bp->b_data;
11240		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11241		inosused = cg_inosused(cgp);
11242		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11243		    ja_bmdeps, jatmp) {
11244			if ((jaddref->ja_state & UNDONE) == 0)
11245				continue;
11246			ino = jaddref->ja_ino % fs->fs_ipg;
11247			if (isset(inosused, ino))
11248				panic("handle_written_bmsafemap: "
11249				    "re-allocated inode");
11250			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
11251				if ((jaddref->ja_mode & IFMT) == IFDIR)
11252					cgp->cg_cs.cs_ndir++;
11253				cgp->cg_cs.cs_nifree--;
11254				setbit(inosused, ino);
11255				chgs = 1;
11256			}
11257			jaddref->ja_state &= ~UNDONE;
11258			jaddref->ja_state |= ATTACHED;
11259			free_jaddref(jaddref);
11260		}
11261	}
11262	/*
11263	 * Restore any block allocations which are pending journal writes.
11264	 */
11265	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11266		cgp = (struct cg *)bp->b_data;
11267		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11268		blksfree = cg_blksfree(cgp);
11269		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11270		    jntmp) {
11271			if ((jnewblk->jn_state & UNDONE) == 0)
11272				continue;
11273			if ((bp->b_xflags & BX_BKGRDMARKER) == 0 &&
11274			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11275				chgs = 1;
11276			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11277			jnewblk->jn_state |= ATTACHED;
11278			free_jnewblk(jnewblk);
11279		}
11280	}
11281	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11282		newblk->nb_state |= DEPCOMPLETE;
11283		newblk->nb_state &= ~ONDEPLIST;
11284		newblk->nb_bmsafemap = NULL;
11285		LIST_REMOVE(newblk, nb_deps);
11286		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11287			handle_allocdirect_partdone(
11288			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11289		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11290			handle_allocindir_partdone(
11291			    WK_ALLOCINDIR(&newblk->nb_list));
11292		else if (newblk->nb_list.wk_type != D_NEWBLK)
11293			panic("handle_written_bmsafemap: Unexpected type: %s",
11294			    TYPENAME(newblk->nb_list.wk_type));
11295	}
11296	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11297		inodedep->id_state |= DEPCOMPLETE;
11298		inodedep->id_state &= ~ONDEPLIST;
11299		LIST_REMOVE(inodedep, id_deps);
11300		inodedep->id_bmsafemap = NULL;
11301	}
11302	LIST_REMOVE(bmsafemap, sm_next);
11303	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11304	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11305	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11306	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11307	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11308		LIST_REMOVE(bmsafemap, sm_hash);
11309		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11310		return (0);
11311	}
11312	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11313	bdirty(bp);
11314	return (1);
11315}
11316
11317/*
11318 * Try to free a mkdir dependency.
11319 */
11320static void
11321complete_mkdir(mkdir)
11322	struct mkdir *mkdir;
11323{
11324	struct diradd *dap;
11325
11326	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11327		return;
11328	LIST_REMOVE(mkdir, md_mkdirs);
11329	dap = mkdir->md_diradd;
11330	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11331	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11332		dap->da_state |= DEPCOMPLETE;
11333		complete_diradd(dap);
11334	}
11335	WORKITEM_FREE(mkdir, D_MKDIR);
11336}
11337
11338/*
11339 * Handle the completion of a mkdir dependency.
11340 */
11341static void
11342handle_written_mkdir(mkdir, type)
11343	struct mkdir *mkdir;
11344	int type;
11345{
11346
11347	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11348		panic("handle_written_mkdir: bad type");
11349	mkdir->md_state |= COMPLETE;
11350	complete_mkdir(mkdir);
11351}
11352
11353static int
11354free_pagedep(pagedep)
11355	struct pagedep *pagedep;
11356{
11357	int i;
11358
11359	if (pagedep->pd_state & NEWBLOCK)
11360		return (0);
11361	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11362		return (0);
11363	for (i = 0; i < DAHASHSZ; i++)
11364		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11365			return (0);
11366	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11367		return (0);
11368	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11369		return (0);
11370	if (pagedep->pd_state & ONWORKLIST)
11371		WORKLIST_REMOVE(&pagedep->pd_list);
11372	LIST_REMOVE(pagedep, pd_hash);
11373	WORKITEM_FREE(pagedep, D_PAGEDEP);
11374
11375	return (1);
11376}
11377
11378/*
11379 * Called from within softdep_disk_write_complete above.
11380 * A write operation was just completed. Removed inodes can
11381 * now be freed and associated block pointers may be committed.
11382 * Note that this routine is always called from interrupt level
11383 * with further splbio interrupts blocked.
11384 */
11385static int
11386handle_written_filepage(pagedep, bp)
11387	struct pagedep *pagedep;
11388	struct buf *bp;		/* buffer containing the written page */
11389{
11390	struct dirrem *dirrem;
11391	struct diradd *dap, *nextdap;
11392	struct direct *ep;
11393	int i, chgs;
11394
11395	if ((pagedep->pd_state & IOSTARTED) == 0)
11396		panic("handle_written_filepage: not started");
11397	pagedep->pd_state &= ~IOSTARTED;
11398	/*
11399	 * Process any directory removals that have been committed.
11400	 */
11401	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11402		LIST_REMOVE(dirrem, dm_next);
11403		dirrem->dm_state |= COMPLETE;
11404		dirrem->dm_dirinum = pagedep->pd_ino;
11405		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11406		    ("handle_written_filepage: Journal entries not written."));
11407		add_to_worklist(&dirrem->dm_list, 0);
11408	}
11409	/*
11410	 * Free any directory additions that have been committed.
11411	 * If it is a newly allocated block, we have to wait until
11412	 * the on-disk directory inode claims the new block.
11413	 */
11414	if ((pagedep->pd_state & NEWBLOCK) == 0)
11415		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11416			free_diradd(dap, NULL);
11417	/*
11418	 * Uncommitted directory entries must be restored.
11419	 */
11420	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11421		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11422		     dap = nextdap) {
11423			nextdap = LIST_NEXT(dap, da_pdlist);
11424			if (dap->da_state & ATTACHED)
11425				panic("handle_written_filepage: attached");
11426			ep = (struct direct *)
11427			    ((char *)bp->b_data + dap->da_offset);
11428			ep->d_ino = dap->da_newinum;
11429			dap->da_state &= ~UNDONE;
11430			dap->da_state |= ATTACHED;
11431			chgs = 1;
11432			/*
11433			 * If the inode referenced by the directory has
11434			 * been written out, then the dependency can be
11435			 * moved to the pending list.
11436			 */
11437			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11438				LIST_REMOVE(dap, da_pdlist);
11439				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11440				    da_pdlist);
11441			}
11442		}
11443	}
11444	/*
11445	 * If there were any rollbacks in the directory, then it must be
11446	 * marked dirty so that its will eventually get written back in
11447	 * its correct form.
11448	 */
11449	if (chgs) {
11450		if ((bp->b_flags & B_DELWRI) == 0)
11451			stat_dir_entry++;
11452		bdirty(bp);
11453		return (1);
11454	}
11455	/*
11456	 * If we are not waiting for a new directory block to be
11457	 * claimed by its inode, then the pagedep will be freed.
11458	 * Otherwise it will remain to track any new entries on
11459	 * the page in case they are fsync'ed.
11460	 */
11461	free_pagedep(pagedep);
11462	return (0);
11463}
11464
11465/*
11466 * Writing back in-core inode structures.
11467 *
11468 * The filesystem only accesses an inode's contents when it occupies an
11469 * "in-core" inode structure.  These "in-core" structures are separate from
11470 * the page frames used to cache inode blocks.  Only the latter are
11471 * transferred to/from the disk.  So, when the updated contents of the
11472 * "in-core" inode structure are copied to the corresponding in-memory inode
11473 * block, the dependencies are also transferred.  The following procedure is
11474 * called when copying a dirty "in-core" inode to a cached inode block.
11475 */
11476
11477/*
11478 * Called when an inode is loaded from disk. If the effective link count
11479 * differed from the actual link count when it was last flushed, then we
11480 * need to ensure that the correct effective link count is put back.
11481 */
11482void
11483softdep_load_inodeblock(ip)
11484	struct inode *ip;	/* the "in_core" copy of the inode */
11485{
11486	struct inodedep *inodedep;
11487
11488	/*
11489	 * Check for alternate nlink count.
11490	 */
11491	ip->i_effnlink = ip->i_nlink;
11492	ACQUIRE_LOCK(&lk);
11493	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11494	    &inodedep) == 0) {
11495		FREE_LOCK(&lk);
11496		return;
11497	}
11498	ip->i_effnlink -= inodedep->id_nlinkdelta;
11499	FREE_LOCK(&lk);
11500}
11501
11502/*
11503 * This routine is called just before the "in-core" inode
11504 * information is to be copied to the in-memory inode block.
11505 * Recall that an inode block contains several inodes. If
11506 * the force flag is set, then the dependencies will be
11507 * cleared so that the update can always be made. Note that
11508 * the buffer is locked when this routine is called, so we
11509 * will never be in the middle of writing the inode block
11510 * to disk.
11511 */
11512void
11513softdep_update_inodeblock(ip, bp, waitfor)
11514	struct inode *ip;	/* the "in_core" copy of the inode */
11515	struct buf *bp;		/* the buffer containing the inode block */
11516	int waitfor;		/* nonzero => update must be allowed */
11517{
11518	struct inodedep *inodedep;
11519	struct inoref *inoref;
11520	struct worklist *wk;
11521	struct mount *mp;
11522	struct buf *ibp;
11523	struct fs *fs;
11524	int error;
11525
11526	mp = UFSTOVFS(ip->i_ump);
11527	fs = ip->i_fs;
11528	/*
11529	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11530	 * does not have access to the in-core ip so must write directly into
11531	 * the inode block buffer when setting freelink.
11532	 */
11533	if (fs->fs_magic == FS_UFS1_MAGIC)
11534		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11535		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11536	else
11537		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11538		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11539	/*
11540	 * If the effective link count is not equal to the actual link
11541	 * count, then we must track the difference in an inodedep while
11542	 * the inode is (potentially) tossed out of the cache. Otherwise,
11543	 * if there is no existing inodedep, then there are no dependencies
11544	 * to track.
11545	 */
11546	ACQUIRE_LOCK(&lk);
11547again:
11548	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11549		FREE_LOCK(&lk);
11550		if (ip->i_effnlink != ip->i_nlink)
11551			panic("softdep_update_inodeblock: bad link count");
11552		return;
11553	}
11554	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11555		panic("softdep_update_inodeblock: bad delta");
11556	/*
11557	 * If we're flushing all dependencies we must also move any waiting
11558	 * for journal writes onto the bufwait list prior to I/O.
11559	 */
11560	if (waitfor) {
11561		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11562			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11563			    == DEPCOMPLETE) {
11564				jwait(&inoref->if_list, MNT_WAIT);
11565				goto again;
11566			}
11567		}
11568	}
11569	/*
11570	 * Changes have been initiated. Anything depending on these
11571	 * changes cannot occur until this inode has been written.
11572	 */
11573	inodedep->id_state &= ~COMPLETE;
11574	if ((inodedep->id_state & ONWORKLIST) == 0)
11575		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11576	/*
11577	 * Any new dependencies associated with the incore inode must
11578	 * now be moved to the list associated with the buffer holding
11579	 * the in-memory copy of the inode. Once merged process any
11580	 * allocdirects that are completed by the merger.
11581	 */
11582	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11583	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11584		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11585		    NULL);
11586	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11587	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11588		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11589		    NULL);
11590	/*
11591	 * Now that the inode has been pushed into the buffer, the
11592	 * operations dependent on the inode being written to disk
11593	 * can be moved to the id_bufwait so that they will be
11594	 * processed when the buffer I/O completes.
11595	 */
11596	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11597		WORKLIST_REMOVE(wk);
11598		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11599	}
11600	/*
11601	 * Newly allocated inodes cannot be written until the bitmap
11602	 * that allocates them have been written (indicated by
11603	 * DEPCOMPLETE being set in id_state). If we are doing a
11604	 * forced sync (e.g., an fsync on a file), we force the bitmap
11605	 * to be written so that the update can be done.
11606	 */
11607	if (waitfor == 0) {
11608		FREE_LOCK(&lk);
11609		return;
11610	}
11611retry:
11612	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11613		FREE_LOCK(&lk);
11614		return;
11615	}
11616	ibp = inodedep->id_bmsafemap->sm_buf;
11617	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
11618	if (ibp == NULL) {
11619		/*
11620		 * If ibp came back as NULL, the dependency could have been
11621		 * freed while we slept.  Look it up again, and check to see
11622		 * that it has completed.
11623		 */
11624		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11625			goto retry;
11626		FREE_LOCK(&lk);
11627		return;
11628	}
11629	FREE_LOCK(&lk);
11630	if ((error = bwrite(ibp)) != 0)
11631		softdep_error("softdep_update_inodeblock: bwrite", error);
11632}
11633
11634/*
11635 * Merge the a new inode dependency list (such as id_newinoupdt) into an
11636 * old inode dependency list (such as id_inoupdt). This routine must be
11637 * called with splbio interrupts blocked.
11638 */
11639static void
11640merge_inode_lists(newlisthead, oldlisthead)
11641	struct allocdirectlst *newlisthead;
11642	struct allocdirectlst *oldlisthead;
11643{
11644	struct allocdirect *listadp, *newadp;
11645
11646	newadp = TAILQ_FIRST(newlisthead);
11647	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11648		if (listadp->ad_offset < newadp->ad_offset) {
11649			listadp = TAILQ_NEXT(listadp, ad_next);
11650			continue;
11651		}
11652		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11653		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
11654		if (listadp->ad_offset == newadp->ad_offset) {
11655			allocdirect_merge(oldlisthead, newadp,
11656			    listadp);
11657			listadp = newadp;
11658		}
11659		newadp = TAILQ_FIRST(newlisthead);
11660	}
11661	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
11662		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11663		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
11664	}
11665}
11666
11667/*
11668 * If we are doing an fsync, then we must ensure that any directory
11669 * entries for the inode have been written after the inode gets to disk.
11670 */
11671int
11672softdep_fsync(vp)
11673	struct vnode *vp;	/* the "in_core" copy of the inode */
11674{
11675	struct inodedep *inodedep;
11676	struct pagedep *pagedep;
11677	struct inoref *inoref;
11678	struct worklist *wk;
11679	struct diradd *dap;
11680	struct mount *mp;
11681	struct vnode *pvp;
11682	struct inode *ip;
11683	struct buf *bp;
11684	struct fs *fs;
11685	struct thread *td = curthread;
11686	int error, flushparent, pagedep_new_block;
11687	ino_t parentino;
11688	ufs_lbn_t lbn;
11689
11690	ip = VTOI(vp);
11691	fs = ip->i_fs;
11692	mp = vp->v_mount;
11693	ACQUIRE_LOCK(&lk);
11694restart:
11695	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11696		FREE_LOCK(&lk);
11697		return (0);
11698	}
11699	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11700		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11701		    == DEPCOMPLETE) {
11702			jwait(&inoref->if_list, MNT_WAIT);
11703			goto restart;
11704		}
11705	}
11706	if (!LIST_EMPTY(&inodedep->id_inowait) ||
11707	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
11708	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
11709	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
11710	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
11711		panic("softdep_fsync: pending ops %p", inodedep);
11712	for (error = 0, flushparent = 0; ; ) {
11713		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
11714			break;
11715		if (wk->wk_type != D_DIRADD)
11716			panic("softdep_fsync: Unexpected type %s",
11717			    TYPENAME(wk->wk_type));
11718		dap = WK_DIRADD(wk);
11719		/*
11720		 * Flush our parent if this directory entry has a MKDIR_PARENT
11721		 * dependency or is contained in a newly allocated block.
11722		 */
11723		if (dap->da_state & DIRCHG)
11724			pagedep = dap->da_previous->dm_pagedep;
11725		else
11726			pagedep = dap->da_pagedep;
11727		parentino = pagedep->pd_ino;
11728		lbn = pagedep->pd_lbn;
11729		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
11730			panic("softdep_fsync: dirty");
11731		if ((dap->da_state & MKDIR_PARENT) ||
11732		    (pagedep->pd_state & NEWBLOCK))
11733			flushparent = 1;
11734		else
11735			flushparent = 0;
11736		/*
11737		 * If we are being fsync'ed as part of vgone'ing this vnode,
11738		 * then we will not be able to release and recover the
11739		 * vnode below, so we just have to give up on writing its
11740		 * directory entry out. It will eventually be written, just
11741		 * not now, but then the user was not asking to have it
11742		 * written, so we are not breaking any promises.
11743		 */
11744		if (vp->v_iflag & VI_DOOMED)
11745			break;
11746		/*
11747		 * We prevent deadlock by always fetching inodes from the
11748		 * root, moving down the directory tree. Thus, when fetching
11749		 * our parent directory, we first try to get the lock. If
11750		 * that fails, we must unlock ourselves before requesting
11751		 * the lock on our parent. See the comment in ufs_lookup
11752		 * for details on possible races.
11753		 */
11754		FREE_LOCK(&lk);
11755		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
11756		    FFSV_FORCEINSMQ)) {
11757			error = vfs_busy(mp, MBF_NOWAIT);
11758			if (error != 0) {
11759				vfs_ref(mp);
11760				VOP_UNLOCK(vp, 0);
11761				error = vfs_busy(mp, 0);
11762				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11763				vfs_rel(mp);
11764				if (error != 0)
11765					return (ENOENT);
11766				if (vp->v_iflag & VI_DOOMED) {
11767					vfs_unbusy(mp);
11768					return (ENOENT);
11769				}
11770			}
11771			VOP_UNLOCK(vp, 0);
11772			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
11773			    &pvp, FFSV_FORCEINSMQ);
11774			vfs_unbusy(mp);
11775			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11776			if (vp->v_iflag & VI_DOOMED) {
11777				if (error == 0)
11778					vput(pvp);
11779				error = ENOENT;
11780			}
11781			if (error != 0)
11782				return (error);
11783		}
11784		/*
11785		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
11786		 * that are contained in direct blocks will be resolved by
11787		 * doing a ffs_update. Pagedeps contained in indirect blocks
11788		 * may require a complete sync'ing of the directory. So, we
11789		 * try the cheap and fast ffs_update first, and if that fails,
11790		 * then we do the slower ffs_syncvnode of the directory.
11791		 */
11792		if (flushparent) {
11793			int locked;
11794
11795			if ((error = ffs_update(pvp, 1)) != 0) {
11796				vput(pvp);
11797				return (error);
11798			}
11799			ACQUIRE_LOCK(&lk);
11800			locked = 1;
11801			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
11802				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
11803					if (wk->wk_type != D_DIRADD)
11804						panic("softdep_fsync: Unexpected type %s",
11805						      TYPENAME(wk->wk_type));
11806					dap = WK_DIRADD(wk);
11807					if (dap->da_state & DIRCHG)
11808						pagedep = dap->da_previous->dm_pagedep;
11809					else
11810						pagedep = dap->da_pagedep;
11811					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
11812					FREE_LOCK(&lk);
11813					locked = 0;
11814					if (pagedep_new_block &&
11815					    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
11816						vput(pvp);
11817						return (error);
11818					}
11819				}
11820			}
11821			if (locked)
11822				FREE_LOCK(&lk);
11823		}
11824		/*
11825		 * Flush directory page containing the inode's name.
11826		 */
11827		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
11828		    &bp);
11829		if (error == 0)
11830			error = bwrite(bp);
11831		else
11832			brelse(bp);
11833		vput(pvp);
11834		if (error != 0)
11835			return (error);
11836		ACQUIRE_LOCK(&lk);
11837		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
11838			break;
11839	}
11840	FREE_LOCK(&lk);
11841	return (0);
11842}
11843
11844/*
11845 * Flush all the dirty bitmaps associated with the block device
11846 * before flushing the rest of the dirty blocks so as to reduce
11847 * the number of dependencies that will have to be rolled back.
11848 *
11849 * XXX Unused?
11850 */
11851void
11852softdep_fsync_mountdev(vp)
11853	struct vnode *vp;
11854{
11855	struct buf *bp, *nbp;
11856	struct worklist *wk;
11857	struct bufobj *bo;
11858
11859	if (!vn_isdisk(vp, NULL))
11860		panic("softdep_fsync_mountdev: vnode not a disk");
11861	bo = &vp->v_bufobj;
11862restart:
11863	BO_LOCK(bo);
11864	ACQUIRE_LOCK(&lk);
11865	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
11866		/*
11867		 * If it is already scheduled, skip to the next buffer.
11868		 */
11869		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
11870			continue;
11871
11872		if ((bp->b_flags & B_DELWRI) == 0)
11873			panic("softdep_fsync_mountdev: not dirty");
11874		/*
11875		 * We are only interested in bitmaps with outstanding
11876		 * dependencies.
11877		 */
11878		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
11879		    wk->wk_type != D_BMSAFEMAP ||
11880		    (bp->b_vflags & BV_BKGRDINPROG)) {
11881			BUF_UNLOCK(bp);
11882			continue;
11883		}
11884		FREE_LOCK(&lk);
11885		BO_UNLOCK(bo);
11886		bremfree(bp);
11887		(void) bawrite(bp);
11888		goto restart;
11889	}
11890	FREE_LOCK(&lk);
11891	drain_output(vp);
11892	BO_UNLOCK(bo);
11893}
11894
11895/*
11896 * Sync all cylinder groups that were dirty at the time this function is
11897 * called.  Newly dirtied cgs will be inserted before the sintenel.  This
11898 * is used to flush freedep activity that may be holding up writes to a
11899 * indirect block.
11900 */
11901static int
11902sync_cgs(mp, waitfor)
11903	struct mount *mp;
11904	int waitfor;
11905{
11906	struct bmsafemap *bmsafemap;
11907	struct bmsafemap *sintenel;
11908	struct ufsmount *ump;
11909	struct buf *bp;
11910	int error;
11911
11912	sintenel = malloc(sizeof(*sintenel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
11913	sintenel->sm_cg = -1;
11914	ump = VFSTOUFS(mp);
11915	error = 0;
11916	ACQUIRE_LOCK(&lk);
11917	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sintenel, sm_next);
11918	for (bmsafemap = LIST_NEXT(sintenel, sm_next); bmsafemap != NULL;
11919	    bmsafemap = LIST_NEXT(sintenel, sm_next)) {
11920		/* Skip sintenels and cgs with no work to release. */
11921		if (bmsafemap->sm_cg == -1 ||
11922		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
11923		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
11924			LIST_REMOVE(sintenel, sm_next);
11925			LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
11926			continue;
11927		}
11928		/*
11929		 * If we don't get the lock and we're waiting try again, if
11930		 * not move on to the next buf and try to sync it.
11931		 */
11932		bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor);
11933		if (bp == NULL && waitfor == MNT_WAIT)
11934			continue;
11935		LIST_REMOVE(sintenel, sm_next);
11936		LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
11937		if (bp == NULL)
11938			continue;
11939		FREE_LOCK(&lk);
11940		if (waitfor == MNT_NOWAIT)
11941			bawrite(bp);
11942		else
11943			error = bwrite(bp);
11944		ACQUIRE_LOCK(&lk);
11945		if (error)
11946			break;
11947	}
11948	LIST_REMOVE(sintenel, sm_next);
11949	FREE_LOCK(&lk);
11950	free(sintenel, M_BMSAFEMAP);
11951	return (error);
11952}
11953
11954/*
11955 * This routine is called when we are trying to synchronously flush a
11956 * file. This routine must eliminate any filesystem metadata dependencies
11957 * so that the syncing routine can succeed.
11958 */
11959int
11960softdep_sync_metadata(struct vnode *vp)
11961{
11962	int error;
11963
11964	/*
11965	 * Ensure that any direct block dependencies have been cleared,
11966	 * truncations are started, and inode references are journaled.
11967	 */
11968	ACQUIRE_LOCK(&lk);
11969	/*
11970	 * Write all journal records to prevent rollbacks on devvp.
11971	 */
11972	if (vp->v_type == VCHR)
11973		softdep_flushjournal(vp->v_mount);
11974	error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number);
11975	/*
11976	 * Ensure that all truncates are written so we won't find deps on
11977	 * indirect blocks.
11978	 */
11979	process_truncates(vp);
11980	FREE_LOCK(&lk);
11981
11982	return (error);
11983}
11984
11985/*
11986 * This routine is called when we are attempting to sync a buf with
11987 * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
11988 * other IO it can but returns EBUSY if the buffer is not yet able to
11989 * be written.  Dependencies which will not cause rollbacks will always
11990 * return 0.
11991 */
11992int
11993softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
11994{
11995	struct indirdep *indirdep;
11996	struct pagedep *pagedep;
11997	struct allocindir *aip;
11998	struct newblk *newblk;
11999	struct buf *nbp;
12000	struct worklist *wk;
12001	int i, error;
12002
12003	/*
12004	 * For VCHR we just don't want to force flush any dependencies that
12005	 * will cause rollbacks.
12006	 */
12007	if (vp->v_type == VCHR) {
12008		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12009			return (EBUSY);
12010		return (0);
12011	}
12012	ACQUIRE_LOCK(&lk);
12013	/*
12014	 * As we hold the buffer locked, none of its dependencies
12015	 * will disappear.
12016	 */
12017	error = 0;
12018top:
12019	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12020		switch (wk->wk_type) {
12021
12022		case D_ALLOCDIRECT:
12023		case D_ALLOCINDIR:
12024			newblk = WK_NEWBLK(wk);
12025			if (newblk->nb_jnewblk != NULL) {
12026				if (waitfor == MNT_NOWAIT) {
12027					error = EBUSY;
12028					goto out_unlock;
12029				}
12030				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12031				goto top;
12032			}
12033			if (newblk->nb_state & DEPCOMPLETE ||
12034			    waitfor == MNT_NOWAIT)
12035				continue;
12036			nbp = newblk->nb_bmsafemap->sm_buf;
12037			nbp = getdirtybuf(nbp, &lk, waitfor);
12038			if (nbp == NULL)
12039				goto top;
12040			FREE_LOCK(&lk);
12041			if ((error = bwrite(nbp)) != 0)
12042				goto out;
12043			ACQUIRE_LOCK(&lk);
12044			continue;
12045
12046		case D_INDIRDEP:
12047			indirdep = WK_INDIRDEP(wk);
12048			if (waitfor == MNT_NOWAIT) {
12049				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12050				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12051					error = EBUSY;
12052					goto out_unlock;
12053				}
12054			}
12055			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12056				panic("softdep_sync_buf: truncation pending.");
12057		restart:
12058			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12059				newblk = (struct newblk *)aip;
12060				if (newblk->nb_jnewblk != NULL) {
12061					jwait(&newblk->nb_jnewblk->jn_list,
12062					    waitfor);
12063					goto restart;
12064				}
12065				if (newblk->nb_state & DEPCOMPLETE)
12066					continue;
12067				nbp = newblk->nb_bmsafemap->sm_buf;
12068				nbp = getdirtybuf(nbp, &lk, waitfor);
12069				if (nbp == NULL)
12070					goto restart;
12071				FREE_LOCK(&lk);
12072				if ((error = bwrite(nbp)) != 0)
12073					goto out;
12074				ACQUIRE_LOCK(&lk);
12075				goto restart;
12076			}
12077			continue;
12078
12079		case D_PAGEDEP:
12080			/*
12081			 * Only flush directory entries in synchronous passes.
12082			 */
12083			if (waitfor != MNT_WAIT) {
12084				error = EBUSY;
12085				goto out_unlock;
12086			}
12087			/*
12088			 * While syncing snapshots, we must allow recursive
12089			 * lookups.
12090			 */
12091			BUF_AREC(bp);
12092			/*
12093			 * We are trying to sync a directory that may
12094			 * have dependencies on both its own metadata
12095			 * and/or dependencies on the inodes of any
12096			 * recently allocated files. We walk its diradd
12097			 * lists pushing out the associated inode.
12098			 */
12099			pagedep = WK_PAGEDEP(wk);
12100			for (i = 0; i < DAHASHSZ; i++) {
12101				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12102					continue;
12103				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12104				    &pagedep->pd_diraddhd[i]))) {
12105					BUF_NOREC(bp);
12106					goto out_unlock;
12107				}
12108			}
12109			BUF_NOREC(bp);
12110			continue;
12111
12112		case D_FREEWORK:
12113		case D_FREEDEP:
12114		case D_JSEGDEP:
12115		case D_JNEWBLK:
12116			continue;
12117
12118		default:
12119			panic("softdep_sync_buf: Unknown type %s",
12120			    TYPENAME(wk->wk_type));
12121			/* NOTREACHED */
12122		}
12123	}
12124out_unlock:
12125	FREE_LOCK(&lk);
12126out:
12127	return (error);
12128}
12129
12130/*
12131 * Flush the dependencies associated with an inodedep.
12132 * Called with splbio blocked.
12133 */
12134static int
12135flush_inodedep_deps(vp, mp, ino)
12136	struct vnode *vp;
12137	struct mount *mp;
12138	ino_t ino;
12139{
12140	struct inodedep *inodedep;
12141	struct inoref *inoref;
12142	int error, waitfor;
12143
12144	/*
12145	 * This work is done in two passes. The first pass grabs most
12146	 * of the buffers and begins asynchronously writing them. The
12147	 * only way to wait for these asynchronous writes is to sleep
12148	 * on the filesystem vnode which may stay busy for a long time
12149	 * if the filesystem is active. So, instead, we make a second
12150	 * pass over the dependencies blocking on each write. In the
12151	 * usual case we will be blocking against a write that we
12152	 * initiated, so when it is done the dependency will have been
12153	 * resolved. Thus the second pass is expected to end quickly.
12154	 * We give a brief window at the top of the loop to allow
12155	 * any pending I/O to complete.
12156	 */
12157	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12158		if (error)
12159			return (error);
12160		FREE_LOCK(&lk);
12161		ACQUIRE_LOCK(&lk);
12162restart:
12163		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12164			return (0);
12165		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12166			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12167			    == DEPCOMPLETE) {
12168				jwait(&inoref->if_list, MNT_WAIT);
12169				goto restart;
12170			}
12171		}
12172		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12173		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12174		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12175		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12176			continue;
12177		/*
12178		 * If pass2, we are done, otherwise do pass 2.
12179		 */
12180		if (waitfor == MNT_WAIT)
12181			break;
12182		waitfor = MNT_WAIT;
12183	}
12184	/*
12185	 * Try freeing inodedep in case all dependencies have been removed.
12186	 */
12187	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12188		(void) free_inodedep(inodedep);
12189	return (0);
12190}
12191
12192/*
12193 * Flush an inode dependency list.
12194 * Called with splbio blocked.
12195 */
12196static int
12197flush_deplist(listhead, waitfor, errorp)
12198	struct allocdirectlst *listhead;
12199	int waitfor;
12200	int *errorp;
12201{
12202	struct allocdirect *adp;
12203	struct newblk *newblk;
12204	struct buf *bp;
12205
12206	mtx_assert(&lk, MA_OWNED);
12207	TAILQ_FOREACH(adp, listhead, ad_next) {
12208		newblk = (struct newblk *)adp;
12209		if (newblk->nb_jnewblk != NULL) {
12210			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12211			return (1);
12212		}
12213		if (newblk->nb_state & DEPCOMPLETE)
12214			continue;
12215		bp = newblk->nb_bmsafemap->sm_buf;
12216		bp = getdirtybuf(bp, &lk, waitfor);
12217		if (bp == NULL) {
12218			if (waitfor == MNT_NOWAIT)
12219				continue;
12220			return (1);
12221		}
12222		FREE_LOCK(&lk);
12223		if (waitfor == MNT_NOWAIT)
12224			bawrite(bp);
12225		else
12226			*errorp = bwrite(bp);
12227		ACQUIRE_LOCK(&lk);
12228		return (1);
12229	}
12230	return (0);
12231}
12232
12233/*
12234 * Flush dependencies associated with an allocdirect block.
12235 */
12236static int
12237flush_newblk_dep(vp, mp, lbn)
12238	struct vnode *vp;
12239	struct mount *mp;
12240	ufs_lbn_t lbn;
12241{
12242	struct newblk *newblk;
12243	struct bufobj *bo;
12244	struct inode *ip;
12245	struct buf *bp;
12246	ufs2_daddr_t blkno;
12247	int error;
12248
12249	error = 0;
12250	bo = &vp->v_bufobj;
12251	ip = VTOI(vp);
12252	blkno = DIP(ip, i_db[lbn]);
12253	if (blkno == 0)
12254		panic("flush_newblk_dep: Missing block");
12255	ACQUIRE_LOCK(&lk);
12256	/*
12257	 * Loop until all dependencies related to this block are satisfied.
12258	 * We must be careful to restart after each sleep in case a write
12259	 * completes some part of this process for us.
12260	 */
12261	for (;;) {
12262		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12263			FREE_LOCK(&lk);
12264			break;
12265		}
12266		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12267			panic("flush_newblk_deps: Bad newblk %p", newblk);
12268		/*
12269		 * Flush the journal.
12270		 */
12271		if (newblk->nb_jnewblk != NULL) {
12272			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12273			continue;
12274		}
12275		/*
12276		 * Write the bitmap dependency.
12277		 */
12278		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12279			bp = newblk->nb_bmsafemap->sm_buf;
12280			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12281			if (bp == NULL)
12282				continue;
12283			FREE_LOCK(&lk);
12284			error = bwrite(bp);
12285			if (error)
12286				break;
12287			ACQUIRE_LOCK(&lk);
12288			continue;
12289		}
12290		/*
12291		 * Write the buffer.
12292		 */
12293		FREE_LOCK(&lk);
12294		BO_LOCK(bo);
12295		bp = gbincore(bo, lbn);
12296		if (bp != NULL) {
12297			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12298			    LK_INTERLOCK, BO_MTX(bo));
12299			if (error == ENOLCK) {
12300				ACQUIRE_LOCK(&lk);
12301				continue; /* Slept, retry */
12302			}
12303			if (error != 0)
12304				break;	/* Failed */
12305			if (bp->b_flags & B_DELWRI) {
12306				bremfree(bp);
12307				error = bwrite(bp);
12308				if (error)
12309					break;
12310			} else
12311				BUF_UNLOCK(bp);
12312		} else
12313			BO_UNLOCK(bo);
12314		/*
12315		 * We have to wait for the direct pointers to
12316		 * point at the newdirblk before the dependency
12317		 * will go away.
12318		 */
12319		error = ffs_update(vp, MNT_WAIT);
12320		if (error)
12321			break;
12322		ACQUIRE_LOCK(&lk);
12323	}
12324	return (error);
12325}
12326
12327/*
12328 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12329 * Called with splbio blocked.
12330 */
12331static int
12332flush_pagedep_deps(pvp, mp, diraddhdp)
12333	struct vnode *pvp;
12334	struct mount *mp;
12335	struct diraddhd *diraddhdp;
12336{
12337	struct inodedep *inodedep;
12338	struct inoref *inoref;
12339	struct ufsmount *ump;
12340	struct diradd *dap;
12341	struct vnode *vp;
12342	int error = 0;
12343	struct buf *bp;
12344	ino_t inum;
12345
12346	ump = VFSTOUFS(mp);
12347restart:
12348	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12349		/*
12350		 * Flush ourselves if this directory entry
12351		 * has a MKDIR_PARENT dependency.
12352		 */
12353		if (dap->da_state & MKDIR_PARENT) {
12354			FREE_LOCK(&lk);
12355			if ((error = ffs_update(pvp, MNT_WAIT)) != 0)
12356				break;
12357			ACQUIRE_LOCK(&lk);
12358			/*
12359			 * If that cleared dependencies, go on to next.
12360			 */
12361			if (dap != LIST_FIRST(diraddhdp))
12362				continue;
12363			if (dap->da_state & MKDIR_PARENT)
12364				panic("flush_pagedep_deps: MKDIR_PARENT");
12365		}
12366		/*
12367		 * A newly allocated directory must have its "." and
12368		 * ".." entries written out before its name can be
12369		 * committed in its parent.
12370		 */
12371		inum = dap->da_newinum;
12372		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12373			panic("flush_pagedep_deps: lost inode1");
12374		/*
12375		 * Wait for any pending journal adds to complete so we don't
12376		 * cause rollbacks while syncing.
12377		 */
12378		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12379			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12380			    == DEPCOMPLETE) {
12381				jwait(&inoref->if_list, MNT_WAIT);
12382				goto restart;
12383			}
12384		}
12385		if (dap->da_state & MKDIR_BODY) {
12386			FREE_LOCK(&lk);
12387			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12388			    FFSV_FORCEINSMQ)))
12389				break;
12390			error = flush_newblk_dep(vp, mp, 0);
12391			/*
12392			 * If we still have the dependency we might need to
12393			 * update the vnode to sync the new link count to
12394			 * disk.
12395			 */
12396			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12397				error = ffs_update(vp, MNT_WAIT);
12398			vput(vp);
12399			if (error != 0)
12400				break;
12401			ACQUIRE_LOCK(&lk);
12402			/*
12403			 * If that cleared dependencies, go on to next.
12404			 */
12405			if (dap != LIST_FIRST(diraddhdp))
12406				continue;
12407			if (dap->da_state & MKDIR_BODY) {
12408				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12409				    &inodedep);
12410				panic("flush_pagedep_deps: MKDIR_BODY "
12411				    "inodedep %p dap %p vp %p",
12412				    inodedep, dap, vp);
12413			}
12414		}
12415		/*
12416		 * Flush the inode on which the directory entry depends.
12417		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12418		 * the only remaining dependency is that the updated inode
12419		 * count must get pushed to disk. The inode has already
12420		 * been pushed into its inode buffer (via VOP_UPDATE) at
12421		 * the time of the reference count change. So we need only
12422		 * locate that buffer, ensure that there will be no rollback
12423		 * caused by a bitmap dependency, then write the inode buffer.
12424		 */
12425retry:
12426		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12427			panic("flush_pagedep_deps: lost inode");
12428		/*
12429		 * If the inode still has bitmap dependencies,
12430		 * push them to disk.
12431		 */
12432		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12433			bp = inodedep->id_bmsafemap->sm_buf;
12434			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12435			if (bp == NULL)
12436				goto retry;
12437			FREE_LOCK(&lk);
12438			if ((error = bwrite(bp)) != 0)
12439				break;
12440			ACQUIRE_LOCK(&lk);
12441			if (dap != LIST_FIRST(diraddhdp))
12442				continue;
12443		}
12444		/*
12445		 * If the inode is still sitting in a buffer waiting
12446		 * to be written or waiting for the link count to be
12447		 * adjusted update it here to flush it to disk.
12448		 */
12449		if (dap == LIST_FIRST(diraddhdp)) {
12450			FREE_LOCK(&lk);
12451			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12452			    FFSV_FORCEINSMQ)))
12453				break;
12454			error = ffs_update(vp, MNT_WAIT);
12455			vput(vp);
12456			if (error)
12457				break;
12458			ACQUIRE_LOCK(&lk);
12459		}
12460		/*
12461		 * If we have failed to get rid of all the dependencies
12462		 * then something is seriously wrong.
12463		 */
12464		if (dap == LIST_FIRST(diraddhdp)) {
12465			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12466			panic("flush_pagedep_deps: failed to flush "
12467			    "inodedep %p ino %d dap %p", inodedep, inum, dap);
12468		}
12469	}
12470	if (error)
12471		ACQUIRE_LOCK(&lk);
12472	return (error);
12473}
12474
12475/*
12476 * A large burst of file addition or deletion activity can drive the
12477 * memory load excessively high. First attempt to slow things down
12478 * using the techniques below. If that fails, this routine requests
12479 * the offending operations to fall back to running synchronously
12480 * until the memory load returns to a reasonable level.
12481 */
12482int
12483softdep_slowdown(vp)
12484	struct vnode *vp;
12485{
12486	struct ufsmount *ump;
12487	int jlow;
12488	int max_softdeps_hard;
12489
12490	ACQUIRE_LOCK(&lk);
12491	jlow = 0;
12492	/*
12493	 * Check for journal space if needed.
12494	 */
12495	if (DOINGSUJ(vp)) {
12496		ump = VFSTOUFS(vp->v_mount);
12497		if (journal_space(ump, 0) == 0)
12498			jlow = 1;
12499	}
12500	max_softdeps_hard = max_softdeps * 11 / 10;
12501	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12502	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12503	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
12504	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12505		FREE_LOCK(&lk);
12506  		return (0);
12507	}
12508	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
12509		softdep_speedup();
12510	stat_sync_limit_hit += 1;
12511	FREE_LOCK(&lk);
12512	if (DOINGSUJ(vp))
12513		return (0);
12514	return (1);
12515}
12516
12517/*
12518 * Called by the allocation routines when they are about to fail
12519 * in the hope that we can free up the requested resource (inodes
12520 * or disk space).
12521 *
12522 * First check to see if the work list has anything on it. If it has,
12523 * clean up entries until we successfully free the requested resource.
12524 * Because this process holds inodes locked, we cannot handle any remove
12525 * requests that might block on a locked inode as that could lead to
12526 * deadlock. If the worklist yields none of the requested resource,
12527 * start syncing out vnodes to free up the needed space.
12528 */
12529int
12530softdep_request_cleanup(fs, vp, cred, resource)
12531	struct fs *fs;
12532	struct vnode *vp;
12533	struct ucred *cred;
12534	int resource;
12535{
12536	struct ufsmount *ump;
12537	struct mount *mp;
12538	struct vnode *lvp, *mvp;
12539	long starttime;
12540	ufs2_daddr_t needed;
12541	int error;
12542
12543	mp = vp->v_mount;
12544	ump = VFSTOUFS(mp);
12545	mtx_assert(UFS_MTX(ump), MA_OWNED);
12546	if (resource == FLUSH_BLOCKS_WAIT)
12547		stat_cleanup_blkrequests += 1;
12548	else
12549		stat_cleanup_inorequests += 1;
12550
12551	/*
12552	 * If we are being called because of a process doing a
12553	 * copy-on-write, then it is not safe to process any
12554	 * worklist items as we will recurse into the copyonwrite
12555	 * routine.  This will result in an incoherent snapshot.
12556	 */
12557	if (curthread->td_pflags & TDP_COWINPROGRESS)
12558		return (0);
12559	UFS_UNLOCK(ump);
12560	error = ffs_update(vp, 1);
12561	if (error != 0) {
12562		UFS_LOCK(ump);
12563		return (0);
12564	}
12565	/*
12566	 * If we are in need of resources, consider pausing for
12567	 * tickdelay to give ourselves some breathing room.
12568	 */
12569	ACQUIRE_LOCK(&lk);
12570	process_removes(vp);
12571	process_truncates(vp);
12572	request_cleanup(UFSTOVFS(ump), resource);
12573	FREE_LOCK(&lk);
12574	/*
12575	 * Now clean up at least as many resources as we will need.
12576	 *
12577	 * When requested to clean up inodes, the number that are needed
12578	 * is set by the number of simultaneous writers (mnt_writeopcount)
12579	 * plus a bit of slop (2) in case some more writers show up while
12580	 * we are cleaning.
12581	 *
12582	 * When requested to free up space, the amount of space that
12583	 * we need is enough blocks to allocate a full-sized segment
12584	 * (fs_contigsumsize). The number of such segments that will
12585	 * be needed is set by the number of simultaneous writers
12586	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12587	 * writers show up while we are cleaning.
12588	 *
12589	 * Additionally, if we are unpriviledged and allocating space,
12590	 * we need to ensure that we clean up enough blocks to get the
12591	 * needed number of blocks over the threshhold of the minimum
12592	 * number of blocks required to be kept free by the filesystem
12593	 * (fs_minfree).
12594	 */
12595	if (resource == FLUSH_INODES_WAIT) {
12596		needed = vp->v_mount->mnt_writeopcount + 2;
12597	} else if (resource == FLUSH_BLOCKS_WAIT) {
12598		needed = (vp->v_mount->mnt_writeopcount + 2) *
12599		    fs->fs_contigsumsize;
12600		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12601			needed += fragstoblks(fs,
12602			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12603			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12604	} else {
12605		UFS_LOCK(ump);
12606		printf("softdep_request_cleanup: Unknown resource type %d\n",
12607		    resource);
12608		return (0);
12609	}
12610	starttime = time_second;
12611retry:
12612	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
12613	    fs->fs_cstotal.cs_nbfree <= needed) ||
12614	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12615	    fs->fs_cstotal.cs_nifree <= needed)) {
12616		ACQUIRE_LOCK(&lk);
12617		if (ump->softdep_on_worklist > 0 &&
12618		    process_worklist_item(UFSTOVFS(ump),
12619		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
12620			stat_worklist_push += 1;
12621		FREE_LOCK(&lk);
12622	}
12623	/*
12624	 * If we still need resources and there are no more worklist
12625	 * entries to process to obtain them, we have to start flushing
12626	 * the dirty vnodes to force the release of additional requests
12627	 * to the worklist that we can then process to reap addition
12628	 * resources. We walk the vnodes associated with the mount point
12629	 * until we get the needed worklist requests that we can reap.
12630	 */
12631	if ((resource == FLUSH_BLOCKS_WAIT &&
12632	     fs->fs_cstotal.cs_nbfree <= needed) ||
12633	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12634	     fs->fs_cstotal.cs_nifree <= needed)) {
12635		MNT_ILOCK(mp);
12636		MNT_VNODE_FOREACH(lvp, mp, mvp) {
12637			VI_LOCK(lvp);
12638			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
12639				VI_UNLOCK(lvp);
12640				continue;
12641			}
12642			MNT_IUNLOCK(mp);
12643			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
12644			    curthread)) {
12645				MNT_ILOCK(mp);
12646				continue;
12647			}
12648			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
12649				vput(lvp);
12650				MNT_ILOCK(mp);
12651				continue;
12652			}
12653			(void) ffs_syncvnode(lvp, MNT_NOWAIT);
12654			vput(lvp);
12655			MNT_ILOCK(mp);
12656		}
12657		MNT_IUNLOCK(mp);
12658		lvp = ump->um_devvp;
12659		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
12660			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
12661			VOP_UNLOCK(lvp, 0);
12662		}
12663		if (ump->softdep_on_worklist > 0) {
12664			stat_cleanup_retries += 1;
12665			goto retry;
12666		}
12667		stat_cleanup_failures += 1;
12668	}
12669	if (time_second - starttime > stat_cleanup_high_delay)
12670		stat_cleanup_high_delay = time_second - starttime;
12671	UFS_LOCK(ump);
12672	return (1);
12673}
12674
12675/*
12676 * If memory utilization has gotten too high, deliberately slow things
12677 * down and speed up the I/O processing.
12678 */
12679extern struct thread *syncertd;
12680static int
12681request_cleanup(mp, resource)
12682	struct mount *mp;
12683	int resource;
12684{
12685	struct thread *td = curthread;
12686	struct ufsmount *ump;
12687
12688	mtx_assert(&lk, MA_OWNED);
12689	/*
12690	 * We never hold up the filesystem syncer or buf daemon.
12691	 */
12692	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
12693		return (0);
12694	ump = VFSTOUFS(mp);
12695	/*
12696	 * First check to see if the work list has gotten backlogged.
12697	 * If it has, co-opt this process to help clean up two entries.
12698	 * Because this process may hold inodes locked, we cannot
12699	 * handle any remove requests that might block on a locked
12700	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
12701	 * to avoid recursively processing the worklist.
12702	 */
12703	if (ump->softdep_on_worklist > max_softdeps / 10) {
12704		td->td_pflags |= TDP_SOFTDEP;
12705		process_worklist_item(mp, 2, LK_NOWAIT);
12706		td->td_pflags &= ~TDP_SOFTDEP;
12707		stat_worklist_push += 2;
12708		return(1);
12709	}
12710	/*
12711	 * Next, we attempt to speed up the syncer process. If that
12712	 * is successful, then we allow the process to continue.
12713	 */
12714	if (softdep_speedup() &&
12715	    resource != FLUSH_BLOCKS_WAIT &&
12716	    resource != FLUSH_INODES_WAIT)
12717		return(0);
12718	/*
12719	 * If we are resource constrained on inode dependencies, try
12720	 * flushing some dirty inodes. Otherwise, we are constrained
12721	 * by file deletions, so try accelerating flushes of directories
12722	 * with removal dependencies. We would like to do the cleanup
12723	 * here, but we probably hold an inode locked at this point and
12724	 * that might deadlock against one that we try to clean. So,
12725	 * the best that we can do is request the syncer daemon to do
12726	 * the cleanup for us.
12727	 */
12728	switch (resource) {
12729
12730	case FLUSH_INODES:
12731	case FLUSH_INODES_WAIT:
12732		stat_ino_limit_push += 1;
12733		req_clear_inodedeps += 1;
12734		stat_countp = &stat_ino_limit_hit;
12735		break;
12736
12737	case FLUSH_BLOCKS:
12738	case FLUSH_BLOCKS_WAIT:
12739		stat_blk_limit_push += 1;
12740		req_clear_remove += 1;
12741		stat_countp = &stat_blk_limit_hit;
12742		break;
12743
12744	default:
12745		panic("request_cleanup: unknown type");
12746	}
12747	/*
12748	 * Hopefully the syncer daemon will catch up and awaken us.
12749	 * We wait at most tickdelay before proceeding in any case.
12750	 */
12751	proc_waiting += 1;
12752	if (callout_pending(&softdep_callout) == FALSE)
12753		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12754		    pause_timer, 0);
12755
12756	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
12757	proc_waiting -= 1;
12758	return (1);
12759}
12760
12761/*
12762 * Awaken processes pausing in request_cleanup and clear proc_waiting
12763 * to indicate that there is no longer a timer running.
12764 */
12765static void
12766pause_timer(arg)
12767	void *arg;
12768{
12769
12770	/*
12771	 * The callout_ API has acquired mtx and will hold it around this
12772	 * function call.
12773	 */
12774	*stat_countp += 1;
12775	wakeup_one(&proc_waiting);
12776	if (proc_waiting > 0)
12777		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12778		    pause_timer, 0);
12779}
12780
12781/*
12782 * Flush out a directory with at least one removal dependency in an effort to
12783 * reduce the number of dirrem, freefile, and freeblks dependency structures.
12784 */
12785static void
12786clear_remove(td)
12787	struct thread *td;
12788{
12789	struct pagedep_hashhead *pagedephd;
12790	struct pagedep *pagedep;
12791	static int next = 0;
12792	struct mount *mp;
12793	struct vnode *vp;
12794	struct bufobj *bo;
12795	int error, cnt;
12796	ino_t ino;
12797
12798	mtx_assert(&lk, MA_OWNED);
12799
12800	for (cnt = 0; cnt < pagedep_hash; cnt++) {
12801		pagedephd = &pagedep_hashtbl[next++];
12802		if (next >= pagedep_hash)
12803			next = 0;
12804		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
12805			if (LIST_EMPTY(&pagedep->pd_dirremhd))
12806				continue;
12807			mp = pagedep->pd_list.wk_mp;
12808			ino = pagedep->pd_ino;
12809			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
12810				continue;
12811			FREE_LOCK(&lk);
12812
12813			/*
12814			 * Let unmount clear deps
12815			 */
12816			error = vfs_busy(mp, MBF_NOWAIT);
12817			if (error != 0)
12818				goto finish_write;
12819			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
12820			     FFSV_FORCEINSMQ);
12821			vfs_unbusy(mp);
12822			if (error != 0) {
12823				softdep_error("clear_remove: vget", error);
12824				goto finish_write;
12825			}
12826			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
12827				softdep_error("clear_remove: fsync", error);
12828			bo = &vp->v_bufobj;
12829			BO_LOCK(bo);
12830			drain_output(vp);
12831			BO_UNLOCK(bo);
12832			vput(vp);
12833		finish_write:
12834			vn_finished_write(mp);
12835			ACQUIRE_LOCK(&lk);
12836			return;
12837		}
12838	}
12839}
12840
12841/*
12842 * Clear out a block of dirty inodes in an effort to reduce
12843 * the number of inodedep dependency structures.
12844 */
12845static void
12846clear_inodedeps(td)
12847	struct thread *td;
12848{
12849	struct inodedep_hashhead *inodedephd;
12850	struct inodedep *inodedep;
12851	static int next = 0;
12852	struct mount *mp;
12853	struct vnode *vp;
12854	struct fs *fs;
12855	int error, cnt;
12856	ino_t firstino, lastino, ino;
12857
12858	mtx_assert(&lk, MA_OWNED);
12859	/*
12860	 * Pick a random inode dependency to be cleared.
12861	 * We will then gather up all the inodes in its block
12862	 * that have dependencies and flush them out.
12863	 */
12864	for (cnt = 0; cnt < inodedep_hash; cnt++) {
12865		inodedephd = &inodedep_hashtbl[next++];
12866		if (next >= inodedep_hash)
12867			next = 0;
12868		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
12869			break;
12870	}
12871	if (inodedep == NULL)
12872		return;
12873	fs = inodedep->id_fs;
12874	mp = inodedep->id_list.wk_mp;
12875	/*
12876	 * Find the last inode in the block with dependencies.
12877	 */
12878	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
12879	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
12880		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
12881			break;
12882	/*
12883	 * Asynchronously push all but the last inode with dependencies.
12884	 * Synchronously push the last inode with dependencies to ensure
12885	 * that the inode block gets written to free up the inodedeps.
12886	 */
12887	for (ino = firstino; ino <= lastino; ino++) {
12888		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12889			continue;
12890		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
12891			continue;
12892		FREE_LOCK(&lk);
12893		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
12894		if (error != 0) {
12895			vn_finished_write(mp);
12896			ACQUIRE_LOCK(&lk);
12897			return;
12898		}
12899		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
12900		    FFSV_FORCEINSMQ)) != 0) {
12901			softdep_error("clear_inodedeps: vget", error);
12902			vfs_unbusy(mp);
12903			vn_finished_write(mp);
12904			ACQUIRE_LOCK(&lk);
12905			return;
12906		}
12907		vfs_unbusy(mp);
12908		if (ino == lastino) {
12909			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
12910				softdep_error("clear_inodedeps: fsync1", error);
12911		} else {
12912			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
12913				softdep_error("clear_inodedeps: fsync2", error);
12914			BO_LOCK(&vp->v_bufobj);
12915			drain_output(vp);
12916			BO_UNLOCK(&vp->v_bufobj);
12917		}
12918		vput(vp);
12919		vn_finished_write(mp);
12920		ACQUIRE_LOCK(&lk);
12921	}
12922}
12923
12924void
12925softdep_buf_append(bp, wkhd)
12926	struct buf *bp;
12927	struct workhead *wkhd;
12928{
12929	struct worklist *wk;
12930
12931	ACQUIRE_LOCK(&lk);
12932	while ((wk = LIST_FIRST(wkhd)) != NULL) {
12933		WORKLIST_REMOVE(wk);
12934		WORKLIST_INSERT(&bp->b_dep, wk);
12935	}
12936	FREE_LOCK(&lk);
12937
12938}
12939
12940void
12941softdep_inode_append(ip, cred, wkhd)
12942	struct inode *ip;
12943	struct ucred *cred;
12944	struct workhead *wkhd;
12945{
12946	struct buf *bp;
12947	struct fs *fs;
12948	int error;
12949
12950	fs = ip->i_fs;
12951	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
12952	    (int)fs->fs_bsize, cred, &bp);
12953	if (error) {
12954		softdep_freework(wkhd);
12955		return;
12956	}
12957	softdep_buf_append(bp, wkhd);
12958	bqrelse(bp);
12959}
12960
12961void
12962softdep_freework(wkhd)
12963	struct workhead *wkhd;
12964{
12965
12966	ACQUIRE_LOCK(&lk);
12967	handle_jwork(wkhd);
12968	FREE_LOCK(&lk);
12969}
12970
12971/*
12972 * Function to determine if the buffer has outstanding dependencies
12973 * that will cause a roll-back if the buffer is written. If wantcount
12974 * is set, return number of dependencies, otherwise just yes or no.
12975 */
12976static int
12977softdep_count_dependencies(bp, wantcount)
12978	struct buf *bp;
12979	int wantcount;
12980{
12981	struct worklist *wk;
12982	struct bmsafemap *bmsafemap;
12983	struct freework *freework;
12984	struct inodedep *inodedep;
12985	struct indirdep *indirdep;
12986	struct freeblks *freeblks;
12987	struct allocindir *aip;
12988	struct pagedep *pagedep;
12989	struct dirrem *dirrem;
12990	struct newblk *newblk;
12991	struct mkdir *mkdir;
12992	struct diradd *dap;
12993	int i, retval;
12994
12995	retval = 0;
12996	ACQUIRE_LOCK(&lk);
12997	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12998		switch (wk->wk_type) {
12999
13000		case D_INODEDEP:
13001			inodedep = WK_INODEDEP(wk);
13002			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13003				/* bitmap allocation dependency */
13004				retval += 1;
13005				if (!wantcount)
13006					goto out;
13007			}
13008			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13009				/* direct block pointer dependency */
13010				retval += 1;
13011				if (!wantcount)
13012					goto out;
13013			}
13014			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13015				/* direct block pointer dependency */
13016				retval += 1;
13017				if (!wantcount)
13018					goto out;
13019			}
13020			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13021				/* Add reference dependency. */
13022				retval += 1;
13023				if (!wantcount)
13024					goto out;
13025			}
13026			continue;
13027
13028		case D_INDIRDEP:
13029			indirdep = WK_INDIRDEP(wk);
13030
13031			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13032				/* indirect truncation dependency */
13033				retval += 1;
13034				if (!wantcount)
13035					goto out;
13036			}
13037
13038			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13039				/* indirect block pointer dependency */
13040				retval += 1;
13041				if (!wantcount)
13042					goto out;
13043			}
13044			continue;
13045
13046		case D_PAGEDEP:
13047			pagedep = WK_PAGEDEP(wk);
13048			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13049				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13050					/* Journal remove ref dependency. */
13051					retval += 1;
13052					if (!wantcount)
13053						goto out;
13054				}
13055			}
13056			for (i = 0; i < DAHASHSZ; i++) {
13057
13058				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13059					/* directory entry dependency */
13060					retval += 1;
13061					if (!wantcount)
13062						goto out;
13063				}
13064			}
13065			continue;
13066
13067		case D_BMSAFEMAP:
13068			bmsafemap = WK_BMSAFEMAP(wk);
13069			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13070				/* Add reference dependency. */
13071				retval += 1;
13072				if (!wantcount)
13073					goto out;
13074			}
13075			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13076				/* Allocate block dependency. */
13077				retval += 1;
13078				if (!wantcount)
13079					goto out;
13080			}
13081			continue;
13082
13083		case D_FREEBLKS:
13084			freeblks = WK_FREEBLKS(wk);
13085			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13086				/* Freeblk journal dependency. */
13087				retval += 1;
13088				if (!wantcount)
13089					goto out;
13090			}
13091			continue;
13092
13093		case D_ALLOCDIRECT:
13094		case D_ALLOCINDIR:
13095			newblk = WK_NEWBLK(wk);
13096			if (newblk->nb_jnewblk) {
13097				/* Journal allocate dependency. */
13098				retval += 1;
13099				if (!wantcount)
13100					goto out;
13101			}
13102			continue;
13103
13104		case D_MKDIR:
13105			mkdir = WK_MKDIR(wk);
13106			if (mkdir->md_jaddref) {
13107				/* Journal reference dependency. */
13108				retval += 1;
13109				if (!wantcount)
13110					goto out;
13111			}
13112			continue;
13113
13114		case D_FREEWORK:
13115		case D_FREEDEP:
13116		case D_JSEGDEP:
13117		case D_JSEG:
13118		case D_SBDEP:
13119			/* never a dependency on these blocks */
13120			continue;
13121
13122		default:
13123			panic("softdep_count_dependencies: Unexpected type %s",
13124			    TYPENAME(wk->wk_type));
13125			/* NOTREACHED */
13126		}
13127	}
13128out:
13129	FREE_LOCK(&lk);
13130	return retval;
13131}
13132
13133/*
13134 * Acquire exclusive access to a buffer.
13135 * Must be called with a locked mtx parameter.
13136 * Return acquired buffer or NULL on failure.
13137 */
13138static struct buf *
13139getdirtybuf(bp, mtx, waitfor)
13140	struct buf *bp;
13141	struct mtx *mtx;
13142	int waitfor;
13143{
13144	int error;
13145
13146	mtx_assert(mtx, MA_OWNED);
13147	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13148		if (waitfor != MNT_WAIT)
13149			return (NULL);
13150		error = BUF_LOCK(bp,
13151		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
13152		/*
13153		 * Even if we sucessfully acquire bp here, we have dropped
13154		 * mtx, which may violates our guarantee.
13155		 */
13156		if (error == 0)
13157			BUF_UNLOCK(bp);
13158		else if (error != ENOLCK)
13159			panic("getdirtybuf: inconsistent lock: %d", error);
13160		mtx_lock(mtx);
13161		return (NULL);
13162	}
13163	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13164		if (mtx == &lk && waitfor == MNT_WAIT) {
13165			mtx_unlock(mtx);
13166			BO_LOCK(bp->b_bufobj);
13167			BUF_UNLOCK(bp);
13168			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13169				bp->b_vflags |= BV_BKGRDWAIT;
13170				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
13171				       PRIBIO | PDROP, "getbuf", 0);
13172			} else
13173				BO_UNLOCK(bp->b_bufobj);
13174			mtx_lock(mtx);
13175			return (NULL);
13176		}
13177		BUF_UNLOCK(bp);
13178		if (waitfor != MNT_WAIT)
13179			return (NULL);
13180		/*
13181		 * The mtx argument must be bp->b_vp's mutex in
13182		 * this case.
13183		 */
13184#ifdef	DEBUG_VFS_LOCKS
13185		if (bp->b_vp->v_type != VCHR)
13186			ASSERT_BO_LOCKED(bp->b_bufobj);
13187#endif
13188		bp->b_vflags |= BV_BKGRDWAIT;
13189		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
13190		return (NULL);
13191	}
13192	if ((bp->b_flags & B_DELWRI) == 0) {
13193		BUF_UNLOCK(bp);
13194		return (NULL);
13195	}
13196	bremfree(bp);
13197	return (bp);
13198}
13199
13200
13201/*
13202 * Check if it is safe to suspend the file system now.  On entry,
13203 * the vnode interlock for devvp should be held.  Return 0 with
13204 * the mount interlock held if the file system can be suspended now,
13205 * otherwise return EAGAIN with the mount interlock held.
13206 */
13207int
13208softdep_check_suspend(struct mount *mp,
13209		      struct vnode *devvp,
13210		      int softdep_deps,
13211		      int softdep_accdeps,
13212		      int secondary_writes,
13213		      int secondary_accwrites)
13214{
13215	struct bufobj *bo;
13216	struct ufsmount *ump;
13217	int error;
13218
13219	ump = VFSTOUFS(mp);
13220	bo = &devvp->v_bufobj;
13221	ASSERT_BO_LOCKED(bo);
13222
13223	for (;;) {
13224		if (!TRY_ACQUIRE_LOCK(&lk)) {
13225			BO_UNLOCK(bo);
13226			ACQUIRE_LOCK(&lk);
13227			FREE_LOCK(&lk);
13228			BO_LOCK(bo);
13229			continue;
13230		}
13231		MNT_ILOCK(mp);
13232		if (mp->mnt_secondary_writes != 0) {
13233			FREE_LOCK(&lk);
13234			BO_UNLOCK(bo);
13235			msleep(&mp->mnt_secondary_writes,
13236			       MNT_MTX(mp),
13237			       (PUSER - 1) | PDROP, "secwr", 0);
13238			BO_LOCK(bo);
13239			continue;
13240		}
13241		break;
13242	}
13243
13244	/*
13245	 * Reasons for needing more work before suspend:
13246	 * - Dirty buffers on devvp.
13247	 * - Softdep activity occurred after start of vnode sync loop
13248	 * - Secondary writes occurred after start of vnode sync loop
13249	 */
13250	error = 0;
13251	if (bo->bo_numoutput > 0 ||
13252	    bo->bo_dirty.bv_cnt > 0 ||
13253	    softdep_deps != 0 ||
13254	    ump->softdep_deps != 0 ||
13255	    softdep_accdeps != ump->softdep_accdeps ||
13256	    secondary_writes != 0 ||
13257	    mp->mnt_secondary_writes != 0 ||
13258	    secondary_accwrites != mp->mnt_secondary_accwrites)
13259		error = EAGAIN;
13260	FREE_LOCK(&lk);
13261	BO_UNLOCK(bo);
13262	return (error);
13263}
13264
13265
13266/*
13267 * Get the number of dependency structures for the file system, both
13268 * the current number and the total number allocated.  These will
13269 * later be used to detect that softdep processing has occurred.
13270 */
13271void
13272softdep_get_depcounts(struct mount *mp,
13273		      int *softdep_depsp,
13274		      int *softdep_accdepsp)
13275{
13276	struct ufsmount *ump;
13277
13278	ump = VFSTOUFS(mp);
13279	ACQUIRE_LOCK(&lk);
13280	*softdep_depsp = ump->softdep_deps;
13281	*softdep_accdepsp = ump->softdep_accdeps;
13282	FREE_LOCK(&lk);
13283}
13284
13285/*
13286 * Wait for pending output on a vnode to complete.
13287 * Must be called with vnode lock and interlock locked.
13288 *
13289 * XXX: Should just be a call to bufobj_wwait().
13290 */
13291static void
13292drain_output(vp)
13293	struct vnode *vp;
13294{
13295	struct bufobj *bo;
13296
13297	bo = &vp->v_bufobj;
13298	ASSERT_VOP_LOCKED(vp, "drain_output");
13299	ASSERT_BO_LOCKED(bo);
13300
13301	while (bo->bo_numoutput) {
13302		bo->bo_flag |= BO_WWAIT;
13303		msleep((caddr_t)&bo->bo_numoutput,
13304		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
13305	}
13306}
13307
13308/*
13309 * Called whenever a buffer that is being invalidated or reallocated
13310 * contains dependencies. This should only happen if an I/O error has
13311 * occurred. The routine is called with the buffer locked.
13312 */
13313static void
13314softdep_deallocate_dependencies(bp)
13315	struct buf *bp;
13316{
13317
13318	if ((bp->b_ioflags & BIO_ERROR) == 0)
13319		panic("softdep_deallocate_dependencies: dangling deps");
13320	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13321	panic("softdep_deallocate_dependencies: unrecovered I/O error");
13322}
13323
13324/*
13325 * Function to handle asynchronous write errors in the filesystem.
13326 */
13327static void
13328softdep_error(func, error)
13329	char *func;
13330	int error;
13331{
13332
13333	/* XXX should do something better! */
13334	printf("%s: got error %d while accessing filesystem\n", func, error);
13335}
13336
13337#ifdef DDB
13338
13339static void
13340inodedep_print(struct inodedep *inodedep, int verbose)
13341{
13342	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13343	    " saveino %p\n",
13344	    inodedep, inodedep->id_fs, inodedep->id_state,
13345	    (intmax_t)inodedep->id_ino,
13346	    (intmax_t)fsbtodb(inodedep->id_fs,
13347	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13348	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13349	    inodedep->id_savedino1);
13350
13351	if (verbose == 0)
13352		return;
13353
13354	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13355	    "mkdiradd %p\n",
13356	    LIST_FIRST(&inodedep->id_pendinghd),
13357	    LIST_FIRST(&inodedep->id_bufwait),
13358	    LIST_FIRST(&inodedep->id_inowait),
13359	    TAILQ_FIRST(&inodedep->id_inoreflst),
13360	    inodedep->id_mkdiradd);
13361	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13362	    TAILQ_FIRST(&inodedep->id_inoupdt),
13363	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13364	    TAILQ_FIRST(&inodedep->id_extupdt),
13365	    TAILQ_FIRST(&inodedep->id_newextupdt));
13366}
13367
13368DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13369{
13370
13371	if (have_addr == 0) {
13372		db_printf("Address required\n");
13373		return;
13374	}
13375	inodedep_print((struct inodedep*)addr, 1);
13376}
13377
13378DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13379{
13380	struct inodedep_hashhead *inodedephd;
13381	struct inodedep *inodedep;
13382	struct fs *fs;
13383	int cnt;
13384
13385	fs = have_addr ? (struct fs *)addr : NULL;
13386	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13387		inodedephd = &inodedep_hashtbl[cnt];
13388		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13389			if (fs != NULL && fs != inodedep->id_fs)
13390				continue;
13391			inodedep_print(inodedep, 0);
13392		}
13393	}
13394}
13395
13396DB_SHOW_COMMAND(worklist, db_show_worklist)
13397{
13398	struct worklist *wk;
13399
13400	if (have_addr == 0) {
13401		db_printf("Address required\n");
13402		return;
13403	}
13404	wk = (struct worklist *)addr;
13405	printf("worklist: %p type %s state 0x%X\n",
13406	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13407}
13408
13409DB_SHOW_COMMAND(workhead, db_show_workhead)
13410{
13411	struct workhead *wkhd;
13412	struct worklist *wk;
13413	int i;
13414
13415	if (have_addr == 0) {
13416		db_printf("Address required\n");
13417		return;
13418	}
13419	wkhd = (struct workhead *)addr;
13420	wk = LIST_FIRST(wkhd);
13421	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13422		db_printf("worklist: %p type %s state 0x%X",
13423		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13424	if (i == 100)
13425		db_printf("workhead overflow");
13426	printf("\n");
13427}
13428
13429
13430DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13431{
13432	struct jaddref *jaddref;
13433	struct diradd *diradd;
13434	struct mkdir *mkdir;
13435
13436	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
13437		diradd = mkdir->md_diradd;
13438		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13439		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13440		if ((jaddref = mkdir->md_jaddref) != NULL)
13441			db_printf(" jaddref %p jaddref state 0x%X",
13442			    jaddref, jaddref->ja_state);
13443		db_printf("\n");
13444	}
13445}
13446
13447#endif /* DDB */
13448
13449#endif /* SOFTUPDATES */
13450