ffs_softdep.c revision 216817
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick.
3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4 * All rights reserved.
5 *
6 * The soft updates code is derived from the appendix of a University
7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8 * "Soft Updates: A Solution to the Metadata Update Problem in File
9 * Systems", CSE-TR-254-95, August 1995).
10 *
11 * Further information about soft updates can be obtained from:
12 *
13 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14 *	1614 Oxford Street		mckusick@mckusick.com
15 *	Berkeley, CA 94709-1608		+1-510-843-9542
16 *	USA
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 216817 2010-12-30 10:41:17Z kib $");
44
45#include "opt_ffs.h"
46#include "opt_ddb.h"
47
48/*
49 * For now we want the safety net that the DEBUG flag provides.
50 */
51#ifndef DEBUG
52#define DEBUG
53#endif
54
55#include <sys/param.h>
56#include <sys/kernel.h>
57#include <sys/systm.h>
58#include <sys/bio.h>
59#include <sys/buf.h>
60#include <sys/kdb.h>
61#include <sys/kthread.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mount.h>
65#include <sys/mutex.h>
66#include <sys/namei.h>
67#include <sys/proc.h>
68#include <sys/stat.h>
69#include <sys/sysctl.h>
70#include <sys/syslog.h>
71#include <sys/vnode.h>
72#include <sys/conf.h>
73#include <ufs/ufs/dir.h>
74#include <ufs/ufs/extattr.h>
75#include <ufs/ufs/quota.h>
76#include <ufs/ufs/inode.h>
77#include <ufs/ufs/ufsmount.h>
78#include <ufs/ffs/fs.h>
79#include <ufs/ffs/softdep.h>
80#include <ufs/ffs/ffs_extern.h>
81#include <ufs/ufs/ufs_extern.h>
82
83#include <vm/vm.h>
84
85#include <ddb/ddb.h>
86
87#ifndef SOFTUPDATES
88
89int
90softdep_flushfiles(oldmnt, flags, td)
91	struct mount *oldmnt;
92	int flags;
93	struct thread *td;
94{
95
96	panic("softdep_flushfiles called");
97}
98
99int
100softdep_mount(devvp, mp, fs, cred)
101	struct vnode *devvp;
102	struct mount *mp;
103	struct fs *fs;
104	struct ucred *cred;
105{
106
107	return (0);
108}
109
110void
111softdep_initialize()
112{
113
114	return;
115}
116
117void
118softdep_uninitialize()
119{
120
121	return;
122}
123
124void
125softdep_unmount(mp)
126	struct mount *mp;
127{
128
129}
130
131void
132softdep_setup_sbupdate(ump, fs, bp)
133	struct ufsmount *ump;
134	struct fs *fs;
135	struct buf *bp;
136{
137}
138
139void
140softdep_setup_inomapdep(bp, ip, newinum)
141	struct buf *bp;
142	struct inode *ip;
143	ino_t newinum;
144{
145
146	panic("softdep_setup_inomapdep called");
147}
148
149void
150softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
151	struct buf *bp;
152	struct mount *mp;
153	ufs2_daddr_t newblkno;
154	int frags;
155	int oldfrags;
156{
157
158	panic("softdep_setup_blkmapdep called");
159}
160
161void
162softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
163	struct inode *ip;
164	ufs_lbn_t lbn;
165	ufs2_daddr_t newblkno;
166	ufs2_daddr_t oldblkno;
167	long newsize;
168	long oldsize;
169	struct buf *bp;
170{
171
172	panic("softdep_setup_allocdirect called");
173}
174
175void
176softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
177	struct inode *ip;
178	ufs_lbn_t lbn;
179	ufs2_daddr_t newblkno;
180	ufs2_daddr_t oldblkno;
181	long newsize;
182	long oldsize;
183	struct buf *bp;
184{
185
186	panic("softdep_setup_allocext called");
187}
188
189void
190softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
191	struct inode *ip;
192	ufs_lbn_t lbn;
193	struct buf *bp;
194	int ptrno;
195	ufs2_daddr_t newblkno;
196	ufs2_daddr_t oldblkno;
197	struct buf *nbp;
198{
199
200	panic("softdep_setup_allocindir_page called");
201}
202
203void
204softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
205	struct buf *nbp;
206	struct inode *ip;
207	struct buf *bp;
208	int ptrno;
209	ufs2_daddr_t newblkno;
210{
211
212	panic("softdep_setup_allocindir_meta called");
213}
214
215void
216softdep_setup_freeblocks(ip, length, flags)
217	struct inode *ip;
218	off_t length;
219	int flags;
220{
221
222	panic("softdep_setup_freeblocks called");
223}
224
225void
226softdep_freefile(pvp, ino, mode)
227		struct vnode *pvp;
228		ino_t ino;
229		int mode;
230{
231
232	panic("softdep_freefile called");
233}
234
235int
236softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
237	struct buf *bp;
238	struct inode *dp;
239	off_t diroffset;
240	ino_t newinum;
241	struct buf *newdirbp;
242	int isnewblk;
243{
244
245	panic("softdep_setup_directory_add called");
246}
247
248void
249softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
250	struct buf *bp;
251	struct inode *dp;
252	caddr_t base;
253	caddr_t oldloc;
254	caddr_t newloc;
255	int entrysize;
256{
257
258	panic("softdep_change_directoryentry_offset called");
259}
260
261void
262softdep_setup_remove(bp, dp, ip, isrmdir)
263	struct buf *bp;
264	struct inode *dp;
265	struct inode *ip;
266	int isrmdir;
267{
268
269	panic("softdep_setup_remove called");
270}
271
272void
273softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
274	struct buf *bp;
275	struct inode *dp;
276	struct inode *ip;
277	ino_t newinum;
278	int isrmdir;
279{
280
281	panic("softdep_setup_directory_change called");
282}
283
284void *
285softdep_setup_trunc(vp, length, flags)
286	struct vnode *vp;
287	off_t length;
288	int flags;
289{
290
291	panic("%s called", __FUNCTION__);
292
293	return (NULL);
294}
295
296int
297softdep_complete_trunc(vp, cookie)
298	struct vnode *vp;
299	void *cookie;
300{
301
302	panic("%s called", __FUNCTION__);
303
304	return (0);
305}
306
307void
308softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
309	struct mount *mp;
310	struct buf *bp;
311	ufs2_daddr_t blkno;
312	int frags;
313	struct workhead *wkhd;
314{
315
316	panic("%s called", __FUNCTION__);
317}
318
319void
320softdep_setup_inofree(mp, bp, ino, wkhd)
321	struct mount *mp;
322	struct buf *bp;
323	ino_t ino;
324	struct workhead *wkhd;
325{
326
327	panic("%s called", __FUNCTION__);
328}
329
330void
331softdep_setup_unlink(dp, ip)
332	struct inode *dp;
333	struct inode *ip;
334{
335
336	panic("%s called", __FUNCTION__);
337}
338
339void
340softdep_setup_link(dp, ip)
341	struct inode *dp;
342	struct inode *ip;
343{
344
345	panic("%s called", __FUNCTION__);
346}
347
348void
349softdep_revert_link(dp, ip)
350	struct inode *dp;
351	struct inode *ip;
352{
353
354	panic("%s called", __FUNCTION__);
355}
356
357void
358softdep_setup_rmdir(dp, ip)
359	struct inode *dp;
360	struct inode *ip;
361{
362
363	panic("%s called", __FUNCTION__);
364}
365
366void
367softdep_revert_rmdir(dp, ip)
368	struct inode *dp;
369	struct inode *ip;
370{
371
372	panic("%s called", __FUNCTION__);
373}
374
375void
376softdep_setup_create(dp, ip)
377	struct inode *dp;
378	struct inode *ip;
379{
380
381	panic("%s called", __FUNCTION__);
382}
383
384void
385softdep_revert_create(dp, ip)
386	struct inode *dp;
387	struct inode *ip;
388{
389
390	panic("%s called", __FUNCTION__);
391}
392
393void
394softdep_setup_mkdir(dp, ip)
395	struct inode *dp;
396	struct inode *ip;
397{
398
399	panic("%s called", __FUNCTION__);
400}
401
402void
403softdep_revert_mkdir(dp, ip)
404	struct inode *dp;
405	struct inode *ip;
406{
407
408	panic("%s called", __FUNCTION__);
409}
410
411void
412softdep_setup_dotdot_link(dp, ip)
413	struct inode *dp;
414	struct inode *ip;
415{
416
417	panic("%s called", __FUNCTION__);
418}
419
420int
421softdep_prealloc(vp, waitok)
422	struct vnode *vp;
423	int waitok;
424{
425
426	panic("%s called", __FUNCTION__);
427
428	return (0);
429}
430
431int
432softdep_journal_lookup(mp, vpp)
433	struct mount *mp;
434	struct vnode **vpp;
435{
436
437	return (ENOENT);
438}
439
440void
441softdep_change_linkcnt(ip)
442	struct inode *ip;
443{
444
445	panic("softdep_change_linkcnt called");
446}
447
448void
449softdep_load_inodeblock(ip)
450	struct inode *ip;
451{
452
453	panic("softdep_load_inodeblock called");
454}
455
456void
457softdep_update_inodeblock(ip, bp, waitfor)
458	struct inode *ip;
459	struct buf *bp;
460	int waitfor;
461{
462
463	panic("softdep_update_inodeblock called");
464}
465
466int
467softdep_fsync(vp)
468	struct vnode *vp;	/* the "in_core" copy of the inode */
469{
470
471	return (0);
472}
473
474void
475softdep_fsync_mountdev(vp)
476	struct vnode *vp;
477{
478
479	return;
480}
481
482int
483softdep_flushworklist(oldmnt, countp, td)
484	struct mount *oldmnt;
485	int *countp;
486	struct thread *td;
487{
488
489	*countp = 0;
490	return (0);
491}
492
493int
494softdep_sync_metadata(struct vnode *vp)
495{
496
497	return (0);
498}
499
500int
501softdep_slowdown(vp)
502	struct vnode *vp;
503{
504
505	panic("softdep_slowdown called");
506}
507
508void
509softdep_releasefile(ip)
510	struct inode *ip;	/* inode with the zero effective link count */
511{
512
513	panic("softdep_releasefile called");
514}
515
516int
517softdep_request_cleanup(fs, vp)
518	struct fs *fs;
519	struct vnode *vp;
520{
521
522	return (0);
523}
524
525int
526softdep_check_suspend(struct mount *mp,
527		      struct vnode *devvp,
528		      int softdep_deps,
529		      int softdep_accdeps,
530		      int secondary_writes,
531		      int secondary_accwrites)
532{
533	struct bufobj *bo;
534	int error;
535
536	(void) softdep_deps,
537	(void) softdep_accdeps;
538
539	bo = &devvp->v_bufobj;
540	ASSERT_BO_LOCKED(bo);
541
542	MNT_ILOCK(mp);
543	while (mp->mnt_secondary_writes != 0) {
544		BO_UNLOCK(bo);
545		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
546		    (PUSER - 1) | PDROP, "secwr", 0);
547		BO_LOCK(bo);
548		MNT_ILOCK(mp);
549	}
550
551	/*
552	 * Reasons for needing more work before suspend:
553	 * - Dirty buffers on devvp.
554	 * - Secondary writes occurred after start of vnode sync loop
555	 */
556	error = 0;
557	if (bo->bo_numoutput > 0 ||
558	    bo->bo_dirty.bv_cnt > 0 ||
559	    secondary_writes != 0 ||
560	    mp->mnt_secondary_writes != 0 ||
561	    secondary_accwrites != mp->mnt_secondary_accwrites)
562		error = EAGAIN;
563	BO_UNLOCK(bo);
564	return (error);
565}
566
567void
568softdep_get_depcounts(struct mount *mp,
569		      int *softdepactivep,
570		      int *softdepactiveaccp)
571{
572	(void) mp;
573	*softdepactivep = 0;
574	*softdepactiveaccp = 0;
575}
576
577#else
578/*
579 * These definitions need to be adapted to the system to which
580 * this file is being ported.
581 */
582
583#define M_SOFTDEP_FLAGS	(M_WAITOK)
584
585#define	D_PAGEDEP	0
586#define	D_INODEDEP	1
587#define	D_BMSAFEMAP	2
588#define	D_NEWBLK	3
589#define	D_ALLOCDIRECT	4
590#define	D_INDIRDEP	5
591#define	D_ALLOCINDIR	6
592#define	D_FREEFRAG	7
593#define	D_FREEBLKS	8
594#define	D_FREEFILE	9
595#define	D_DIRADD	10
596#define	D_MKDIR		11
597#define	D_DIRREM	12
598#define	D_NEWDIRBLK	13
599#define	D_FREEWORK	14
600#define	D_FREEDEP	15
601#define	D_JADDREF	16
602#define	D_JREMREF	17
603#define	D_JMVREF	18
604#define	D_JNEWBLK	19
605#define	D_JFREEBLK	20
606#define	D_JFREEFRAG	21
607#define	D_JSEG		22
608#define	D_JSEGDEP	23
609#define	D_SBDEP		24
610#define	D_JTRUNC	25
611#define	D_LAST		D_JTRUNC
612
613unsigned long dep_current[D_LAST + 1];
614unsigned long dep_total[D_LAST + 1];
615
616
617SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, "soft updates stats");
618SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
619    "total dependencies allocated");
620SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
621    "current dependencies allocated");
622
623#define	SOFTDEP_TYPE(type, str, long)					\
624    static MALLOC_DEFINE(M_ ## type, #str, long);			\
625    SYSCTL_LONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
626	&dep_total[D_ ## type], 0, "");					\
627    SYSCTL_LONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
628	&dep_current[D_ ## type], 0, "");
629
630SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
631SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
632SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
633    "Block or frag allocated from cyl group map");
634SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
635SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
636SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
637SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
638SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
639SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
640SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
641SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
642SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
643SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
644SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
645SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
646SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
647SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
648SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
649SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
650SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
651SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
652SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
653SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
654SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
655SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
656SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
657
658static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
659static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
660
661/*
662 * translate from workitem type to memory type
663 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
664 */
665static struct malloc_type *memtype[] = {
666	M_PAGEDEP,
667	M_INODEDEP,
668	M_BMSAFEMAP,
669	M_NEWBLK,
670	M_ALLOCDIRECT,
671	M_INDIRDEP,
672	M_ALLOCINDIR,
673	M_FREEFRAG,
674	M_FREEBLKS,
675	M_FREEFILE,
676	M_DIRADD,
677	M_MKDIR,
678	M_DIRREM,
679	M_NEWDIRBLK,
680	M_FREEWORK,
681	M_FREEDEP,
682	M_JADDREF,
683	M_JREMREF,
684	M_JMVREF,
685	M_JNEWBLK,
686	M_JFREEBLK,
687	M_JFREEFRAG,
688	M_JSEG,
689	M_JSEGDEP,
690	M_SBDEP,
691	M_JTRUNC
692};
693
694static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
695
696#define DtoM(type) (memtype[type])
697
698/*
699 * Names of malloc types.
700 */
701#define TYPENAME(type)  \
702	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
703/*
704 * End system adaptation definitions.
705 */
706
707#define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
708#define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
709
710/*
711 * Forward declarations.
712 */
713struct inodedep_hashhead;
714struct newblk_hashhead;
715struct pagedep_hashhead;
716struct bmsafemap_hashhead;
717
718/*
719 * Internal function prototypes.
720 */
721static	void softdep_error(char *, int);
722static	void drain_output(struct vnode *);
723static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
724static	void clear_remove(struct thread *);
725static	void clear_inodedeps(struct thread *);
726static	void unlinked_inodedep(struct mount *, struct inodedep *);
727static	void clear_unlinked_inodedep(struct inodedep *);
728static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
729static	int flush_pagedep_deps(struct vnode *, struct mount *,
730	    struct diraddhd *);
731static	void free_pagedep(struct pagedep *);
732static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
733static	int flush_inodedep_deps(struct mount *, ino_t);
734static	int flush_deplist(struct allocdirectlst *, int, int *);
735static	int handle_written_filepage(struct pagedep *, struct buf *);
736static	int handle_written_sbdep(struct sbdep *, struct buf *);
737static	void initiate_write_sbdep(struct sbdep *);
738static  void diradd_inode_written(struct diradd *, struct inodedep *);
739static	int handle_written_indirdep(struct indirdep *, struct buf *,
740	    struct buf**);
741static	int handle_written_inodeblock(struct inodedep *, struct buf *);
742static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
743static	void handle_written_jaddref(struct jaddref *);
744static	void handle_written_jremref(struct jremref *);
745static	void handle_written_jseg(struct jseg *, struct buf *);
746static	void handle_written_jnewblk(struct jnewblk *);
747static	void handle_written_jfreeblk(struct jfreeblk *);
748static	void handle_written_jfreefrag(struct jfreefrag *);
749static	void complete_jseg(struct jseg *);
750static	void jseg_write(struct fs *, struct jblocks *, struct jseg *,
751	    uint8_t *);
752static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
753static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
754static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
755static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
756static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
757static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
758static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
759static	inline void inoref_write(struct inoref *, struct jseg *,
760	    struct jrefrec *);
761static	void handle_allocdirect_partdone(struct allocdirect *,
762	    struct workhead *);
763static	void cancel_newblk(struct newblk *, struct workhead *);
764static	void indirdep_complete(struct indirdep *);
765static	void handle_allocindir_partdone(struct allocindir *);
766static	void initiate_write_filepage(struct pagedep *, struct buf *);
767static	void initiate_write_indirdep(struct indirdep*, struct buf *);
768static	void handle_written_mkdir(struct mkdir *, int);
769static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
770static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
771static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
772static	void handle_workitem_freefile(struct freefile *);
773static	void handle_workitem_remove(struct dirrem *, struct vnode *);
774static	struct dirrem *newdirrem(struct buf *, struct inode *,
775	    struct inode *, int, struct dirrem **);
776static	void cancel_indirdep(struct indirdep *, struct buf *, struct inodedep *,
777	    struct freeblks *);
778static	void free_indirdep(struct indirdep *);
779static	void free_diradd(struct diradd *, struct workhead *);
780static	void merge_diradd(struct inodedep *, struct diradd *);
781static	void complete_diradd(struct diradd *);
782static	struct diradd *diradd_lookup(struct pagedep *, int);
783static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
784	    struct jremref *);
785static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
786	    struct jremref *);
787static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
788	    struct jremref *, struct jremref *);
789static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
790	    struct jremref *);
791static	void cancel_allocindir(struct allocindir *, struct inodedep *,
792	    struct freeblks *);
793static	void complete_mkdir(struct mkdir *);
794static	void free_newdirblk(struct newdirblk *);
795static	void free_jremref(struct jremref *);
796static	void free_jaddref(struct jaddref *);
797static	void free_jsegdep(struct jsegdep *);
798static	void free_jseg(struct jseg *);
799static	void free_jnewblk(struct jnewblk *);
800static	void free_jfreeblk(struct jfreeblk *);
801static	void free_jfreefrag(struct jfreefrag *);
802static	void free_freedep(struct freedep *);
803static	void journal_jremref(struct dirrem *, struct jremref *,
804	    struct inodedep *);
805static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
806static	int cancel_jaddref(struct jaddref *, struct inodedep *,
807	    struct workhead *);
808static	void cancel_jfreefrag(struct jfreefrag *);
809static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
810static	int deallocate_dependencies(struct buf *, struct inodedep *,
811	    struct freeblks *);
812static	void free_newblk(struct newblk *);
813static	void cancel_allocdirect(struct allocdirectlst *,
814	    struct allocdirect *, struct freeblks *, int);
815static	int check_inode_unwritten(struct inodedep *);
816static	int free_inodedep(struct inodedep *);
817static	void freework_freeblock(struct freework *);
818static	void handle_workitem_freeblocks(struct freeblks *, int);
819static	void handle_complete_freeblocks(struct freeblks *);
820static	void handle_workitem_indirblk(struct freework *);
821static	void handle_written_freework(struct freework *);
822static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
823static	void setup_allocindir_phase2(struct buf *, struct inode *,
824	    struct inodedep *, struct allocindir *, ufs_lbn_t);
825static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
826	    ufs2_daddr_t, ufs_lbn_t);
827static	void handle_workitem_freefrag(struct freefrag *);
828static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
829	    ufs_lbn_t);
830static	void allocdirect_merge(struct allocdirectlst *,
831	    struct allocdirect *, struct allocdirect *);
832static	struct freefrag *allocindir_merge(struct allocindir *,
833	    struct allocindir *);
834static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
835	    struct bmsafemap **);
836static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
837	    int cg);
838static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
839	    int, struct newblk **);
840static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
841static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
842	    struct inodedep **);
843static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
844static	int pagedep_lookup(struct mount *, ino_t, ufs_lbn_t, int,
845	    struct pagedep **);
846static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
847	    struct mount *mp, int, struct pagedep **);
848static	void pause_timer(void *);
849static	int request_cleanup(struct mount *, int);
850static	int process_worklist_item(struct mount *, int);
851static	void process_removes(struct vnode *);
852static	void jwork_move(struct workhead *, struct workhead *);
853static	void add_to_worklist(struct worklist *, int);
854static	void remove_from_worklist(struct worklist *);
855static	void softdep_flush(void);
856static	int softdep_speedup(void);
857static	void worklist_speedup(void);
858static	int journal_mount(struct mount *, struct fs *, struct ucred *);
859static	void journal_unmount(struct mount *);
860static	int journal_space(struct ufsmount *, int);
861static	void journal_suspend(struct ufsmount *);
862static	int journal_unsuspend(struct ufsmount *ump);
863static	void softdep_prelink(struct vnode *, struct vnode *);
864static	void add_to_journal(struct worklist *);
865static	void remove_from_journal(struct worklist *);
866static	void softdep_process_journal(struct mount *, int);
867static	struct jremref *newjremref(struct dirrem *, struct inode *,
868	    struct inode *ip, off_t, nlink_t);
869static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
870	    uint16_t);
871static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
872	    uint16_t);
873static inline struct jsegdep *inoref_jseg(struct inoref *);
874static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
875static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
876	    ufs2_daddr_t, int);
877static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
878	    ufs2_daddr_t, long, ufs_lbn_t);
879static	struct freework *newfreework(struct freeblks *, struct freework *,
880	    ufs_lbn_t, ufs2_daddr_t, int, int);
881static	void jwait(struct worklist *wk);
882static	struct inodedep *inodedep_lookup_ip(struct inode *);
883static	int bmsafemap_rollbacks(struct bmsafemap *);
884static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
885static	void handle_jwork(struct workhead *);
886static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
887	    struct mkdir **);
888static	struct jblocks *jblocks_create(void);
889static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
890static	void jblocks_free(struct jblocks *, struct mount *, int);
891static	void jblocks_destroy(struct jblocks *);
892static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
893
894/*
895 * Exported softdep operations.
896 */
897static	void softdep_disk_io_initiation(struct buf *);
898static	void softdep_disk_write_complete(struct buf *);
899static	void softdep_deallocate_dependencies(struct buf *);
900static	int softdep_count_dependencies(struct buf *bp, int);
901
902static struct mtx lk;
903MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
904
905#define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
906#define ACQUIRE_LOCK(lk)		mtx_lock(lk)
907#define FREE_LOCK(lk)			mtx_unlock(lk)
908
909#define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
910#define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
911
912/*
913 * Worklist queue management.
914 * These routines require that the lock be held.
915 */
916#ifndef /* NOT */ DEBUG
917#define WORKLIST_INSERT(head, item) do {	\
918	(item)->wk_state |= ONWORKLIST;		\
919	LIST_INSERT_HEAD(head, item, wk_list);	\
920} while (0)
921#define WORKLIST_REMOVE(item) do {		\
922	(item)->wk_state &= ~ONWORKLIST;	\
923	LIST_REMOVE(item, wk_list);		\
924} while (0)
925#define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
926#define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
927
928#else /* DEBUG */
929static	void worklist_insert(struct workhead *, struct worklist *, int);
930static	void worklist_remove(struct worklist *, int);
931
932#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
933#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
934#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
935#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
936
937static void
938worklist_insert(head, item, locked)
939	struct workhead *head;
940	struct worklist *item;
941	int locked;
942{
943
944	if (locked)
945		mtx_assert(&lk, MA_OWNED);
946	if (item->wk_state & ONWORKLIST)
947		panic("worklist_insert: %p %s(0x%X) already on list",
948		    item, TYPENAME(item->wk_type), item->wk_state);
949	item->wk_state |= ONWORKLIST;
950	LIST_INSERT_HEAD(head, item, wk_list);
951}
952
953static void
954worklist_remove(item, locked)
955	struct worklist *item;
956	int locked;
957{
958
959	if (locked)
960		mtx_assert(&lk, MA_OWNED);
961	if ((item->wk_state & ONWORKLIST) == 0)
962		panic("worklist_remove: %p %s(0x%X) not on list",
963		    item, TYPENAME(item->wk_type), item->wk_state);
964	item->wk_state &= ~ONWORKLIST;
965	LIST_REMOVE(item, wk_list);
966}
967#endif /* DEBUG */
968
969/*
970 * Merge two jsegdeps keeping only the oldest one as newer references
971 * can't be discarded until after older references.
972 */
973static inline struct jsegdep *
974jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
975{
976	struct jsegdep *swp;
977
978	if (two == NULL)
979		return (one);
980
981	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
982		swp = one;
983		one = two;
984		two = swp;
985	}
986	WORKLIST_REMOVE(&two->jd_list);
987	free_jsegdep(two);
988
989	return (one);
990}
991
992/*
993 * If two freedeps are compatible free one to reduce list size.
994 */
995static inline struct freedep *
996freedep_merge(struct freedep *one, struct freedep *two)
997{
998	if (two == NULL)
999		return (one);
1000
1001	if (one->fd_freework == two->fd_freework) {
1002		WORKLIST_REMOVE(&two->fd_list);
1003		free_freedep(two);
1004	}
1005	return (one);
1006}
1007
1008/*
1009 * Move journal work from one list to another.  Duplicate freedeps and
1010 * jsegdeps are coalesced to keep the lists as small as possible.
1011 */
1012static void
1013jwork_move(dst, src)
1014	struct workhead *dst;
1015	struct workhead *src;
1016{
1017	struct freedep *freedep;
1018	struct jsegdep *jsegdep;
1019	struct worklist *wkn;
1020	struct worklist *wk;
1021
1022	KASSERT(dst != src,
1023	    ("jwork_move: dst == src"));
1024	freedep = NULL;
1025	jsegdep = NULL;
1026	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1027		if (wk->wk_type == D_JSEGDEP)
1028			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1029		if (wk->wk_type == D_FREEDEP)
1030			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1031	}
1032
1033	mtx_assert(&lk, MA_OWNED);
1034	while ((wk = LIST_FIRST(src)) != NULL) {
1035		WORKLIST_REMOVE(wk);
1036		WORKLIST_INSERT(dst, wk);
1037		if (wk->wk_type == D_JSEGDEP) {
1038			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1039			continue;
1040		}
1041		if (wk->wk_type == D_FREEDEP)
1042			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1043	}
1044}
1045
1046/*
1047 * Routines for tracking and managing workitems.
1048 */
1049static	void workitem_free(struct worklist *, int);
1050static	void workitem_alloc(struct worklist *, int, struct mount *);
1051
1052#define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1053
1054static void
1055workitem_free(item, type)
1056	struct worklist *item;
1057	int type;
1058{
1059	struct ufsmount *ump;
1060	mtx_assert(&lk, MA_OWNED);
1061
1062#ifdef DEBUG
1063	if (item->wk_state & ONWORKLIST)
1064		panic("workitem_free: %s(0x%X) still on list",
1065		    TYPENAME(item->wk_type), item->wk_state);
1066	if (item->wk_type != type)
1067		panic("workitem_free: type mismatch %s != %s",
1068		    TYPENAME(item->wk_type), TYPENAME(type));
1069#endif
1070	ump = VFSTOUFS(item->wk_mp);
1071	if (--ump->softdep_deps == 0 && ump->softdep_req)
1072		wakeup(&ump->softdep_deps);
1073	dep_current[type]--;
1074	free(item, DtoM(type));
1075}
1076
1077static void
1078workitem_alloc(item, type, mp)
1079	struct worklist *item;
1080	int type;
1081	struct mount *mp;
1082{
1083	item->wk_type = type;
1084	item->wk_mp = mp;
1085	item->wk_state = 0;
1086	ACQUIRE_LOCK(&lk);
1087	dep_current[type]++;
1088	dep_total[type]++;
1089	VFSTOUFS(mp)->softdep_deps++;
1090	VFSTOUFS(mp)->softdep_accdeps++;
1091	FREE_LOCK(&lk);
1092}
1093
1094/*
1095 * Workitem queue management
1096 */
1097static int max_softdeps;	/* maximum number of structs before slowdown */
1098static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1099static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1100static int proc_waiting;	/* tracks whether we have a timeout posted */
1101static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1102static struct callout softdep_callout;
1103static int req_pending;
1104static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1105#define FLUSH_INODES		1
1106static int req_clear_remove;	/* syncer process flush some freeblks */
1107#define FLUSH_REMOVE		2
1108#define FLUSH_REMOVE_WAIT	3
1109static long num_freeblkdep;	/* number of freeblks workitems allocated */
1110
1111/*
1112 * runtime statistics
1113 */
1114static int stat_worklist_push;	/* number of worklist cleanups */
1115static int stat_blk_limit_push;	/* number of times block limit neared */
1116static int stat_ino_limit_push;	/* number of times inode limit neared */
1117static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1118static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1119static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1120static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1121static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1122static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1123static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1124static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1125static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1126static int stat_journal_min;	/* Times hit journal min threshold */
1127static int stat_journal_low;	/* Times hit journal low threshold */
1128static int stat_journal_wait;	/* Times blocked in jwait(). */
1129static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1130static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1131static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1132static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1133
1134SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1135    &max_softdeps, 0, "");
1136SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1137    &tickdelay, 0, "");
1138SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1139    &maxindirdeps, 0, "");
1140SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1141    &stat_worklist_push, 0,"");
1142SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1143    &stat_blk_limit_push, 0,"");
1144SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1145    &stat_ino_limit_push, 0,"");
1146SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1147    &stat_blk_limit_hit, 0, "");
1148SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1149    &stat_ino_limit_hit, 0, "");
1150SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1151    &stat_sync_limit_hit, 0, "");
1152SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1153    &stat_indir_blk_ptrs, 0, "");
1154SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1155    &stat_inode_bitmap, 0, "");
1156SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1157    &stat_direct_blk_ptrs, 0, "");
1158SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1159    &stat_dir_entry, 0, "");
1160SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1161    &stat_jaddref, 0, "");
1162SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1163    &stat_jnewblk, 0, "");
1164SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1165    &stat_journal_low, 0, "");
1166SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1167    &stat_journal_min, 0, "");
1168SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1169    &stat_journal_wait, 0, "");
1170SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1171    &stat_jwait_filepage, 0, "");
1172SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1173    &stat_jwait_freeblks, 0, "");
1174SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1175    &stat_jwait_inode, 0, "");
1176SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1177    &stat_jwait_newblk, 0, "");
1178
1179SYSCTL_DECL(_vfs_ffs);
1180
1181LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1182static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1183
1184static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1185SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1186	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1187
1188static struct proc *softdepproc;
1189static struct kproc_desc softdep_kp = {
1190	"softdepflush",
1191	softdep_flush,
1192	&softdepproc
1193};
1194SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1195    &softdep_kp);
1196
1197static void
1198softdep_flush(void)
1199{
1200	struct mount *nmp;
1201	struct mount *mp;
1202	struct ufsmount *ump;
1203	struct thread *td;
1204	int remaining;
1205	int progress;
1206	int vfslocked;
1207
1208	td = curthread;
1209	td->td_pflags |= TDP_NORUNNINGBUF;
1210
1211	for (;;) {
1212		kproc_suspend_check(softdepproc);
1213		vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
1214		ACQUIRE_LOCK(&lk);
1215		/*
1216		 * If requested, try removing inode or removal dependencies.
1217		 */
1218		if (req_clear_inodedeps) {
1219			clear_inodedeps(td);
1220			req_clear_inodedeps -= 1;
1221			wakeup_one(&proc_waiting);
1222		}
1223		if (req_clear_remove) {
1224			clear_remove(td);
1225			req_clear_remove -= 1;
1226			wakeup_one(&proc_waiting);
1227		}
1228		FREE_LOCK(&lk);
1229		VFS_UNLOCK_GIANT(vfslocked);
1230		remaining = progress = 0;
1231		mtx_lock(&mountlist_mtx);
1232		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1233			nmp = TAILQ_NEXT(mp, mnt_list);
1234			if ((mp->mnt_flag & MNT_SOFTDEP) == 0)
1235				continue;
1236			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1237				continue;
1238			vfslocked = VFS_LOCK_GIANT(mp);
1239			progress += softdep_process_worklist(mp, 0);
1240			ump = VFSTOUFS(mp);
1241			remaining += ump->softdep_on_worklist -
1242				ump->softdep_on_worklist_inprogress;
1243			VFS_UNLOCK_GIANT(vfslocked);
1244			mtx_lock(&mountlist_mtx);
1245			nmp = TAILQ_NEXT(mp, mnt_list);
1246			vfs_unbusy(mp);
1247		}
1248		mtx_unlock(&mountlist_mtx);
1249		if (remaining && progress)
1250			continue;
1251		ACQUIRE_LOCK(&lk);
1252		if (!req_pending)
1253			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1254		req_pending = 0;
1255		FREE_LOCK(&lk);
1256	}
1257}
1258
1259static void
1260worklist_speedup(void)
1261{
1262	mtx_assert(&lk, MA_OWNED);
1263	if (req_pending == 0) {
1264		req_pending = 1;
1265		wakeup(&req_pending);
1266	}
1267}
1268
1269static int
1270softdep_speedup(void)
1271{
1272
1273	worklist_speedup();
1274	bd_speedup();
1275	return speedup_syncer();
1276}
1277
1278/*
1279 * Add an item to the end of the work queue.
1280 * This routine requires that the lock be held.
1281 * This is the only routine that adds items to the list.
1282 * The following routine is the only one that removes items
1283 * and does so in order from first to last.
1284 */
1285static void
1286add_to_worklist(wk, nodelay)
1287	struct worklist *wk;
1288	int nodelay;
1289{
1290	struct ufsmount *ump;
1291
1292	mtx_assert(&lk, MA_OWNED);
1293	ump = VFSTOUFS(wk->wk_mp);
1294	if (wk->wk_state & ONWORKLIST)
1295		panic("add_to_worklist: %s(0x%X) already on list",
1296		    TYPENAME(wk->wk_type), wk->wk_state);
1297	wk->wk_state |= ONWORKLIST;
1298	if (LIST_EMPTY(&ump->softdep_workitem_pending))
1299		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1300	else
1301		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1302	ump->softdep_worklist_tail = wk;
1303	ump->softdep_on_worklist += 1;
1304	if (nodelay)
1305		worklist_speedup();
1306}
1307
1308/*
1309 * Remove the item to be processed. If we are removing the last
1310 * item on the list, we need to recalculate the tail pointer.
1311 */
1312static void
1313remove_from_worklist(wk)
1314	struct worklist *wk;
1315{
1316	struct ufsmount *ump;
1317	struct worklist *wkend;
1318
1319	ump = VFSTOUFS(wk->wk_mp);
1320	WORKLIST_REMOVE(wk);
1321	if (wk == ump->softdep_worklist_tail) {
1322		LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list)
1323			if (LIST_NEXT(wkend, wk_list) == NULL)
1324				break;
1325		ump->softdep_worklist_tail = wkend;
1326	}
1327	ump->softdep_on_worklist -= 1;
1328}
1329
1330/*
1331 * Process that runs once per second to handle items in the background queue.
1332 *
1333 * Note that we ensure that everything is done in the order in which they
1334 * appear in the queue. The code below depends on this property to ensure
1335 * that blocks of a file are freed before the inode itself is freed. This
1336 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1337 * until all the old ones have been purged from the dependency lists.
1338 */
1339int
1340softdep_process_worklist(mp, full)
1341	struct mount *mp;
1342	int full;
1343{
1344	struct thread *td = curthread;
1345	int cnt, matchcnt, loopcount;
1346	struct ufsmount *ump;
1347	long starttime;
1348
1349	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1350	/*
1351	 * Record the process identifier of our caller so that we can give
1352	 * this process preferential treatment in request_cleanup below.
1353	 */
1354	matchcnt = 0;
1355	ump = VFSTOUFS(mp);
1356	ACQUIRE_LOCK(&lk);
1357	loopcount = 1;
1358	starttime = time_second;
1359	softdep_process_journal(mp, full?MNT_WAIT:0);
1360	while (ump->softdep_on_worklist > 0) {
1361		if ((cnt = process_worklist_item(mp, LK_NOWAIT)) == -1)
1362			break;
1363		else
1364			matchcnt += cnt;
1365		/*
1366		 * If requested, try removing inode or removal dependencies.
1367		 */
1368		if (req_clear_inodedeps) {
1369			clear_inodedeps(td);
1370			req_clear_inodedeps -= 1;
1371			wakeup_one(&proc_waiting);
1372		}
1373		if (req_clear_remove) {
1374			clear_remove(td);
1375			req_clear_remove -= 1;
1376			wakeup_one(&proc_waiting);
1377		}
1378		/*
1379		 * We do not generally want to stop for buffer space, but if
1380		 * we are really being a buffer hog, we will stop and wait.
1381		 */
1382		if (loopcount++ % 128 == 0) {
1383			FREE_LOCK(&lk);
1384			uio_yield();
1385			bwillwrite();
1386			ACQUIRE_LOCK(&lk);
1387		}
1388		/*
1389		 * Never allow processing to run for more than one
1390		 * second. Otherwise the other mountpoints may get
1391		 * excessively backlogged.
1392		 */
1393		if (!full && starttime != time_second)
1394			break;
1395	}
1396	if (full == 0)
1397		journal_unsuspend(ump);
1398	FREE_LOCK(&lk);
1399	return (matchcnt);
1400}
1401
1402/*
1403 * Process all removes associated with a vnode if we are running out of
1404 * journal space.  Any other process which attempts to flush these will
1405 * be unable as we have the vnodes locked.
1406 */
1407static void
1408process_removes(vp)
1409	struct vnode *vp;
1410{
1411	struct inodedep *inodedep;
1412	struct dirrem *dirrem;
1413	struct mount *mp;
1414	ino_t inum;
1415
1416	mtx_assert(&lk, MA_OWNED);
1417
1418	mp = vp->v_mount;
1419	inum = VTOI(vp)->i_number;
1420	for (;;) {
1421		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1422			return;
1423		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext)
1424			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1425			    (COMPLETE | ONWORKLIST))
1426				break;
1427		if (dirrem == NULL)
1428			return;
1429		/*
1430		 * If another thread is trying to lock this vnode it will
1431		 * fail but we must wait for it to do so before we can
1432		 * proceed.
1433		 */
1434		if (dirrem->dm_state & INPROGRESS) {
1435			dirrem->dm_state |= IOWAITING;
1436			msleep(&dirrem->dm_list, &lk, PVM, "pwrwait", 0);
1437			continue;
1438		}
1439		remove_from_worklist(&dirrem->dm_list);
1440		FREE_LOCK(&lk);
1441		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1442			panic("process_removes: suspended filesystem");
1443		handle_workitem_remove(dirrem, vp);
1444		vn_finished_secondary_write(mp);
1445		ACQUIRE_LOCK(&lk);
1446	}
1447}
1448
1449/*
1450 * Process one item on the worklist.
1451 */
1452static int
1453process_worklist_item(mp, flags)
1454	struct mount *mp;
1455	int flags;
1456{
1457	struct worklist *wk;
1458	struct ufsmount *ump;
1459	struct vnode *vp;
1460	int matchcnt = 0;
1461
1462	mtx_assert(&lk, MA_OWNED);
1463	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1464	/*
1465	 * If we are being called because of a process doing a
1466	 * copy-on-write, then it is not safe to write as we may
1467	 * recurse into the copy-on-write routine.
1468	 */
1469	if (curthread->td_pflags & TDP_COWINPROGRESS)
1470		return (-1);
1471	/*
1472	 * Normally we just process each item on the worklist in order.
1473	 * However, if we are in a situation where we cannot lock any
1474	 * inodes, we have to skip over any dirrem requests whose
1475	 * vnodes are resident and locked.
1476	 */
1477	vp = NULL;
1478	ump = VFSTOUFS(mp);
1479	LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) {
1480		if (wk->wk_state & INPROGRESS)
1481			continue;
1482		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
1483			break;
1484		wk->wk_state |= INPROGRESS;
1485		ump->softdep_on_worklist_inprogress++;
1486		FREE_LOCK(&lk);
1487		ffs_vgetf(mp, WK_DIRREM(wk)->dm_oldinum,
1488		    LK_NOWAIT | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ);
1489		ACQUIRE_LOCK(&lk);
1490		if (wk->wk_state & IOWAITING) {
1491			wk->wk_state &= ~IOWAITING;
1492			wakeup(wk);
1493		}
1494		wk->wk_state &= ~INPROGRESS;
1495		ump->softdep_on_worklist_inprogress--;
1496		if (vp != NULL)
1497			break;
1498	}
1499	if (wk == 0)
1500		return (-1);
1501	remove_from_worklist(wk);
1502	FREE_LOCK(&lk);
1503	if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1504		panic("process_worklist_item: suspended filesystem");
1505	matchcnt++;
1506	switch (wk->wk_type) {
1507
1508	case D_DIRREM:
1509		/* removal of a directory entry */
1510		handle_workitem_remove(WK_DIRREM(wk), vp);
1511		if (vp)
1512			vput(vp);
1513		break;
1514
1515	case D_FREEBLKS:
1516		/* releasing blocks and/or fragments from a file */
1517		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
1518		break;
1519
1520	case D_FREEFRAG:
1521		/* releasing a fragment when replaced as a file grows */
1522		handle_workitem_freefrag(WK_FREEFRAG(wk));
1523		break;
1524
1525	case D_FREEFILE:
1526		/* releasing an inode when its link count drops to 0 */
1527		handle_workitem_freefile(WK_FREEFILE(wk));
1528		break;
1529
1530	case D_FREEWORK:
1531		/* Final block in an indirect was freed. */
1532		handle_workitem_indirblk(WK_FREEWORK(wk));
1533		break;
1534
1535	default:
1536		panic("%s_process_worklist: Unknown type %s",
1537		    "softdep", TYPENAME(wk->wk_type));
1538		/* NOTREACHED */
1539	}
1540	vn_finished_secondary_write(mp);
1541	ACQUIRE_LOCK(&lk);
1542	return (matchcnt);
1543}
1544
1545/*
1546 * Move dependencies from one buffer to another.
1547 */
1548int
1549softdep_move_dependencies(oldbp, newbp)
1550	struct buf *oldbp;
1551	struct buf *newbp;
1552{
1553	struct worklist *wk, *wktail;
1554	int dirty;
1555
1556	dirty = 0;
1557	wktail = NULL;
1558	ACQUIRE_LOCK(&lk);
1559	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1560		LIST_REMOVE(wk, wk_list);
1561		if (wk->wk_type == D_BMSAFEMAP &&
1562		    bmsafemap_rollbacks(WK_BMSAFEMAP(wk)))
1563			dirty = 1;
1564		if (wktail == 0)
1565			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1566		else
1567			LIST_INSERT_AFTER(wktail, wk, wk_list);
1568		wktail = wk;
1569	}
1570	FREE_LOCK(&lk);
1571
1572	return (dirty);
1573}
1574
1575/*
1576 * Purge the work list of all items associated with a particular mount point.
1577 */
1578int
1579softdep_flushworklist(oldmnt, countp, td)
1580	struct mount *oldmnt;
1581	int *countp;
1582	struct thread *td;
1583{
1584	struct vnode *devvp;
1585	int count, error = 0;
1586	struct ufsmount *ump;
1587
1588	/*
1589	 * Alternately flush the block device associated with the mount
1590	 * point and process any dependencies that the flushing
1591	 * creates. We continue until no more worklist dependencies
1592	 * are found.
1593	 */
1594	*countp = 0;
1595	ump = VFSTOUFS(oldmnt);
1596	devvp = ump->um_devvp;
1597	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1598		*countp += count;
1599		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1600		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1601		VOP_UNLOCK(devvp, 0);
1602		if (error)
1603			break;
1604	}
1605	return (error);
1606}
1607
1608int
1609softdep_waitidle(struct mount *mp)
1610{
1611	struct ufsmount *ump;
1612	int error;
1613	int i;
1614
1615	ump = VFSTOUFS(mp);
1616	ACQUIRE_LOCK(&lk);
1617	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1618		ump->softdep_req = 1;
1619		if (ump->softdep_on_worklist)
1620			panic("softdep_waitidle: work added after flush.");
1621		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1622	}
1623	ump->softdep_req = 0;
1624	FREE_LOCK(&lk);
1625	error = 0;
1626	if (i == 10) {
1627		error = EBUSY;
1628		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1629		    mp);
1630	}
1631
1632	return (error);
1633}
1634
1635/*
1636 * Flush all vnodes and worklist items associated with a specified mount point.
1637 */
1638int
1639softdep_flushfiles(oldmnt, flags, td)
1640	struct mount *oldmnt;
1641	int flags;
1642	struct thread *td;
1643{
1644	int error, depcount, loopcnt, retry_flush_count, retry;
1645
1646	loopcnt = 10;
1647	retry_flush_count = 3;
1648retry_flush:
1649	error = 0;
1650
1651	/*
1652	 * Alternately flush the vnodes associated with the mount
1653	 * point and process any dependencies that the flushing
1654	 * creates. In theory, this loop can happen at most twice,
1655	 * but we give it a few extra just to be sure.
1656	 */
1657	for (; loopcnt > 0; loopcnt--) {
1658		/*
1659		 * Do another flush in case any vnodes were brought in
1660		 * as part of the cleanup operations.
1661		 */
1662		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1663			break;
1664		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1665		    depcount == 0)
1666			break;
1667	}
1668	/*
1669	 * If we are unmounting then it is an error to fail. If we
1670	 * are simply trying to downgrade to read-only, then filesystem
1671	 * activity can keep us busy forever, so we just fail with EBUSY.
1672	 */
1673	if (loopcnt == 0) {
1674		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1675			panic("softdep_flushfiles: looping");
1676		error = EBUSY;
1677	}
1678	if (!error)
1679		error = softdep_waitidle(oldmnt);
1680	if (!error) {
1681		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1682			retry = 0;
1683			MNT_ILOCK(oldmnt);
1684			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1685			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1686			if (oldmnt->mnt_nvnodelistsize > 0) {
1687				if (--retry_flush_count > 0) {
1688					retry = 1;
1689					loopcnt = 3;
1690				} else
1691					error = EBUSY;
1692			}
1693			MNT_IUNLOCK(oldmnt);
1694			if (retry)
1695				goto retry_flush;
1696		}
1697	}
1698	return (error);
1699}
1700
1701/*
1702 * Structure hashing.
1703 *
1704 * There are three types of structures that can be looked up:
1705 *	1) pagedep structures identified by mount point, inode number,
1706 *	   and logical block.
1707 *	2) inodedep structures identified by mount point and inode number.
1708 *	3) newblk structures identified by mount point and
1709 *	   physical block number.
1710 *
1711 * The "pagedep" and "inodedep" dependency structures are hashed
1712 * separately from the file blocks and inodes to which they correspond.
1713 * This separation helps when the in-memory copy of an inode or
1714 * file block must be replaced. It also obviates the need to access
1715 * an inode or file page when simply updating (or de-allocating)
1716 * dependency structures. Lookup of newblk structures is needed to
1717 * find newly allocated blocks when trying to associate them with
1718 * their allocdirect or allocindir structure.
1719 *
1720 * The lookup routines optionally create and hash a new instance when
1721 * an existing entry is not found.
1722 */
1723#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1724#define NODELAY		0x0002	/* cannot do background work */
1725
1726/*
1727 * Structures and routines associated with pagedep caching.
1728 */
1729LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1730u_long	pagedep_hash;		/* size of hash table - 1 */
1731#define	PAGEDEP_HASH(mp, inum, lbn) \
1732	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1733	    pagedep_hash])
1734
1735static int
1736pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1737	struct pagedep_hashhead *pagedephd;
1738	ino_t ino;
1739	ufs_lbn_t lbn;
1740	struct mount *mp;
1741	int flags;
1742	struct pagedep **pagedeppp;
1743{
1744	struct pagedep *pagedep;
1745
1746	LIST_FOREACH(pagedep, pagedephd, pd_hash)
1747		if (ino == pagedep->pd_ino &&
1748		    lbn == pagedep->pd_lbn &&
1749		    mp == pagedep->pd_list.wk_mp)
1750			break;
1751	if (pagedep) {
1752		*pagedeppp = pagedep;
1753		if ((flags & DEPALLOC) != 0 &&
1754		    (pagedep->pd_state & ONWORKLIST) == 0)
1755			return (0);
1756		return (1);
1757	}
1758	*pagedeppp = NULL;
1759	return (0);
1760}
1761/*
1762 * Look up a pagedep. Return 1 if found, 0 if not found or found
1763 * when asked to allocate but not associated with any buffer.
1764 * If not found, allocate if DEPALLOC flag is passed.
1765 * Found or allocated entry is returned in pagedeppp.
1766 * This routine must be called with splbio interrupts blocked.
1767 */
1768static int
1769pagedep_lookup(mp, ino, lbn, flags, pagedeppp)
1770	struct mount *mp;
1771	ino_t ino;
1772	ufs_lbn_t lbn;
1773	int flags;
1774	struct pagedep **pagedeppp;
1775{
1776	struct pagedep *pagedep;
1777	struct pagedep_hashhead *pagedephd;
1778	int ret;
1779	int i;
1780
1781	mtx_assert(&lk, MA_OWNED);
1782	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
1783
1784	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
1785	if (*pagedeppp || (flags & DEPALLOC) == 0)
1786		return (ret);
1787	FREE_LOCK(&lk);
1788	pagedep = malloc(sizeof(struct pagedep),
1789	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
1790	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
1791	ACQUIRE_LOCK(&lk);
1792	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
1793	if (*pagedeppp) {
1794		WORKITEM_FREE(pagedep, D_PAGEDEP);
1795		return (ret);
1796	}
1797	pagedep->pd_ino = ino;
1798	pagedep->pd_lbn = lbn;
1799	LIST_INIT(&pagedep->pd_dirremhd);
1800	LIST_INIT(&pagedep->pd_pendinghd);
1801	for (i = 0; i < DAHASHSZ; i++)
1802		LIST_INIT(&pagedep->pd_diraddhd[i]);
1803	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
1804	*pagedeppp = pagedep;
1805	return (0);
1806}
1807
1808/*
1809 * Structures and routines associated with inodedep caching.
1810 */
1811LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1812static u_long	inodedep_hash;	/* size of hash table - 1 */
1813static long	num_inodedep;	/* number of inodedep allocated */
1814#define	INODEDEP_HASH(fs, inum) \
1815      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1816
1817static int
1818inodedep_find(inodedephd, fs, inum, inodedeppp)
1819	struct inodedep_hashhead *inodedephd;
1820	struct fs *fs;
1821	ino_t inum;
1822	struct inodedep **inodedeppp;
1823{
1824	struct inodedep *inodedep;
1825
1826	LIST_FOREACH(inodedep, inodedephd, id_hash)
1827		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1828			break;
1829	if (inodedep) {
1830		*inodedeppp = inodedep;
1831		return (1);
1832	}
1833	*inodedeppp = NULL;
1834
1835	return (0);
1836}
1837/*
1838 * Look up an inodedep. Return 1 if found, 0 if not found.
1839 * If not found, allocate if DEPALLOC flag is passed.
1840 * Found or allocated entry is returned in inodedeppp.
1841 * This routine must be called with splbio interrupts blocked.
1842 */
1843static int
1844inodedep_lookup(mp, inum, flags, inodedeppp)
1845	struct mount *mp;
1846	ino_t inum;
1847	int flags;
1848	struct inodedep **inodedeppp;
1849{
1850	struct inodedep *inodedep;
1851	struct inodedep_hashhead *inodedephd;
1852	struct fs *fs;
1853
1854	mtx_assert(&lk, MA_OWNED);
1855	fs = VFSTOUFS(mp)->um_fs;
1856	inodedephd = INODEDEP_HASH(fs, inum);
1857
1858	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
1859		return (1);
1860	if ((flags & DEPALLOC) == 0)
1861		return (0);
1862	/*
1863	 * If we are over our limit, try to improve the situation.
1864	 */
1865	if (num_inodedep > max_softdeps && (flags & NODELAY) == 0)
1866		request_cleanup(mp, FLUSH_INODES);
1867	FREE_LOCK(&lk);
1868	inodedep = malloc(sizeof(struct inodedep),
1869		M_INODEDEP, M_SOFTDEP_FLAGS);
1870	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
1871	ACQUIRE_LOCK(&lk);
1872	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
1873		WORKITEM_FREE(inodedep, D_INODEDEP);
1874		return (1);
1875	}
1876	num_inodedep += 1;
1877	inodedep->id_fs = fs;
1878	inodedep->id_ino = inum;
1879	inodedep->id_state = ALLCOMPLETE;
1880	inodedep->id_nlinkdelta = 0;
1881	inodedep->id_savedino1 = NULL;
1882	inodedep->id_savedsize = -1;
1883	inodedep->id_savedextsize = -1;
1884	inodedep->id_savednlink = -1;
1885	inodedep->id_bmsafemap = NULL;
1886	inodedep->id_mkdiradd = NULL;
1887	LIST_INIT(&inodedep->id_dirremhd);
1888	LIST_INIT(&inodedep->id_pendinghd);
1889	LIST_INIT(&inodedep->id_inowait);
1890	LIST_INIT(&inodedep->id_bufwait);
1891	TAILQ_INIT(&inodedep->id_inoreflst);
1892	TAILQ_INIT(&inodedep->id_inoupdt);
1893	TAILQ_INIT(&inodedep->id_newinoupdt);
1894	TAILQ_INIT(&inodedep->id_extupdt);
1895	TAILQ_INIT(&inodedep->id_newextupdt);
1896	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1897	*inodedeppp = inodedep;
1898	return (0);
1899}
1900
1901/*
1902 * Structures and routines associated with newblk caching.
1903 */
1904LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1905u_long	newblk_hash;		/* size of hash table - 1 */
1906#define	NEWBLK_HASH(fs, inum) \
1907	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1908
1909static int
1910newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
1911	struct newblk_hashhead *newblkhd;
1912	struct mount *mp;
1913	ufs2_daddr_t newblkno;
1914	int flags;
1915	struct newblk **newblkpp;
1916{
1917	struct newblk *newblk;
1918
1919	LIST_FOREACH(newblk, newblkhd, nb_hash) {
1920		if (newblkno != newblk->nb_newblkno)
1921			continue;
1922		if (mp != newblk->nb_list.wk_mp)
1923			continue;
1924		/*
1925		 * If we're creating a new dependency don't match those that
1926		 * have already been converted to allocdirects.  This is for
1927		 * a frag extend.
1928		 */
1929		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
1930			continue;
1931		break;
1932	}
1933	if (newblk) {
1934		*newblkpp = newblk;
1935		return (1);
1936	}
1937	*newblkpp = NULL;
1938	return (0);
1939}
1940
1941/*
1942 * Look up a newblk. Return 1 if found, 0 if not found.
1943 * If not found, allocate if DEPALLOC flag is passed.
1944 * Found or allocated entry is returned in newblkpp.
1945 */
1946static int
1947newblk_lookup(mp, newblkno, flags, newblkpp)
1948	struct mount *mp;
1949	ufs2_daddr_t newblkno;
1950	int flags;
1951	struct newblk **newblkpp;
1952{
1953	struct newblk *newblk;
1954	struct newblk_hashhead *newblkhd;
1955
1956	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
1957	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
1958		return (1);
1959	if ((flags & DEPALLOC) == 0)
1960		return (0);
1961	FREE_LOCK(&lk);
1962	newblk = malloc(sizeof(union allblk), M_NEWBLK,
1963	    M_SOFTDEP_FLAGS | M_ZERO);
1964	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
1965	ACQUIRE_LOCK(&lk);
1966	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
1967		WORKITEM_FREE(newblk, D_NEWBLK);
1968		return (1);
1969	}
1970	newblk->nb_freefrag = NULL;
1971	LIST_INIT(&newblk->nb_indirdeps);
1972	LIST_INIT(&newblk->nb_newdirblk);
1973	LIST_INIT(&newblk->nb_jwork);
1974	newblk->nb_state = ATTACHED;
1975	newblk->nb_newblkno = newblkno;
1976	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1977	*newblkpp = newblk;
1978	return (0);
1979}
1980
1981/*
1982 * Executed during filesystem system initialization before
1983 * mounting any filesystems.
1984 */
1985void
1986softdep_initialize()
1987{
1988
1989	LIST_INIT(&mkdirlisthd);
1990	max_softdeps = desiredvnodes * 4;
1991	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
1992	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1993	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
1994	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
1995
1996	/* initialise bioops hack */
1997	bioops.io_start = softdep_disk_io_initiation;
1998	bioops.io_complete = softdep_disk_write_complete;
1999	bioops.io_deallocate = softdep_deallocate_dependencies;
2000	bioops.io_countdeps = softdep_count_dependencies;
2001
2002	/* Initialize the callout with an mtx. */
2003	callout_init_mtx(&softdep_callout, &lk, 0);
2004}
2005
2006/*
2007 * Executed after all filesystems have been unmounted during
2008 * filesystem module unload.
2009 */
2010void
2011softdep_uninitialize()
2012{
2013
2014	callout_drain(&softdep_callout);
2015	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2016	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2017	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2018	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2019}
2020
2021/*
2022 * Called at mount time to notify the dependency code that a
2023 * filesystem wishes to use it.
2024 */
2025int
2026softdep_mount(devvp, mp, fs, cred)
2027	struct vnode *devvp;
2028	struct mount *mp;
2029	struct fs *fs;
2030	struct ucred *cred;
2031{
2032	struct csum_total cstotal;
2033	struct ufsmount *ump;
2034	struct cg *cgp;
2035	struct buf *bp;
2036	int error, cyl;
2037
2038	MNT_ILOCK(mp);
2039	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2040	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2041		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2042			MNTK_SOFTDEP;
2043		mp->mnt_noasync++;
2044	}
2045	MNT_IUNLOCK(mp);
2046	ump = VFSTOUFS(mp);
2047	LIST_INIT(&ump->softdep_workitem_pending);
2048	LIST_INIT(&ump->softdep_journal_pending);
2049	TAILQ_INIT(&ump->softdep_unlinked);
2050	ump->softdep_worklist_tail = NULL;
2051	ump->softdep_on_worklist = 0;
2052	ump->softdep_deps = 0;
2053	if ((fs->fs_flags & FS_SUJ) &&
2054	    (error = journal_mount(mp, fs, cred)) != 0) {
2055		printf("Failed to start journal: %d\n", error);
2056		return (error);
2057	}
2058	/*
2059	 * When doing soft updates, the counters in the
2060	 * superblock may have gotten out of sync. Recomputation
2061	 * can take a long time and can be deferred for background
2062	 * fsck.  However, the old behavior of scanning the cylinder
2063	 * groups and recalculating them at mount time is available
2064	 * by setting vfs.ffs.compute_summary_at_mount to one.
2065	 */
2066	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2067		return (0);
2068	bzero(&cstotal, sizeof cstotal);
2069	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2070		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2071		    fs->fs_cgsize, cred, &bp)) != 0) {
2072			brelse(bp);
2073			return (error);
2074		}
2075		cgp = (struct cg *)bp->b_data;
2076		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2077		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2078		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2079		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2080		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2081		brelse(bp);
2082	}
2083#ifdef DEBUG
2084	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2085		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2086#endif
2087	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2088	return (0);
2089}
2090
2091void
2092softdep_unmount(mp)
2093	struct mount *mp;
2094{
2095
2096	if (mp->mnt_kern_flag & MNTK_SUJ)
2097		journal_unmount(mp);
2098}
2099
2100struct jblocks {
2101	struct jseglst	jb_segs;	/* TAILQ of current segments. */
2102	struct jseg	*jb_writeseg;	/* Next write to complete. */
2103	struct jextent	*jb_extent;	/* Extent array. */
2104	uint64_t	jb_nextseq;	/* Next sequence number. */
2105	uint64_t	jb_oldestseq;	/* Oldest active sequence number. */
2106	int		jb_avail;	/* Available extents. */
2107	int		jb_used;	/* Last used extent. */
2108	int		jb_head;	/* Allocator head. */
2109	int		jb_off;		/* Allocator extent offset. */
2110	int		jb_blocks;	/* Total disk blocks covered. */
2111	int		jb_free;	/* Total disk blocks free. */
2112	int		jb_min;		/* Minimum free space. */
2113	int		jb_low;		/* Low on space. */
2114	int		jb_age;		/* Insertion time of oldest rec. */
2115	int		jb_suspended;	/* Did journal suspend writes? */
2116};
2117
2118struct jextent {
2119	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2120	int		je_blocks;	/* Disk block count. */
2121};
2122
2123static struct jblocks *
2124jblocks_create(void)
2125{
2126	struct jblocks *jblocks;
2127
2128	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2129	TAILQ_INIT(&jblocks->jb_segs);
2130	jblocks->jb_avail = 10;
2131	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2132	    M_JBLOCKS, M_WAITOK | M_ZERO);
2133
2134	return (jblocks);
2135}
2136
2137static ufs2_daddr_t
2138jblocks_alloc(jblocks, bytes, actual)
2139	struct jblocks *jblocks;
2140	int bytes;
2141	int *actual;
2142{
2143	ufs2_daddr_t daddr;
2144	struct jextent *jext;
2145	int freecnt;
2146	int blocks;
2147
2148	blocks = bytes / DEV_BSIZE;
2149	jext = &jblocks->jb_extent[jblocks->jb_head];
2150	freecnt = jext->je_blocks - jblocks->jb_off;
2151	if (freecnt == 0) {
2152		jblocks->jb_off = 0;
2153		if (++jblocks->jb_head > jblocks->jb_used)
2154			jblocks->jb_head = 0;
2155		jext = &jblocks->jb_extent[jblocks->jb_head];
2156		freecnt = jext->je_blocks;
2157	}
2158	if (freecnt > blocks)
2159		freecnt = blocks;
2160	*actual = freecnt * DEV_BSIZE;
2161	daddr = jext->je_daddr + jblocks->jb_off;
2162	jblocks->jb_off += freecnt;
2163	jblocks->jb_free -= freecnt;
2164
2165	return (daddr);
2166}
2167
2168static void
2169jblocks_free(jblocks, mp, bytes)
2170	struct jblocks *jblocks;
2171	struct mount *mp;
2172	int bytes;
2173{
2174
2175	jblocks->jb_free += bytes / DEV_BSIZE;
2176	if (jblocks->jb_suspended)
2177		worklist_speedup();
2178	wakeup(jblocks);
2179}
2180
2181static void
2182jblocks_destroy(jblocks)
2183	struct jblocks *jblocks;
2184{
2185
2186	if (jblocks->jb_extent)
2187		free(jblocks->jb_extent, M_JBLOCKS);
2188	free(jblocks, M_JBLOCKS);
2189}
2190
2191static void
2192jblocks_add(jblocks, daddr, blocks)
2193	struct jblocks *jblocks;
2194	ufs2_daddr_t daddr;
2195	int blocks;
2196{
2197	struct jextent *jext;
2198
2199	jblocks->jb_blocks += blocks;
2200	jblocks->jb_free += blocks;
2201	jext = &jblocks->jb_extent[jblocks->jb_used];
2202	/* Adding the first block. */
2203	if (jext->je_daddr == 0) {
2204		jext->je_daddr = daddr;
2205		jext->je_blocks = blocks;
2206		return;
2207	}
2208	/* Extending the last extent. */
2209	if (jext->je_daddr + jext->je_blocks == daddr) {
2210		jext->je_blocks += blocks;
2211		return;
2212	}
2213	/* Adding a new extent. */
2214	if (++jblocks->jb_used == jblocks->jb_avail) {
2215		jblocks->jb_avail *= 2;
2216		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2217		    M_JBLOCKS, M_WAITOK | M_ZERO);
2218		memcpy(jext, jblocks->jb_extent,
2219		    sizeof(struct jextent) * jblocks->jb_used);
2220		free(jblocks->jb_extent, M_JBLOCKS);
2221		jblocks->jb_extent = jext;
2222	}
2223	jext = &jblocks->jb_extent[jblocks->jb_used];
2224	jext->je_daddr = daddr;
2225	jext->je_blocks = blocks;
2226	return;
2227}
2228
2229int
2230softdep_journal_lookup(mp, vpp)
2231	struct mount *mp;
2232	struct vnode **vpp;
2233{
2234	struct componentname cnp;
2235	struct vnode *dvp;
2236	ino_t sujournal;
2237	int error;
2238
2239	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2240	if (error)
2241		return (error);
2242	bzero(&cnp, sizeof(cnp));
2243	cnp.cn_nameiop = LOOKUP;
2244	cnp.cn_flags = ISLASTCN;
2245	cnp.cn_thread = curthread;
2246	cnp.cn_cred = curthread->td_ucred;
2247	cnp.cn_pnbuf = SUJ_FILE;
2248	cnp.cn_nameptr = SUJ_FILE;
2249	cnp.cn_namelen = strlen(SUJ_FILE);
2250	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2251	vput(dvp);
2252	if (error != 0)
2253		return (error);
2254	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2255	return (error);
2256}
2257
2258/*
2259 * Open and verify the journal file.
2260 */
2261static int
2262journal_mount(mp, fs, cred)
2263	struct mount *mp;
2264	struct fs *fs;
2265	struct ucred *cred;
2266{
2267	struct jblocks *jblocks;
2268	struct vnode *vp;
2269	struct inode *ip;
2270	ufs2_daddr_t blkno;
2271	int bcount;
2272	int error;
2273	int i;
2274
2275	error = softdep_journal_lookup(mp, &vp);
2276	if (error != 0) {
2277		printf("Failed to find journal.  Use tunefs to create one\n");
2278		return (error);
2279	}
2280	ip = VTOI(vp);
2281	if (ip->i_size < SUJ_MIN) {
2282		error = ENOSPC;
2283		goto out;
2284	}
2285	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2286	jblocks = jblocks_create();
2287	for (i = 0; i < bcount; i++) {
2288		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2289		if (error)
2290			break;
2291		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2292	}
2293	if (error) {
2294		jblocks_destroy(jblocks);
2295		goto out;
2296	}
2297	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2298	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2299	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2300out:
2301	if (error == 0) {
2302		MNT_ILOCK(mp);
2303		mp->mnt_kern_flag |= MNTK_SUJ;
2304		MNT_IUNLOCK(mp);
2305		/*
2306		 * Only validate the journal contents if the
2307		 * filesystem is clean, otherwise we write the logs
2308		 * but they'll never be used.  If the filesystem was
2309		 * still dirty when we mounted it the journal is
2310		 * invalid and a new journal can only be valid if it
2311		 * starts from a clean mount.
2312		 */
2313		if (fs->fs_clean) {
2314			DIP_SET(ip, i_modrev, fs->fs_mtime);
2315			ip->i_flags |= IN_MODIFIED;
2316			ffs_update(vp, 1);
2317		}
2318	}
2319	vput(vp);
2320	return (error);
2321}
2322
2323static void
2324journal_unmount(mp)
2325	struct mount *mp;
2326{
2327	struct ufsmount *ump;
2328
2329	ump = VFSTOUFS(mp);
2330	if (ump->softdep_jblocks)
2331		jblocks_destroy(ump->softdep_jblocks);
2332	ump->softdep_jblocks = NULL;
2333}
2334
2335/*
2336 * Called when a journal record is ready to be written.  Space is allocated
2337 * and the journal entry is created when the journal is flushed to stable
2338 * store.
2339 */
2340static void
2341add_to_journal(wk)
2342	struct worklist *wk;
2343{
2344	struct ufsmount *ump;
2345
2346	mtx_assert(&lk, MA_OWNED);
2347	ump = VFSTOUFS(wk->wk_mp);
2348	if (wk->wk_state & ONWORKLIST)
2349		panic("add_to_journal: %s(0x%X) already on list",
2350		    TYPENAME(wk->wk_type), wk->wk_state);
2351	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2352	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2353		ump->softdep_jblocks->jb_age = ticks;
2354		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2355	} else
2356		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2357	ump->softdep_journal_tail = wk;
2358	ump->softdep_on_journal += 1;
2359}
2360
2361/*
2362 * Remove an arbitrary item for the journal worklist maintain the tail
2363 * pointer.  This happens when a new operation obviates the need to
2364 * journal an old operation.
2365 */
2366static void
2367remove_from_journal(wk)
2368	struct worklist *wk;
2369{
2370	struct ufsmount *ump;
2371
2372	mtx_assert(&lk, MA_OWNED);
2373	ump = VFSTOUFS(wk->wk_mp);
2374#ifdef SUJ_DEBUG
2375	{
2376		struct worklist *wkn;
2377
2378		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2379			if (wkn == wk)
2380				break;
2381		if (wkn == NULL)
2382			panic("remove_from_journal: %p is not in journal", wk);
2383	}
2384#endif
2385	/*
2386	 * We emulate a TAILQ to save space in most structures which do not
2387	 * require TAILQ semantics.  Here we must update the tail position
2388	 * when removing the tail which is not the final entry. This works
2389	 * only if the worklist linkage are at the beginning of the structure.
2390	 */
2391	if (ump->softdep_journal_tail == wk)
2392		ump->softdep_journal_tail =
2393		    (struct worklist *)wk->wk_list.le_prev;
2394
2395	WORKLIST_REMOVE(wk);
2396	ump->softdep_on_journal -= 1;
2397}
2398
2399/*
2400 * Check for journal space as well as dependency limits so the prelink
2401 * code can throttle both journaled and non-journaled filesystems.
2402 * Threshold is 0 for low and 1 for min.
2403 */
2404static int
2405journal_space(ump, thresh)
2406	struct ufsmount *ump;
2407	int thresh;
2408{
2409	struct jblocks *jblocks;
2410	int avail;
2411
2412	jblocks = ump->softdep_jblocks;
2413	if (jblocks == NULL)
2414		return (1);
2415	/*
2416	 * We use a tighter restriction here to prevent request_cleanup()
2417	 * running in threads from running into locks we currently hold.
2418	 */
2419	if (num_inodedep > (max_softdeps / 10) * 9)
2420		return (0);
2421	if (thresh)
2422		thresh = jblocks->jb_min;
2423	else
2424		thresh = jblocks->jb_low;
2425	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2426	avail = jblocks->jb_free - avail;
2427
2428	return (avail > thresh);
2429}
2430
2431static void
2432journal_suspend(ump)
2433	struct ufsmount *ump;
2434{
2435	struct jblocks *jblocks;
2436	struct mount *mp;
2437
2438	mp = UFSTOVFS(ump);
2439	jblocks = ump->softdep_jblocks;
2440	MNT_ILOCK(mp);
2441	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2442		stat_journal_min++;
2443		mp->mnt_kern_flag |= MNTK_SUSPEND;
2444		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2445	}
2446	jblocks->jb_suspended = 1;
2447	MNT_IUNLOCK(mp);
2448}
2449
2450static int
2451journal_unsuspend(struct ufsmount *ump)
2452{
2453	struct jblocks *jblocks;
2454	struct mount *mp;
2455
2456	mp = UFSTOVFS(ump);
2457	jblocks = ump->softdep_jblocks;
2458
2459	if (jblocks != NULL && jblocks->jb_suspended &&
2460	    journal_space(ump, jblocks->jb_min)) {
2461		jblocks->jb_suspended = 0;
2462		FREE_LOCK(&lk);
2463		mp->mnt_susp_owner = curthread;
2464		vfs_write_resume(mp);
2465		ACQUIRE_LOCK(&lk);
2466		return (1);
2467	}
2468	return (0);
2469}
2470
2471/*
2472 * Called before any allocation function to be certain that there is
2473 * sufficient space in the journal prior to creating any new records.
2474 * Since in the case of block allocation we may have multiple locked
2475 * buffers at the time of the actual allocation we can not block
2476 * when the journal records are created.  Doing so would create a deadlock
2477 * if any of these buffers needed to be flushed to reclaim space.  Instead
2478 * we require a sufficiently large amount of available space such that
2479 * each thread in the system could have passed this allocation check and
2480 * still have sufficient free space.  With 20% of a minimum journal size
2481 * of 1MB we have 6553 records available.
2482 */
2483int
2484softdep_prealloc(vp, waitok)
2485	struct vnode *vp;
2486	int waitok;
2487{
2488	struct ufsmount *ump;
2489
2490	if (DOINGSUJ(vp) == 0)
2491		return (0);
2492	ump = VFSTOUFS(vp->v_mount);
2493	ACQUIRE_LOCK(&lk);
2494	if (journal_space(ump, 0)) {
2495		FREE_LOCK(&lk);
2496		return (0);
2497	}
2498	stat_journal_low++;
2499	FREE_LOCK(&lk);
2500	if (waitok == MNT_NOWAIT)
2501		return (ENOSPC);
2502	/*
2503	 * Attempt to sync this vnode once to flush any journal
2504	 * work attached to it.
2505	 */
2506	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2507		ffs_syncvnode(vp, waitok);
2508	ACQUIRE_LOCK(&lk);
2509	process_removes(vp);
2510	if (journal_space(ump, 0) == 0) {
2511		softdep_speedup();
2512		if (journal_space(ump, 1) == 0)
2513			journal_suspend(ump);
2514	}
2515	FREE_LOCK(&lk);
2516
2517	return (0);
2518}
2519
2520/*
2521 * Before adjusting a link count on a vnode verify that we have sufficient
2522 * journal space.  If not, process operations that depend on the currently
2523 * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2524 * and softdep flush threads can not acquire these locks to reclaim space.
2525 */
2526static void
2527softdep_prelink(dvp, vp)
2528	struct vnode *dvp;
2529	struct vnode *vp;
2530{
2531	struct ufsmount *ump;
2532
2533	ump = VFSTOUFS(dvp->v_mount);
2534	mtx_assert(&lk, MA_OWNED);
2535	if (journal_space(ump, 0))
2536		return;
2537	stat_journal_low++;
2538	FREE_LOCK(&lk);
2539	if (vp)
2540		ffs_syncvnode(vp, MNT_NOWAIT);
2541	ffs_syncvnode(dvp, MNT_WAIT);
2542	ACQUIRE_LOCK(&lk);
2543	/* Process vp before dvp as it may create .. removes. */
2544	if (vp)
2545		process_removes(vp);
2546	process_removes(dvp);
2547	softdep_speedup();
2548	process_worklist_item(UFSTOVFS(ump), LK_NOWAIT);
2549	process_worklist_item(UFSTOVFS(ump), LK_NOWAIT);
2550	if (journal_space(ump, 0) == 0) {
2551		softdep_speedup();
2552		if (journal_space(ump, 1) == 0)
2553			journal_suspend(ump);
2554	}
2555}
2556
2557static void
2558jseg_write(fs, jblocks, jseg, data)
2559	struct fs *fs;
2560	struct jblocks *jblocks;
2561	struct jseg *jseg;
2562	uint8_t *data;
2563{
2564	struct jsegrec *rec;
2565
2566	rec = (struct jsegrec *)data;
2567	rec->jsr_seq = jseg->js_seq;
2568	rec->jsr_oldest = jblocks->jb_oldestseq;
2569	rec->jsr_cnt = jseg->js_cnt;
2570	rec->jsr_blocks = jseg->js_size / DEV_BSIZE;
2571	rec->jsr_crc = 0;
2572	rec->jsr_time = fs->fs_mtime;
2573}
2574
2575static inline void
2576inoref_write(inoref, jseg, rec)
2577	struct inoref *inoref;
2578	struct jseg *jseg;
2579	struct jrefrec *rec;
2580{
2581
2582	inoref->if_jsegdep->jd_seg = jseg;
2583	rec->jr_ino = inoref->if_ino;
2584	rec->jr_parent = inoref->if_parent;
2585	rec->jr_nlink = inoref->if_nlink;
2586	rec->jr_mode = inoref->if_mode;
2587	rec->jr_diroff = inoref->if_diroff;
2588}
2589
2590static void
2591jaddref_write(jaddref, jseg, data)
2592	struct jaddref *jaddref;
2593	struct jseg *jseg;
2594	uint8_t *data;
2595{
2596	struct jrefrec *rec;
2597
2598	rec = (struct jrefrec *)data;
2599	rec->jr_op = JOP_ADDREF;
2600	inoref_write(&jaddref->ja_ref, jseg, rec);
2601}
2602
2603static void
2604jremref_write(jremref, jseg, data)
2605	struct jremref *jremref;
2606	struct jseg *jseg;
2607	uint8_t *data;
2608{
2609	struct jrefrec *rec;
2610
2611	rec = (struct jrefrec *)data;
2612	rec->jr_op = JOP_REMREF;
2613	inoref_write(&jremref->jr_ref, jseg, rec);
2614}
2615
2616static void
2617jmvref_write(jmvref, jseg, data)
2618	struct jmvref *jmvref;
2619	struct jseg *jseg;
2620	uint8_t *data;
2621{
2622	struct jmvrec *rec;
2623
2624	rec = (struct jmvrec *)data;
2625	rec->jm_op = JOP_MVREF;
2626	rec->jm_ino = jmvref->jm_ino;
2627	rec->jm_parent = jmvref->jm_parent;
2628	rec->jm_oldoff = jmvref->jm_oldoff;
2629	rec->jm_newoff = jmvref->jm_newoff;
2630}
2631
2632static void
2633jnewblk_write(jnewblk, jseg, data)
2634	struct jnewblk *jnewblk;
2635	struct jseg *jseg;
2636	uint8_t *data;
2637{
2638	struct jblkrec *rec;
2639
2640	jnewblk->jn_jsegdep->jd_seg = jseg;
2641	rec = (struct jblkrec *)data;
2642	rec->jb_op = JOP_NEWBLK;
2643	rec->jb_ino = jnewblk->jn_ino;
2644	rec->jb_blkno = jnewblk->jn_blkno;
2645	rec->jb_lbn = jnewblk->jn_lbn;
2646	rec->jb_frags = jnewblk->jn_frags;
2647	rec->jb_oldfrags = jnewblk->jn_oldfrags;
2648}
2649
2650static void
2651jfreeblk_write(jfreeblk, jseg, data)
2652	struct jfreeblk *jfreeblk;
2653	struct jseg *jseg;
2654	uint8_t *data;
2655{
2656	struct jblkrec *rec;
2657
2658	jfreeblk->jf_jsegdep->jd_seg = jseg;
2659	rec = (struct jblkrec *)data;
2660	rec->jb_op = JOP_FREEBLK;
2661	rec->jb_ino = jfreeblk->jf_ino;
2662	rec->jb_blkno = jfreeblk->jf_blkno;
2663	rec->jb_lbn = jfreeblk->jf_lbn;
2664	rec->jb_frags = jfreeblk->jf_frags;
2665	rec->jb_oldfrags = 0;
2666}
2667
2668static void
2669jfreefrag_write(jfreefrag, jseg, data)
2670	struct jfreefrag *jfreefrag;
2671	struct jseg *jseg;
2672	uint8_t *data;
2673{
2674	struct jblkrec *rec;
2675
2676	jfreefrag->fr_jsegdep->jd_seg = jseg;
2677	rec = (struct jblkrec *)data;
2678	rec->jb_op = JOP_FREEBLK;
2679	rec->jb_ino = jfreefrag->fr_ino;
2680	rec->jb_blkno = jfreefrag->fr_blkno;
2681	rec->jb_lbn = jfreefrag->fr_lbn;
2682	rec->jb_frags = jfreefrag->fr_frags;
2683	rec->jb_oldfrags = 0;
2684}
2685
2686static void
2687jtrunc_write(jtrunc, jseg, data)
2688	struct jtrunc *jtrunc;
2689	struct jseg *jseg;
2690	uint8_t *data;
2691{
2692	struct jtrncrec *rec;
2693
2694	rec = (struct jtrncrec *)data;
2695	rec->jt_op = JOP_TRUNC;
2696	rec->jt_ino = jtrunc->jt_ino;
2697	rec->jt_size = jtrunc->jt_size;
2698	rec->jt_extsize = jtrunc->jt_extsize;
2699}
2700
2701/*
2702 * Flush some journal records to disk.
2703 */
2704static void
2705softdep_process_journal(mp, flags)
2706	struct mount *mp;
2707	int flags;
2708{
2709	struct jblocks *jblocks;
2710	struct ufsmount *ump;
2711	struct worklist *wk;
2712	struct jseg *jseg;
2713	struct buf *bp;
2714	uint8_t *data;
2715	struct fs *fs;
2716	int segwritten;
2717	int jrecmin;	/* Minimum records per block. */
2718	int jrecmax;	/* Maximum records per block. */
2719	int size;
2720	int cnt;
2721	int off;
2722
2723	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0)
2724		return;
2725	ump = VFSTOUFS(mp);
2726	fs = ump->um_fs;
2727	jblocks = ump->softdep_jblocks;
2728	/*
2729	 * We write anywhere between a disk block and fs block.  The upper
2730	 * bound is picked to prevent buffer cache fragmentation and limit
2731	 * processing time per I/O.
2732	 */
2733	jrecmin = (DEV_BSIZE / JREC_SIZE) - 1; /* -1 for seg header */
2734	jrecmax = (fs->fs_bsize / DEV_BSIZE) * jrecmin;
2735	segwritten = 0;
2736	while ((cnt = ump->softdep_on_journal) != 0) {
2737		/*
2738		 * Create a new segment to hold as many as 'cnt' journal
2739		 * entries and add them to the segment.  Notice cnt is
2740		 * off by one to account for the space required by the
2741		 * jsegrec.  If we don't have a full block to log skip it
2742		 * unless we haven't written anything.
2743		 */
2744		cnt++;
2745		if (cnt < jrecmax && segwritten)
2746			break;
2747		/*
2748		 * Verify some free journal space.  softdep_prealloc() should
2749	 	 * guarantee that we don't run out so this is indicative of
2750		 * a problem with the flow control.  Try to recover
2751		 * gracefully in any event.
2752		 */
2753		while (jblocks->jb_free == 0) {
2754			if (flags != MNT_WAIT)
2755				break;
2756			printf("softdep: Out of journal space!\n");
2757			softdep_speedup();
2758			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
2759		}
2760		FREE_LOCK(&lk);
2761		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
2762		workitem_alloc(&jseg->js_list, D_JSEG, mp);
2763		LIST_INIT(&jseg->js_entries);
2764		jseg->js_state = ATTACHED;
2765		jseg->js_jblocks = jblocks;
2766		bp = geteblk(fs->fs_bsize, 0);
2767		ACQUIRE_LOCK(&lk);
2768		/*
2769		 * If there was a race while we were allocating the block
2770		 * and jseg the entry we care about was likely written.
2771		 * We bail out in both the WAIT and NOWAIT case and assume
2772		 * the caller will loop if the entry it cares about is
2773		 * not written.
2774		 */
2775		if (ump->softdep_on_journal == 0 || jblocks->jb_free == 0) {
2776			bp->b_flags |= B_INVAL | B_NOCACHE;
2777			WORKITEM_FREE(jseg, D_JSEG);
2778			FREE_LOCK(&lk);
2779			brelse(bp);
2780			ACQUIRE_LOCK(&lk);
2781			break;
2782		}
2783		/*
2784		 * Calculate the disk block size required for the available
2785		 * records rounded to the min size.
2786		 */
2787		cnt = ump->softdep_on_journal;
2788		if (cnt < jrecmax)
2789			size = howmany(cnt, jrecmin) * DEV_BSIZE;
2790		else
2791			size = fs->fs_bsize;
2792		/*
2793		 * Allocate a disk block for this journal data and account
2794		 * for truncation of the requested size if enough contiguous
2795		 * space was not available.
2796		 */
2797		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
2798		bp->b_lblkno = bp->b_blkno;
2799		bp->b_offset = bp->b_blkno * DEV_BSIZE;
2800		bp->b_bcount = size;
2801		bp->b_bufobj = &ump->um_devvp->v_bufobj;
2802		bp->b_flags &= ~B_INVAL;
2803		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
2804		/*
2805		 * Initialize our jseg with cnt records.  Assign the next
2806		 * sequence number to it and link it in-order.
2807		 */
2808		cnt = MIN(ump->softdep_on_journal,
2809		    (size / DEV_BSIZE) * jrecmin);
2810		jseg->js_buf = bp;
2811		jseg->js_cnt = cnt;
2812		jseg->js_refs = cnt + 1;	/* Self ref. */
2813		jseg->js_size = size;
2814		jseg->js_seq = jblocks->jb_nextseq++;
2815		if (TAILQ_EMPTY(&jblocks->jb_segs))
2816			jblocks->jb_oldestseq = jseg->js_seq;
2817		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
2818		if (jblocks->jb_writeseg == NULL)
2819			jblocks->jb_writeseg = jseg;
2820		/*
2821		 * Start filling in records from the pending list.
2822		 */
2823		data = bp->b_data;
2824		off = 0;
2825		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
2826		    != NULL) {
2827			/* Place a segment header on every device block. */
2828			if ((off % DEV_BSIZE) == 0) {
2829				jseg_write(fs, jblocks, jseg, data);
2830				off += JREC_SIZE;
2831				data = bp->b_data + off;
2832			}
2833			remove_from_journal(wk);
2834			wk->wk_state |= IOSTARTED;
2835			WORKLIST_INSERT(&jseg->js_entries, wk);
2836			switch (wk->wk_type) {
2837			case D_JADDREF:
2838				jaddref_write(WK_JADDREF(wk), jseg, data);
2839				break;
2840			case D_JREMREF:
2841				jremref_write(WK_JREMREF(wk), jseg, data);
2842				break;
2843			case D_JMVREF:
2844				jmvref_write(WK_JMVREF(wk), jseg, data);
2845				break;
2846			case D_JNEWBLK:
2847				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
2848				break;
2849			case D_JFREEBLK:
2850				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
2851				break;
2852			case D_JFREEFRAG:
2853				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
2854				break;
2855			case D_JTRUNC:
2856				jtrunc_write(WK_JTRUNC(wk), jseg, data);
2857				break;
2858			default:
2859				panic("process_journal: Unknown type %s",
2860				    TYPENAME(wk->wk_type));
2861				/* NOTREACHED */
2862			}
2863			if (--cnt == 0)
2864				break;
2865			off += JREC_SIZE;
2866			data = bp->b_data + off;
2867		}
2868		/*
2869		 * Write this one buffer and continue.
2870		 */
2871		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
2872		FREE_LOCK(&lk);
2873		BO_LOCK(bp->b_bufobj);
2874		bgetvp(ump->um_devvp, bp);
2875		BO_UNLOCK(bp->b_bufobj);
2876		if (flags == MNT_NOWAIT)
2877			bawrite(bp);
2878		else
2879			bwrite(bp);
2880		ACQUIRE_LOCK(&lk);
2881	}
2882	/*
2883	 * If we've suspended the filesystem because we ran out of journal
2884	 * space either try to sync it here to make some progress or
2885	 * unsuspend it if we already have.
2886	 */
2887	if (flags == 0 && jblocks->jb_suspended) {
2888		if (journal_unsuspend(ump))
2889			return;
2890		FREE_LOCK(&lk);
2891		VFS_SYNC(mp, MNT_NOWAIT);
2892		ffs_sbupdate(ump, MNT_WAIT, 0);
2893		ACQUIRE_LOCK(&lk);
2894	}
2895}
2896
2897/*
2898 * Complete a jseg, allowing all dependencies awaiting journal writes
2899 * to proceed.  Each journal dependency also attaches a jsegdep to dependent
2900 * structures so that the journal segment can be freed to reclaim space.
2901 */
2902static void
2903complete_jseg(jseg)
2904	struct jseg *jseg;
2905{
2906	struct worklist *wk;
2907	struct jmvref *jmvref;
2908	int waiting;
2909#ifdef INVARIANTS
2910	int i = 0;
2911#endif
2912
2913	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
2914		WORKLIST_REMOVE(wk);
2915		waiting = wk->wk_state & IOWAITING;
2916		wk->wk_state &= ~(IOSTARTED | IOWAITING);
2917		wk->wk_state |= COMPLETE;
2918		KASSERT(i++ < jseg->js_cnt,
2919		    ("handle_written_jseg: overflow %d >= %d",
2920		    i - 1, jseg->js_cnt));
2921		switch (wk->wk_type) {
2922		case D_JADDREF:
2923			handle_written_jaddref(WK_JADDREF(wk));
2924			break;
2925		case D_JREMREF:
2926			handle_written_jremref(WK_JREMREF(wk));
2927			break;
2928		case D_JMVREF:
2929			/* No jsegdep here. */
2930			free_jseg(jseg);
2931			jmvref = WK_JMVREF(wk);
2932			LIST_REMOVE(jmvref, jm_deps);
2933			free_pagedep(jmvref->jm_pagedep);
2934			WORKITEM_FREE(jmvref, D_JMVREF);
2935			break;
2936		case D_JNEWBLK:
2937			handle_written_jnewblk(WK_JNEWBLK(wk));
2938			break;
2939		case D_JFREEBLK:
2940			handle_written_jfreeblk(WK_JFREEBLK(wk));
2941			break;
2942		case D_JFREEFRAG:
2943			handle_written_jfreefrag(WK_JFREEFRAG(wk));
2944			break;
2945		case D_JTRUNC:
2946			WK_JTRUNC(wk)->jt_jsegdep->jd_seg = jseg;
2947			WORKITEM_FREE(wk, D_JTRUNC);
2948			break;
2949		default:
2950			panic("handle_written_jseg: Unknown type %s",
2951			    TYPENAME(wk->wk_type));
2952			/* NOTREACHED */
2953		}
2954		if (waiting)
2955			wakeup(wk);
2956	}
2957	/* Release the self reference so the structure may be freed. */
2958	free_jseg(jseg);
2959}
2960
2961/*
2962 * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Handle jseg
2963 * completions in order only.
2964 */
2965static void
2966handle_written_jseg(jseg, bp)
2967	struct jseg *jseg;
2968	struct buf *bp;
2969{
2970	struct jblocks *jblocks;
2971	struct jseg *jsegn;
2972
2973	if (jseg->js_refs == 0)
2974		panic("handle_written_jseg: No self-reference on %p", jseg);
2975	jseg->js_state |= DEPCOMPLETE;
2976	/*
2977	 * We'll never need this buffer again, set flags so it will be
2978	 * discarded.
2979	 */
2980	bp->b_flags |= B_INVAL | B_NOCACHE;
2981	jblocks = jseg->js_jblocks;
2982	/*
2983	 * Don't allow out of order completions.  If this isn't the first
2984	 * block wait for it to write before we're done.
2985	 */
2986	if (jseg != jblocks->jb_writeseg)
2987		return;
2988	/* Iterate through available jsegs processing their entries. */
2989	do {
2990		jsegn = TAILQ_NEXT(jseg, js_next);
2991		complete_jseg(jseg);
2992		jseg = jsegn;
2993	} while (jseg && jseg->js_state & DEPCOMPLETE);
2994	jblocks->jb_writeseg = jseg;
2995}
2996
2997static inline struct jsegdep *
2998inoref_jseg(inoref)
2999	struct inoref *inoref;
3000{
3001	struct jsegdep *jsegdep;
3002
3003	jsegdep = inoref->if_jsegdep;
3004	inoref->if_jsegdep = NULL;
3005
3006	return (jsegdep);
3007}
3008
3009/*
3010 * Called once a jremref has made it to stable store.  The jremref is marked
3011 * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3012 * for the jremref to complete will be awoken by free_jremref.
3013 */
3014static void
3015handle_written_jremref(jremref)
3016	struct jremref *jremref;
3017{
3018	struct inodedep *inodedep;
3019	struct jsegdep *jsegdep;
3020	struct dirrem *dirrem;
3021
3022	/* Grab the jsegdep. */
3023	jsegdep = inoref_jseg(&jremref->jr_ref);
3024	/*
3025	 * Remove us from the inoref list.
3026	 */
3027	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3028	    0, &inodedep) == 0)
3029		panic("handle_written_jremref: Lost inodedep");
3030	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3031	/*
3032	 * Complete the dirrem.
3033	 */
3034	dirrem = jremref->jr_dirrem;
3035	jremref->jr_dirrem = NULL;
3036	LIST_REMOVE(jremref, jr_deps);
3037	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3038	WORKLIST_INSERT(&dirrem->dm_jwork, &jsegdep->jd_list);
3039	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3040	    (dirrem->dm_state & COMPLETE) != 0)
3041		add_to_worklist(&dirrem->dm_list, 0);
3042	free_jremref(jremref);
3043}
3044
3045/*
3046 * Called once a jaddref has made it to stable store.  The dependency is
3047 * marked complete and any dependent structures are added to the inode
3048 * bufwait list to be completed as soon as it is written.  If a bitmap write
3049 * depends on this entry we move the inode into the inodedephd of the
3050 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3051 */
3052static void
3053handle_written_jaddref(jaddref)
3054	struct jaddref *jaddref;
3055{
3056	struct jsegdep *jsegdep;
3057	struct inodedep *inodedep;
3058	struct diradd *diradd;
3059	struct mkdir *mkdir;
3060
3061	/* Grab the jsegdep. */
3062	jsegdep = inoref_jseg(&jaddref->ja_ref);
3063	mkdir = NULL;
3064	diradd = NULL;
3065	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3066	    0, &inodedep) == 0)
3067		panic("handle_written_jaddref: Lost inodedep.");
3068	if (jaddref->ja_diradd == NULL)
3069		panic("handle_written_jaddref: No dependency");
3070	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3071		diradd = jaddref->ja_diradd;
3072		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3073	} else if (jaddref->ja_state & MKDIR_PARENT) {
3074		mkdir = jaddref->ja_mkdir;
3075		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3076	} else if (jaddref->ja_state & MKDIR_BODY)
3077		mkdir = jaddref->ja_mkdir;
3078	else
3079		panic("handle_written_jaddref: Unknown dependency %p",
3080		    jaddref->ja_diradd);
3081	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3082	/*
3083	 * Remove us from the inode list.
3084	 */
3085	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3086	/*
3087	 * The mkdir may be waiting on the jaddref to clear before freeing.
3088	 */
3089	if (mkdir) {
3090		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3091		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3092		    TYPENAME(mkdir->md_list.wk_type)));
3093		mkdir->md_jaddref = NULL;
3094		diradd = mkdir->md_diradd;
3095		mkdir->md_state |= DEPCOMPLETE;
3096		complete_mkdir(mkdir);
3097	}
3098	WORKLIST_INSERT(&diradd->da_jwork, &jsegdep->jd_list);
3099	if (jaddref->ja_state & NEWBLOCK) {
3100		inodedep->id_state |= ONDEPLIST;
3101		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3102		    inodedep, id_deps);
3103	}
3104	free_jaddref(jaddref);
3105}
3106
3107/*
3108 * Called once a jnewblk journal is written.  The allocdirect or allocindir
3109 * is placed in the bmsafemap to await notification of a written bitmap.
3110 */
3111static void
3112handle_written_jnewblk(jnewblk)
3113	struct jnewblk *jnewblk;
3114{
3115	struct bmsafemap *bmsafemap;
3116	struct jsegdep *jsegdep;
3117	struct newblk *newblk;
3118
3119	/* Grab the jsegdep. */
3120	jsegdep = jnewblk->jn_jsegdep;
3121	jnewblk->jn_jsegdep = NULL;
3122	/*
3123	 * Add the written block to the bmsafemap so it can be notified when
3124	 * the bitmap is on disk.
3125	 */
3126	newblk = jnewblk->jn_newblk;
3127	jnewblk->jn_newblk = NULL;
3128	if (newblk == NULL)
3129		panic("handle_written_jnewblk: No dependency for the segdep.");
3130
3131	newblk->nb_jnewblk = NULL;
3132	bmsafemap = newblk->nb_bmsafemap;
3133	WORKLIST_INSERT(&newblk->nb_jwork, &jsegdep->jd_list);
3134	newblk->nb_state |= ONDEPLIST;
3135	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
3136	free_jnewblk(jnewblk);
3137}
3138
3139/*
3140 * Cancel a jfreefrag that won't be needed, probably due to colliding with
3141 * an in-flight allocation that has not yet been committed.  Divorce us
3142 * from the freefrag and mark it DEPCOMPLETE so that it may be added
3143 * to the worklist.
3144 */
3145static void
3146cancel_jfreefrag(jfreefrag)
3147	struct jfreefrag *jfreefrag;
3148{
3149	struct freefrag *freefrag;
3150
3151	if (jfreefrag->fr_jsegdep) {
3152		free_jsegdep(jfreefrag->fr_jsegdep);
3153		jfreefrag->fr_jsegdep = NULL;
3154	}
3155	freefrag = jfreefrag->fr_freefrag;
3156	jfreefrag->fr_freefrag = NULL;
3157	freefrag->ff_jfreefrag = NULL;
3158	free_jfreefrag(jfreefrag);
3159	freefrag->ff_state |= DEPCOMPLETE;
3160}
3161
3162/*
3163 * Free a jfreefrag when the parent freefrag is rendered obsolete.
3164 */
3165static void
3166free_jfreefrag(jfreefrag)
3167	struct jfreefrag *jfreefrag;
3168{
3169
3170	if (jfreefrag->fr_state & IOSTARTED)
3171		WORKLIST_REMOVE(&jfreefrag->fr_list);
3172	else if (jfreefrag->fr_state & ONWORKLIST)
3173		remove_from_journal(&jfreefrag->fr_list);
3174	if (jfreefrag->fr_freefrag != NULL)
3175		panic("free_jfreefrag:  Still attached to a freefrag.");
3176	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3177}
3178
3179/*
3180 * Called when the journal write for a jfreefrag completes.  The parent
3181 * freefrag is added to the worklist if this completes its dependencies.
3182 */
3183static void
3184handle_written_jfreefrag(jfreefrag)
3185	struct jfreefrag *jfreefrag;
3186{
3187	struct jsegdep *jsegdep;
3188	struct freefrag *freefrag;
3189
3190	/* Grab the jsegdep. */
3191	jsegdep = jfreefrag->fr_jsegdep;
3192	jfreefrag->fr_jsegdep = NULL;
3193	freefrag = jfreefrag->fr_freefrag;
3194	if (freefrag == NULL)
3195		panic("handle_written_jfreefrag: No freefrag.");
3196	freefrag->ff_state |= DEPCOMPLETE;
3197	freefrag->ff_jfreefrag = NULL;
3198	WORKLIST_INSERT(&freefrag->ff_jwork, &jsegdep->jd_list);
3199	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3200		add_to_worklist(&freefrag->ff_list, 0);
3201	jfreefrag->fr_freefrag = NULL;
3202	free_jfreefrag(jfreefrag);
3203}
3204
3205/*
3206 * Called when the journal write for a jfreeblk completes.  The jfreeblk
3207 * is removed from the freeblks list of pending journal writes and the
3208 * jsegdep is moved to the freeblks jwork to be completed when all blocks
3209 * have been reclaimed.
3210 */
3211static void
3212handle_written_jfreeblk(jfreeblk)
3213	struct jfreeblk *jfreeblk;
3214{
3215	struct freeblks *freeblks;
3216	struct jsegdep *jsegdep;
3217
3218	/* Grab the jsegdep. */
3219	jsegdep = jfreeblk->jf_jsegdep;
3220	jfreeblk->jf_jsegdep = NULL;
3221	freeblks = jfreeblk->jf_freeblks;
3222	LIST_REMOVE(jfreeblk, jf_deps);
3223	WORKLIST_INSERT(&freeblks->fb_jwork, &jsegdep->jd_list);
3224	/*
3225	 * If the freeblks is all journaled, we can add it to the worklist.
3226	 */
3227	if (LIST_EMPTY(&freeblks->fb_jfreeblkhd) &&
3228	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) {
3229		/* Remove from the b_dep that is waiting on this write. */
3230		if (freeblks->fb_state & ONWORKLIST)
3231			WORKLIST_REMOVE(&freeblks->fb_list);
3232		add_to_worklist(&freeblks->fb_list, 1);
3233	}
3234
3235	free_jfreeblk(jfreeblk);
3236}
3237
3238static struct jsegdep *
3239newjsegdep(struct worklist *wk)
3240{
3241	struct jsegdep *jsegdep;
3242
3243	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3244	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3245	jsegdep->jd_seg = NULL;
3246
3247	return (jsegdep);
3248}
3249
3250static struct jmvref *
3251newjmvref(dp, ino, oldoff, newoff)
3252	struct inode *dp;
3253	ino_t ino;
3254	off_t oldoff;
3255	off_t newoff;
3256{
3257	struct jmvref *jmvref;
3258
3259	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3260	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3261	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3262	jmvref->jm_parent = dp->i_number;
3263	jmvref->jm_ino = ino;
3264	jmvref->jm_oldoff = oldoff;
3265	jmvref->jm_newoff = newoff;
3266
3267	return (jmvref);
3268}
3269
3270/*
3271 * Allocate a new jremref that tracks the removal of ip from dp with the
3272 * directory entry offset of diroff.  Mark the entry as ATTACHED and
3273 * DEPCOMPLETE as we have all the information required for the journal write
3274 * and the directory has already been removed from the buffer.  The caller
3275 * is responsible for linking the jremref into the pagedep and adding it
3276 * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3277 * a DOTDOT addition so handle_workitem_remove() can properly assign
3278 * the jsegdep when we're done.
3279 */
3280static struct jremref *
3281newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3282    off_t diroff, nlink_t nlink)
3283{
3284	struct jremref *jremref;
3285
3286	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3287	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3288	jremref->jr_state = ATTACHED;
3289	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3290	   nlink, ip->i_mode);
3291	jremref->jr_dirrem = dirrem;
3292
3293	return (jremref);
3294}
3295
3296static inline void
3297newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3298    nlink_t nlink, uint16_t mode)
3299{
3300
3301	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3302	inoref->if_diroff = diroff;
3303	inoref->if_ino = ino;
3304	inoref->if_parent = parent;
3305	inoref->if_nlink = nlink;
3306	inoref->if_mode = mode;
3307}
3308
3309/*
3310 * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3311 * directory offset may not be known until later.  The caller is responsible
3312 * adding the entry to the journal when this information is available.  nlink
3313 * should be the link count prior to the addition and mode is only required
3314 * to have the correct FMT.
3315 */
3316static struct jaddref *
3317newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3318    uint16_t mode)
3319{
3320	struct jaddref *jaddref;
3321
3322	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3323	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3324	jaddref->ja_state = ATTACHED;
3325	jaddref->ja_mkdir = NULL;
3326	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3327
3328	return (jaddref);
3329}
3330
3331/*
3332 * Create a new free dependency for a freework.  The caller is responsible
3333 * for adjusting the reference count when it has the lock held.  The freedep
3334 * will track an outstanding bitmap write that will ultimately clear the
3335 * freework to continue.
3336 */
3337static struct freedep *
3338newfreedep(struct freework *freework)
3339{
3340	struct freedep *freedep;
3341
3342	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3343	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3344	freedep->fd_freework = freework;
3345
3346	return (freedep);
3347}
3348
3349/*
3350 * Free a freedep structure once the buffer it is linked to is written.  If
3351 * this is the last reference to the freework schedule it for completion.
3352 */
3353static void
3354free_freedep(freedep)
3355	struct freedep *freedep;
3356{
3357
3358	if (--freedep->fd_freework->fw_ref == 0)
3359		add_to_worklist(&freedep->fd_freework->fw_list, 1);
3360	WORKITEM_FREE(freedep, D_FREEDEP);
3361}
3362
3363/*
3364 * Allocate a new freework structure that may be a level in an indirect
3365 * when parent is not NULL or a top level block when it is.  The top level
3366 * freework structures are allocated without lk held and before the freeblks
3367 * is visible outside of softdep_setup_freeblocks().
3368 */
3369static struct freework *
3370newfreework(freeblks, parent, lbn, nb, frags, journal)
3371	struct freeblks *freeblks;
3372	struct freework *parent;
3373	ufs_lbn_t lbn;
3374	ufs2_daddr_t nb;
3375	int frags;
3376	int journal;
3377{
3378	struct freework *freework;
3379
3380	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3381	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3382	freework->fw_freeblks = freeblks;
3383	freework->fw_parent = parent;
3384	freework->fw_lbn = lbn;
3385	freework->fw_blkno = nb;
3386	freework->fw_frags = frags;
3387	freework->fw_ref = 0;
3388	freework->fw_off = 0;
3389	LIST_INIT(&freework->fw_jwork);
3390
3391	if (parent == NULL) {
3392		WORKLIST_INSERT_UNLOCKED(&freeblks->fb_freeworkhd,
3393		    &freework->fw_list);
3394		freeblks->fb_ref++;
3395	}
3396	if (journal)
3397		newjfreeblk(freeblks, lbn, nb, frags);
3398
3399	return (freework);
3400}
3401
3402/*
3403 * Allocate a new jfreeblk to journal top level block pointer when truncating
3404 * a file.  The caller must add this to the worklist when lk is held.
3405 */
3406static struct jfreeblk *
3407newjfreeblk(freeblks, lbn, blkno, frags)
3408	struct freeblks *freeblks;
3409	ufs_lbn_t lbn;
3410	ufs2_daddr_t blkno;
3411	int frags;
3412{
3413	struct jfreeblk *jfreeblk;
3414
3415	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
3416	workitem_alloc(&jfreeblk->jf_list, D_JFREEBLK, freeblks->fb_list.wk_mp);
3417	jfreeblk->jf_jsegdep = newjsegdep(&jfreeblk->jf_list);
3418	jfreeblk->jf_state = ATTACHED | DEPCOMPLETE;
3419	jfreeblk->jf_ino = freeblks->fb_previousinum;
3420	jfreeblk->jf_lbn = lbn;
3421	jfreeblk->jf_blkno = blkno;
3422	jfreeblk->jf_frags = frags;
3423	jfreeblk->jf_freeblks = freeblks;
3424	LIST_INSERT_HEAD(&freeblks->fb_jfreeblkhd, jfreeblk, jf_deps);
3425
3426	return (jfreeblk);
3427}
3428
3429static void move_newblock_dep(struct jaddref *, struct inodedep *);
3430/*
3431 * If we're canceling a new bitmap we have to search for another ref
3432 * to move into the bmsafemap dep.  This might be better expressed
3433 * with another structure.
3434 */
3435static void
3436move_newblock_dep(jaddref, inodedep)
3437	struct jaddref *jaddref;
3438	struct inodedep *inodedep;
3439{
3440	struct inoref *inoref;
3441	struct jaddref *jaddrefn;
3442
3443	jaddrefn = NULL;
3444	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3445	    inoref = TAILQ_NEXT(inoref, if_deps)) {
3446		if ((jaddref->ja_state & NEWBLOCK) &&
3447		    inoref->if_list.wk_type == D_JADDREF) {
3448			jaddrefn = (struct jaddref *)inoref;
3449			break;
3450		}
3451	}
3452	if (jaddrefn == NULL)
3453		return;
3454	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
3455	jaddrefn->ja_state |= jaddref->ja_state &
3456	    (ATTACHED | UNDONE | NEWBLOCK);
3457	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
3458	jaddref->ja_state |= ATTACHED;
3459	LIST_REMOVE(jaddref, ja_bmdeps);
3460	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
3461	    ja_bmdeps);
3462}
3463
3464/*
3465 * Cancel a jaddref either before it has been written or while it is being
3466 * written.  This happens when a link is removed before the add reaches
3467 * the disk.  The jaddref dependency is kept linked into the bmsafemap
3468 * and inode to prevent the link count or bitmap from reaching the disk
3469 * until handle_workitem_remove() re-adjusts the counts and bitmaps as
3470 * required.
3471 *
3472 * Returns 1 if the canceled addref requires journaling of the remove and
3473 * 0 otherwise.
3474 */
3475static int
3476cancel_jaddref(jaddref, inodedep, wkhd)
3477	struct jaddref *jaddref;
3478	struct inodedep *inodedep;
3479	struct workhead *wkhd;
3480{
3481	struct inoref *inoref;
3482	struct jsegdep *jsegdep;
3483	int needsj;
3484
3485	KASSERT((jaddref->ja_state & COMPLETE) == 0,
3486	    ("cancel_jaddref: Canceling complete jaddref"));
3487	if (jaddref->ja_state & (IOSTARTED | COMPLETE))
3488		needsj = 1;
3489	else
3490		needsj = 0;
3491	if (inodedep == NULL)
3492		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3493		    0, &inodedep) == 0)
3494			panic("cancel_jaddref: Lost inodedep");
3495	/*
3496	 * We must adjust the nlink of any reference operation that follows
3497	 * us so that it is consistent with the in-memory reference.  This
3498	 * ensures that inode nlink rollbacks always have the correct link.
3499	 */
3500	if (needsj == 0)
3501		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3502		    inoref = TAILQ_NEXT(inoref, if_deps))
3503			inoref->if_nlink--;
3504	jsegdep = inoref_jseg(&jaddref->ja_ref);
3505	if (jaddref->ja_state & NEWBLOCK)
3506		move_newblock_dep(jaddref, inodedep);
3507	if (jaddref->ja_state & IOWAITING) {
3508		jaddref->ja_state &= ~IOWAITING;
3509		wakeup(&jaddref->ja_list);
3510	}
3511	jaddref->ja_mkdir = NULL;
3512	if (jaddref->ja_state & IOSTARTED) {
3513		jaddref->ja_state &= ~IOSTARTED;
3514		WORKLIST_REMOVE(&jaddref->ja_list);
3515		WORKLIST_INSERT(wkhd, &jsegdep->jd_list);
3516	} else {
3517		free_jsegdep(jsegdep);
3518		if (jaddref->ja_state & DEPCOMPLETE)
3519			remove_from_journal(&jaddref->ja_list);
3520	}
3521	/*
3522	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
3523	 * can arrange for them to be freed with the bitmap.  Otherwise we
3524	 * no longer need this addref attached to the inoreflst and it
3525	 * will incorrectly adjust nlink if we leave it.
3526	 */
3527	if ((jaddref->ja_state & NEWBLOCK) == 0) {
3528		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
3529		    if_deps);
3530		jaddref->ja_state |= COMPLETE;
3531		free_jaddref(jaddref);
3532		return (needsj);
3533	}
3534	jaddref->ja_state |= GOINGAWAY;
3535	/*
3536	 * Leave the head of the list for jsegdeps for fast merging.
3537	 */
3538	if (LIST_FIRST(wkhd) != NULL) {
3539		jaddref->ja_state |= ONWORKLIST;
3540		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
3541	} else
3542		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
3543
3544	return (needsj);
3545}
3546
3547/*
3548 * Attempt to free a jaddref structure when some work completes.  This
3549 * should only succeed once the entry is written and all dependencies have
3550 * been notified.
3551 */
3552static void
3553free_jaddref(jaddref)
3554	struct jaddref *jaddref;
3555{
3556
3557	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
3558		return;
3559	if (jaddref->ja_ref.if_jsegdep)
3560		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
3561		    jaddref, jaddref->ja_state);
3562	if (jaddref->ja_state & NEWBLOCK)
3563		LIST_REMOVE(jaddref, ja_bmdeps);
3564	if (jaddref->ja_state & (IOSTARTED | ONWORKLIST))
3565		panic("free_jaddref: Bad state %p(0x%X)",
3566		    jaddref, jaddref->ja_state);
3567	if (jaddref->ja_mkdir != NULL)
3568		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
3569	WORKITEM_FREE(jaddref, D_JADDREF);
3570}
3571
3572/*
3573 * Free a jremref structure once it has been written or discarded.
3574 */
3575static void
3576free_jremref(jremref)
3577	struct jremref *jremref;
3578{
3579
3580	if (jremref->jr_ref.if_jsegdep)
3581		free_jsegdep(jremref->jr_ref.if_jsegdep);
3582	if (jremref->jr_state & IOSTARTED)
3583		panic("free_jremref: IO still pending");
3584	WORKITEM_FREE(jremref, D_JREMREF);
3585}
3586
3587/*
3588 * Free a jnewblk structure.
3589 */
3590static void
3591free_jnewblk(jnewblk)
3592	struct jnewblk *jnewblk;
3593{
3594
3595	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
3596		return;
3597	LIST_REMOVE(jnewblk, jn_deps);
3598	if (jnewblk->jn_newblk != NULL)
3599		panic("free_jnewblk: Dependency still attached.");
3600	WORKITEM_FREE(jnewblk, D_JNEWBLK);
3601}
3602
3603/*
3604 * Cancel a jnewblk which has been superseded by a freeblk.  The jnewblk
3605 * is kept linked into the bmsafemap until the free completes, thus
3606 * preventing the modified state from ever reaching disk.  The free
3607 * routine must pass this structure via ffs_blkfree() to
3608 * softdep_setup_freeblks() so there is no race in releasing the space.
3609 */
3610static void
3611cancel_jnewblk(jnewblk, wkhd)
3612	struct jnewblk *jnewblk;
3613	struct workhead *wkhd;
3614{
3615	struct jsegdep *jsegdep;
3616
3617	jsegdep = jnewblk->jn_jsegdep;
3618	jnewblk->jn_jsegdep  = NULL;
3619	free_jsegdep(jsegdep);
3620	jnewblk->jn_newblk = NULL;
3621	jnewblk->jn_state |= GOINGAWAY;
3622	if (jnewblk->jn_state & IOSTARTED) {
3623		jnewblk->jn_state &= ~IOSTARTED;
3624		WORKLIST_REMOVE(&jnewblk->jn_list);
3625	} else
3626		remove_from_journal(&jnewblk->jn_list);
3627	/*
3628	 * Leave the head of the list for jsegdeps for fast merging.
3629	 */
3630	if (LIST_FIRST(wkhd) != NULL) {
3631		jnewblk->jn_state |= ONWORKLIST;
3632		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jnewblk->jn_list, wk_list);
3633	} else
3634		WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
3635	if (jnewblk->jn_state & IOWAITING) {
3636		jnewblk->jn_state &= ~IOWAITING;
3637		wakeup(&jnewblk->jn_list);
3638	}
3639}
3640
3641static void
3642free_jfreeblk(jfreeblk)
3643	struct jfreeblk *jfreeblk;
3644{
3645
3646	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3647}
3648
3649/*
3650 * Release one reference to a jseg and free it if the count reaches 0.  This
3651 * should eventually reclaim journal space as well.
3652 */
3653static void
3654free_jseg(jseg)
3655	struct jseg *jseg;
3656{
3657	struct jblocks *jblocks;
3658
3659	KASSERT(jseg->js_refs > 0,
3660	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
3661	if (--jseg->js_refs != 0)
3662		return;
3663	/*
3664	 * Free only those jsegs which have none allocated before them to
3665	 * preserve the journal space ordering.
3666	 */
3667	jblocks = jseg->js_jblocks;
3668	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
3669		jblocks->jb_oldestseq = jseg->js_seq;
3670		if (jseg->js_refs != 0)
3671			break;
3672		TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
3673		jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
3674		KASSERT(LIST_EMPTY(&jseg->js_entries),
3675		    ("free_jseg: Freed jseg has valid entries."));
3676		WORKITEM_FREE(jseg, D_JSEG);
3677	}
3678}
3679
3680/*
3681 * Release a jsegdep and decrement the jseg count.
3682 */
3683static void
3684free_jsegdep(jsegdep)
3685	struct jsegdep *jsegdep;
3686{
3687
3688	if (jsegdep->jd_seg)
3689		free_jseg(jsegdep->jd_seg);
3690	WORKITEM_FREE(jsegdep, D_JSEGDEP);
3691}
3692
3693/*
3694 * Wait for a journal item to make it to disk.  Initiate journal processing
3695 * if required.
3696 */
3697static void
3698jwait(wk)
3699	struct worklist *wk;
3700{
3701
3702	stat_journal_wait++;
3703	/*
3704	 * If IO has not started we process the journal.  We can't mark the
3705	 * worklist item as IOWAITING because we drop the lock while
3706	 * processing the journal and the worklist entry may be freed after
3707	 * this point.  The caller may call back in and re-issue the request.
3708	 */
3709	if ((wk->wk_state & IOSTARTED) == 0) {
3710		softdep_process_journal(wk->wk_mp, MNT_WAIT);
3711		return;
3712	}
3713	wk->wk_state |= IOWAITING;
3714	msleep(wk, &lk, PRIBIO, "jwait", 0);
3715}
3716
3717/*
3718 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
3719 * appropriate.  This is a convenience function to reduce duplicate code
3720 * for the setup and revert functions below.
3721 */
3722static struct inodedep *
3723inodedep_lookup_ip(ip)
3724	struct inode *ip;
3725{
3726	struct inodedep *inodedep;
3727
3728	KASSERT(ip->i_nlink >= ip->i_effnlink,
3729	    ("inodedep_lookup_ip: bad delta"));
3730	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
3731	    DEPALLOC, &inodedep);
3732	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3733
3734	return (inodedep);
3735}
3736
3737/*
3738 * Create a journal entry that describes a truncate that we're about to
3739 * perform.  The inode allocations and frees between here and the completion
3740 * of the operation are done asynchronously and without journaling.  At
3741 * the end of the operation the vnode is sync'd and the journal space
3742 * is released.  Recovery will discover the partially completed truncate
3743 * and complete it.
3744 */
3745void *
3746softdep_setup_trunc(vp, length, flags)
3747	struct vnode *vp;
3748	off_t length;
3749	int flags;
3750{
3751	struct jsegdep *jsegdep;
3752	struct jtrunc *jtrunc;
3753	struct ufsmount *ump;
3754	struct inode *ip;
3755
3756	softdep_prealloc(vp, MNT_WAIT);
3757	ip = VTOI(vp);
3758	ump = VFSTOUFS(vp->v_mount);
3759	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
3760	workitem_alloc(&jtrunc->jt_list, D_JTRUNC, vp->v_mount);
3761	jsegdep = jtrunc->jt_jsegdep = newjsegdep(&jtrunc->jt_list);
3762	jtrunc->jt_ino = ip->i_number;
3763	jtrunc->jt_extsize = 0;
3764	jtrunc->jt_size = length;
3765	if ((flags & IO_EXT) == 0 && ump->um_fstype == UFS2)
3766		jtrunc->jt_extsize = ip->i_din2->di_extsize;
3767	if ((flags & IO_NORMAL) == 0)
3768		jtrunc->jt_size = DIP(ip, i_size);
3769	ACQUIRE_LOCK(&lk);
3770	add_to_journal(&jtrunc->jt_list);
3771	while (jsegdep->jd_seg == NULL) {
3772		stat_jwait_freeblks++;
3773		jwait(&jtrunc->jt_list);
3774	}
3775	FREE_LOCK(&lk);
3776
3777	return (jsegdep);
3778}
3779
3780/*
3781 * After synchronous truncation is complete we free sync the vnode and
3782 * release the jsegdep so the journal space can be freed.
3783 */
3784int
3785softdep_complete_trunc(vp, cookie)
3786	struct vnode *vp;
3787	void *cookie;
3788{
3789	int error;
3790
3791	error = ffs_syncvnode(vp, MNT_WAIT);
3792	ACQUIRE_LOCK(&lk);
3793	free_jsegdep((struct jsegdep *)cookie);
3794	FREE_LOCK(&lk);
3795
3796	return (error);
3797}
3798
3799/*
3800 * Called prior to creating a new inode and linking it to a directory.  The
3801 * jaddref structure must already be allocated by softdep_setup_inomapdep
3802 * and it is discovered here so we can initialize the mode and update
3803 * nlinkdelta.
3804 */
3805void
3806softdep_setup_create(dp, ip)
3807	struct inode *dp;
3808	struct inode *ip;
3809{
3810	struct inodedep *inodedep;
3811	struct jaddref *jaddref;
3812	struct vnode *dvp;
3813
3814	KASSERT(ip->i_nlink == 1,
3815	    ("softdep_setup_create: Invalid link count."));
3816	dvp = ITOV(dp);
3817	ACQUIRE_LOCK(&lk);
3818	inodedep = inodedep_lookup_ip(ip);
3819	if (DOINGSUJ(dvp)) {
3820		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3821		    inoreflst);
3822		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
3823		    ("softdep_setup_create: No addref structure present."));
3824		jaddref->ja_mode = ip->i_mode;
3825	}
3826	softdep_prelink(dvp, NULL);
3827	FREE_LOCK(&lk);
3828}
3829
3830/*
3831 * Create a jaddref structure to track the addition of a DOTDOT link when
3832 * we are reparenting an inode as part of a rename.  This jaddref will be
3833 * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
3834 * non-journaling softdep.
3835 */
3836void
3837softdep_setup_dotdot_link(dp, ip)
3838	struct inode *dp;
3839	struct inode *ip;
3840{
3841	struct inodedep *inodedep;
3842	struct jaddref *jaddref;
3843	struct vnode *dvp;
3844	struct vnode *vp;
3845
3846	dvp = ITOV(dp);
3847	vp = ITOV(ip);
3848	jaddref = NULL;
3849	/*
3850	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
3851	 * is used as a normal link would be.
3852	 */
3853	if (DOINGSUJ(dvp))
3854		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
3855		    dp->i_effnlink - 1, dp->i_mode);
3856	ACQUIRE_LOCK(&lk);
3857	inodedep = inodedep_lookup_ip(dp);
3858	if (jaddref)
3859		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
3860		    if_deps);
3861	softdep_prelink(dvp, ITOV(ip));
3862	FREE_LOCK(&lk);
3863}
3864
3865/*
3866 * Create a jaddref structure to track a new link to an inode.  The directory
3867 * offset is not known until softdep_setup_directory_add or
3868 * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
3869 * softdep.
3870 */
3871void
3872softdep_setup_link(dp, ip)
3873	struct inode *dp;
3874	struct inode *ip;
3875{
3876	struct inodedep *inodedep;
3877	struct jaddref *jaddref;
3878	struct vnode *dvp;
3879
3880	dvp = ITOV(dp);
3881	jaddref = NULL;
3882	if (DOINGSUJ(dvp))
3883		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
3884		    ip->i_mode);
3885	ACQUIRE_LOCK(&lk);
3886	inodedep = inodedep_lookup_ip(ip);
3887	if (jaddref)
3888		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
3889		    if_deps);
3890	softdep_prelink(dvp, ITOV(ip));
3891	FREE_LOCK(&lk);
3892}
3893
3894/*
3895 * Called to create the jaddref structures to track . and .. references as
3896 * well as lookup and further initialize the incomplete jaddref created
3897 * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
3898 * nlinkdelta for non-journaling softdep.
3899 */
3900void
3901softdep_setup_mkdir(dp, ip)
3902	struct inode *dp;
3903	struct inode *ip;
3904{
3905	struct inodedep *inodedep;
3906	struct jaddref *dotdotaddref;
3907	struct jaddref *dotaddref;
3908	struct jaddref *jaddref;
3909	struct vnode *dvp;
3910
3911	dvp = ITOV(dp);
3912	dotaddref = dotdotaddref = NULL;
3913	if (DOINGSUJ(dvp)) {
3914		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
3915		    ip->i_mode);
3916		dotaddref->ja_state |= MKDIR_BODY;
3917		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
3918		    dp->i_effnlink - 1, dp->i_mode);
3919		dotdotaddref->ja_state |= MKDIR_PARENT;
3920	}
3921	ACQUIRE_LOCK(&lk);
3922	inodedep = inodedep_lookup_ip(ip);
3923	if (DOINGSUJ(dvp)) {
3924		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3925		    inoreflst);
3926		KASSERT(jaddref != NULL,
3927		    ("softdep_setup_mkdir: No addref structure present."));
3928		KASSERT(jaddref->ja_parent == dp->i_number,
3929		    ("softdep_setup_mkdir: bad parent %d",
3930		    jaddref->ja_parent));
3931		jaddref->ja_mode = ip->i_mode;
3932		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
3933		    if_deps);
3934	}
3935	inodedep = inodedep_lookup_ip(dp);
3936	if (DOINGSUJ(dvp))
3937		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
3938		    &dotdotaddref->ja_ref, if_deps);
3939	softdep_prelink(ITOV(dp), NULL);
3940	FREE_LOCK(&lk);
3941}
3942
3943/*
3944 * Called to track nlinkdelta of the inode and parent directories prior to
3945 * unlinking a directory.
3946 */
3947void
3948softdep_setup_rmdir(dp, ip)
3949	struct inode *dp;
3950	struct inode *ip;
3951{
3952	struct vnode *dvp;
3953
3954	dvp = ITOV(dp);
3955	ACQUIRE_LOCK(&lk);
3956	(void) inodedep_lookup_ip(ip);
3957	(void) inodedep_lookup_ip(dp);
3958	softdep_prelink(dvp, ITOV(ip));
3959	FREE_LOCK(&lk);
3960}
3961
3962/*
3963 * Called to track nlinkdelta of the inode and parent directories prior to
3964 * unlink.
3965 */
3966void
3967softdep_setup_unlink(dp, ip)
3968	struct inode *dp;
3969	struct inode *ip;
3970{
3971	struct vnode *dvp;
3972
3973	dvp = ITOV(dp);
3974	ACQUIRE_LOCK(&lk);
3975	(void) inodedep_lookup_ip(ip);
3976	(void) inodedep_lookup_ip(dp);
3977	softdep_prelink(dvp, ITOV(ip));
3978	FREE_LOCK(&lk);
3979}
3980
3981/*
3982 * Called to release the journal structures created by a failed non-directory
3983 * creation.  Adjusts nlinkdelta for non-journaling softdep.
3984 */
3985void
3986softdep_revert_create(dp, ip)
3987	struct inode *dp;
3988	struct inode *ip;
3989{
3990	struct inodedep *inodedep;
3991	struct jaddref *jaddref;
3992	struct vnode *dvp;
3993
3994	dvp = ITOV(dp);
3995	ACQUIRE_LOCK(&lk);
3996	inodedep = inodedep_lookup_ip(ip);
3997	if (DOINGSUJ(dvp)) {
3998		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3999		    inoreflst);
4000		KASSERT(jaddref->ja_parent == dp->i_number,
4001		    ("softdep_revert_create: addref parent mismatch"));
4002		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4003	}
4004	FREE_LOCK(&lk);
4005}
4006
4007/*
4008 * Called to release the journal structures created by a failed dotdot link
4009 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4010 */
4011void
4012softdep_revert_dotdot_link(dp, ip)
4013	struct inode *dp;
4014	struct inode *ip;
4015{
4016	struct inodedep *inodedep;
4017	struct jaddref *jaddref;
4018	struct vnode *dvp;
4019
4020	dvp = ITOV(dp);
4021	ACQUIRE_LOCK(&lk);
4022	inodedep = inodedep_lookup_ip(dp);
4023	if (DOINGSUJ(dvp)) {
4024		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4025		    inoreflst);
4026		KASSERT(jaddref->ja_parent == ip->i_number,
4027		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4028		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4029	}
4030	FREE_LOCK(&lk);
4031}
4032
4033/*
4034 * Called to release the journal structures created by a failed link
4035 * addition.  Adjusts nlinkdelta for non-journaling softdep.
4036 */
4037void
4038softdep_revert_link(dp, ip)
4039	struct inode *dp;
4040	struct inode *ip;
4041{
4042	struct inodedep *inodedep;
4043	struct jaddref *jaddref;
4044	struct vnode *dvp;
4045
4046	dvp = ITOV(dp);
4047	ACQUIRE_LOCK(&lk);
4048	inodedep = inodedep_lookup_ip(ip);
4049	if (DOINGSUJ(dvp)) {
4050		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4051		    inoreflst);
4052		KASSERT(jaddref->ja_parent == dp->i_number,
4053		    ("softdep_revert_link: addref parent mismatch"));
4054		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4055	}
4056	FREE_LOCK(&lk);
4057}
4058
4059/*
4060 * Called to release the journal structures created by a failed mkdir
4061 * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4062 */
4063void
4064softdep_revert_mkdir(dp, ip)
4065	struct inode *dp;
4066	struct inode *ip;
4067{
4068	struct inodedep *inodedep;
4069	struct jaddref *jaddref;
4070	struct vnode *dvp;
4071
4072	dvp = ITOV(dp);
4073
4074	ACQUIRE_LOCK(&lk);
4075	inodedep = inodedep_lookup_ip(dp);
4076	if (DOINGSUJ(dvp)) {
4077		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4078		    inoreflst);
4079		KASSERT(jaddref->ja_parent == ip->i_number,
4080		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4081		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4082	}
4083	inodedep = inodedep_lookup_ip(ip);
4084	if (DOINGSUJ(dvp)) {
4085		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4086		    inoreflst);
4087		KASSERT(jaddref->ja_parent == dp->i_number,
4088		    ("softdep_revert_mkdir: addref parent mismatch"));
4089		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4090		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4091		    inoreflst);
4092		KASSERT(jaddref->ja_parent == ip->i_number,
4093		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4094		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4095	}
4096	FREE_LOCK(&lk);
4097}
4098
4099/*
4100 * Called to correct nlinkdelta after a failed rmdir.
4101 */
4102void
4103softdep_revert_rmdir(dp, ip)
4104	struct inode *dp;
4105	struct inode *ip;
4106{
4107
4108	ACQUIRE_LOCK(&lk);
4109	(void) inodedep_lookup_ip(ip);
4110	(void) inodedep_lookup_ip(dp);
4111	FREE_LOCK(&lk);
4112}
4113
4114/*
4115 * Protecting the freemaps (or bitmaps).
4116 *
4117 * To eliminate the need to execute fsck before mounting a filesystem
4118 * after a power failure, one must (conservatively) guarantee that the
4119 * on-disk copy of the bitmaps never indicate that a live inode or block is
4120 * free.  So, when a block or inode is allocated, the bitmap should be
4121 * updated (on disk) before any new pointers.  When a block or inode is
4122 * freed, the bitmap should not be updated until all pointers have been
4123 * reset.  The latter dependency is handled by the delayed de-allocation
4124 * approach described below for block and inode de-allocation.  The former
4125 * dependency is handled by calling the following procedure when a block or
4126 * inode is allocated. When an inode is allocated an "inodedep" is created
4127 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4128 * Each "inodedep" is also inserted into the hash indexing structure so
4129 * that any additional link additions can be made dependent on the inode
4130 * allocation.
4131 *
4132 * The ufs filesystem maintains a number of free block counts (e.g., per
4133 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4134 * in addition to the bitmaps.  These counts are used to improve efficiency
4135 * during allocation and therefore must be consistent with the bitmaps.
4136 * There is no convenient way to guarantee post-crash consistency of these
4137 * counts with simple update ordering, for two main reasons: (1) The counts
4138 * and bitmaps for a single cylinder group block are not in the same disk
4139 * sector.  If a disk write is interrupted (e.g., by power failure), one may
4140 * be written and the other not.  (2) Some of the counts are located in the
4141 * superblock rather than the cylinder group block. So, we focus our soft
4142 * updates implementation on protecting the bitmaps. When mounting a
4143 * filesystem, we recompute the auxiliary counts from the bitmaps.
4144 */
4145
4146/*
4147 * Called just after updating the cylinder group block to allocate an inode.
4148 */
4149void
4150softdep_setup_inomapdep(bp, ip, newinum)
4151	struct buf *bp;		/* buffer for cylgroup block with inode map */
4152	struct inode *ip;	/* inode related to allocation */
4153	ino_t newinum;		/* new inode number being allocated */
4154{
4155	struct inodedep *inodedep;
4156	struct bmsafemap *bmsafemap;
4157	struct jaddref *jaddref;
4158	struct mount *mp;
4159	struct fs *fs;
4160
4161	mp = UFSTOVFS(ip->i_ump);
4162	fs = ip->i_ump->um_fs;
4163	jaddref = NULL;
4164
4165	/*
4166	 * Allocate the journal reference add structure so that the bitmap
4167	 * can be dependent on it.
4168	 */
4169	if (mp->mnt_kern_flag & MNTK_SUJ) {
4170		jaddref = newjaddref(ip, newinum, 0, 0, 0);
4171		jaddref->ja_state |= NEWBLOCK;
4172	}
4173
4174	/*
4175	 * Create a dependency for the newly allocated inode.
4176	 * Panic if it already exists as something is seriously wrong.
4177	 * Otherwise add it to the dependency list for the buffer holding
4178	 * the cylinder group map from which it was allocated.
4179	 */
4180	ACQUIRE_LOCK(&lk);
4181	if ((inodedep_lookup(mp, newinum, DEPALLOC|NODELAY, &inodedep)))
4182		panic("softdep_setup_inomapdep: dependency %p for new"
4183		    "inode already exists", inodedep);
4184	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum));
4185	if (jaddref) {
4186		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4187		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4188		    if_deps);
4189	} else {
4190		inodedep->id_state |= ONDEPLIST;
4191		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4192	}
4193	inodedep->id_bmsafemap = bmsafemap;
4194	inodedep->id_state &= ~DEPCOMPLETE;
4195	FREE_LOCK(&lk);
4196}
4197
4198/*
4199 * Called just after updating the cylinder group block to
4200 * allocate block or fragment.
4201 */
4202void
4203softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4204	struct buf *bp;		/* buffer for cylgroup block with block map */
4205	struct mount *mp;	/* filesystem doing allocation */
4206	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4207	int frags;		/* Number of fragments. */
4208	int oldfrags;		/* Previous number of fragments for extend. */
4209{
4210	struct newblk *newblk;
4211	struct bmsafemap *bmsafemap;
4212	struct jnewblk *jnewblk;
4213	struct fs *fs;
4214
4215	fs = VFSTOUFS(mp)->um_fs;
4216	jnewblk = NULL;
4217	/*
4218	 * Create a dependency for the newly allocated block.
4219	 * Add it to the dependency list for the buffer holding
4220	 * the cylinder group map from which it was allocated.
4221	 */
4222	if (mp->mnt_kern_flag & MNTK_SUJ) {
4223		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4224		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4225		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4226		jnewblk->jn_state = ATTACHED;
4227		jnewblk->jn_blkno = newblkno;
4228		jnewblk->jn_frags = frags;
4229		jnewblk->jn_oldfrags = oldfrags;
4230#ifdef SUJ_DEBUG
4231		{
4232			struct cg *cgp;
4233			uint8_t *blksfree;
4234			long bno;
4235			int i;
4236
4237			cgp = (struct cg *)bp->b_data;
4238			blksfree = cg_blksfree(cgp);
4239			bno = dtogd(fs, jnewblk->jn_blkno);
4240			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4241			    i++) {
4242				if (isset(blksfree, bno + i))
4243					panic("softdep_setup_blkmapdep: "
4244					    "free fragment %d from %d-%d "
4245					    "state 0x%X dep %p", i,
4246					    jnewblk->jn_oldfrags,
4247					    jnewblk->jn_frags,
4248					    jnewblk->jn_state,
4249					    jnewblk->jn_newblk);
4250			}
4251		}
4252#endif
4253	}
4254	ACQUIRE_LOCK(&lk);
4255	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4256		panic("softdep_setup_blkmapdep: found block");
4257	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4258	    dtog(fs, newblkno));
4259	if (jnewblk) {
4260		jnewblk->jn_newblk = newblk;
4261		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4262	} else {
4263		newblk->nb_state |= ONDEPLIST;
4264		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4265	}
4266	newblk->nb_bmsafemap = bmsafemap;
4267	newblk->nb_jnewblk = jnewblk;
4268	FREE_LOCK(&lk);
4269}
4270
4271#define	BMSAFEMAP_HASH(fs, cg) \
4272      (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4273
4274static int
4275bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4276	struct bmsafemap_hashhead *bmsafemaphd;
4277	struct mount *mp;
4278	int cg;
4279	struct bmsafemap **bmsafemapp;
4280{
4281	struct bmsafemap *bmsafemap;
4282
4283	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4284		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4285			break;
4286	if (bmsafemap) {
4287		*bmsafemapp = bmsafemap;
4288		return (1);
4289	}
4290	*bmsafemapp = NULL;
4291
4292	return (0);
4293}
4294
4295/*
4296 * Find the bmsafemap associated with a cylinder group buffer.
4297 * If none exists, create one. The buffer must be locked when
4298 * this routine is called and this routine must be called with
4299 * splbio interrupts blocked.
4300 */
4301static struct bmsafemap *
4302bmsafemap_lookup(mp, bp, cg)
4303	struct mount *mp;
4304	struct buf *bp;
4305	int cg;
4306{
4307	struct bmsafemap_hashhead *bmsafemaphd;
4308	struct bmsafemap *bmsafemap, *collision;
4309	struct worklist *wk;
4310	struct fs *fs;
4311
4312	mtx_assert(&lk, MA_OWNED);
4313	if (bp)
4314		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4315			if (wk->wk_type == D_BMSAFEMAP)
4316				return (WK_BMSAFEMAP(wk));
4317	fs = VFSTOUFS(mp)->um_fs;
4318	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4319	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1)
4320		return (bmsafemap);
4321	FREE_LOCK(&lk);
4322	bmsafemap = malloc(sizeof(struct bmsafemap),
4323		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4324	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4325	bmsafemap->sm_buf = bp;
4326	LIST_INIT(&bmsafemap->sm_inodedephd);
4327	LIST_INIT(&bmsafemap->sm_inodedepwr);
4328	LIST_INIT(&bmsafemap->sm_newblkhd);
4329	LIST_INIT(&bmsafemap->sm_newblkwr);
4330	LIST_INIT(&bmsafemap->sm_jaddrefhd);
4331	LIST_INIT(&bmsafemap->sm_jnewblkhd);
4332	ACQUIRE_LOCK(&lk);
4333	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
4334		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4335		return (collision);
4336	}
4337	bmsafemap->sm_cg = cg;
4338	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
4339	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
4340	return (bmsafemap);
4341}
4342
4343/*
4344 * Direct block allocation dependencies.
4345 *
4346 * When a new block is allocated, the corresponding disk locations must be
4347 * initialized (with zeros or new data) before the on-disk inode points to
4348 * them.  Also, the freemap from which the block was allocated must be
4349 * updated (on disk) before the inode's pointer. These two dependencies are
4350 * independent of each other and are needed for all file blocks and indirect
4351 * blocks that are pointed to directly by the inode.  Just before the
4352 * "in-core" version of the inode is updated with a newly allocated block
4353 * number, a procedure (below) is called to setup allocation dependency
4354 * structures.  These structures are removed when the corresponding
4355 * dependencies are satisfied or when the block allocation becomes obsolete
4356 * (i.e., the file is deleted, the block is de-allocated, or the block is a
4357 * fragment that gets upgraded).  All of these cases are handled in
4358 * procedures described later.
4359 *
4360 * When a file extension causes a fragment to be upgraded, either to a larger
4361 * fragment or to a full block, the on-disk location may change (if the
4362 * previous fragment could not simply be extended). In this case, the old
4363 * fragment must be de-allocated, but not until after the inode's pointer has
4364 * been updated. In most cases, this is handled by later procedures, which
4365 * will construct a "freefrag" structure to be added to the workitem queue
4366 * when the inode update is complete (or obsolete).  The main exception to
4367 * this is when an allocation occurs while a pending allocation dependency
4368 * (for the same block pointer) remains.  This case is handled in the main
4369 * allocation dependency setup procedure by immediately freeing the
4370 * unreferenced fragments.
4371 */
4372void
4373softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4374	struct inode *ip;	/* inode to which block is being added */
4375	ufs_lbn_t off;		/* block pointer within inode */
4376	ufs2_daddr_t newblkno;	/* disk block number being added */
4377	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
4378	long newsize;		/* size of new block */
4379	long oldsize;		/* size of new block */
4380	struct buf *bp;		/* bp for allocated block */
4381{
4382	struct allocdirect *adp, *oldadp;
4383	struct allocdirectlst *adphead;
4384	struct freefrag *freefrag;
4385	struct inodedep *inodedep;
4386	struct pagedep *pagedep;
4387	struct jnewblk *jnewblk;
4388	struct newblk *newblk;
4389	struct mount *mp;
4390	ufs_lbn_t lbn;
4391
4392	lbn = bp->b_lblkno;
4393	mp = UFSTOVFS(ip->i_ump);
4394	if (oldblkno && oldblkno != newblkno)
4395		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4396	else
4397		freefrag = NULL;
4398
4399	ACQUIRE_LOCK(&lk);
4400	if (off >= NDADDR) {
4401		if (lbn > 0)
4402			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
4403			    lbn, off);
4404		/* allocating an indirect block */
4405		if (oldblkno != 0)
4406			panic("softdep_setup_allocdirect: non-zero indir");
4407	} else {
4408		if (off != lbn)
4409			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
4410			    lbn, off);
4411		/*
4412		 * Allocating a direct block.
4413		 *
4414		 * If we are allocating a directory block, then we must
4415		 * allocate an associated pagedep to track additions and
4416		 * deletions.
4417		 */
4418		if ((ip->i_mode & IFMT) == IFDIR &&
4419		    pagedep_lookup(mp, ip->i_number, off, DEPALLOC,
4420		    &pagedep) == 0)
4421			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
4422	}
4423	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4424		panic("softdep_setup_allocdirect: lost block");
4425	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4426	    ("softdep_setup_allocdirect: newblk already initialized"));
4427	/*
4428	 * Convert the newblk to an allocdirect.
4429	 */
4430	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4431	adp = (struct allocdirect *)newblk;
4432	newblk->nb_freefrag = freefrag;
4433	adp->ad_offset = off;
4434	adp->ad_oldblkno = oldblkno;
4435	adp->ad_newsize = newsize;
4436	adp->ad_oldsize = oldsize;
4437
4438	/*
4439	 * Finish initializing the journal.
4440	 */
4441	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4442		jnewblk->jn_ino = ip->i_number;
4443		jnewblk->jn_lbn = lbn;
4444		add_to_journal(&jnewblk->jn_list);
4445	}
4446	if (freefrag && freefrag->ff_jfreefrag != NULL)
4447		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4448	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4449	adp->ad_inodedep = inodedep;
4450
4451	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4452	/*
4453	 * The list of allocdirects must be kept in sorted and ascending
4454	 * order so that the rollback routines can quickly determine the
4455	 * first uncommitted block (the size of the file stored on disk
4456	 * ends at the end of the lowest committed fragment, or if there
4457	 * are no fragments, at the end of the highest committed block).
4458	 * Since files generally grow, the typical case is that the new
4459	 * block is to be added at the end of the list. We speed this
4460	 * special case by checking against the last allocdirect in the
4461	 * list before laboriously traversing the list looking for the
4462	 * insertion point.
4463	 */
4464	adphead = &inodedep->id_newinoupdt;
4465	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4466	if (oldadp == NULL || oldadp->ad_offset <= off) {
4467		/* insert at end of list */
4468		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4469		if (oldadp != NULL && oldadp->ad_offset == off)
4470			allocdirect_merge(adphead, adp, oldadp);
4471		FREE_LOCK(&lk);
4472		return;
4473	}
4474	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4475		if (oldadp->ad_offset >= off)
4476			break;
4477	}
4478	if (oldadp == NULL)
4479		panic("softdep_setup_allocdirect: lost entry");
4480	/* insert in middle of list */
4481	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
4482	if (oldadp->ad_offset == off)
4483		allocdirect_merge(adphead, adp, oldadp);
4484
4485	FREE_LOCK(&lk);
4486}
4487
4488/*
4489 * Replace an old allocdirect dependency with a newer one.
4490 * This routine must be called with splbio interrupts blocked.
4491 */
4492static void
4493allocdirect_merge(adphead, newadp, oldadp)
4494	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
4495	struct allocdirect *newadp;	/* allocdirect being added */
4496	struct allocdirect *oldadp;	/* existing allocdirect being checked */
4497{
4498	struct worklist *wk;
4499	struct freefrag *freefrag;
4500	struct newdirblk *newdirblk;
4501
4502	freefrag = NULL;
4503	mtx_assert(&lk, MA_OWNED);
4504	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
4505	    newadp->ad_oldsize != oldadp->ad_newsize ||
4506	    newadp->ad_offset >= NDADDR)
4507		panic("%s %jd != new %jd || old size %ld != new %ld",
4508		    "allocdirect_merge: old blkno",
4509		    (intmax_t)newadp->ad_oldblkno,
4510		    (intmax_t)oldadp->ad_newblkno,
4511		    newadp->ad_oldsize, oldadp->ad_newsize);
4512	newadp->ad_oldblkno = oldadp->ad_oldblkno;
4513	newadp->ad_oldsize = oldadp->ad_oldsize;
4514	/*
4515	 * If the old dependency had a fragment to free or had never
4516	 * previously had a block allocated, then the new dependency
4517	 * can immediately post its freefrag and adopt the old freefrag.
4518	 * This action is done by swapping the freefrag dependencies.
4519	 * The new dependency gains the old one's freefrag, and the
4520	 * old one gets the new one and then immediately puts it on
4521	 * the worklist when it is freed by free_newblk. It is
4522	 * not possible to do this swap when the old dependency had a
4523	 * non-zero size but no previous fragment to free. This condition
4524	 * arises when the new block is an extension of the old block.
4525	 * Here, the first part of the fragment allocated to the new
4526	 * dependency is part of the block currently claimed on disk by
4527	 * the old dependency, so cannot legitimately be freed until the
4528	 * conditions for the new dependency are fulfilled.
4529	 */
4530	freefrag = newadp->ad_freefrag;
4531	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
4532		newadp->ad_freefrag = oldadp->ad_freefrag;
4533		oldadp->ad_freefrag = freefrag;
4534	}
4535	/*
4536	 * If we are tracking a new directory-block allocation,
4537	 * move it from the old allocdirect to the new allocdirect.
4538	 */
4539	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
4540		newdirblk = WK_NEWDIRBLK(wk);
4541		WORKLIST_REMOVE(&newdirblk->db_list);
4542		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
4543			panic("allocdirect_merge: extra newdirblk");
4544		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
4545	}
4546	TAILQ_REMOVE(adphead, oldadp, ad_next);
4547	/*
4548	 * We need to move any journal dependencies over to the freefrag
4549	 * that releases this block if it exists.  Otherwise we are
4550	 * extending an existing block and we'll wait until that is
4551	 * complete to release the journal space and extend the
4552	 * new journal to cover this old space as well.
4553	 */
4554	if (freefrag == NULL) {
4555		struct jnewblk *jnewblk;
4556		struct jnewblk *njnewblk;
4557
4558		if (oldadp->ad_newblkno != newadp->ad_newblkno)
4559			panic("allocdirect_merge: %jd != %jd",
4560			    oldadp->ad_newblkno, newadp->ad_newblkno);
4561		jnewblk = oldadp->ad_block.nb_jnewblk;
4562		cancel_newblk(&oldadp->ad_block, &newadp->ad_block.nb_jwork);
4563		/*
4564		 * We have an unwritten jnewblk, we need to merge the
4565		 * frag bits with our own.  The newer adp's journal can not
4566		 * be written prior to the old one so no need to check for
4567		 * it here.
4568		 */
4569		if (jnewblk) {
4570			njnewblk = newadp->ad_block.nb_jnewblk;
4571			if (njnewblk == NULL)
4572				panic("allocdirect_merge: No jnewblk");
4573			if (jnewblk->jn_state & UNDONE) {
4574				njnewblk->jn_state |= UNDONE | NEWBLOCK;
4575				njnewblk->jn_state &= ~ATTACHED;
4576				jnewblk->jn_state &= ~UNDONE;
4577			}
4578			njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
4579			WORKLIST_REMOVE(&jnewblk->jn_list);
4580			jnewblk->jn_state |= ATTACHED | COMPLETE;
4581			free_jnewblk(jnewblk);
4582		}
4583	} else {
4584		/*
4585		 * We can skip journaling for this freefrag and just complete
4586		 * any pending journal work for the allocdirect that is being
4587		 * removed after the freefrag completes.
4588		 */
4589		if (freefrag->ff_jfreefrag)
4590			cancel_jfreefrag(freefrag->ff_jfreefrag);
4591		cancel_newblk(&oldadp->ad_block, &freefrag->ff_jwork);
4592	}
4593	free_newblk(&oldadp->ad_block);
4594}
4595
4596/*
4597 * Allocate a jfreefrag structure to journal a single block free.
4598 */
4599static struct jfreefrag *
4600newjfreefrag(freefrag, ip, blkno, size, lbn)
4601	struct freefrag *freefrag;
4602	struct inode *ip;
4603	ufs2_daddr_t blkno;
4604	long size;
4605	ufs_lbn_t lbn;
4606{
4607	struct jfreefrag *jfreefrag;
4608	struct fs *fs;
4609
4610	fs = ip->i_fs;
4611	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
4612	    M_SOFTDEP_FLAGS);
4613	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
4614	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
4615	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
4616	jfreefrag->fr_ino = ip->i_number;
4617	jfreefrag->fr_lbn = lbn;
4618	jfreefrag->fr_blkno = blkno;
4619	jfreefrag->fr_frags = numfrags(fs, size);
4620	jfreefrag->fr_freefrag = freefrag;
4621
4622	return (jfreefrag);
4623}
4624
4625/*
4626 * Allocate a new freefrag structure.
4627 */
4628static struct freefrag *
4629newfreefrag(ip, blkno, size, lbn)
4630	struct inode *ip;
4631	ufs2_daddr_t blkno;
4632	long size;
4633	ufs_lbn_t lbn;
4634{
4635	struct freefrag *freefrag;
4636	struct fs *fs;
4637
4638	fs = ip->i_fs;
4639	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
4640		panic("newfreefrag: frag size");
4641	freefrag = malloc(sizeof(struct freefrag),
4642	    M_FREEFRAG, M_SOFTDEP_FLAGS);
4643	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
4644	freefrag->ff_state = ATTACHED;
4645	LIST_INIT(&freefrag->ff_jwork);
4646	freefrag->ff_inum = ip->i_number;
4647	freefrag->ff_blkno = blkno;
4648	freefrag->ff_fragsize = size;
4649
4650	if (fs->fs_flags & FS_SUJ) {
4651		freefrag->ff_jfreefrag =
4652		    newjfreefrag(freefrag, ip, blkno, size, lbn);
4653	} else {
4654		freefrag->ff_state |= DEPCOMPLETE;
4655		freefrag->ff_jfreefrag = NULL;
4656	}
4657
4658	return (freefrag);
4659}
4660
4661/*
4662 * This workitem de-allocates fragments that were replaced during
4663 * file block allocation.
4664 */
4665static void
4666handle_workitem_freefrag(freefrag)
4667	struct freefrag *freefrag;
4668{
4669	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
4670	struct workhead wkhd;
4671
4672	/*
4673	 * It would be illegal to add new completion items to the
4674	 * freefrag after it was schedule to be done so it must be
4675	 * safe to modify the list head here.
4676	 */
4677	LIST_INIT(&wkhd);
4678	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
4679	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
4680	    freefrag->ff_fragsize, freefrag->ff_inum, &wkhd);
4681	ACQUIRE_LOCK(&lk);
4682	WORKITEM_FREE(freefrag, D_FREEFRAG);
4683	FREE_LOCK(&lk);
4684}
4685
4686/*
4687 * Set up a dependency structure for an external attributes data block.
4688 * This routine follows much of the structure of softdep_setup_allocdirect.
4689 * See the description of softdep_setup_allocdirect above for details.
4690 */
4691void
4692softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4693	struct inode *ip;
4694	ufs_lbn_t off;
4695	ufs2_daddr_t newblkno;
4696	ufs2_daddr_t oldblkno;
4697	long newsize;
4698	long oldsize;
4699	struct buf *bp;
4700{
4701	struct allocdirect *adp, *oldadp;
4702	struct allocdirectlst *adphead;
4703	struct freefrag *freefrag;
4704	struct inodedep *inodedep;
4705	struct jnewblk *jnewblk;
4706	struct newblk *newblk;
4707	struct mount *mp;
4708	ufs_lbn_t lbn;
4709
4710	if (off >= NXADDR)
4711		panic("softdep_setup_allocext: lbn %lld > NXADDR",
4712		    (long long)off);
4713
4714	lbn = bp->b_lblkno;
4715	mp = UFSTOVFS(ip->i_ump);
4716	if (oldblkno && oldblkno != newblkno)
4717		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4718	else
4719		freefrag = NULL;
4720
4721	ACQUIRE_LOCK(&lk);
4722	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4723		panic("softdep_setup_allocext: lost block");
4724	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4725	    ("softdep_setup_allocext: newblk already initialized"));
4726	/*
4727	 * Convert the newblk to an allocdirect.
4728	 */
4729	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4730	adp = (struct allocdirect *)newblk;
4731	newblk->nb_freefrag = freefrag;
4732	adp->ad_offset = off;
4733	adp->ad_oldblkno = oldblkno;
4734	adp->ad_newsize = newsize;
4735	adp->ad_oldsize = oldsize;
4736	adp->ad_state |=  EXTDATA;
4737
4738	/*
4739	 * Finish initializing the journal.
4740	 */
4741	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4742		jnewblk->jn_ino = ip->i_number;
4743		jnewblk->jn_lbn = lbn;
4744		add_to_journal(&jnewblk->jn_list);
4745	}
4746	if (freefrag && freefrag->ff_jfreefrag != NULL)
4747		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4748	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4749	adp->ad_inodedep = inodedep;
4750
4751	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4752	/*
4753	 * The list of allocdirects must be kept in sorted and ascending
4754	 * order so that the rollback routines can quickly determine the
4755	 * first uncommitted block (the size of the file stored on disk
4756	 * ends at the end of the lowest committed fragment, or if there
4757	 * are no fragments, at the end of the highest committed block).
4758	 * Since files generally grow, the typical case is that the new
4759	 * block is to be added at the end of the list. We speed this
4760	 * special case by checking against the last allocdirect in the
4761	 * list before laboriously traversing the list looking for the
4762	 * insertion point.
4763	 */
4764	adphead = &inodedep->id_newextupdt;
4765	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4766	if (oldadp == NULL || oldadp->ad_offset <= off) {
4767		/* insert at end of list */
4768		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4769		if (oldadp != NULL && oldadp->ad_offset == off)
4770			allocdirect_merge(adphead, adp, oldadp);
4771		FREE_LOCK(&lk);
4772		return;
4773	}
4774	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4775		if (oldadp->ad_offset >= off)
4776			break;
4777	}
4778	if (oldadp == NULL)
4779		panic("softdep_setup_allocext: lost entry");
4780	/* insert in middle of list */
4781	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
4782	if (oldadp->ad_offset == off)
4783		allocdirect_merge(adphead, adp, oldadp);
4784	FREE_LOCK(&lk);
4785}
4786
4787/*
4788 * Indirect block allocation dependencies.
4789 *
4790 * The same dependencies that exist for a direct block also exist when
4791 * a new block is allocated and pointed to by an entry in a block of
4792 * indirect pointers. The undo/redo states described above are also
4793 * used here. Because an indirect block contains many pointers that
4794 * may have dependencies, a second copy of the entire in-memory indirect
4795 * block is kept. The buffer cache copy is always completely up-to-date.
4796 * The second copy, which is used only as a source for disk writes,
4797 * contains only the safe pointers (i.e., those that have no remaining
4798 * update dependencies). The second copy is freed when all pointers
4799 * are safe. The cache is not allowed to replace indirect blocks with
4800 * pending update dependencies. If a buffer containing an indirect
4801 * block with dependencies is written, these routines will mark it
4802 * dirty again. It can only be successfully written once all the
4803 * dependencies are removed. The ffs_fsync routine in conjunction with
4804 * softdep_sync_metadata work together to get all the dependencies
4805 * removed so that a file can be successfully written to disk. Three
4806 * procedures are used when setting up indirect block pointer
4807 * dependencies. The division is necessary because of the organization
4808 * of the "balloc" routine and because of the distinction between file
4809 * pages and file metadata blocks.
4810 */
4811
4812/*
4813 * Allocate a new allocindir structure.
4814 */
4815static struct allocindir *
4816newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
4817	struct inode *ip;	/* inode for file being extended */
4818	int ptrno;		/* offset of pointer in indirect block */
4819	ufs2_daddr_t newblkno;	/* disk block number being added */
4820	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
4821	ufs_lbn_t lbn;
4822{
4823	struct newblk *newblk;
4824	struct allocindir *aip;
4825	struct freefrag *freefrag;
4826	struct jnewblk *jnewblk;
4827
4828	if (oldblkno)
4829		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
4830	else
4831		freefrag = NULL;
4832	ACQUIRE_LOCK(&lk);
4833	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
4834		panic("new_allocindir: lost block");
4835	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4836	    ("newallocindir: newblk already initialized"));
4837	newblk->nb_list.wk_type = D_ALLOCINDIR;
4838	newblk->nb_freefrag = freefrag;
4839	aip = (struct allocindir *)newblk;
4840	aip->ai_offset = ptrno;
4841	aip->ai_oldblkno = oldblkno;
4842	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4843		jnewblk->jn_ino = ip->i_number;
4844		jnewblk->jn_lbn = lbn;
4845		add_to_journal(&jnewblk->jn_list);
4846	}
4847	if (freefrag && freefrag->ff_jfreefrag != NULL)
4848		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4849	return (aip);
4850}
4851
4852/*
4853 * Called just before setting an indirect block pointer
4854 * to a newly allocated file page.
4855 */
4856void
4857softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
4858	struct inode *ip;	/* inode for file being extended */
4859	ufs_lbn_t lbn;		/* allocated block number within file */
4860	struct buf *bp;		/* buffer with indirect blk referencing page */
4861	int ptrno;		/* offset of pointer in indirect block */
4862	ufs2_daddr_t newblkno;	/* disk block number being added */
4863	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
4864	struct buf *nbp;	/* buffer holding allocated page */
4865{
4866	struct inodedep *inodedep;
4867	struct allocindir *aip;
4868	struct pagedep *pagedep;
4869	struct mount *mp;
4870
4871	if (lbn != nbp->b_lblkno)
4872		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
4873		    lbn, bp->b_lblkno);
4874	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
4875	mp = UFSTOVFS(ip->i_ump);
4876	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
4877	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
4878	/*
4879	 * If we are allocating a directory page, then we must
4880	 * allocate an associated pagedep to track additions and
4881	 * deletions.
4882	 */
4883	if ((ip->i_mode & IFMT) == IFDIR &&
4884	    pagedep_lookup(mp, ip->i_number, lbn, DEPALLOC, &pagedep) == 0)
4885		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
4886	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
4887	setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
4888	FREE_LOCK(&lk);
4889}
4890
4891/*
4892 * Called just before setting an indirect block pointer to a
4893 * newly allocated indirect block.
4894 */
4895void
4896softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
4897	struct buf *nbp;	/* newly allocated indirect block */
4898	struct inode *ip;	/* inode for file being extended */
4899	struct buf *bp;		/* indirect block referencing allocated block */
4900	int ptrno;		/* offset of pointer in indirect block */
4901	ufs2_daddr_t newblkno;	/* disk block number being added */
4902{
4903	struct inodedep *inodedep;
4904	struct allocindir *aip;
4905	ufs_lbn_t lbn;
4906
4907	lbn = nbp->b_lblkno;
4908	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
4909	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
4910	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
4911	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
4912	setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
4913	FREE_LOCK(&lk);
4914}
4915
4916static void
4917indirdep_complete(indirdep)
4918	struct indirdep *indirdep;
4919{
4920	struct allocindir *aip;
4921
4922	LIST_REMOVE(indirdep, ir_next);
4923	indirdep->ir_state &= ~ONDEPLIST;
4924
4925	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
4926		LIST_REMOVE(aip, ai_next);
4927		free_newblk(&aip->ai_block);
4928	}
4929	/*
4930	 * If this indirdep is not attached to a buf it was simply waiting
4931	 * on completion to clear completehd.  free_indirdep() asserts
4932	 * that nothing is dangling.
4933	 */
4934	if ((indirdep->ir_state & ONWORKLIST) == 0)
4935		free_indirdep(indirdep);
4936}
4937
4938/*
4939 * Called to finish the allocation of the "aip" allocated
4940 * by one of the two routines above.
4941 */
4942static void
4943setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
4944	struct buf *bp;		/* in-memory copy of the indirect block */
4945	struct inode *ip;	/* inode for file being extended */
4946	struct inodedep *inodedep; /* Inodedep for ip */
4947	struct allocindir *aip;	/* allocindir allocated by the above routines */
4948	ufs_lbn_t lbn;		/* Logical block number for this block. */
4949{
4950	struct worklist *wk;
4951	struct fs *fs;
4952	struct newblk *newblk;
4953	struct indirdep *indirdep, *newindirdep;
4954	struct allocindir *oldaip;
4955	struct freefrag *freefrag;
4956	struct mount *mp;
4957	ufs2_daddr_t blkno;
4958
4959	mp = UFSTOVFS(ip->i_ump);
4960	fs = ip->i_fs;
4961	mtx_assert(&lk, MA_OWNED);
4962	if (bp->b_lblkno >= 0)
4963		panic("setup_allocindir_phase2: not indir blk");
4964	for (freefrag = NULL, indirdep = NULL, newindirdep = NULL; ; ) {
4965		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4966			if (wk->wk_type != D_INDIRDEP)
4967				continue;
4968			indirdep = WK_INDIRDEP(wk);
4969			break;
4970		}
4971		if (indirdep == NULL && newindirdep) {
4972			indirdep = newindirdep;
4973			newindirdep = NULL;
4974			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
4975			if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0,
4976			    &newblk)) {
4977				indirdep->ir_state |= ONDEPLIST;
4978				LIST_INSERT_HEAD(&newblk->nb_indirdeps,
4979				    indirdep, ir_next);
4980			} else
4981				indirdep->ir_state |= DEPCOMPLETE;
4982		}
4983		if (indirdep) {
4984			aip->ai_indirdep = indirdep;
4985			/*
4986			 * Check to see if there is an existing dependency
4987			 * for this block. If there is, merge the old
4988			 * dependency into the new one.  This happens
4989			 * as a result of reallocblk only.
4990			 */
4991			if (aip->ai_oldblkno == 0)
4992				oldaip = NULL;
4993			else
4994
4995				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd,
4996				    ai_next)
4997					if (oldaip->ai_offset == aip->ai_offset)
4998						break;
4999			if (oldaip != NULL)
5000				freefrag = allocindir_merge(aip, oldaip);
5001			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5002			KASSERT(aip->ai_offset >= 0 &&
5003			    aip->ai_offset < NINDIR(ip->i_ump->um_fs),
5004			    ("setup_allocindir_phase2: Bad offset %d",
5005			    aip->ai_offset));
5006			KASSERT(indirdep->ir_savebp != NULL,
5007			    ("setup_allocindir_phase2 NULL ir_savebp"));
5008			if (ip->i_ump->um_fstype == UFS1)
5009				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
5010				    [aip->ai_offset] = aip->ai_oldblkno;
5011			else
5012				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
5013				    [aip->ai_offset] = aip->ai_oldblkno;
5014			FREE_LOCK(&lk);
5015			if (freefrag != NULL)
5016				handle_workitem_freefrag(freefrag);
5017		} else
5018			FREE_LOCK(&lk);
5019		if (newindirdep) {
5020			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
5021			brelse(newindirdep->ir_savebp);
5022			ACQUIRE_LOCK(&lk);
5023			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
5024			if (indirdep)
5025				break;
5026			FREE_LOCK(&lk);
5027		}
5028		if (indirdep) {
5029			ACQUIRE_LOCK(&lk);
5030			break;
5031		}
5032		newindirdep = malloc(sizeof(struct indirdep),
5033			M_INDIRDEP, M_SOFTDEP_FLAGS);
5034		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5035		newindirdep->ir_state = ATTACHED;
5036		if (ip->i_ump->um_fstype == UFS1)
5037			newindirdep->ir_state |= UFS1FMT;
5038		newindirdep->ir_saveddata = NULL;
5039		LIST_INIT(&newindirdep->ir_deplisthd);
5040		LIST_INIT(&newindirdep->ir_donehd);
5041		LIST_INIT(&newindirdep->ir_writehd);
5042		LIST_INIT(&newindirdep->ir_completehd);
5043		LIST_INIT(&newindirdep->ir_jwork);
5044		if (bp->b_blkno == bp->b_lblkno) {
5045			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5046			    NULL, NULL);
5047			bp->b_blkno = blkno;
5048		}
5049		newindirdep->ir_savebp =
5050		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5051		BUF_KERNPROC(newindirdep->ir_savebp);
5052		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5053		ACQUIRE_LOCK(&lk);
5054	}
5055}
5056
5057/*
5058 * Merge two allocindirs which refer to the same block.  Move newblock
5059 * dependencies and setup the freefrags appropriately.
5060 */
5061static struct freefrag *
5062allocindir_merge(aip, oldaip)
5063	struct allocindir *aip;
5064	struct allocindir *oldaip;
5065{
5066	struct newdirblk *newdirblk;
5067	struct freefrag *freefrag;
5068	struct worklist *wk;
5069
5070	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5071		panic("allocindir_merge: blkno");
5072	aip->ai_oldblkno = oldaip->ai_oldblkno;
5073	freefrag = aip->ai_freefrag;
5074	aip->ai_freefrag = oldaip->ai_freefrag;
5075	oldaip->ai_freefrag = NULL;
5076	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5077	/*
5078	 * If we are tracking a new directory-block allocation,
5079	 * move it from the old allocindir to the new allocindir.
5080	 */
5081	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5082		newdirblk = WK_NEWDIRBLK(wk);
5083		WORKLIST_REMOVE(&newdirblk->db_list);
5084		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5085			panic("allocindir_merge: extra newdirblk");
5086		WORKLIST_INSERT(&aip->ai_newdirblk, &newdirblk->db_list);
5087	}
5088	/*
5089	 * We can skip journaling for this freefrag and just complete
5090	 * any pending journal work for the allocindir that is being
5091	 * removed after the freefrag completes.
5092	 */
5093	if (freefrag->ff_jfreefrag)
5094		cancel_jfreefrag(freefrag->ff_jfreefrag);
5095	LIST_REMOVE(oldaip, ai_next);
5096	cancel_newblk(&oldaip->ai_block, &freefrag->ff_jwork);
5097	free_newblk(&oldaip->ai_block);
5098
5099	return (freefrag);
5100}
5101
5102/*
5103 * Block de-allocation dependencies.
5104 *
5105 * When blocks are de-allocated, the on-disk pointers must be nullified before
5106 * the blocks are made available for use by other files.  (The true
5107 * requirement is that old pointers must be nullified before new on-disk
5108 * pointers are set.  We chose this slightly more stringent requirement to
5109 * reduce complexity.) Our implementation handles this dependency by updating
5110 * the inode (or indirect block) appropriately but delaying the actual block
5111 * de-allocation (i.e., freemap and free space count manipulation) until
5112 * after the updated versions reach stable storage.  After the disk is
5113 * updated, the blocks can be safely de-allocated whenever it is convenient.
5114 * This implementation handles only the common case of reducing a file's
5115 * length to zero. Other cases are handled by the conventional synchronous
5116 * write approach.
5117 *
5118 * The ffs implementation with which we worked double-checks
5119 * the state of the block pointers and file size as it reduces
5120 * a file's length.  Some of this code is replicated here in our
5121 * soft updates implementation.  The freeblks->fb_chkcnt field is
5122 * used to transfer a part of this information to the procedure
5123 * that eventually de-allocates the blocks.
5124 *
5125 * This routine should be called from the routine that shortens
5126 * a file's length, before the inode's size or block pointers
5127 * are modified. It will save the block pointer information for
5128 * later release and zero the inode so that the calling routine
5129 * can release it.
5130 */
5131void
5132softdep_setup_freeblocks(ip, length, flags)
5133	struct inode *ip;	/* The inode whose length is to be reduced */
5134	off_t length;		/* The new length for the file */
5135	int flags;		/* IO_EXT and/or IO_NORMAL */
5136{
5137	struct ufs1_dinode *dp1;
5138	struct ufs2_dinode *dp2;
5139	struct freeblks *freeblks;
5140	struct inodedep *inodedep;
5141	struct allocdirect *adp;
5142	struct jfreeblk *jfreeblk;
5143	struct bufobj *bo;
5144	struct vnode *vp;
5145	struct buf *bp;
5146	struct fs *fs;
5147	ufs2_daddr_t extblocks, datablocks;
5148	struct mount *mp;
5149	int i, delay, error;
5150	ufs2_daddr_t blkno;
5151	ufs_lbn_t tmpval;
5152	ufs_lbn_t lbn;
5153	long oldextsize;
5154	long oldsize;
5155	int frags;
5156	int needj;
5157
5158	fs = ip->i_fs;
5159	mp = UFSTOVFS(ip->i_ump);
5160	if (length != 0)
5161		panic("softdep_setup_freeblocks: non-zero length");
5162	freeblks = malloc(sizeof(struct freeblks),
5163		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5164	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5165	LIST_INIT(&freeblks->fb_jfreeblkhd);
5166	LIST_INIT(&freeblks->fb_jwork);
5167	freeblks->fb_state = ATTACHED;
5168	freeblks->fb_uid = ip->i_uid;
5169	freeblks->fb_previousinum = ip->i_number;
5170	freeblks->fb_devvp = ip->i_devvp;
5171	freeblks->fb_chkcnt = 0;
5172	ACQUIRE_LOCK(&lk);
5173	/*
5174	 * If we're truncating a removed file that will never be written
5175	 * we don't need to journal the block frees.  The canceled journals
5176	 * for the allocations will suffice.
5177	 */
5178	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5179	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED ||
5180	    (fs->fs_flags & FS_SUJ) == 0)
5181		needj = 0;
5182	else
5183		needj = 1;
5184	num_freeblkdep++;
5185	FREE_LOCK(&lk);
5186	extblocks = 0;
5187	if (fs->fs_magic == FS_UFS2_MAGIC)
5188		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
5189	datablocks = DIP(ip, i_blocks) - extblocks;
5190	if ((flags & IO_NORMAL) != 0) {
5191		oldsize = ip->i_size;
5192		ip->i_size = 0;
5193		DIP_SET(ip, i_size, 0);
5194		freeblks->fb_chkcnt = datablocks;
5195		for (i = 0; i < NDADDR; i++) {
5196			blkno = DIP(ip, i_db[i]);
5197			DIP_SET(ip, i_db[i], 0);
5198			if (blkno == 0)
5199				continue;
5200			frags = sblksize(fs, oldsize, i);
5201			frags = numfrags(fs, frags);
5202			newfreework(freeblks, NULL, i, blkno, frags, needj);
5203		}
5204		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
5205		    i++, tmpval *= NINDIR(fs)) {
5206			blkno = DIP(ip, i_ib[i]);
5207			DIP_SET(ip, i_ib[i], 0);
5208			if (blkno)
5209				newfreework(freeblks, NULL, -lbn - i, blkno,
5210				    fs->fs_frag, needj);
5211			lbn += tmpval;
5212		}
5213		UFS_LOCK(ip->i_ump);
5214		fs->fs_pendingblocks += datablocks;
5215		UFS_UNLOCK(ip->i_ump);
5216	}
5217	if ((flags & IO_EXT) != 0) {
5218		oldextsize = ip->i_din2->di_extsize;
5219		ip->i_din2->di_extsize = 0;
5220		freeblks->fb_chkcnt += extblocks;
5221		for (i = 0; i < NXADDR; i++) {
5222			blkno = ip->i_din2->di_extb[i];
5223			ip->i_din2->di_extb[i] = 0;
5224			if (blkno == 0)
5225				continue;
5226			frags = sblksize(fs, oldextsize, i);
5227			frags = numfrags(fs, frags);
5228			newfreework(freeblks, NULL, -1 - i, blkno, frags,
5229			    needj);
5230		}
5231	}
5232	if (LIST_EMPTY(&freeblks->fb_jfreeblkhd))
5233		needj = 0;
5234	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
5235	/*
5236	 * Push the zero'ed inode to to its disk buffer so that we are free
5237	 * to delete its dependencies below. Once the dependencies are gone
5238	 * the buffer can be safely released.
5239	 */
5240	if ((error = bread(ip->i_devvp,
5241	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
5242	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
5243		brelse(bp);
5244		softdep_error("softdep_setup_freeblocks", error);
5245	}
5246	if (ip->i_ump->um_fstype == UFS1) {
5247		dp1 = ((struct ufs1_dinode *)bp->b_data +
5248		    ino_to_fsbo(fs, ip->i_number));
5249		ip->i_din1->di_freelink = dp1->di_freelink;
5250		*dp1 = *ip->i_din1;
5251	} else {
5252		dp2 = ((struct ufs2_dinode *)bp->b_data +
5253		    ino_to_fsbo(fs, ip->i_number));
5254		ip->i_din2->di_freelink = dp2->di_freelink;
5255		*dp2 = *ip->i_din2;
5256	}
5257	/*
5258	 * Find and eliminate any inode dependencies.
5259	 */
5260	ACQUIRE_LOCK(&lk);
5261	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5262	if ((inodedep->id_state & IOSTARTED) != 0)
5263		panic("softdep_setup_freeblocks: inode busy");
5264	/*
5265	 * Add the freeblks structure to the list of operations that
5266	 * must await the zero'ed inode being written to disk. If we
5267	 * still have a bitmap dependency (delay == 0), then the inode
5268	 * has never been written to disk, so we can process the
5269	 * freeblks below once we have deleted the dependencies.
5270	 */
5271	delay = (inodedep->id_state & DEPCOMPLETE);
5272	if (delay)
5273		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
5274	else if (needj)
5275		freeblks->fb_state |= COMPLETE;
5276	/*
5277	 * Because the file length has been truncated to zero, any
5278	 * pending block allocation dependency structures associated
5279	 * with this inode are obsolete and can simply be de-allocated.
5280	 * We must first merge the two dependency lists to get rid of
5281	 * any duplicate freefrag structures, then purge the merged list.
5282	 * If we still have a bitmap dependency, then the inode has never
5283	 * been written to disk, so we can free any fragments without delay.
5284	 */
5285	if (flags & IO_NORMAL) {
5286		merge_inode_lists(&inodedep->id_newinoupdt,
5287		    &inodedep->id_inoupdt);
5288		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
5289			cancel_allocdirect(&inodedep->id_inoupdt, adp,
5290			    freeblks, delay);
5291	}
5292	if (flags & IO_EXT) {
5293		merge_inode_lists(&inodedep->id_newextupdt,
5294		    &inodedep->id_extupdt);
5295		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
5296			cancel_allocdirect(&inodedep->id_extupdt, adp,
5297			    freeblks, delay);
5298	}
5299	LIST_FOREACH(jfreeblk, &freeblks->fb_jfreeblkhd, jf_deps)
5300		add_to_journal(&jfreeblk->jf_list);
5301
5302	FREE_LOCK(&lk);
5303	bdwrite(bp);
5304	/*
5305	 * We must wait for any I/O in progress to finish so that
5306	 * all potential buffers on the dirty list will be visible.
5307	 * Once they are all there, walk the list and get rid of
5308	 * any dependencies.
5309	 */
5310	vp = ITOV(ip);
5311	bo = &vp->v_bufobj;
5312	BO_LOCK(bo);
5313	drain_output(vp);
5314restart:
5315	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
5316		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
5317		    ((flags & IO_NORMAL) == 0 &&
5318		      (bp->b_xflags & BX_ALTDATA) == 0))
5319			continue;
5320		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
5321			goto restart;
5322		BO_UNLOCK(bo);
5323		ACQUIRE_LOCK(&lk);
5324		(void) inodedep_lookup(mp, ip->i_number, 0, &inodedep);
5325		if (deallocate_dependencies(bp, inodedep, freeblks))
5326			bp->b_flags |= B_INVAL | B_NOCACHE;
5327		FREE_LOCK(&lk);
5328		brelse(bp);
5329		BO_LOCK(bo);
5330		goto restart;
5331	}
5332	BO_UNLOCK(bo);
5333	ACQUIRE_LOCK(&lk);
5334	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
5335		(void) free_inodedep(inodedep);
5336
5337	if (delay || needj)
5338		freeblks->fb_state |= DEPCOMPLETE;
5339	if (delay) {
5340		/*
5341		 * If the inode with zeroed block pointers is now on disk
5342		 * we can start freeing blocks. Add freeblks to the worklist
5343		 * instead of calling  handle_workitem_freeblocks directly as
5344		 * it is more likely that additional IO is needed to complete
5345		 * the request here than in the !delay case.
5346		 */
5347		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
5348			add_to_worklist(&freeblks->fb_list, 1);
5349	}
5350	if (needj && LIST_EMPTY(&freeblks->fb_jfreeblkhd))
5351		needj = 0;
5352
5353	FREE_LOCK(&lk);
5354	/*
5355	 * If the inode has never been written to disk (delay == 0) and
5356	 * we're not waiting on any journal writes, then we can process the
5357	 * freeblks now that we have deleted the dependencies.
5358	 */
5359	if (!delay && !needj)
5360		handle_workitem_freeblocks(freeblks, 0);
5361}
5362
5363/*
5364 * Reclaim any dependency structures from a buffer that is about to
5365 * be reallocated to a new vnode. The buffer must be locked, thus,
5366 * no I/O completion operations can occur while we are manipulating
5367 * its associated dependencies. The mutex is held so that other I/O's
5368 * associated with related dependencies do not occur.  Returns 1 if
5369 * all dependencies were cleared, 0 otherwise.
5370 */
5371static int
5372deallocate_dependencies(bp, inodedep, freeblks)
5373	struct buf *bp;
5374	struct inodedep *inodedep;
5375	struct freeblks *freeblks;
5376{
5377	struct worklist *wk;
5378	struct indirdep *indirdep;
5379	struct newdirblk *newdirblk;
5380	struct allocindir *aip;
5381	struct pagedep *pagedep;
5382	struct jremref *jremref;
5383	struct jmvref *jmvref;
5384	struct dirrem *dirrem;
5385	int i;
5386
5387	mtx_assert(&lk, MA_OWNED);
5388	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
5389		switch (wk->wk_type) {
5390
5391		case D_INDIRDEP:
5392			indirdep = WK_INDIRDEP(wk);
5393			if (bp->b_lblkno >= 0 ||
5394			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
5395				panic("deallocate_dependencies: not indir");
5396			cancel_indirdep(indirdep, bp, inodedep, freeblks);
5397			continue;
5398
5399		case D_PAGEDEP:
5400			pagedep = WK_PAGEDEP(wk);
5401			/*
5402			 * There should be no directory add dependencies present
5403			 * as the directory could not be truncated until all
5404			 * children were removed.
5405			 */
5406			KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
5407			    ("deallocate_dependencies: pendinghd != NULL"));
5408			for (i = 0; i < DAHASHSZ; i++)
5409				KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
5410				    ("deallocate_dependencies: diraddhd != NULL"));
5411			/*
5412			 * Copy any directory remove dependencies to the list
5413			 * to be processed after the zero'ed inode is written.
5414			 * If the inode has already been written, then they
5415			 * can be dumped directly onto the work list.
5416			 */
5417			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
5418				/*
5419				 * If there are any dirrems we wait for
5420				 * the journal write to complete and
5421				 * then restart the buf scan as the lock
5422				 * has been dropped.
5423				 */
5424				while ((jremref =
5425				    LIST_FIRST(&dirrem->dm_jremrefhd))
5426				    != NULL) {
5427					stat_jwait_filepage++;
5428					jwait(&jremref->jr_list);
5429					return (0);
5430				}
5431				LIST_REMOVE(dirrem, dm_next);
5432				dirrem->dm_dirinum = pagedep->pd_ino;
5433				if (inodedep == NULL ||
5434				    (inodedep->id_state & ALLCOMPLETE) ==
5435				     ALLCOMPLETE) {
5436					dirrem->dm_state |= COMPLETE;
5437					add_to_worklist(&dirrem->dm_list, 0);
5438				} else
5439					WORKLIST_INSERT(&inodedep->id_bufwait,
5440					    &dirrem->dm_list);
5441			}
5442			if ((pagedep->pd_state & NEWBLOCK) != 0) {
5443				newdirblk = pagedep->pd_newdirblk;
5444				WORKLIST_REMOVE(&newdirblk->db_list);
5445				free_newdirblk(newdirblk);
5446			}
5447			while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd))
5448			    != NULL) {
5449				stat_jwait_filepage++;
5450				jwait(&jmvref->jm_list);
5451				return (0);
5452			}
5453			WORKLIST_REMOVE(&pagedep->pd_list);
5454			LIST_REMOVE(pagedep, pd_hash);
5455			WORKITEM_FREE(pagedep, D_PAGEDEP);
5456			continue;
5457
5458		case D_ALLOCINDIR:
5459			aip = WK_ALLOCINDIR(wk);
5460			cancel_allocindir(aip, inodedep, freeblks);
5461			continue;
5462
5463		case D_ALLOCDIRECT:
5464		case D_INODEDEP:
5465			panic("deallocate_dependencies: Unexpected type %s",
5466			    TYPENAME(wk->wk_type));
5467			/* NOTREACHED */
5468
5469		default:
5470			panic("deallocate_dependencies: Unknown type %s",
5471			    TYPENAME(wk->wk_type));
5472			/* NOTREACHED */
5473		}
5474	}
5475
5476	return (1);
5477}
5478
5479/*
5480 * An allocdirect is being canceled due to a truncate.  We must make sure
5481 * the journal entry is released in concert with the blkfree that releases
5482 * the storage.  Completed journal entries must not be released until the
5483 * space is no longer pointed to by the inode or in the bitmap.
5484 */
5485static void
5486cancel_allocdirect(adphead, adp, freeblks, delay)
5487	struct allocdirectlst *adphead;
5488	struct allocdirect *adp;
5489	struct freeblks *freeblks;
5490	int delay;
5491{
5492	struct freework *freework;
5493	struct newblk *newblk;
5494	struct worklist *wk;
5495	ufs_lbn_t lbn;
5496
5497	TAILQ_REMOVE(adphead, adp, ad_next);
5498	newblk = (struct newblk *)adp;
5499	/*
5500	 * If the journal hasn't been written the jnewblk must be passed
5501	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
5502	 * this by linking the journal dependency into the freework to be
5503	 * freed when freework_freeblock() is called.  If the journal has
5504	 * been written we can simply reclaim the journal space when the
5505	 * freeblks work is complete.
5506	 */
5507	if (newblk->nb_jnewblk == NULL) {
5508		cancel_newblk(newblk, &freeblks->fb_jwork);
5509		goto found;
5510	}
5511	lbn = newblk->nb_jnewblk->jn_lbn;
5512	/*
5513	 * Find the correct freework structure so it releases the canceled
5514	 * journal when the bitmap is cleared.  This preserves rollback
5515	 * until the allocation is reverted.
5516	 */
5517	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
5518		freework = WK_FREEWORK(wk);
5519		if (freework->fw_lbn != lbn)
5520			continue;
5521		cancel_newblk(newblk, &freework->fw_jwork);
5522		goto found;
5523	}
5524	panic("cancel_allocdirect: Freework not found for lbn %jd\n", lbn);
5525found:
5526	if (delay)
5527		WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
5528		    &newblk->nb_list);
5529	else
5530		free_newblk(newblk);
5531	return;
5532}
5533
5534
5535static void
5536cancel_newblk(newblk, wkhd)
5537	struct newblk *newblk;
5538	struct workhead *wkhd;
5539{
5540	struct indirdep *indirdep;
5541	struct allocindir *aip;
5542
5543	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) {
5544		indirdep->ir_state &= ~ONDEPLIST;
5545		LIST_REMOVE(indirdep, ir_next);
5546		/*
5547		 * If an indirdep is not on the buf worklist we need to
5548		 * free it here as deallocate_dependencies() will never
5549		 * find it.  These pointers were never visible on disk and
5550		 * can be discarded immediately.
5551		 */
5552		while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5553			LIST_REMOVE(aip, ai_next);
5554			cancel_newblk(&aip->ai_block, wkhd);
5555			free_newblk(&aip->ai_block);
5556		}
5557		/*
5558		 * If this indirdep is not attached to a buf it was simply
5559		 * waiting on completion to clear completehd.  free_indirdep()
5560		 * asserts that nothing is dangling.
5561		 */
5562		if ((indirdep->ir_state & ONWORKLIST) == 0)
5563			free_indirdep(indirdep);
5564	}
5565	if (newblk->nb_state & ONDEPLIST) {
5566		newblk->nb_state &= ~ONDEPLIST;
5567		LIST_REMOVE(newblk, nb_deps);
5568	}
5569	if (newblk->nb_state & ONWORKLIST)
5570		WORKLIST_REMOVE(&newblk->nb_list);
5571	/*
5572	 * If the journal entry hasn't been written we hold onto the dep
5573	 * until it is safe to free along with the other journal work.
5574	 */
5575	if (newblk->nb_jnewblk != NULL) {
5576		cancel_jnewblk(newblk->nb_jnewblk, wkhd);
5577		newblk->nb_jnewblk = NULL;
5578	}
5579	if (!LIST_EMPTY(&newblk->nb_jwork))
5580		jwork_move(wkhd, &newblk->nb_jwork);
5581}
5582
5583/*
5584 * Free a newblk. Generate a new freefrag work request if appropriate.
5585 * This must be called after the inode pointer and any direct block pointers
5586 * are valid or fully removed via truncate or frag extension.
5587 */
5588static void
5589free_newblk(newblk)
5590	struct newblk *newblk;
5591{
5592	struct indirdep *indirdep;
5593	struct newdirblk *newdirblk;
5594	struct freefrag *freefrag;
5595	struct worklist *wk;
5596
5597	mtx_assert(&lk, MA_OWNED);
5598	if (newblk->nb_state & ONDEPLIST)
5599		LIST_REMOVE(newblk, nb_deps);
5600	if (newblk->nb_state & ONWORKLIST)
5601		WORKLIST_REMOVE(&newblk->nb_list);
5602	LIST_REMOVE(newblk, nb_hash);
5603	if ((freefrag = newblk->nb_freefrag) != NULL) {
5604		freefrag->ff_state |= COMPLETE;
5605		if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
5606			add_to_worklist(&freefrag->ff_list, 0);
5607	}
5608	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) {
5609		newdirblk = WK_NEWDIRBLK(wk);
5610		WORKLIST_REMOVE(&newdirblk->db_list);
5611		if (!LIST_EMPTY(&newblk->nb_newdirblk))
5612			panic("free_newblk: extra newdirblk");
5613		free_newdirblk(newdirblk);
5614	}
5615	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) {
5616		indirdep->ir_state |= DEPCOMPLETE;
5617		indirdep_complete(indirdep);
5618	}
5619	KASSERT(newblk->nb_jnewblk == NULL,
5620	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
5621	handle_jwork(&newblk->nb_jwork);
5622	newblk->nb_list.wk_type = D_NEWBLK;
5623	WORKITEM_FREE(newblk, D_NEWBLK);
5624}
5625
5626/*
5627 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
5628 * This routine must be called with splbio interrupts blocked.
5629 */
5630static void
5631free_newdirblk(newdirblk)
5632	struct newdirblk *newdirblk;
5633{
5634	struct pagedep *pagedep;
5635	struct diradd *dap;
5636	struct worklist *wk;
5637	int i;
5638
5639	mtx_assert(&lk, MA_OWNED);
5640	/*
5641	 * If the pagedep is still linked onto the directory buffer
5642	 * dependency chain, then some of the entries on the
5643	 * pd_pendinghd list may not be committed to disk yet. In
5644	 * this case, we will simply clear the NEWBLOCK flag and
5645	 * let the pd_pendinghd list be processed when the pagedep
5646	 * is next written. If the pagedep is no longer on the buffer
5647	 * dependency chain, then all the entries on the pd_pending
5648	 * list are committed to disk and we can free them here.
5649	 */
5650	pagedep = newdirblk->db_pagedep;
5651	pagedep->pd_state &= ~NEWBLOCK;
5652	if ((pagedep->pd_state & ONWORKLIST) == 0)
5653		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
5654			free_diradd(dap, NULL);
5655	/*
5656	 * If no dependencies remain, the pagedep will be freed.
5657	 */
5658	for (i = 0; i < DAHASHSZ; i++)
5659		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
5660			break;
5661	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0 &&
5662	    LIST_EMPTY(&pagedep->pd_jmvrefhd)) {
5663		KASSERT(LIST_FIRST(&pagedep->pd_dirremhd) == NULL,
5664		    ("free_newdirblk: Freeing non-free pagedep %p", pagedep));
5665		LIST_REMOVE(pagedep, pd_hash);
5666		WORKITEM_FREE(pagedep, D_PAGEDEP);
5667	}
5668	/* Should only ever be one item in the list. */
5669	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
5670		WORKLIST_REMOVE(wk);
5671		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
5672	}
5673	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
5674}
5675
5676/*
5677 * Prepare an inode to be freed. The actual free operation is not
5678 * done until the zero'ed inode has been written to disk.
5679 */
5680void
5681softdep_freefile(pvp, ino, mode)
5682	struct vnode *pvp;
5683	ino_t ino;
5684	int mode;
5685{
5686	struct inode *ip = VTOI(pvp);
5687	struct inodedep *inodedep;
5688	struct freefile *freefile;
5689
5690	/*
5691	 * This sets up the inode de-allocation dependency.
5692	 */
5693	freefile = malloc(sizeof(struct freefile),
5694		M_FREEFILE, M_SOFTDEP_FLAGS);
5695	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
5696	freefile->fx_mode = mode;
5697	freefile->fx_oldinum = ino;
5698	freefile->fx_devvp = ip->i_devvp;
5699	LIST_INIT(&freefile->fx_jwork);
5700	UFS_LOCK(ip->i_ump);
5701	ip->i_fs->fs_pendinginodes += 1;
5702	UFS_UNLOCK(ip->i_ump);
5703
5704	/*
5705	 * If the inodedep does not exist, then the zero'ed inode has
5706	 * been written to disk. If the allocated inode has never been
5707	 * written to disk, then the on-disk inode is zero'ed. In either
5708	 * case we can free the file immediately.  If the journal was
5709	 * canceled before being written the inode will never make it to
5710	 * disk and we must send the canceled journal entrys to
5711	 * ffs_freefile() to be cleared in conjunction with the bitmap.
5712	 * Any blocks waiting on the inode to write can be safely freed
5713	 * here as it will never been written.
5714	 */
5715	ACQUIRE_LOCK(&lk);
5716	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
5717	/*
5718	 * Remove this inode from the unlinked list and set
5719	 * GOINGAWAY as appropriate to indicate that this inode
5720	 * will never be written.
5721	 */
5722	if (inodedep && inodedep->id_state & UNLINKED) {
5723		/*
5724		 * Save the journal work to be freed with the bitmap
5725		 * before we clear UNLINKED.  Otherwise it can be lost
5726		 * if the inode block is written.
5727		 */
5728		handle_bufwait(inodedep, &freefile->fx_jwork);
5729		clear_unlinked_inodedep(inodedep);
5730		/* Re-acquire inodedep as we've dropped lk. */
5731		inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
5732		if (inodedep && (inodedep->id_state & DEPCOMPLETE) == 0)
5733			inodedep->id_state |= GOINGAWAY;
5734	}
5735	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
5736		FREE_LOCK(&lk);
5737		handle_workitem_freefile(freefile);
5738		return;
5739	}
5740	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
5741	FREE_LOCK(&lk);
5742	if (ip->i_number == ino)
5743		ip->i_flag |= IN_MODIFIED;
5744}
5745
5746/*
5747 * Check to see if an inode has never been written to disk. If
5748 * so free the inodedep and return success, otherwise return failure.
5749 * This routine must be called with splbio interrupts blocked.
5750 *
5751 * If we still have a bitmap dependency, then the inode has never
5752 * been written to disk. Drop the dependency as it is no longer
5753 * necessary since the inode is being deallocated. We set the
5754 * ALLCOMPLETE flags since the bitmap now properly shows that the
5755 * inode is not allocated. Even if the inode is actively being
5756 * written, it has been rolled back to its zero'ed state, so we
5757 * are ensured that a zero inode is what is on the disk. For short
5758 * lived files, this change will usually result in removing all the
5759 * dependencies from the inode so that it can be freed immediately.
5760 */
5761static int
5762check_inode_unwritten(inodedep)
5763	struct inodedep *inodedep;
5764{
5765
5766	mtx_assert(&lk, MA_OWNED);
5767
5768	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
5769	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
5770	    !LIST_EMPTY(&inodedep->id_bufwait) ||
5771	    !LIST_EMPTY(&inodedep->id_inowait) ||
5772	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5773	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
5774	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5775	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5776	    inodedep->id_mkdiradd != NULL ||
5777	    inodedep->id_nlinkdelta != 0)
5778		return (0);
5779	/*
5780	 * Another process might be in initiate_write_inodeblock_ufs[12]
5781	 * trying to allocate memory without holding "Softdep Lock".
5782	 */
5783	if ((inodedep->id_state & IOSTARTED) != 0 &&
5784	    inodedep->id_savedino1 == NULL)
5785		return (0);
5786
5787	if (inodedep->id_state & ONDEPLIST)
5788		LIST_REMOVE(inodedep, id_deps);
5789	inodedep->id_state &= ~ONDEPLIST;
5790	inodedep->id_state |= ALLCOMPLETE;
5791	inodedep->id_bmsafemap = NULL;
5792	if (inodedep->id_state & ONWORKLIST)
5793		WORKLIST_REMOVE(&inodedep->id_list);
5794	if (inodedep->id_savedino1 != NULL) {
5795		free(inodedep->id_savedino1, M_SAVEDINO);
5796		inodedep->id_savedino1 = NULL;
5797	}
5798	if (free_inodedep(inodedep) == 0)
5799		panic("check_inode_unwritten: busy inode");
5800	return (1);
5801}
5802
5803/*
5804 * Try to free an inodedep structure. Return 1 if it could be freed.
5805 */
5806static int
5807free_inodedep(inodedep)
5808	struct inodedep *inodedep;
5809{
5810
5811	mtx_assert(&lk, MA_OWNED);
5812	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
5813	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
5814	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
5815	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
5816	    !LIST_EMPTY(&inodedep->id_bufwait) ||
5817	    !LIST_EMPTY(&inodedep->id_inowait) ||
5818	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
5819	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5820	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
5821	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5822	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5823	    inodedep->id_mkdiradd != NULL ||
5824	    inodedep->id_nlinkdelta != 0 ||
5825	    inodedep->id_savedino1 != NULL)
5826		return (0);
5827	if (inodedep->id_state & ONDEPLIST)
5828		LIST_REMOVE(inodedep, id_deps);
5829	LIST_REMOVE(inodedep, id_hash);
5830	WORKITEM_FREE(inodedep, D_INODEDEP);
5831	num_inodedep -= 1;
5832	return (1);
5833}
5834
5835/*
5836 * Free the block referenced by a freework structure.  The parent freeblks
5837 * structure is released and completed when the final cg bitmap reaches
5838 * the disk.  This routine may be freeing a jnewblk which never made it to
5839 * disk in which case we do not have to wait as the operation is undone
5840 * in memory immediately.
5841 */
5842static void
5843freework_freeblock(freework)
5844	struct freework *freework;
5845{
5846	struct freeblks *freeblks;
5847	struct ufsmount *ump;
5848	struct workhead wkhd;
5849	struct fs *fs;
5850	int complete;
5851	int pending;
5852	int bsize;
5853	int needj;
5854
5855	freeblks = freework->fw_freeblks;
5856	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
5857	fs = ump->um_fs;
5858	needj = freeblks->fb_list.wk_mp->mnt_kern_flag & MNTK_SUJ;
5859	complete = 0;
5860	LIST_INIT(&wkhd);
5861	/*
5862	 * If we are canceling an existing jnewblk pass it to the free
5863	 * routine, otherwise pass the freeblk which will ultimately
5864	 * release the freeblks.  If we're not journaling, we can just
5865	 * free the freeblks immediately.
5866	 */
5867	if (!LIST_EMPTY(&freework->fw_jwork)) {
5868		LIST_SWAP(&wkhd, &freework->fw_jwork, worklist, wk_list);
5869		complete = 1;
5870	} else if (needj)
5871		WORKLIST_INSERT_UNLOCKED(&wkhd, &freework->fw_list);
5872	bsize = lfragtosize(fs, freework->fw_frags);
5873	pending = btodb(bsize);
5874	ACQUIRE_LOCK(&lk);
5875	freeblks->fb_chkcnt -= pending;
5876	FREE_LOCK(&lk);
5877	/*
5878	 * extattr blocks don't show up in pending blocks.  XXX why?
5879	 */
5880	if (freework->fw_lbn >= 0 || freework->fw_lbn <= -NDADDR) {
5881		UFS_LOCK(ump);
5882		fs->fs_pendingblocks -= pending;
5883		UFS_UNLOCK(ump);
5884	}
5885	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno,
5886	    bsize, freeblks->fb_previousinum, &wkhd);
5887	if (complete == 0 && needj)
5888		return;
5889	/*
5890	 * The jnewblk will be discarded and the bits in the map never
5891	 * made it to disk.  We can immediately free the freeblk.
5892	 */
5893	ACQUIRE_LOCK(&lk);
5894	handle_written_freework(freework);
5895	FREE_LOCK(&lk);
5896}
5897
5898/*
5899 * Start, continue, or finish the process of freeing an indirect block tree.
5900 * The free operation may be paused at any point with fw_off containing the
5901 * offset to restart from.  This enables us to implement some flow control
5902 * for large truncates which may fan out and generate a huge number of
5903 * dependencies.
5904 */
5905static void
5906handle_workitem_indirblk(freework)
5907	struct freework *freework;
5908{
5909	struct freeblks *freeblks;
5910	struct ufsmount *ump;
5911	struct fs *fs;
5912
5913
5914	freeblks = freework->fw_freeblks;
5915	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
5916	fs = ump->um_fs;
5917	if (freework->fw_off == NINDIR(fs))
5918		freework_freeblock(freework);
5919	else
5920		indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
5921		    freework->fw_lbn);
5922}
5923
5924/*
5925 * Called when a freework structure attached to a cg buf is written.  The
5926 * ref on either the parent or the freeblks structure is released and
5927 * either may be added to the worklist if it is the final ref.
5928 */
5929static void
5930handle_written_freework(freework)
5931	struct freework *freework;
5932{
5933	struct freeblks *freeblks;
5934	struct freework *parent;
5935
5936	freeblks = freework->fw_freeblks;
5937	parent = freework->fw_parent;
5938	if (parent) {
5939		if (--parent->fw_ref != 0)
5940			parent = NULL;
5941		freeblks = NULL;
5942	} else if (--freeblks->fb_ref != 0)
5943		freeblks = NULL;
5944	WORKITEM_FREE(freework, D_FREEWORK);
5945	/*
5946	 * Don't delay these block frees or it takes an intolerable amount
5947	 * of time to process truncates and free their journal entries.
5948	 */
5949	if (freeblks)
5950		add_to_worklist(&freeblks->fb_list, 1);
5951	if (parent)
5952		add_to_worklist(&parent->fw_list, 1);
5953}
5954
5955/*
5956 * This workitem routine performs the block de-allocation.
5957 * The workitem is added to the pending list after the updated
5958 * inode block has been written to disk.  As mentioned above,
5959 * checks regarding the number of blocks de-allocated (compared
5960 * to the number of blocks allocated for the file) are also
5961 * performed in this function.
5962 */
5963static void
5964handle_workitem_freeblocks(freeblks, flags)
5965	struct freeblks *freeblks;
5966	int flags;
5967{
5968	struct freework *freework;
5969	struct worklist *wk;
5970
5971	KASSERT(LIST_EMPTY(&freeblks->fb_jfreeblkhd),
5972	    ("handle_workitem_freeblocks: Journal entries not written."));
5973	if (LIST_EMPTY(&freeblks->fb_freeworkhd)) {
5974		handle_complete_freeblocks(freeblks);
5975		return;
5976	}
5977	freeblks->fb_ref++;
5978	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
5979		KASSERT(wk->wk_type == D_FREEWORK,
5980		    ("handle_workitem_freeblocks: Unknown type %s",
5981		    TYPENAME(wk->wk_type)));
5982		WORKLIST_REMOVE_UNLOCKED(wk);
5983		freework = WK_FREEWORK(wk);
5984		if (freework->fw_lbn <= -NDADDR)
5985			handle_workitem_indirblk(freework);
5986		else
5987			freework_freeblock(freework);
5988	}
5989	ACQUIRE_LOCK(&lk);
5990	if (--freeblks->fb_ref != 0)
5991		freeblks = NULL;
5992	FREE_LOCK(&lk);
5993	if (freeblks)
5994		handle_complete_freeblocks(freeblks);
5995}
5996
5997/*
5998 * Once all of the freework workitems are complete we can retire the
5999 * freeblocks dependency and any journal work awaiting completion.  This
6000 * can not be called until all other dependencies are stable on disk.
6001 */
6002static void
6003handle_complete_freeblocks(freeblks)
6004	struct freeblks *freeblks;
6005{
6006	struct inode *ip;
6007	struct vnode *vp;
6008	struct fs *fs;
6009	struct ufsmount *ump;
6010	int flags;
6011
6012	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
6013	fs = ump->um_fs;
6014	flags = LK_NOWAIT;
6015
6016	/*
6017	 * If we still have not finished background cleanup, then check
6018	 * to see if the block count needs to be adjusted.
6019	 */
6020	if (freeblks->fb_chkcnt != 0 && (fs->fs_flags & FS_UNCLEAN) != 0 &&
6021	    ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_previousinum,
6022	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ) == 0) {
6023		ip = VTOI(vp);
6024		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + freeblks->fb_chkcnt);
6025		ip->i_flag |= IN_CHANGE;
6026		vput(vp);
6027	}
6028
6029	if (!(freeblks->fb_chkcnt == 0 ||
6030	    ((fs->fs_flags & FS_UNCLEAN) != 0 && (flags & LK_NOWAIT) == 0)))
6031	        printf(
6032	"handle_workitem_freeblocks: inode %ju block count %jd\n",
6033		   (uintmax_t)freeblks->fb_previousinum,
6034		   (intmax_t)freeblks->fb_chkcnt);
6035
6036	ACQUIRE_LOCK(&lk);
6037	/*
6038	 * All of the freeblock deps must be complete prior to this call
6039	 * so it's now safe to complete earlier outstanding journal entries.
6040	 */
6041	handle_jwork(&freeblks->fb_jwork);
6042	WORKITEM_FREE(freeblks, D_FREEBLKS);
6043	num_freeblkdep--;
6044	FREE_LOCK(&lk);
6045}
6046
6047/*
6048 * Release blocks associated with the inode ip and stored in the indirect
6049 * block dbn. If level is greater than SINGLE, the block is an indirect block
6050 * and recursive calls to indirtrunc must be used to cleanse other indirect
6051 * blocks.
6052 */
6053static void
6054indir_trunc(freework, dbn, lbn)
6055	struct freework *freework;
6056	ufs2_daddr_t dbn;
6057	ufs_lbn_t lbn;
6058{
6059	struct freework *nfreework;
6060	struct workhead wkhd;
6061	struct jnewblk *jnewblk;
6062	struct freeblks *freeblks;
6063	struct buf *bp;
6064	struct fs *fs;
6065	struct worklist *wkn;
6066	struct worklist *wk;
6067	struct indirdep *indirdep;
6068	struct ufsmount *ump;
6069	ufs1_daddr_t *bap1 = 0;
6070	ufs2_daddr_t nb, nnb, *bap2 = 0;
6071	ufs_lbn_t lbnadd;
6072	int i, nblocks, ufs1fmt;
6073	int fs_pendingblocks;
6074	int freedeps;
6075	int needj;
6076	int level;
6077	int cnt;
6078
6079	LIST_INIT(&wkhd);
6080	level = lbn_level(lbn);
6081	if (level == -1)
6082		panic("indir_trunc: Invalid lbn %jd\n", lbn);
6083	freeblks = freework->fw_freeblks;
6084	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
6085	fs = ump->um_fs;
6086	fs_pendingblocks = 0;
6087	freedeps = 0;
6088	needj = UFSTOVFS(ump)->mnt_kern_flag & MNTK_SUJ;
6089	lbnadd = lbn_offset(fs, level);
6090	/*
6091	 * Get buffer of block pointers to be freed. This routine is not
6092	 * called until the zero'ed inode has been written, so it is safe
6093	 * to free blocks as they are encountered. Because the inode has
6094	 * been zero'ed, calls to bmap on these blocks will fail. So, we
6095	 * have to use the on-disk address and the block device for the
6096	 * filesystem to look them up. If the file was deleted before its
6097	 * indirect blocks were all written to disk, the routine that set
6098	 * us up (deallocate_dependencies) will have arranged to leave
6099	 * a complete copy of the indirect block in memory for our use.
6100	 * Otherwise we have to read the blocks in from the disk.
6101	 */
6102#ifdef notyet
6103	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
6104	    GB_NOCREAT);
6105#else
6106	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
6107#endif
6108	ACQUIRE_LOCK(&lk);
6109	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
6110		if (wk->wk_type != D_INDIRDEP ||
6111		    (wk->wk_state & GOINGAWAY) == 0)
6112			panic("indir_trunc: lost indirdep %p", wk);
6113		indirdep = WK_INDIRDEP(wk);
6114		LIST_SWAP(&wkhd, &indirdep->ir_jwork, worklist, wk_list);
6115		free_indirdep(indirdep);
6116		if (!LIST_EMPTY(&bp->b_dep))
6117			panic("indir_trunc: dangling dep %p",
6118			    LIST_FIRST(&bp->b_dep));
6119		ump->um_numindirdeps -= 1;
6120		FREE_LOCK(&lk);
6121	} else {
6122#ifdef notyet
6123		if (bp)
6124			brelse(bp);
6125#endif
6126		FREE_LOCK(&lk);
6127		if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
6128		    NOCRED, &bp) != 0) {
6129			brelse(bp);
6130			return;
6131		}
6132	}
6133	/*
6134	 * Recursively free indirect blocks.
6135	 */
6136	if (ump->um_fstype == UFS1) {
6137		ufs1fmt = 1;
6138		bap1 = (ufs1_daddr_t *)bp->b_data;
6139	} else {
6140		ufs1fmt = 0;
6141		bap2 = (ufs2_daddr_t *)bp->b_data;
6142	}
6143
6144	if (needj)
6145		freework->fw_ref += NINDIR(fs) + 1;
6146
6147	/*
6148	 * Reclaim indirect blocks which never made it to disk.
6149	 */
6150	cnt = 0;
6151	LIST_FOREACH_SAFE(wk, &wkhd, wk_list, wkn) {
6152		if (wk->wk_type != D_JNEWBLK)
6153			continue;
6154		ACQUIRE_LOCK(&lk);
6155		WORKLIST_REMOVE(wk);
6156		FREE_LOCK(&lk);
6157		jnewblk = WK_JNEWBLK(wk);
6158		if (jnewblk->jn_lbn > 0)
6159			i = (jnewblk->jn_lbn - -lbn) / lbnadd;
6160		else
6161			i = (-(jnewblk->jn_lbn + level - 1) - -(lbn + level)) /
6162			    lbnadd;
6163		KASSERT(i >= 0 && i < NINDIR(fs),
6164		    ("indir_trunc: Index out of range %d parent %jd lbn %jd level %d",
6165		    i, lbn, jnewblk->jn_lbn, level));
6166		/* Clear the pointer so it isn't found below. */
6167		if (ufs1fmt) {
6168			nb = bap1[i];
6169			bap1[i] = 0;
6170		} else {
6171			nb = bap2[i];
6172			bap2[i] = 0;
6173		}
6174		KASSERT(nb == jnewblk->jn_blkno,
6175		    ("indir_trunc: Block mismatch %jd != %jd",
6176		    nb, jnewblk->jn_blkno));
6177		if (level != 0) {
6178			ufs_lbn_t nlbn;
6179
6180			nlbn = (lbn + 1) - (i * lbnadd);
6181			nfreework = newfreework(freeblks, freework,
6182			    nlbn, nb, fs->fs_frag, 0);
6183			WORKLIST_INSERT_UNLOCKED(&nfreework->fw_jwork, wk);
6184			freedeps++;
6185			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
6186		} else {
6187			struct workhead freewk;
6188
6189			LIST_INIT(&freewk);
6190			ACQUIRE_LOCK(&lk);
6191			WORKLIST_INSERT(&freewk, wk);
6192			FREE_LOCK(&lk);
6193			ffs_blkfree(ump, fs, freeblks->fb_devvp,
6194			    jnewblk->jn_blkno, fs->fs_bsize,
6195			    freeblks->fb_previousinum, &freewk);
6196		}
6197		cnt++;
6198	}
6199	ACQUIRE_LOCK(&lk);
6200	/* Any remaining journal work can be completed with freeblks. */
6201	jwork_move(&freeblks->fb_jwork, &wkhd);
6202	FREE_LOCK(&lk);
6203	nblocks = btodb(fs->fs_bsize);
6204	if (ufs1fmt)
6205		nb = bap1[0];
6206	else
6207		nb = bap2[0];
6208	nfreework = freework;
6209	/*
6210	 * Reclaim on disk blocks.
6211	 */
6212	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
6213		if (i != NINDIR(fs) - 1) {
6214			if (ufs1fmt)
6215				nnb = bap1[i+1];
6216			else
6217				nnb = bap2[i+1];
6218		} else
6219			nnb = 0;
6220		if (nb == 0)
6221			continue;
6222		cnt++;
6223		if (level != 0) {
6224			ufs_lbn_t nlbn;
6225
6226			nlbn = (lbn + 1) - (i * lbnadd);
6227			if (needj != 0) {
6228				nfreework = newfreework(freeblks, freework,
6229				    nlbn, nb, fs->fs_frag, 0);
6230				freedeps++;
6231			}
6232			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
6233		} else {
6234			struct freedep *freedep;
6235
6236			/*
6237			 * Attempt to aggregate freedep dependencies for
6238			 * all blocks being released to the same CG.
6239			 */
6240			LIST_INIT(&wkhd);
6241			if (needj != 0 &&
6242			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
6243				freedep = newfreedep(freework);
6244				WORKLIST_INSERT_UNLOCKED(&wkhd,
6245				    &freedep->fd_list);
6246				freedeps++;
6247			}
6248			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
6249			    fs->fs_bsize, freeblks->fb_previousinum, &wkhd);
6250		}
6251	}
6252	if (level == 0)
6253		fs_pendingblocks = (nblocks * cnt);
6254	/*
6255	 * If we're not journaling we can free the indirect now.  Otherwise
6256	 * setup the ref counts and offset so this indirect can be completed
6257	 * when its children are free.
6258	 */
6259	if (needj == 0) {
6260		fs_pendingblocks += nblocks;
6261		dbn = dbtofsb(fs, dbn);
6262		ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
6263		    freeblks->fb_previousinum, NULL);
6264		ACQUIRE_LOCK(&lk);
6265		freeblks->fb_chkcnt -= fs_pendingblocks;
6266		if (freework->fw_blkno == dbn)
6267			handle_written_freework(freework);
6268		FREE_LOCK(&lk);
6269		freework = NULL;
6270	} else {
6271		ACQUIRE_LOCK(&lk);
6272		freework->fw_off = i;
6273		freework->fw_ref += freedeps;
6274		freework->fw_ref -= NINDIR(fs) + 1;
6275		if (freework->fw_ref != 0)
6276			freework = NULL;
6277		freeblks->fb_chkcnt -= fs_pendingblocks;
6278		FREE_LOCK(&lk);
6279	}
6280	if (fs_pendingblocks) {
6281		UFS_LOCK(ump);
6282		fs->fs_pendingblocks -= fs_pendingblocks;
6283		UFS_UNLOCK(ump);
6284	}
6285	bp->b_flags |= B_INVAL | B_NOCACHE;
6286	brelse(bp);
6287	if (freework)
6288		handle_workitem_indirblk(freework);
6289	return;
6290}
6291
6292/*
6293 * Cancel an allocindir when it is removed via truncation.
6294 */
6295static void
6296cancel_allocindir(aip, inodedep, freeblks)
6297	struct allocindir *aip;
6298	struct inodedep *inodedep;
6299	struct freeblks *freeblks;
6300{
6301	struct newblk *newblk;
6302
6303	/*
6304	 * If the journal hasn't been written the jnewblk must be passed
6305	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
6306	 * this by linking the journal dependency into the indirdep to be
6307	 * freed when indir_trunc() is called.  If the journal has already
6308	 * been written we can simply reclaim the journal space when the
6309	 * freeblks work is complete.
6310	 */
6311	LIST_REMOVE(aip, ai_next);
6312	newblk = (struct newblk *)aip;
6313	if (newblk->nb_jnewblk == NULL)
6314		cancel_newblk(newblk, &freeblks->fb_jwork);
6315	else
6316		cancel_newblk(newblk, &aip->ai_indirdep->ir_jwork);
6317	if (inodedep && inodedep->id_state & DEPCOMPLETE)
6318		WORKLIST_INSERT(&inodedep->id_bufwait, &newblk->nb_list);
6319	else
6320		free_newblk(newblk);
6321}
6322
6323/*
6324 * Create the mkdir dependencies for . and .. in a new directory.  Link them
6325 * in to a newdirblk so any subsequent additions are tracked properly.  The
6326 * caller is responsible for adding the mkdir1 dependency to the journal
6327 * and updating id_mkdiradd.  This function returns with lk held.
6328 */
6329static struct mkdir *
6330setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
6331	struct diradd *dap;
6332	ino_t newinum;
6333	ino_t dinum;
6334	struct buf *newdirbp;
6335	struct mkdir **mkdirp;
6336{
6337	struct newblk *newblk;
6338	struct pagedep *pagedep;
6339	struct inodedep *inodedep;
6340	struct newdirblk *newdirblk = 0;
6341	struct mkdir *mkdir1, *mkdir2;
6342	struct worklist *wk;
6343	struct jaddref *jaddref;
6344	struct mount *mp;
6345
6346	mp = dap->da_list.wk_mp;
6347	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
6348	    M_SOFTDEP_FLAGS);
6349	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
6350	LIST_INIT(&newdirblk->db_mkdir);
6351	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
6352	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
6353	mkdir1->md_state = ATTACHED | MKDIR_BODY;
6354	mkdir1->md_diradd = dap;
6355	mkdir1->md_jaddref = NULL;
6356	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
6357	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
6358	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
6359	mkdir2->md_diradd = dap;
6360	mkdir2->md_jaddref = NULL;
6361	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0) {
6362		mkdir1->md_state |= DEPCOMPLETE;
6363		mkdir2->md_state |= DEPCOMPLETE;
6364	}
6365	/*
6366	 * Dependency on "." and ".." being written to disk.
6367	 */
6368	mkdir1->md_buf = newdirbp;
6369	ACQUIRE_LOCK(&lk);
6370	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
6371	/*
6372	 * We must link the pagedep, allocdirect, and newdirblk for
6373	 * the initial file page so the pointer to the new directory
6374	 * is not written until the directory contents are live and
6375	 * any subsequent additions are not marked live until the
6376	 * block is reachable via the inode.
6377	 */
6378	if (pagedep_lookup(mp, newinum, 0, 0, &pagedep) == 0)
6379		panic("setup_newdir: lost pagedep");
6380	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
6381		if (wk->wk_type == D_ALLOCDIRECT)
6382			break;
6383	if (wk == NULL)
6384		panic("setup_newdir: lost allocdirect");
6385	newblk = WK_NEWBLK(wk);
6386	pagedep->pd_state |= NEWBLOCK;
6387	pagedep->pd_newdirblk = newdirblk;
6388	newdirblk->db_pagedep = pagedep;
6389	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
6390	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
6391	/*
6392	 * Look up the inodedep for the parent directory so that we
6393	 * can link mkdir2 into the pending dotdot jaddref or
6394	 * the inode write if there is none.  If the inode is
6395	 * ALLCOMPLETE and no jaddref is present all dependencies have
6396	 * been satisfied and mkdir2 can be freed.
6397	 */
6398	inodedep_lookup(mp, dinum, 0, &inodedep);
6399	if (mp->mnt_kern_flag & MNTK_SUJ) {
6400		if (inodedep == NULL)
6401			panic("setup_newdir: Lost parent.");
6402		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
6403		    inoreflst);
6404		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
6405		    (jaddref->ja_state & MKDIR_PARENT),
6406		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
6407		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
6408		mkdir2->md_jaddref = jaddref;
6409		jaddref->ja_mkdir = mkdir2;
6410	} else if (inodedep == NULL ||
6411	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
6412		dap->da_state &= ~MKDIR_PARENT;
6413		WORKITEM_FREE(mkdir2, D_MKDIR);
6414	} else {
6415		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
6416		WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
6417	}
6418	*mkdirp = mkdir2;
6419
6420	return (mkdir1);
6421}
6422
6423/*
6424 * Directory entry addition dependencies.
6425 *
6426 * When adding a new directory entry, the inode (with its incremented link
6427 * count) must be written to disk before the directory entry's pointer to it.
6428 * Also, if the inode is newly allocated, the corresponding freemap must be
6429 * updated (on disk) before the directory entry's pointer. These requirements
6430 * are met via undo/redo on the directory entry's pointer, which consists
6431 * simply of the inode number.
6432 *
6433 * As directory entries are added and deleted, the free space within a
6434 * directory block can become fragmented.  The ufs filesystem will compact
6435 * a fragmented directory block to make space for a new entry. When this
6436 * occurs, the offsets of previously added entries change. Any "diradd"
6437 * dependency structures corresponding to these entries must be updated with
6438 * the new offsets.
6439 */
6440
6441/*
6442 * This routine is called after the in-memory inode's link
6443 * count has been incremented, but before the directory entry's
6444 * pointer to the inode has been set.
6445 */
6446int
6447softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
6448	struct buf *bp;		/* buffer containing directory block */
6449	struct inode *dp;	/* inode for directory */
6450	off_t diroffset;	/* offset of new entry in directory */
6451	ino_t newinum;		/* inode referenced by new directory entry */
6452	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
6453	int isnewblk;		/* entry is in a newly allocated block */
6454{
6455	int offset;		/* offset of new entry within directory block */
6456	ufs_lbn_t lbn;		/* block in directory containing new entry */
6457	struct fs *fs;
6458	struct diradd *dap;
6459	struct newblk *newblk;
6460	struct pagedep *pagedep;
6461	struct inodedep *inodedep;
6462	struct newdirblk *newdirblk = 0;
6463	struct mkdir *mkdir1, *mkdir2;
6464	struct jaddref *jaddref;
6465	struct mount *mp;
6466	int isindir;
6467
6468	/*
6469	 * Whiteouts have no dependencies.
6470	 */
6471	if (newinum == WINO) {
6472		if (newdirbp != NULL)
6473			bdwrite(newdirbp);
6474		return (0);
6475	}
6476	jaddref = NULL;
6477	mkdir1 = mkdir2 = NULL;
6478	mp = UFSTOVFS(dp->i_ump);
6479	fs = dp->i_fs;
6480	lbn = lblkno(fs, diroffset);
6481	offset = blkoff(fs, diroffset);
6482	dap = malloc(sizeof(struct diradd), M_DIRADD,
6483		M_SOFTDEP_FLAGS|M_ZERO);
6484	workitem_alloc(&dap->da_list, D_DIRADD, mp);
6485	dap->da_offset = offset;
6486	dap->da_newinum = newinum;
6487	dap->da_state = ATTACHED;
6488	LIST_INIT(&dap->da_jwork);
6489	isindir = bp->b_lblkno >= NDADDR;
6490	if (isnewblk &&
6491	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
6492		newdirblk = malloc(sizeof(struct newdirblk),
6493		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
6494		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
6495		LIST_INIT(&newdirblk->db_mkdir);
6496	}
6497	/*
6498	 * If we're creating a new directory setup the dependencies and set
6499	 * the dap state to wait for them.  Otherwise it's COMPLETE and
6500	 * we can move on.
6501	 */
6502	if (newdirbp == NULL) {
6503		dap->da_state |= DEPCOMPLETE;
6504		ACQUIRE_LOCK(&lk);
6505	} else {
6506		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
6507		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
6508		    &mkdir2);
6509	}
6510	/*
6511	 * Link into parent directory pagedep to await its being written.
6512	 */
6513	if (pagedep_lookup(mp, dp->i_number, lbn, DEPALLOC, &pagedep) == 0)
6514		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
6515#ifdef DEBUG
6516	if (diradd_lookup(pagedep, offset) != NULL)
6517		panic("softdep_setup_directory_add: %p already at off %d\n",
6518		    diradd_lookup(pagedep, offset), offset);
6519#endif
6520	dap->da_pagedep = pagedep;
6521	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
6522	    da_pdlist);
6523	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
6524	/*
6525	 * If we're journaling, link the diradd into the jaddref so it
6526	 * may be completed after the journal entry is written.  Otherwise,
6527	 * link the diradd into its inodedep.  If the inode is not yet
6528	 * written place it on the bufwait list, otherwise do the post-inode
6529	 * write processing to put it on the id_pendinghd list.
6530	 */
6531	if (mp->mnt_kern_flag & MNTK_SUJ) {
6532		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
6533		    inoreflst);
6534		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
6535		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
6536		jaddref->ja_diroff = diroffset;
6537		jaddref->ja_diradd = dap;
6538		add_to_journal(&jaddref->ja_list);
6539	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
6540		diradd_inode_written(dap, inodedep);
6541	else
6542		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
6543	/*
6544	 * Add the journal entries for . and .. links now that the primary
6545	 * link is written.
6546	 */
6547	if (mkdir1 != NULL && mp->mnt_kern_flag & MNTK_SUJ) {
6548		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
6549		    inoreflst, if_deps);
6550		KASSERT(jaddref != NULL &&
6551		    jaddref->ja_ino == jaddref->ja_parent &&
6552		    (jaddref->ja_state & MKDIR_BODY),
6553		    ("softdep_setup_directory_add: bad dot jaddref %p",
6554		    jaddref));
6555		mkdir1->md_jaddref = jaddref;
6556		jaddref->ja_mkdir = mkdir1;
6557		/*
6558		 * It is important that the dotdot journal entry
6559		 * is added prior to the dot entry since dot writes
6560		 * both the dot and dotdot links.  These both must
6561		 * be added after the primary link for the journal
6562		 * to remain consistent.
6563		 */
6564		add_to_journal(&mkdir2->md_jaddref->ja_list);
6565		add_to_journal(&jaddref->ja_list);
6566	}
6567	/*
6568	 * If we are adding a new directory remember this diradd so that if
6569	 * we rename it we can keep the dot and dotdot dependencies.  If
6570	 * we are adding a new name for an inode that has a mkdiradd we
6571	 * must be in rename and we have to move the dot and dotdot
6572	 * dependencies to this new name.  The old name is being orphaned
6573	 * soon.
6574	 */
6575	if (mkdir1 != NULL) {
6576		if (inodedep->id_mkdiradd != NULL)
6577			panic("softdep_setup_directory_add: Existing mkdir");
6578		inodedep->id_mkdiradd = dap;
6579	} else if (inodedep->id_mkdiradd)
6580		merge_diradd(inodedep, dap);
6581	if (newdirblk) {
6582		/*
6583		 * There is nothing to do if we are already tracking
6584		 * this block.
6585		 */
6586		if ((pagedep->pd_state & NEWBLOCK) != 0) {
6587			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
6588			FREE_LOCK(&lk);
6589			return (0);
6590		}
6591		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
6592		    == 0)
6593			panic("softdep_setup_directory_add: lost entry");
6594		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
6595		pagedep->pd_state |= NEWBLOCK;
6596		pagedep->pd_newdirblk = newdirblk;
6597		newdirblk->db_pagedep = pagedep;
6598		FREE_LOCK(&lk);
6599		/*
6600		 * If we extended into an indirect signal direnter to sync.
6601		 */
6602		if (isindir)
6603			return (1);
6604		return (0);
6605	}
6606	FREE_LOCK(&lk);
6607	return (0);
6608}
6609
6610/*
6611 * This procedure is called to change the offset of a directory
6612 * entry when compacting a directory block which must be owned
6613 * exclusively by the caller. Note that the actual entry movement
6614 * must be done in this procedure to ensure that no I/O completions
6615 * occur while the move is in progress.
6616 */
6617void
6618softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
6619	struct buf *bp;		/* Buffer holding directory block. */
6620	struct inode *dp;	/* inode for directory */
6621	caddr_t base;		/* address of dp->i_offset */
6622	caddr_t oldloc;		/* address of old directory location */
6623	caddr_t newloc;		/* address of new directory location */
6624	int entrysize;		/* size of directory entry */
6625{
6626	int offset, oldoffset, newoffset;
6627	struct pagedep *pagedep;
6628	struct jmvref *jmvref;
6629	struct diradd *dap;
6630	struct direct *de;
6631	struct mount *mp;
6632	ufs_lbn_t lbn;
6633	int flags;
6634
6635	mp = UFSTOVFS(dp->i_ump);
6636	de = (struct direct *)oldloc;
6637	jmvref = NULL;
6638	flags = 0;
6639	/*
6640	 * Moves are always journaled as it would be too complex to
6641	 * determine if any affected adds or removes are present in the
6642	 * journal.
6643	 */
6644	if (mp->mnt_kern_flag & MNTK_SUJ)  {
6645		flags = DEPALLOC;
6646		jmvref = newjmvref(dp, de->d_ino,
6647		    dp->i_offset + (oldloc - base),
6648		    dp->i_offset + (newloc - base));
6649	}
6650	lbn = lblkno(dp->i_fs, dp->i_offset);
6651	offset = blkoff(dp->i_fs, dp->i_offset);
6652	oldoffset = offset + (oldloc - base);
6653	newoffset = offset + (newloc - base);
6654	ACQUIRE_LOCK(&lk);
6655	if (pagedep_lookup(mp, dp->i_number, lbn, flags, &pagedep) == 0) {
6656		if (pagedep)
6657			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
6658		goto done;
6659	}
6660	dap = diradd_lookup(pagedep, oldoffset);
6661	if (dap) {
6662		dap->da_offset = newoffset;
6663		newoffset = DIRADDHASH(newoffset);
6664		oldoffset = DIRADDHASH(oldoffset);
6665		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
6666		    newoffset != oldoffset) {
6667			LIST_REMOVE(dap, da_pdlist);
6668			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
6669			    dap, da_pdlist);
6670		}
6671	}
6672done:
6673	if (jmvref) {
6674		jmvref->jm_pagedep = pagedep;
6675		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
6676		add_to_journal(&jmvref->jm_list);
6677	}
6678	bcopy(oldloc, newloc, entrysize);
6679	FREE_LOCK(&lk);
6680}
6681
6682/*
6683 * Move the mkdir dependencies and journal work from one diradd to another
6684 * when renaming a directory.  The new name must depend on the mkdir deps
6685 * completing as the old name did.  Directories can only have one valid link
6686 * at a time so one must be canonical.
6687 */
6688static void
6689merge_diradd(inodedep, newdap)
6690	struct inodedep *inodedep;
6691	struct diradd *newdap;
6692{
6693	struct diradd *olddap;
6694	struct mkdir *mkdir, *nextmd;
6695	short state;
6696
6697	olddap = inodedep->id_mkdiradd;
6698	inodedep->id_mkdiradd = newdap;
6699	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6700		newdap->da_state &= ~DEPCOMPLETE;
6701		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
6702			nextmd = LIST_NEXT(mkdir, md_mkdirs);
6703			if (mkdir->md_diradd != olddap)
6704				continue;
6705			mkdir->md_diradd = newdap;
6706			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
6707			newdap->da_state |= state;
6708			olddap->da_state &= ~state;
6709			if ((olddap->da_state &
6710			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
6711				break;
6712		}
6713		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
6714			panic("merge_diradd: unfound ref");
6715	}
6716	/*
6717	 * Any mkdir related journal items are not safe to be freed until
6718	 * the new name is stable.
6719	 */
6720	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
6721	olddap->da_state |= DEPCOMPLETE;
6722	complete_diradd(olddap);
6723}
6724
6725/*
6726 * Move the diradd to the pending list when all diradd dependencies are
6727 * complete.
6728 */
6729static void
6730complete_diradd(dap)
6731	struct diradd *dap;
6732{
6733	struct pagedep *pagedep;
6734
6735	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
6736		if (dap->da_state & DIRCHG)
6737			pagedep = dap->da_previous->dm_pagedep;
6738		else
6739			pagedep = dap->da_pagedep;
6740		LIST_REMOVE(dap, da_pdlist);
6741		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
6742	}
6743}
6744
6745/*
6746 * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
6747 * add entries and conditonally journal the remove.
6748 */
6749static void
6750cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
6751	struct diradd *dap;
6752	struct dirrem *dirrem;
6753	struct jremref *jremref;
6754	struct jremref *dotremref;
6755	struct jremref *dotdotremref;
6756{
6757	struct inodedep *inodedep;
6758	struct jaddref *jaddref;
6759	struct inoref *inoref;
6760	struct mkdir *mkdir;
6761
6762	/*
6763	 * If no remove references were allocated we're on a non-journaled
6764	 * filesystem and can skip the cancel step.
6765	 */
6766	if (jremref == NULL) {
6767		free_diradd(dap, NULL);
6768		return;
6769	}
6770	/*
6771	 * Cancel the primary name an free it if it does not require
6772	 * journaling.
6773	 */
6774	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
6775	    0, &inodedep) != 0) {
6776		/* Abort the addref that reference this diradd.  */
6777		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
6778			if (inoref->if_list.wk_type != D_JADDREF)
6779				continue;
6780			jaddref = (struct jaddref *)inoref;
6781			if (jaddref->ja_diradd != dap)
6782				continue;
6783			if (cancel_jaddref(jaddref, inodedep,
6784			    &dirrem->dm_jwork) == 0) {
6785				free_jremref(jremref);
6786				jremref = NULL;
6787			}
6788			break;
6789		}
6790	}
6791	/*
6792	 * Cancel subordinate names and free them if they do not require
6793	 * journaling.
6794	 */
6795	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6796		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
6797			if (mkdir->md_diradd != dap)
6798				continue;
6799			if ((jaddref = mkdir->md_jaddref) == NULL)
6800				continue;
6801			mkdir->md_jaddref = NULL;
6802			if (mkdir->md_state & MKDIR_PARENT) {
6803				if (cancel_jaddref(jaddref, NULL,
6804				    &dirrem->dm_jwork) == 0) {
6805					free_jremref(dotdotremref);
6806					dotdotremref = NULL;
6807				}
6808			} else {
6809				if (cancel_jaddref(jaddref, inodedep,
6810				    &dirrem->dm_jwork) == 0) {
6811					free_jremref(dotremref);
6812					dotremref = NULL;
6813				}
6814			}
6815		}
6816	}
6817
6818	if (jremref)
6819		journal_jremref(dirrem, jremref, inodedep);
6820	if (dotremref)
6821		journal_jremref(dirrem, dotremref, inodedep);
6822	if (dotdotremref)
6823		journal_jremref(dirrem, dotdotremref, NULL);
6824	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
6825	free_diradd(dap, &dirrem->dm_jwork);
6826}
6827
6828/*
6829 * Free a diradd dependency structure. This routine must be called
6830 * with splbio interrupts blocked.
6831 */
6832static void
6833free_diradd(dap, wkhd)
6834	struct diradd *dap;
6835	struct workhead *wkhd;
6836{
6837	struct dirrem *dirrem;
6838	struct pagedep *pagedep;
6839	struct inodedep *inodedep;
6840	struct mkdir *mkdir, *nextmd;
6841
6842	mtx_assert(&lk, MA_OWNED);
6843	LIST_REMOVE(dap, da_pdlist);
6844	if (dap->da_state & ONWORKLIST)
6845		WORKLIST_REMOVE(&dap->da_list);
6846	if ((dap->da_state & DIRCHG) == 0) {
6847		pagedep = dap->da_pagedep;
6848	} else {
6849		dirrem = dap->da_previous;
6850		pagedep = dirrem->dm_pagedep;
6851		dirrem->dm_dirinum = pagedep->pd_ino;
6852		dirrem->dm_state |= COMPLETE;
6853		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
6854			add_to_worklist(&dirrem->dm_list, 0);
6855	}
6856	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
6857	    0, &inodedep) != 0)
6858		if (inodedep->id_mkdiradd == dap)
6859			inodedep->id_mkdiradd = NULL;
6860	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6861		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
6862			nextmd = LIST_NEXT(mkdir, md_mkdirs);
6863			if (mkdir->md_diradd != dap)
6864				continue;
6865			dap->da_state &=
6866			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
6867			LIST_REMOVE(mkdir, md_mkdirs);
6868			if (mkdir->md_state & ONWORKLIST)
6869				WORKLIST_REMOVE(&mkdir->md_list);
6870			if (mkdir->md_jaddref != NULL)
6871				panic("free_diradd: Unexpected jaddref");
6872			WORKITEM_FREE(mkdir, D_MKDIR);
6873			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
6874				break;
6875		}
6876		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
6877			panic("free_diradd: unfound ref");
6878	}
6879	if (inodedep)
6880		free_inodedep(inodedep);
6881	/*
6882	 * Free any journal segments waiting for the directory write.
6883	 */
6884	handle_jwork(&dap->da_jwork);
6885	WORKITEM_FREE(dap, D_DIRADD);
6886}
6887
6888/*
6889 * Directory entry removal dependencies.
6890 *
6891 * When removing a directory entry, the entry's inode pointer must be
6892 * zero'ed on disk before the corresponding inode's link count is decremented
6893 * (possibly freeing the inode for re-use). This dependency is handled by
6894 * updating the directory entry but delaying the inode count reduction until
6895 * after the directory block has been written to disk. After this point, the
6896 * inode count can be decremented whenever it is convenient.
6897 */
6898
6899/*
6900 * This routine should be called immediately after removing
6901 * a directory entry.  The inode's link count should not be
6902 * decremented by the calling procedure -- the soft updates
6903 * code will do this task when it is safe.
6904 */
6905void
6906softdep_setup_remove(bp, dp, ip, isrmdir)
6907	struct buf *bp;		/* buffer containing directory block */
6908	struct inode *dp;	/* inode for the directory being modified */
6909	struct inode *ip;	/* inode for directory entry being removed */
6910	int isrmdir;		/* indicates if doing RMDIR */
6911{
6912	struct dirrem *dirrem, *prevdirrem;
6913	struct inodedep *inodedep;
6914	int direct;
6915
6916	/*
6917	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
6918	 * newdirrem() to setup the full directory remove which requires
6919	 * isrmdir > 1.
6920	 */
6921	dirrem = newdirrem(bp, dp, ip, isrmdir?2:0, &prevdirrem);
6922	/*
6923	 * Add the dirrem to the inodedep's pending remove list for quick
6924	 * discovery later.
6925	 */
6926	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
6927	    &inodedep) == 0)
6928		panic("softdep_setup_remove: Lost inodedep.");
6929	dirrem->dm_state |= ONDEPLIST;
6930	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
6931
6932	/*
6933	 * If the COMPLETE flag is clear, then there were no active
6934	 * entries and we want to roll back to a zeroed entry until
6935	 * the new inode is committed to disk. If the COMPLETE flag is
6936	 * set then we have deleted an entry that never made it to
6937	 * disk. If the entry we deleted resulted from a name change,
6938	 * then the old name still resides on disk. We cannot delete
6939	 * its inode (returned to us in prevdirrem) until the zeroed
6940	 * directory entry gets to disk. The new inode has never been
6941	 * referenced on the disk, so can be deleted immediately.
6942	 */
6943	if ((dirrem->dm_state & COMPLETE) == 0) {
6944		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
6945		    dm_next);
6946		FREE_LOCK(&lk);
6947	} else {
6948		if (prevdirrem != NULL)
6949			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
6950			    prevdirrem, dm_next);
6951		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
6952		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
6953		FREE_LOCK(&lk);
6954		if (direct)
6955			handle_workitem_remove(dirrem, NULL);
6956	}
6957}
6958
6959/*
6960 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
6961 * pd_pendinghd list of a pagedep.
6962 */
6963static struct diradd *
6964diradd_lookup(pagedep, offset)
6965	struct pagedep *pagedep;
6966	int offset;
6967{
6968	struct diradd *dap;
6969
6970	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
6971		if (dap->da_offset == offset)
6972			return (dap);
6973	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6974		if (dap->da_offset == offset)
6975			return (dap);
6976	return (NULL);
6977}
6978
6979/*
6980 * Search for a .. diradd dependency in a directory that is being removed.
6981 * If the directory was renamed to a new parent we have a diradd rather
6982 * than a mkdir for the .. entry.  We need to cancel it now before
6983 * it is found in truncate().
6984 */
6985static struct jremref *
6986cancel_diradd_dotdot(ip, dirrem, jremref)
6987	struct inode *ip;
6988	struct dirrem *dirrem;
6989	struct jremref *jremref;
6990{
6991	struct pagedep *pagedep;
6992	struct diradd *dap;
6993	struct worklist *wk;
6994
6995	if (pagedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 0,
6996	    &pagedep) == 0)
6997		return (jremref);
6998	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
6999	if (dap == NULL)
7000		return (jremref);
7001	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
7002	/*
7003	 * Mark any journal work as belonging to the parent so it is freed
7004	 * with the .. reference.
7005	 */
7006	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
7007		wk->wk_state |= MKDIR_PARENT;
7008	return (NULL);
7009}
7010
7011/*
7012 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
7013 * replace it with a dirrem/diradd pair as a result of re-parenting a
7014 * directory.  This ensures that we don't simultaneously have a mkdir and
7015 * a diradd for the same .. entry.
7016 */
7017static struct jremref *
7018cancel_mkdir_dotdot(ip, dirrem, jremref)
7019	struct inode *ip;
7020	struct dirrem *dirrem;
7021	struct jremref *jremref;
7022{
7023	struct inodedep *inodedep;
7024	struct jaddref *jaddref;
7025	struct mkdir *mkdir;
7026	struct diradd *dap;
7027
7028	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
7029	    &inodedep) == 0)
7030		panic("cancel_mkdir_dotdot: Lost inodedep");
7031	dap = inodedep->id_mkdiradd;
7032	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
7033		return (jremref);
7034	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
7035	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
7036		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
7037			break;
7038	if (mkdir == NULL)
7039		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
7040	if ((jaddref = mkdir->md_jaddref) != NULL) {
7041		mkdir->md_jaddref = NULL;
7042		jaddref->ja_state &= ~MKDIR_PARENT;
7043		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
7044		    &inodedep) == 0)
7045			panic("cancel_mkdir_dotdot: Lost parent inodedep");
7046		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
7047			journal_jremref(dirrem, jremref, inodedep);
7048			jremref = NULL;
7049		}
7050	}
7051	if (mkdir->md_state & ONWORKLIST)
7052		WORKLIST_REMOVE(&mkdir->md_list);
7053	mkdir->md_state |= ALLCOMPLETE;
7054	complete_mkdir(mkdir);
7055	return (jremref);
7056}
7057
7058static void
7059journal_jremref(dirrem, jremref, inodedep)
7060	struct dirrem *dirrem;
7061	struct jremref *jremref;
7062	struct inodedep *inodedep;
7063{
7064
7065	if (inodedep == NULL)
7066		if (inodedep_lookup(jremref->jr_list.wk_mp,
7067		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
7068			panic("journal_jremref: Lost inodedep");
7069	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
7070	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
7071	add_to_journal(&jremref->jr_list);
7072}
7073
7074static void
7075dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
7076	struct dirrem *dirrem;
7077	struct jremref *jremref;
7078	struct jremref *dotremref;
7079	struct jremref *dotdotremref;
7080{
7081	struct inodedep *inodedep;
7082
7083
7084	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
7085	    &inodedep) == 0)
7086		panic("dirrem_journal: Lost inodedep");
7087	journal_jremref(dirrem, jremref, inodedep);
7088	if (dotremref)
7089		journal_jremref(dirrem, dotremref, inodedep);
7090	if (dotdotremref)
7091		journal_jremref(dirrem, dotdotremref, NULL);
7092}
7093
7094/*
7095 * Allocate a new dirrem if appropriate and return it along with
7096 * its associated pagedep. Called without a lock, returns with lock.
7097 */
7098static long num_dirrem;		/* number of dirrem allocated */
7099static struct dirrem *
7100newdirrem(bp, dp, ip, isrmdir, prevdirremp)
7101	struct buf *bp;		/* buffer containing directory block */
7102	struct inode *dp;	/* inode for the directory being modified */
7103	struct inode *ip;	/* inode for directory entry being removed */
7104	int isrmdir;		/* indicates if doing RMDIR */
7105	struct dirrem **prevdirremp; /* previously referenced inode, if any */
7106{
7107	int offset;
7108	ufs_lbn_t lbn;
7109	struct diradd *dap;
7110	struct dirrem *dirrem;
7111	struct pagedep *pagedep;
7112	struct jremref *jremref;
7113	struct jremref *dotremref;
7114	struct jremref *dotdotremref;
7115	struct vnode *dvp;
7116
7117	/*
7118	 * Whiteouts have no deletion dependencies.
7119	 */
7120	if (ip == NULL)
7121		panic("newdirrem: whiteout");
7122	dvp = ITOV(dp);
7123	/*
7124	 * If we are over our limit, try to improve the situation.
7125	 * Limiting the number of dirrem structures will also limit
7126	 * the number of freefile and freeblks structures.
7127	 */
7128	ACQUIRE_LOCK(&lk);
7129	if (!(ip->i_flags & SF_SNAPSHOT) && num_dirrem > max_softdeps / 2)
7130		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE);
7131	num_dirrem += 1;
7132	FREE_LOCK(&lk);
7133	dirrem = malloc(sizeof(struct dirrem),
7134		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
7135	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
7136	LIST_INIT(&dirrem->dm_jremrefhd);
7137	LIST_INIT(&dirrem->dm_jwork);
7138	dirrem->dm_state = isrmdir ? RMDIR : 0;
7139	dirrem->dm_oldinum = ip->i_number;
7140	*prevdirremp = NULL;
7141	/*
7142	 * Allocate remove reference structures to track journal write
7143	 * dependencies.  We will always have one for the link and
7144	 * when doing directories we will always have one more for dot.
7145	 * When renaming a directory we skip the dotdot link change so
7146	 * this is not needed.
7147	 */
7148	jremref = dotremref = dotdotremref = NULL;
7149	if (DOINGSUJ(dvp)) {
7150		if (isrmdir) {
7151			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
7152			    ip->i_effnlink + 2);
7153			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
7154			    ip->i_effnlink + 1);
7155		} else
7156			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
7157			    ip->i_effnlink + 1);
7158		if (isrmdir > 1) {
7159			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
7160			    dp->i_effnlink + 1);
7161			dotdotremref->jr_state |= MKDIR_PARENT;
7162		}
7163	}
7164	ACQUIRE_LOCK(&lk);
7165	lbn = lblkno(dp->i_fs, dp->i_offset);
7166	offset = blkoff(dp->i_fs, dp->i_offset);
7167	if (pagedep_lookup(UFSTOVFS(dp->i_ump), dp->i_number, lbn, DEPALLOC,
7168	    &pagedep) == 0)
7169		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
7170	dirrem->dm_pagedep = pagedep;
7171	/*
7172	 * If we're renaming a .. link to a new directory, cancel any
7173	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
7174	 * the jremref is preserved for any potential diradd in this
7175	 * location.  This can not coincide with a rmdir.
7176	 */
7177	if (dp->i_offset == DOTDOT_OFFSET) {
7178		if (isrmdir)
7179			panic("newdirrem: .. directory change during remove?");
7180		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
7181	}
7182	/*
7183	 * If we're removing a directory search for the .. dependency now and
7184	 * cancel it.  Any pending journal work will be added to the dirrem
7185	 * to be completed when the workitem remove completes.
7186	 */
7187	if (isrmdir > 1)
7188		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
7189	/*
7190	 * Check for a diradd dependency for the same directory entry.
7191	 * If present, then both dependencies become obsolete and can
7192	 * be de-allocated.
7193	 */
7194	dap = diradd_lookup(pagedep, offset);
7195	if (dap == NULL) {
7196		/*
7197		 * Link the jremref structures into the dirrem so they are
7198		 * written prior to the pagedep.
7199		 */
7200		if (jremref)
7201			dirrem_journal(dirrem, jremref, dotremref,
7202			    dotdotremref);
7203		return (dirrem);
7204	}
7205	/*
7206	 * Must be ATTACHED at this point.
7207	 */
7208	if ((dap->da_state & ATTACHED) == 0)
7209		panic("newdirrem: not ATTACHED");
7210	if (dap->da_newinum != ip->i_number)
7211		panic("newdirrem: inum %d should be %d",
7212		    ip->i_number, dap->da_newinum);
7213	/*
7214	 * If we are deleting a changed name that never made it to disk,
7215	 * then return the dirrem describing the previous inode (which
7216	 * represents the inode currently referenced from this entry on disk).
7217	 */
7218	if ((dap->da_state & DIRCHG) != 0) {
7219		*prevdirremp = dap->da_previous;
7220		dap->da_state &= ~DIRCHG;
7221		dap->da_pagedep = pagedep;
7222	}
7223	/*
7224	 * We are deleting an entry that never made it to disk.
7225	 * Mark it COMPLETE so we can delete its inode immediately.
7226	 */
7227	dirrem->dm_state |= COMPLETE;
7228	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
7229#ifdef SUJ_DEBUG
7230	if (isrmdir == 0) {
7231		struct worklist *wk;
7232
7233		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
7234			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
7235				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
7236	}
7237#endif
7238
7239	return (dirrem);
7240}
7241
7242/*
7243 * Directory entry change dependencies.
7244 *
7245 * Changing an existing directory entry requires that an add operation
7246 * be completed first followed by a deletion. The semantics for the addition
7247 * are identical to the description of adding a new entry above except
7248 * that the rollback is to the old inode number rather than zero. Once
7249 * the addition dependency is completed, the removal is done as described
7250 * in the removal routine above.
7251 */
7252
7253/*
7254 * This routine should be called immediately after changing
7255 * a directory entry.  The inode's link count should not be
7256 * decremented by the calling procedure -- the soft updates
7257 * code will perform this task when it is safe.
7258 */
7259void
7260softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
7261	struct buf *bp;		/* buffer containing directory block */
7262	struct inode *dp;	/* inode for the directory being modified */
7263	struct inode *ip;	/* inode for directory entry being removed */
7264	ino_t newinum;		/* new inode number for changed entry */
7265	int isrmdir;		/* indicates if doing RMDIR */
7266{
7267	int offset;
7268	struct diradd *dap = NULL;
7269	struct dirrem *dirrem, *prevdirrem;
7270	struct pagedep *pagedep;
7271	struct inodedep *inodedep;
7272	struct jaddref *jaddref;
7273	struct mount *mp;
7274
7275	offset = blkoff(dp->i_fs, dp->i_offset);
7276	mp = UFSTOVFS(dp->i_ump);
7277
7278	/*
7279	 * Whiteouts do not need diradd dependencies.
7280	 */
7281	if (newinum != WINO) {
7282		dap = malloc(sizeof(struct diradd),
7283		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
7284		workitem_alloc(&dap->da_list, D_DIRADD, mp);
7285		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
7286		dap->da_offset = offset;
7287		dap->da_newinum = newinum;
7288		LIST_INIT(&dap->da_jwork);
7289	}
7290
7291	/*
7292	 * Allocate a new dirrem and ACQUIRE_LOCK.
7293	 */
7294	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
7295	pagedep = dirrem->dm_pagedep;
7296	/*
7297	 * The possible values for isrmdir:
7298	 *	0 - non-directory file rename
7299	 *	1 - directory rename within same directory
7300	 *   inum - directory rename to new directory of given inode number
7301	 * When renaming to a new directory, we are both deleting and
7302	 * creating a new directory entry, so the link count on the new
7303	 * directory should not change. Thus we do not need the followup
7304	 * dirrem which is usually done in handle_workitem_remove. We set
7305	 * the DIRCHG flag to tell handle_workitem_remove to skip the
7306	 * followup dirrem.
7307	 */
7308	if (isrmdir > 1)
7309		dirrem->dm_state |= DIRCHG;
7310
7311	/*
7312	 * Whiteouts have no additional dependencies,
7313	 * so just put the dirrem on the correct list.
7314	 */
7315	if (newinum == WINO) {
7316		if ((dirrem->dm_state & COMPLETE) == 0) {
7317			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
7318			    dm_next);
7319		} else {
7320			dirrem->dm_dirinum = pagedep->pd_ino;
7321			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
7322				add_to_worklist(&dirrem->dm_list, 0);
7323		}
7324		FREE_LOCK(&lk);
7325		return;
7326	}
7327	/*
7328	 * Add the dirrem to the inodedep's pending remove list for quick
7329	 * discovery later.  A valid nlinkdelta ensures that this lookup
7330	 * will not fail.
7331	 */
7332	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
7333		panic("softdep_setup_directory_change: Lost inodedep.");
7334	dirrem->dm_state |= ONDEPLIST;
7335	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
7336
7337	/*
7338	 * If the COMPLETE flag is clear, then there were no active
7339	 * entries and we want to roll back to the previous inode until
7340	 * the new inode is committed to disk. If the COMPLETE flag is
7341	 * set, then we have deleted an entry that never made it to disk.
7342	 * If the entry we deleted resulted from a name change, then the old
7343	 * inode reference still resides on disk. Any rollback that we do
7344	 * needs to be to that old inode (returned to us in prevdirrem). If
7345	 * the entry we deleted resulted from a create, then there is
7346	 * no entry on the disk, so we want to roll back to zero rather
7347	 * than the uncommitted inode. In either of the COMPLETE cases we
7348	 * want to immediately free the unwritten and unreferenced inode.
7349	 */
7350	if ((dirrem->dm_state & COMPLETE) == 0) {
7351		dap->da_previous = dirrem;
7352	} else {
7353		if (prevdirrem != NULL) {
7354			dap->da_previous = prevdirrem;
7355		} else {
7356			dap->da_state &= ~DIRCHG;
7357			dap->da_pagedep = pagedep;
7358		}
7359		dirrem->dm_dirinum = pagedep->pd_ino;
7360		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
7361			add_to_worklist(&dirrem->dm_list, 0);
7362	}
7363	/*
7364	 * Lookup the jaddref for this journal entry.  We must finish
7365	 * initializing it and make the diradd write dependent on it.
7366	 * If we're not journaling Put it on the id_bufwait list if the inode
7367	 * is not yet written. If it is written, do the post-inode write
7368	 * processing to put it on the id_pendinghd list.
7369	 */
7370	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
7371	if (mp->mnt_kern_flag & MNTK_SUJ) {
7372		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
7373		    inoreflst);
7374		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
7375		    ("softdep_setup_directory_change: bad jaddref %p",
7376		    jaddref));
7377		jaddref->ja_diroff = dp->i_offset;
7378		jaddref->ja_diradd = dap;
7379		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
7380		    dap, da_pdlist);
7381		add_to_journal(&jaddref->ja_list);
7382	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
7383		dap->da_state |= COMPLETE;
7384		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
7385		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
7386	} else {
7387		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
7388		    dap, da_pdlist);
7389		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
7390	}
7391	/*
7392	 * If we're making a new name for a directory that has not been
7393	 * committed when need to move the dot and dotdot references to
7394	 * this new name.
7395	 */
7396	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
7397		merge_diradd(inodedep, dap);
7398	FREE_LOCK(&lk);
7399}
7400
7401/*
7402 * Called whenever the link count on an inode is changed.
7403 * It creates an inode dependency so that the new reference(s)
7404 * to the inode cannot be committed to disk until the updated
7405 * inode has been written.
7406 */
7407void
7408softdep_change_linkcnt(ip)
7409	struct inode *ip;	/* the inode with the increased link count */
7410{
7411	struct inodedep *inodedep;
7412
7413	ACQUIRE_LOCK(&lk);
7414	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
7415	if (ip->i_nlink < ip->i_effnlink)
7416		panic("softdep_change_linkcnt: bad delta");
7417	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7418	FREE_LOCK(&lk);
7419}
7420
7421/*
7422 * Attach a sbdep dependency to the superblock buf so that we can keep
7423 * track of the head of the linked list of referenced but unlinked inodes.
7424 */
7425void
7426softdep_setup_sbupdate(ump, fs, bp)
7427	struct ufsmount *ump;
7428	struct fs *fs;
7429	struct buf *bp;
7430{
7431	struct sbdep *sbdep;
7432	struct worklist *wk;
7433
7434	if ((fs->fs_flags & FS_SUJ) == 0)
7435		return;
7436	LIST_FOREACH(wk, &bp->b_dep, wk_list)
7437		if (wk->wk_type == D_SBDEP)
7438			break;
7439	if (wk != NULL)
7440		return;
7441	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
7442	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
7443	sbdep->sb_fs = fs;
7444	sbdep->sb_ump = ump;
7445	ACQUIRE_LOCK(&lk);
7446	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
7447	FREE_LOCK(&lk);
7448}
7449
7450/*
7451 * Return the first unlinked inodedep which is ready to be the head of the
7452 * list.  The inodedep and all those after it must have valid next pointers.
7453 */
7454static struct inodedep *
7455first_unlinked_inodedep(ump)
7456	struct ufsmount *ump;
7457{
7458	struct inodedep *inodedep;
7459	struct inodedep *idp;
7460
7461	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
7462	    inodedep; inodedep = idp) {
7463		if ((inodedep->id_state & UNLINKNEXT) == 0)
7464			return (NULL);
7465		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7466		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
7467			break;
7468		if ((inodedep->id_state & UNLINKPREV) == 0)
7469			panic("first_unlinked_inodedep: prev != next");
7470	}
7471	if (inodedep == NULL)
7472		return (NULL);
7473
7474	return (inodedep);
7475}
7476
7477/*
7478 * Set the sujfree unlinked head pointer prior to writing a superblock.
7479 */
7480static void
7481initiate_write_sbdep(sbdep)
7482	struct sbdep *sbdep;
7483{
7484	struct inodedep *inodedep;
7485	struct fs *bpfs;
7486	struct fs *fs;
7487
7488	bpfs = sbdep->sb_fs;
7489	fs = sbdep->sb_ump->um_fs;
7490	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
7491	if (inodedep) {
7492		fs->fs_sujfree = inodedep->id_ino;
7493		inodedep->id_state |= UNLINKPREV;
7494	} else
7495		fs->fs_sujfree = 0;
7496	bpfs->fs_sujfree = fs->fs_sujfree;
7497}
7498
7499/*
7500 * After a superblock is written determine whether it must be written again
7501 * due to a changing unlinked list head.
7502 */
7503static int
7504handle_written_sbdep(sbdep, bp)
7505	struct sbdep *sbdep;
7506	struct buf *bp;
7507{
7508	struct inodedep *inodedep;
7509	struct mount *mp;
7510	struct fs *fs;
7511
7512	fs = sbdep->sb_fs;
7513	mp = UFSTOVFS(sbdep->sb_ump);
7514	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
7515	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
7516	    (inodedep == NULL && fs->fs_sujfree != 0)) {
7517		bdirty(bp);
7518		return (1);
7519	}
7520	WORKITEM_FREE(sbdep, D_SBDEP);
7521	if (fs->fs_sujfree == 0)
7522		return (0);
7523	if (inodedep_lookup(mp, fs->fs_sujfree, 0, &inodedep) == 0)
7524		panic("handle_written_sbdep: lost inodedep");
7525	/*
7526	 * Now that we have a record of this inode in stable store allow it
7527	 * to be written to free up pending work.  Inodes may see a lot of
7528	 * write activity after they are unlinked which we must not hold up.
7529	 */
7530	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
7531		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
7532			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
7533			    inodedep, inodedep->id_state);
7534		if (inodedep->id_state & UNLINKONLIST)
7535			break;
7536		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
7537	}
7538
7539	return (0);
7540}
7541
7542/*
7543 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
7544 */
7545static void
7546unlinked_inodedep(mp, inodedep)
7547	struct mount *mp;
7548	struct inodedep *inodedep;
7549{
7550	struct ufsmount *ump;
7551
7552	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0)
7553		return;
7554	ump = VFSTOUFS(mp);
7555	ump->um_fs->fs_fmod = 1;
7556	inodedep->id_state |= UNLINKED;
7557	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
7558}
7559
7560/*
7561 * Remove an inodedep from the unlinked inodedep list.  This may require
7562 * disk writes if the inode has made it that far.
7563 */
7564static void
7565clear_unlinked_inodedep(inodedep)
7566	struct inodedep *inodedep;
7567{
7568	struct ufsmount *ump;
7569	struct inodedep *idp;
7570	struct inodedep *idn;
7571	struct fs *fs;
7572	struct buf *bp;
7573	ino_t ino;
7574	ino_t nino;
7575	ino_t pino;
7576	int error;
7577
7578	ump = VFSTOUFS(inodedep->id_list.wk_mp);
7579	fs = ump->um_fs;
7580	ino = inodedep->id_ino;
7581	error = 0;
7582	for (;;) {
7583		/*
7584		 * If nothing has yet been written simply remove us from
7585		 * the in memory list and return.  This is the most common
7586		 * case where handle_workitem_remove() loses the final
7587		 * reference.
7588		 */
7589		if ((inodedep->id_state & UNLINKLINKS) == 0)
7590			break;
7591		/*
7592		 * If we have a NEXT pointer and no PREV pointer we can simply
7593		 * clear NEXT's PREV and remove ourselves from the list.  Be
7594		 * careful not to clear PREV if the superblock points at
7595		 * next as well.
7596		 */
7597		idn = TAILQ_NEXT(inodedep, id_unlinked);
7598		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
7599			if (idn && fs->fs_sujfree != idn->id_ino)
7600				idn->id_state &= ~UNLINKPREV;
7601			break;
7602		}
7603		/*
7604		 * Here we have an inodedep which is actually linked into
7605		 * the list.  We must remove it by forcing a write to the
7606		 * link before us, whether it be the superblock or an inode.
7607		 * Unfortunately the list may change while we're waiting
7608		 * on the buf lock for either resource so we must loop until
7609		 * we lock the right one.  If both the superblock and an
7610		 * inode point to this inode we must clear the inode first
7611		 * followed by the superblock.
7612		 */
7613		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7614		pino = 0;
7615		if (idp && (idp->id_state & UNLINKNEXT))
7616			pino = idp->id_ino;
7617		FREE_LOCK(&lk);
7618		if (pino == 0)
7619			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
7620			    (int)fs->fs_sbsize, 0, 0, 0);
7621		else
7622			error = bread(ump->um_devvp,
7623			    fsbtodb(fs, ino_to_fsba(fs, pino)),
7624			    (int)fs->fs_bsize, NOCRED, &bp);
7625		ACQUIRE_LOCK(&lk);
7626		if (error)
7627			break;
7628		/* If the list has changed restart the loop. */
7629		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7630		nino = 0;
7631		if (idp && (idp->id_state & UNLINKNEXT))
7632			nino = idp->id_ino;
7633		if (nino != pino ||
7634		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
7635			FREE_LOCK(&lk);
7636			brelse(bp);
7637			ACQUIRE_LOCK(&lk);
7638			continue;
7639		}
7640		/*
7641		 * Remove us from the in memory list.  After this we cannot
7642		 * access the inodedep.
7643		 */
7644		idn = TAILQ_NEXT(inodedep, id_unlinked);
7645		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
7646		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
7647		/*
7648		 * Determine the next inode number.
7649		 */
7650		nino = 0;
7651		if (idn) {
7652			/*
7653			 * If next isn't on the list we can just clear prev's
7654			 * state and schedule it to be fixed later.  No need
7655			 * to synchronously write if we're not in the real
7656			 * list.
7657			 */
7658			if ((idn->id_state & UNLINKPREV) == 0 && pino != 0) {
7659				idp->id_state &= ~UNLINKNEXT;
7660				if ((idp->id_state & ONWORKLIST) == 0)
7661					WORKLIST_INSERT(&bp->b_dep,
7662					    &idp->id_list);
7663				FREE_LOCK(&lk);
7664				bawrite(bp);
7665				ACQUIRE_LOCK(&lk);
7666				return;
7667			}
7668			nino = idn->id_ino;
7669		}
7670		FREE_LOCK(&lk);
7671		/*
7672		 * The predecessor's next pointer is manually updated here
7673		 * so that the NEXT flag is never cleared for an element
7674		 * that is in the list.
7675		 */
7676		if (pino == 0) {
7677			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
7678			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
7679			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
7680			    bp);
7681		} else if (fs->fs_magic == FS_UFS1_MAGIC)
7682			((struct ufs1_dinode *)bp->b_data +
7683			    ino_to_fsbo(fs, pino))->di_freelink = nino;
7684		else
7685			((struct ufs2_dinode *)bp->b_data +
7686			    ino_to_fsbo(fs, pino))->di_freelink = nino;
7687		/*
7688		 * If the bwrite fails we have no recourse to recover.  The
7689		 * filesystem is corrupted already.
7690		 */
7691		bwrite(bp);
7692		ACQUIRE_LOCK(&lk);
7693		/*
7694		 * If the superblock pointer still needs to be cleared force
7695		 * a write here.
7696		 */
7697		if (fs->fs_sujfree == ino) {
7698			FREE_LOCK(&lk);
7699			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
7700			    (int)fs->fs_sbsize, 0, 0, 0);
7701			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
7702			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
7703			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
7704			    bp);
7705			bwrite(bp);
7706			ACQUIRE_LOCK(&lk);
7707		}
7708		if (fs->fs_sujfree != ino)
7709			return;
7710		panic("clear_unlinked_inodedep: Failed to clear free head");
7711	}
7712	if (inodedep->id_ino == fs->fs_sujfree)
7713		panic("clear_unlinked_inodedep: Freeing head of free list");
7714	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
7715	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
7716	return;
7717}
7718
7719/*
7720 * This workitem decrements the inode's link count.
7721 * If the link count reaches zero, the file is removed.
7722 */
7723static void
7724handle_workitem_remove(dirrem, xp)
7725	struct dirrem *dirrem;
7726	struct vnode *xp;
7727{
7728	struct inodedep *inodedep;
7729	struct workhead dotdotwk;
7730	struct worklist *wk;
7731	struct ufsmount *ump;
7732	struct mount *mp;
7733	struct vnode *vp;
7734	struct inode *ip;
7735	ino_t oldinum;
7736	int error;
7737
7738	if (dirrem->dm_state & ONWORKLIST)
7739		panic("handle_workitem_remove: dirrem %p still on worklist",
7740		    dirrem);
7741	oldinum = dirrem->dm_oldinum;
7742	mp = dirrem->dm_list.wk_mp;
7743	ump = VFSTOUFS(mp);
7744	if ((vp = xp) == NULL &&
7745	    (error = ffs_vgetf(mp, oldinum, LK_EXCLUSIVE, &vp,
7746	    FFSV_FORCEINSMQ)) != 0) {
7747		softdep_error("handle_workitem_remove: vget", error);
7748		return;
7749	}
7750	ip = VTOI(vp);
7751	ACQUIRE_LOCK(&lk);
7752	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
7753		panic("handle_workitem_remove: lost inodedep");
7754	if (dirrem->dm_state & ONDEPLIST)
7755		LIST_REMOVE(dirrem, dm_inonext);
7756	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
7757	    ("handle_workitem_remove:  Journal entries not written."));
7758
7759	/*
7760	 * Move all dependencies waiting on the remove to complete
7761	 * from the dirrem to the inode inowait list to be completed
7762	 * after the inode has been updated and written to disk.  Any
7763	 * marked MKDIR_PARENT are saved to be completed when the .. ref
7764	 * is removed.
7765	 */
7766	LIST_INIT(&dotdotwk);
7767	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
7768		WORKLIST_REMOVE(wk);
7769		if (wk->wk_state & MKDIR_PARENT) {
7770			wk->wk_state &= ~MKDIR_PARENT;
7771			WORKLIST_INSERT(&dotdotwk, wk);
7772			continue;
7773		}
7774		WORKLIST_INSERT(&inodedep->id_inowait, wk);
7775	}
7776	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
7777	/*
7778	 * Normal file deletion.
7779	 */
7780	if ((dirrem->dm_state & RMDIR) == 0) {
7781		ip->i_nlink--;
7782		DIP_SET(ip, i_nlink, ip->i_nlink);
7783		ip->i_flag |= IN_CHANGE;
7784		if (ip->i_nlink < ip->i_effnlink)
7785			panic("handle_workitem_remove: bad file delta");
7786		if (ip->i_nlink == 0)
7787			unlinked_inodedep(mp, inodedep);
7788		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7789		num_dirrem -= 1;
7790		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
7791		    ("handle_workitem_remove: worklist not empty. %s",
7792		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
7793		WORKITEM_FREE(dirrem, D_DIRREM);
7794		FREE_LOCK(&lk);
7795		goto out;
7796	}
7797	/*
7798	 * Directory deletion. Decrement reference count for both the
7799	 * just deleted parent directory entry and the reference for ".".
7800	 * Arrange to have the reference count on the parent decremented
7801	 * to account for the loss of "..".
7802	 */
7803	ip->i_nlink -= 2;
7804	DIP_SET(ip, i_nlink, ip->i_nlink);
7805	ip->i_flag |= IN_CHANGE;
7806	if (ip->i_nlink < ip->i_effnlink)
7807		panic("handle_workitem_remove: bad dir delta");
7808	if (ip->i_nlink == 0)
7809		unlinked_inodedep(mp, inodedep);
7810	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7811	/*
7812	 * Rename a directory to a new parent. Since, we are both deleting
7813	 * and creating a new directory entry, the link count on the new
7814	 * directory should not change. Thus we skip the followup dirrem.
7815	 */
7816	if (dirrem->dm_state & DIRCHG) {
7817		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
7818		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
7819		num_dirrem -= 1;
7820		WORKITEM_FREE(dirrem, D_DIRREM);
7821		FREE_LOCK(&lk);
7822		goto out;
7823	}
7824	dirrem->dm_state = ONDEPLIST;
7825	dirrem->dm_oldinum = dirrem->dm_dirinum;
7826	/*
7827	 * Place the dirrem on the parent's diremhd list.
7828	 */
7829	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
7830		panic("handle_workitem_remove: lost dir inodedep");
7831	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
7832	/*
7833	 * If the allocated inode has never been written to disk, then
7834	 * the on-disk inode is zero'ed and we can remove the file
7835	 * immediately.  When journaling if the inode has been marked
7836	 * unlinked and not DEPCOMPLETE we know it can never be written.
7837	 */
7838	inodedep_lookup(mp, oldinum, 0, &inodedep);
7839	if (inodedep == NULL ||
7840	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
7841	    check_inode_unwritten(inodedep)) {
7842		if (xp != NULL)
7843			add_to_worklist(&dirrem->dm_list, 0);
7844		FREE_LOCK(&lk);
7845		if (xp == NULL) {
7846			vput(vp);
7847			handle_workitem_remove(dirrem, NULL);
7848		}
7849		return;
7850	}
7851	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
7852	FREE_LOCK(&lk);
7853	ip->i_flag |= IN_CHANGE;
7854out:
7855	ffs_update(vp, 0);
7856	if (xp == NULL)
7857		vput(vp);
7858}
7859
7860/*
7861 * Inode de-allocation dependencies.
7862 *
7863 * When an inode's link count is reduced to zero, it can be de-allocated. We
7864 * found it convenient to postpone de-allocation until after the inode is
7865 * written to disk with its new link count (zero).  At this point, all of the
7866 * on-disk inode's block pointers are nullified and, with careful dependency
7867 * list ordering, all dependencies related to the inode will be satisfied and
7868 * the corresponding dependency structures de-allocated.  So, if/when the
7869 * inode is reused, there will be no mixing of old dependencies with new
7870 * ones.  This artificial dependency is set up by the block de-allocation
7871 * procedure above (softdep_setup_freeblocks) and completed by the
7872 * following procedure.
7873 */
7874static void
7875handle_workitem_freefile(freefile)
7876	struct freefile *freefile;
7877{
7878	struct workhead wkhd;
7879	struct fs *fs;
7880	struct inodedep *idp;
7881	struct ufsmount *ump;
7882	int error;
7883
7884	ump = VFSTOUFS(freefile->fx_list.wk_mp);
7885	fs = ump->um_fs;
7886#ifdef DEBUG
7887	ACQUIRE_LOCK(&lk);
7888	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
7889	FREE_LOCK(&lk);
7890	if (error)
7891		panic("handle_workitem_freefile: inodedep %p survived", idp);
7892#endif
7893	UFS_LOCK(ump);
7894	fs->fs_pendinginodes -= 1;
7895	UFS_UNLOCK(ump);
7896	LIST_INIT(&wkhd);
7897	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
7898	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
7899	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
7900		softdep_error("handle_workitem_freefile", error);
7901	ACQUIRE_LOCK(&lk);
7902	WORKITEM_FREE(freefile, D_FREEFILE);
7903	FREE_LOCK(&lk);
7904}
7905
7906
7907/*
7908 * Helper function which unlinks marker element from work list and returns
7909 * the next element on the list.
7910 */
7911static __inline struct worklist *
7912markernext(struct worklist *marker)
7913{
7914	struct worklist *next;
7915
7916	next = LIST_NEXT(marker, wk_list);
7917	LIST_REMOVE(marker, wk_list);
7918	return next;
7919}
7920
7921/*
7922 * Disk writes.
7923 *
7924 * The dependency structures constructed above are most actively used when file
7925 * system blocks are written to disk.  No constraints are placed on when a
7926 * block can be written, but unsatisfied update dependencies are made safe by
7927 * modifying (or replacing) the source memory for the duration of the disk
7928 * write.  When the disk write completes, the memory block is again brought
7929 * up-to-date.
7930 *
7931 * In-core inode structure reclamation.
7932 *
7933 * Because there are a finite number of "in-core" inode structures, they are
7934 * reused regularly.  By transferring all inode-related dependencies to the
7935 * in-memory inode block and indexing them separately (via "inodedep"s), we
7936 * can allow "in-core" inode structures to be reused at any time and avoid
7937 * any increase in contention.
7938 *
7939 * Called just before entering the device driver to initiate a new disk I/O.
7940 * The buffer must be locked, thus, no I/O completion operations can occur
7941 * while we are manipulating its associated dependencies.
7942 */
7943static void
7944softdep_disk_io_initiation(bp)
7945	struct buf *bp;		/* structure describing disk write to occur */
7946{
7947	struct worklist *wk;
7948	struct worklist marker;
7949	struct inodedep *inodedep;
7950	struct freeblks *freeblks;
7951	struct jfreeblk *jfreeblk;
7952	struct newblk *newblk;
7953
7954	/*
7955	 * We only care about write operations. There should never
7956	 * be dependencies for reads.
7957	 */
7958	if (bp->b_iocmd != BIO_WRITE)
7959		panic("softdep_disk_io_initiation: not write");
7960
7961	if (bp->b_vflags & BV_BKGRDINPROG)
7962		panic("softdep_disk_io_initiation: Writing buffer with "
7963		    "background write in progress: %p", bp);
7964
7965	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
7966	PHOLD(curproc);			/* Don't swap out kernel stack */
7967
7968	ACQUIRE_LOCK(&lk);
7969	/*
7970	 * Do any necessary pre-I/O processing.
7971	 */
7972	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
7973	     wk = markernext(&marker)) {
7974		LIST_INSERT_AFTER(wk, &marker, wk_list);
7975		switch (wk->wk_type) {
7976
7977		case D_PAGEDEP:
7978			initiate_write_filepage(WK_PAGEDEP(wk), bp);
7979			continue;
7980
7981		case D_INODEDEP:
7982			inodedep = WK_INODEDEP(wk);
7983			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
7984				initiate_write_inodeblock_ufs1(inodedep, bp);
7985			else
7986				initiate_write_inodeblock_ufs2(inodedep, bp);
7987			continue;
7988
7989		case D_INDIRDEP:
7990			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
7991			continue;
7992
7993		case D_BMSAFEMAP:
7994			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
7995			continue;
7996
7997		case D_JSEG:
7998			WK_JSEG(wk)->js_buf = NULL;
7999			continue;
8000
8001		case D_FREEBLKS:
8002			freeblks = WK_FREEBLKS(wk);
8003			jfreeblk = LIST_FIRST(&freeblks->fb_jfreeblkhd);
8004			/*
8005			 * We have to wait for the jfreeblks to be journaled
8006			 * before we can write an inodeblock with updated
8007			 * pointers.  Be careful to arrange the marker so
8008			 * we revisit the jfreeblk if it's not removed by
8009			 * the first jwait().
8010			 */
8011			if (jfreeblk != NULL) {
8012				LIST_REMOVE(&marker, wk_list);
8013				LIST_INSERT_BEFORE(wk, &marker, wk_list);
8014				jwait(&jfreeblk->jf_list);
8015			}
8016			continue;
8017		case D_ALLOCDIRECT:
8018		case D_ALLOCINDIR:
8019			/*
8020			 * We have to wait for the jnewblk to be journaled
8021			 * before we can write to a block otherwise the
8022			 * contents may be confused with an earlier file
8023			 * at recovery time.  Handle the marker as described
8024			 * above.
8025			 */
8026			newblk = WK_NEWBLK(wk);
8027			if (newblk->nb_jnewblk != NULL) {
8028				LIST_REMOVE(&marker, wk_list);
8029				LIST_INSERT_BEFORE(wk, &marker, wk_list);
8030				jwait(&newblk->nb_jnewblk->jn_list);
8031			}
8032			continue;
8033
8034		case D_SBDEP:
8035			initiate_write_sbdep(WK_SBDEP(wk));
8036			continue;
8037
8038		case D_MKDIR:
8039		case D_FREEWORK:
8040		case D_FREEDEP:
8041		case D_JSEGDEP:
8042			continue;
8043
8044		default:
8045			panic("handle_disk_io_initiation: Unexpected type %s",
8046			    TYPENAME(wk->wk_type));
8047			/* NOTREACHED */
8048		}
8049	}
8050	FREE_LOCK(&lk);
8051	PRELE(curproc);			/* Allow swapout of kernel stack */
8052}
8053
8054/*
8055 * Called from within the procedure above to deal with unsatisfied
8056 * allocation dependencies in a directory. The buffer must be locked,
8057 * thus, no I/O completion operations can occur while we are
8058 * manipulating its associated dependencies.
8059 */
8060static void
8061initiate_write_filepage(pagedep, bp)
8062	struct pagedep *pagedep;
8063	struct buf *bp;
8064{
8065	struct jremref *jremref;
8066	struct jmvref *jmvref;
8067	struct dirrem *dirrem;
8068	struct diradd *dap;
8069	struct direct *ep;
8070	int i;
8071
8072	if (pagedep->pd_state & IOSTARTED) {
8073		/*
8074		 * This can only happen if there is a driver that does not
8075		 * understand chaining. Here biodone will reissue the call
8076		 * to strategy for the incomplete buffers.
8077		 */
8078		printf("initiate_write_filepage: already started\n");
8079		return;
8080	}
8081	pagedep->pd_state |= IOSTARTED;
8082	/*
8083	 * Wait for all journal remove dependencies to hit the disk.
8084	 * We can not allow any potentially conflicting directory adds
8085	 * to be visible before removes and rollback is too difficult.
8086	 * lk may be dropped and re-acquired, however we hold the buf
8087	 * locked so the dependency can not go away.
8088	 */
8089	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
8090		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
8091			stat_jwait_filepage++;
8092			jwait(&jremref->jr_list);
8093		}
8094	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
8095		stat_jwait_filepage++;
8096		jwait(&jmvref->jm_list);
8097	}
8098	for (i = 0; i < DAHASHSZ; i++) {
8099		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
8100			ep = (struct direct *)
8101			    ((char *)bp->b_data + dap->da_offset);
8102			if (ep->d_ino != dap->da_newinum)
8103				panic("%s: dir inum %d != new %d",
8104				    "initiate_write_filepage",
8105				    ep->d_ino, dap->da_newinum);
8106			if (dap->da_state & DIRCHG)
8107				ep->d_ino = dap->da_previous->dm_oldinum;
8108			else
8109				ep->d_ino = 0;
8110			dap->da_state &= ~ATTACHED;
8111			dap->da_state |= UNDONE;
8112		}
8113	}
8114}
8115
8116/*
8117 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
8118 * Note that any bug fixes made to this routine must be done in the
8119 * version found below.
8120 *
8121 * Called from within the procedure above to deal with unsatisfied
8122 * allocation dependencies in an inodeblock. The buffer must be
8123 * locked, thus, no I/O completion operations can occur while we
8124 * are manipulating its associated dependencies.
8125 */
8126static void
8127initiate_write_inodeblock_ufs1(inodedep, bp)
8128	struct inodedep *inodedep;
8129	struct buf *bp;			/* The inode block */
8130{
8131	struct allocdirect *adp, *lastadp;
8132	struct ufs1_dinode *dp;
8133	struct ufs1_dinode *sip;
8134	struct inoref *inoref;
8135	struct fs *fs;
8136	ufs_lbn_t i;
8137#ifdef INVARIANTS
8138	ufs_lbn_t prevlbn = 0;
8139#endif
8140	int deplist;
8141
8142	if (inodedep->id_state & IOSTARTED)
8143		panic("initiate_write_inodeblock_ufs1: already started");
8144	inodedep->id_state |= IOSTARTED;
8145	fs = inodedep->id_fs;
8146	dp = (struct ufs1_dinode *)bp->b_data +
8147	    ino_to_fsbo(fs, inodedep->id_ino);
8148
8149	/*
8150	 * If we're on the unlinked list but have not yet written our
8151	 * next pointer initialize it here.
8152	 */
8153	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
8154		struct inodedep *inon;
8155
8156		inon = TAILQ_NEXT(inodedep, id_unlinked);
8157		dp->di_freelink = inon ? inon->id_ino : 0;
8158	}
8159	/*
8160	 * If the bitmap is not yet written, then the allocated
8161	 * inode cannot be written to disk.
8162	 */
8163	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
8164		if (inodedep->id_savedino1 != NULL)
8165			panic("initiate_write_inodeblock_ufs1: I/O underway");
8166		FREE_LOCK(&lk);
8167		sip = malloc(sizeof(struct ufs1_dinode),
8168		    M_SAVEDINO, M_SOFTDEP_FLAGS);
8169		ACQUIRE_LOCK(&lk);
8170		inodedep->id_savedino1 = sip;
8171		*inodedep->id_savedino1 = *dp;
8172		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
8173		dp->di_gen = inodedep->id_savedino1->di_gen;
8174		dp->di_freelink = inodedep->id_savedino1->di_freelink;
8175		return;
8176	}
8177	/*
8178	 * If no dependencies, then there is nothing to roll back.
8179	 */
8180	inodedep->id_savedsize = dp->di_size;
8181	inodedep->id_savedextsize = 0;
8182	inodedep->id_savednlink = dp->di_nlink;
8183	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
8184	    TAILQ_EMPTY(&inodedep->id_inoreflst))
8185		return;
8186	/*
8187	 * Revert the link count to that of the first unwritten journal entry.
8188	 */
8189	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
8190	if (inoref)
8191		dp->di_nlink = inoref->if_nlink;
8192	/*
8193	 * Set the dependencies to busy.
8194	 */
8195	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8196	     adp = TAILQ_NEXT(adp, ad_next)) {
8197#ifdef INVARIANTS
8198		if (deplist != 0 && prevlbn >= adp->ad_offset)
8199			panic("softdep_write_inodeblock: lbn order");
8200		prevlbn = adp->ad_offset;
8201		if (adp->ad_offset < NDADDR &&
8202		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
8203			panic("%s: direct pointer #%jd mismatch %d != %jd",
8204			    "softdep_write_inodeblock",
8205			    (intmax_t)adp->ad_offset,
8206			    dp->di_db[adp->ad_offset],
8207			    (intmax_t)adp->ad_newblkno);
8208		if (adp->ad_offset >= NDADDR &&
8209		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
8210			panic("%s: indirect pointer #%jd mismatch %d != %jd",
8211			    "softdep_write_inodeblock",
8212			    (intmax_t)adp->ad_offset - NDADDR,
8213			    dp->di_ib[adp->ad_offset - NDADDR],
8214			    (intmax_t)adp->ad_newblkno);
8215		deplist |= 1 << adp->ad_offset;
8216		if ((adp->ad_state & ATTACHED) == 0)
8217			panic("softdep_write_inodeblock: Unknown state 0x%x",
8218			    adp->ad_state);
8219#endif /* INVARIANTS */
8220		adp->ad_state &= ~ATTACHED;
8221		adp->ad_state |= UNDONE;
8222	}
8223	/*
8224	 * The on-disk inode cannot claim to be any larger than the last
8225	 * fragment that has been written. Otherwise, the on-disk inode
8226	 * might have fragments that were not the last block in the file
8227	 * which would corrupt the filesystem.
8228	 */
8229	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8230	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8231		if (adp->ad_offset >= NDADDR)
8232			break;
8233		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
8234		/* keep going until hitting a rollback to a frag */
8235		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8236			continue;
8237		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8238		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
8239#ifdef INVARIANTS
8240			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
8241				panic("softdep_write_inodeblock: lost dep1");
8242#endif /* INVARIANTS */
8243			dp->di_db[i] = 0;
8244		}
8245		for (i = 0; i < NIADDR; i++) {
8246#ifdef INVARIANTS
8247			if (dp->di_ib[i] != 0 &&
8248			    (deplist & ((1 << NDADDR) << i)) == 0)
8249				panic("softdep_write_inodeblock: lost dep2");
8250#endif /* INVARIANTS */
8251			dp->di_ib[i] = 0;
8252		}
8253		return;
8254	}
8255	/*
8256	 * If we have zero'ed out the last allocated block of the file,
8257	 * roll back the size to the last currently allocated block.
8258	 * We know that this last allocated block is a full-sized as
8259	 * we already checked for fragments in the loop above.
8260	 */
8261	if (lastadp != NULL &&
8262	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8263		for (i = lastadp->ad_offset; i >= 0; i--)
8264			if (dp->di_db[i] != 0)
8265				break;
8266		dp->di_size = (i + 1) * fs->fs_bsize;
8267	}
8268	/*
8269	 * The only dependencies are for indirect blocks.
8270	 *
8271	 * The file size for indirect block additions is not guaranteed.
8272	 * Such a guarantee would be non-trivial to achieve. The conventional
8273	 * synchronous write implementation also does not make this guarantee.
8274	 * Fsck should catch and fix discrepancies. Arguably, the file size
8275	 * can be over-estimated without destroying integrity when the file
8276	 * moves into the indirect blocks (i.e., is large). If we want to
8277	 * postpone fsck, we are stuck with this argument.
8278	 */
8279	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
8280		dp->di_ib[adp->ad_offset - NDADDR] = 0;
8281}
8282
8283/*
8284 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
8285 * Note that any bug fixes made to this routine must be done in the
8286 * version found above.
8287 *
8288 * Called from within the procedure above to deal with unsatisfied
8289 * allocation dependencies in an inodeblock. The buffer must be
8290 * locked, thus, no I/O completion operations can occur while we
8291 * are manipulating its associated dependencies.
8292 */
8293static void
8294initiate_write_inodeblock_ufs2(inodedep, bp)
8295	struct inodedep *inodedep;
8296	struct buf *bp;			/* The inode block */
8297{
8298	struct allocdirect *adp, *lastadp;
8299	struct ufs2_dinode *dp;
8300	struct ufs2_dinode *sip;
8301	struct inoref *inoref;
8302	struct fs *fs;
8303	ufs_lbn_t i;
8304#ifdef INVARIANTS
8305	ufs_lbn_t prevlbn = 0;
8306#endif
8307	int deplist;
8308
8309	if (inodedep->id_state & IOSTARTED)
8310		panic("initiate_write_inodeblock_ufs2: already started");
8311	inodedep->id_state |= IOSTARTED;
8312	fs = inodedep->id_fs;
8313	dp = (struct ufs2_dinode *)bp->b_data +
8314	    ino_to_fsbo(fs, inodedep->id_ino);
8315
8316	/*
8317	 * If we're on the unlinked list but have not yet written our
8318	 * next pointer initialize it here.
8319	 */
8320	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
8321		struct inodedep *inon;
8322
8323		inon = TAILQ_NEXT(inodedep, id_unlinked);
8324		dp->di_freelink = inon ? inon->id_ino : 0;
8325	}
8326	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) ==
8327	    (UNLINKED | UNLINKNEXT)) {
8328		struct inodedep *inon;
8329		ino_t freelink;
8330
8331		inon = TAILQ_NEXT(inodedep, id_unlinked);
8332		freelink = inon ? inon->id_ino : 0;
8333		if (freelink != dp->di_freelink)
8334			panic("ino %p(0x%X) %d, %d != %d",
8335			    inodedep, inodedep->id_state, inodedep->id_ino,
8336			    freelink, dp->di_freelink);
8337	}
8338	/*
8339	 * If the bitmap is not yet written, then the allocated
8340	 * inode cannot be written to disk.
8341	 */
8342	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
8343		if (inodedep->id_savedino2 != NULL)
8344			panic("initiate_write_inodeblock_ufs2: I/O underway");
8345		FREE_LOCK(&lk);
8346		sip = malloc(sizeof(struct ufs2_dinode),
8347		    M_SAVEDINO, M_SOFTDEP_FLAGS);
8348		ACQUIRE_LOCK(&lk);
8349		inodedep->id_savedino2 = sip;
8350		*inodedep->id_savedino2 = *dp;
8351		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
8352		dp->di_gen = inodedep->id_savedino2->di_gen;
8353		dp->di_freelink = inodedep->id_savedino2->di_freelink;
8354		return;
8355	}
8356	/*
8357	 * If no dependencies, then there is nothing to roll back.
8358	 */
8359	inodedep->id_savedsize = dp->di_size;
8360	inodedep->id_savedextsize = dp->di_extsize;
8361	inodedep->id_savednlink = dp->di_nlink;
8362	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
8363	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
8364	    TAILQ_EMPTY(&inodedep->id_inoreflst))
8365		return;
8366	/*
8367	 * Revert the link count to that of the first unwritten journal entry.
8368	 */
8369	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
8370	if (inoref)
8371		dp->di_nlink = inoref->if_nlink;
8372
8373	/*
8374	 * Set the ext data dependencies to busy.
8375	 */
8376	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
8377	     adp = TAILQ_NEXT(adp, ad_next)) {
8378#ifdef INVARIANTS
8379		if (deplist != 0 && prevlbn >= adp->ad_offset)
8380			panic("softdep_write_inodeblock: lbn order");
8381		prevlbn = adp->ad_offset;
8382		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
8383			panic("%s: direct pointer #%jd mismatch %jd != %jd",
8384			    "softdep_write_inodeblock",
8385			    (intmax_t)adp->ad_offset,
8386			    (intmax_t)dp->di_extb[adp->ad_offset],
8387			    (intmax_t)adp->ad_newblkno);
8388		deplist |= 1 << adp->ad_offset;
8389		if ((adp->ad_state & ATTACHED) == 0)
8390			panic("softdep_write_inodeblock: Unknown state 0x%x",
8391			    adp->ad_state);
8392#endif /* INVARIANTS */
8393		adp->ad_state &= ~ATTACHED;
8394		adp->ad_state |= UNDONE;
8395	}
8396	/*
8397	 * The on-disk inode cannot claim to be any larger than the last
8398	 * fragment that has been written. Otherwise, the on-disk inode
8399	 * might have fragments that were not the last block in the ext
8400	 * data which would corrupt the filesystem.
8401	 */
8402	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
8403	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8404		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
8405		/* keep going until hitting a rollback to a frag */
8406		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8407			continue;
8408		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8409		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
8410#ifdef INVARIANTS
8411			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
8412				panic("softdep_write_inodeblock: lost dep1");
8413#endif /* INVARIANTS */
8414			dp->di_extb[i] = 0;
8415		}
8416		lastadp = NULL;
8417		break;
8418	}
8419	/*
8420	 * If we have zero'ed out the last allocated block of the ext
8421	 * data, roll back the size to the last currently allocated block.
8422	 * We know that this last allocated block is a full-sized as
8423	 * we already checked for fragments in the loop above.
8424	 */
8425	if (lastadp != NULL &&
8426	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8427		for (i = lastadp->ad_offset; i >= 0; i--)
8428			if (dp->di_extb[i] != 0)
8429				break;
8430		dp->di_extsize = (i + 1) * fs->fs_bsize;
8431	}
8432	/*
8433	 * Set the file data dependencies to busy.
8434	 */
8435	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8436	     adp = TAILQ_NEXT(adp, ad_next)) {
8437#ifdef INVARIANTS
8438		if (deplist != 0 && prevlbn >= adp->ad_offset)
8439			panic("softdep_write_inodeblock: lbn order");
8440		prevlbn = adp->ad_offset;
8441		if (adp->ad_offset < NDADDR &&
8442		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
8443			panic("%s: direct pointer #%jd mismatch %jd != %jd",
8444			    "softdep_write_inodeblock",
8445			    (intmax_t)adp->ad_offset,
8446			    (intmax_t)dp->di_db[adp->ad_offset],
8447			    (intmax_t)adp->ad_newblkno);
8448		if (adp->ad_offset >= NDADDR &&
8449		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
8450			panic("%s indirect pointer #%jd mismatch %jd != %jd",
8451			    "softdep_write_inodeblock:",
8452			    (intmax_t)adp->ad_offset - NDADDR,
8453			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
8454			    (intmax_t)adp->ad_newblkno);
8455		deplist |= 1 << adp->ad_offset;
8456		if ((adp->ad_state & ATTACHED) == 0)
8457			panic("softdep_write_inodeblock: Unknown state 0x%x",
8458			    adp->ad_state);
8459#endif /* INVARIANTS */
8460		adp->ad_state &= ~ATTACHED;
8461		adp->ad_state |= UNDONE;
8462	}
8463	/*
8464	 * The on-disk inode cannot claim to be any larger than the last
8465	 * fragment that has been written. Otherwise, the on-disk inode
8466	 * might have fragments that were not the last block in the file
8467	 * which would corrupt the filesystem.
8468	 */
8469	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8470	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8471		if (adp->ad_offset >= NDADDR)
8472			break;
8473		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
8474		/* keep going until hitting a rollback to a frag */
8475		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8476			continue;
8477		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8478		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
8479#ifdef INVARIANTS
8480			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
8481				panic("softdep_write_inodeblock: lost dep2");
8482#endif /* INVARIANTS */
8483			dp->di_db[i] = 0;
8484		}
8485		for (i = 0; i < NIADDR; i++) {
8486#ifdef INVARIANTS
8487			if (dp->di_ib[i] != 0 &&
8488			    (deplist & ((1 << NDADDR) << i)) == 0)
8489				panic("softdep_write_inodeblock: lost dep3");
8490#endif /* INVARIANTS */
8491			dp->di_ib[i] = 0;
8492		}
8493		return;
8494	}
8495	/*
8496	 * If we have zero'ed out the last allocated block of the file,
8497	 * roll back the size to the last currently allocated block.
8498	 * We know that this last allocated block is a full-sized as
8499	 * we already checked for fragments in the loop above.
8500	 */
8501	if (lastadp != NULL &&
8502	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8503		for (i = lastadp->ad_offset; i >= 0; i--)
8504			if (dp->di_db[i] != 0)
8505				break;
8506		dp->di_size = (i + 1) * fs->fs_bsize;
8507	}
8508	/*
8509	 * The only dependencies are for indirect blocks.
8510	 *
8511	 * The file size for indirect block additions is not guaranteed.
8512	 * Such a guarantee would be non-trivial to achieve. The conventional
8513	 * synchronous write implementation also does not make this guarantee.
8514	 * Fsck should catch and fix discrepancies. Arguably, the file size
8515	 * can be over-estimated without destroying integrity when the file
8516	 * moves into the indirect blocks (i.e., is large). If we want to
8517	 * postpone fsck, we are stuck with this argument.
8518	 */
8519	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
8520		dp->di_ib[adp->ad_offset - NDADDR] = 0;
8521}
8522
8523/*
8524 * Cancel an indirdep as a result of truncation.  Release all of the
8525 * children allocindirs and place their journal work on the appropriate
8526 * list.
8527 */
8528static void
8529cancel_indirdep(indirdep, bp, inodedep, freeblks)
8530	struct indirdep *indirdep;
8531	struct buf *bp;
8532	struct inodedep *inodedep;
8533	struct freeblks *freeblks;
8534{
8535	struct allocindir *aip;
8536
8537	/*
8538	 * None of the indirect pointers will ever be visible,
8539	 * so they can simply be tossed. GOINGAWAY ensures
8540	 * that allocated pointers will be saved in the buffer
8541	 * cache until they are freed. Note that they will
8542	 * only be able to be found by their physical address
8543	 * since the inode mapping the logical address will
8544	 * be gone. The save buffer used for the safe copy
8545	 * was allocated in setup_allocindir_phase2 using
8546	 * the physical address so it could be used for this
8547	 * purpose. Hence we swap the safe copy with the real
8548	 * copy, allowing the safe copy to be freed and holding
8549	 * on to the real copy for later use in indir_trunc.
8550	 */
8551	if (indirdep->ir_state & GOINGAWAY)
8552		panic("cancel_indirdep: already gone");
8553	if (indirdep->ir_state & ONDEPLIST) {
8554		indirdep->ir_state &= ~ONDEPLIST;
8555		LIST_REMOVE(indirdep, ir_next);
8556	}
8557	indirdep->ir_state |= GOINGAWAY;
8558	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
8559	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
8560		cancel_allocindir(aip, inodedep, freeblks);
8561	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
8562		cancel_allocindir(aip, inodedep, freeblks);
8563	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
8564		cancel_allocindir(aip, inodedep, freeblks);
8565	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
8566		cancel_allocindir(aip, inodedep, freeblks);
8567	bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
8568	WORKLIST_REMOVE(&indirdep->ir_list);
8569	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
8570	indirdep->ir_savebp = NULL;
8571}
8572
8573/*
8574 * Free an indirdep once it no longer has new pointers to track.
8575 */
8576static void
8577free_indirdep(indirdep)
8578	struct indirdep *indirdep;
8579{
8580
8581	KASSERT(LIST_EMPTY(&indirdep->ir_jwork),
8582	    ("free_indirdep: Journal work not empty."));
8583	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
8584	    ("free_indirdep: Complete head not empty."));
8585	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
8586	    ("free_indirdep: write head not empty."));
8587	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
8588	    ("free_indirdep: done head not empty."));
8589	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
8590	    ("free_indirdep: deplist head not empty."));
8591	KASSERT(indirdep->ir_savebp == NULL,
8592	    ("free_indirdep: %p ir_savebp != NULL", indirdep));
8593	KASSERT((indirdep->ir_state & ONDEPLIST) == 0,
8594	    ("free_indirdep: %p still on deplist.", indirdep));
8595	if (indirdep->ir_state & ONWORKLIST)
8596		WORKLIST_REMOVE(&indirdep->ir_list);
8597	WORKITEM_FREE(indirdep, D_INDIRDEP);
8598}
8599
8600/*
8601 * Called before a write to an indirdep.  This routine is responsible for
8602 * rolling back pointers to a safe state which includes only those
8603 * allocindirs which have been completed.
8604 */
8605static void
8606initiate_write_indirdep(indirdep, bp)
8607	struct indirdep *indirdep;
8608	struct buf *bp;
8609{
8610
8611	if (indirdep->ir_state & GOINGAWAY)
8612		panic("disk_io_initiation: indirdep gone");
8613
8614	/*
8615	 * If there are no remaining dependencies, this will be writing
8616	 * the real pointers.
8617	 */
8618	if (LIST_EMPTY(&indirdep->ir_deplisthd))
8619		return;
8620	/*
8621	 * Replace up-to-date version with safe version.
8622	 */
8623	FREE_LOCK(&lk);
8624	indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
8625	    M_SOFTDEP_FLAGS);
8626	ACQUIRE_LOCK(&lk);
8627	indirdep->ir_state &= ~ATTACHED;
8628	indirdep->ir_state |= UNDONE;
8629	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
8630	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
8631	    bp->b_bcount);
8632}
8633
8634/*
8635 * Called when an inode has been cleared in a cg bitmap.  This finally
8636 * eliminates any canceled jaddrefs
8637 */
8638void
8639softdep_setup_inofree(mp, bp, ino, wkhd)
8640	struct mount *mp;
8641	struct buf *bp;
8642	ino_t ino;
8643	struct workhead *wkhd;
8644{
8645	struct worklist *wk, *wkn;
8646	struct inodedep *inodedep;
8647	uint8_t *inosused;
8648	struct cg *cgp;
8649	struct fs *fs;
8650
8651	ACQUIRE_LOCK(&lk);
8652	fs = VFSTOUFS(mp)->um_fs;
8653	cgp = (struct cg *)bp->b_data;
8654	inosused = cg_inosused(cgp);
8655	if (isset(inosused, ino % fs->fs_ipg))
8656		panic("softdep_setup_inofree: inode %d not freed.", ino);
8657	if (inodedep_lookup(mp, ino, 0, &inodedep))
8658		panic("softdep_setup_inofree: ino %d has existing inodedep %p",
8659		    ino, inodedep);
8660	if (wkhd) {
8661		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
8662			if (wk->wk_type != D_JADDREF)
8663				continue;
8664			WORKLIST_REMOVE(wk);
8665			/*
8666			 * We can free immediately even if the jaddref
8667			 * isn't attached in a background write as now
8668			 * the bitmaps are reconciled.
8669		 	 */
8670			wk->wk_state |= COMPLETE | ATTACHED;
8671			free_jaddref(WK_JADDREF(wk));
8672		}
8673		jwork_move(&bp->b_dep, wkhd);
8674	}
8675	FREE_LOCK(&lk);
8676}
8677
8678
8679/*
8680 * Called via ffs_blkfree() after a set of frags has been cleared from a cg
8681 * map.  Any dependencies waiting for the write to clear are added to the
8682 * buf's list and any jnewblks that are being canceled are discarded
8683 * immediately.
8684 */
8685void
8686softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
8687	struct mount *mp;
8688	struct buf *bp;
8689	ufs2_daddr_t blkno;
8690	int frags;
8691	struct workhead *wkhd;
8692{
8693	struct jnewblk *jnewblk;
8694	struct worklist *wk, *wkn;
8695#ifdef SUJ_DEBUG
8696	struct bmsafemap *bmsafemap;
8697	struct fs *fs;
8698	uint8_t *blksfree;
8699	struct cg *cgp;
8700	ufs2_daddr_t jstart;
8701	ufs2_daddr_t jend;
8702	ufs2_daddr_t end;
8703	long bno;
8704	int i;
8705#endif
8706
8707	ACQUIRE_LOCK(&lk);
8708	/*
8709	 * Detach any jnewblks which have been canceled.  They must linger
8710	 * until the bitmap is cleared again by ffs_blkfree() to prevent
8711	 * an unjournaled allocation from hitting the disk.
8712	 */
8713	if (wkhd) {
8714		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
8715			if (wk->wk_type != D_JNEWBLK)
8716				continue;
8717			jnewblk = WK_JNEWBLK(wk);
8718			KASSERT(jnewblk->jn_state & GOINGAWAY,
8719			    ("softdep_setup_blkfree: jnewblk not canceled."));
8720			WORKLIST_REMOVE(wk);
8721#ifdef SUJ_DEBUG
8722			/*
8723			 * Assert that this block is free in the bitmap
8724			 * before we discard the jnewblk.
8725			 */
8726			fs = VFSTOUFS(mp)->um_fs;
8727			cgp = (struct cg *)bp->b_data;
8728			blksfree = cg_blksfree(cgp);
8729			bno = dtogd(fs, jnewblk->jn_blkno);
8730			for (i = jnewblk->jn_oldfrags;
8731			    i < jnewblk->jn_frags; i++) {
8732				if (isset(blksfree, bno + i))
8733					continue;
8734				panic("softdep_setup_blkfree: not free");
8735			}
8736#endif
8737			/*
8738			 * Even if it's not attached we can free immediately
8739			 * as the new bitmap is correct.
8740			 */
8741			wk->wk_state |= COMPLETE | ATTACHED;
8742			free_jnewblk(jnewblk);
8743		}
8744		/*
8745		 * The buf must be locked by the caller otherwise these could
8746		 * be added while it's being written and the write would
8747		 * complete them before they made it to disk.
8748		 */
8749		jwork_move(&bp->b_dep, wkhd);
8750	}
8751
8752#ifdef SUJ_DEBUG
8753	/*
8754	 * Assert that we are not freeing a block which has an outstanding
8755	 * allocation dependency.
8756	 */
8757	fs = VFSTOUFS(mp)->um_fs;
8758	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
8759	end = blkno + frags;
8760	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
8761		/*
8762		 * Don't match against blocks that will be freed when the
8763		 * background write is done.
8764		 */
8765		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
8766		    (COMPLETE | DEPCOMPLETE))
8767			continue;
8768		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
8769		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
8770		if ((blkno >= jstart && blkno < jend) ||
8771		    (end > jstart && end <= jend)) {
8772			printf("state 0x%X %jd - %d %d dep %p\n",
8773			    jnewblk->jn_state, jnewblk->jn_blkno,
8774			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
8775			    jnewblk->jn_newblk);
8776			panic("softdep_setup_blkfree: "
8777			    "%jd-%jd(%d) overlaps with %jd-%jd",
8778			    blkno, end, frags, jstart, jend);
8779		}
8780	}
8781#endif
8782	FREE_LOCK(&lk);
8783}
8784
8785static void
8786initiate_write_bmsafemap(bmsafemap, bp)
8787	struct bmsafemap *bmsafemap;
8788	struct buf *bp;			/* The cg block. */
8789{
8790	struct jaddref *jaddref;
8791	struct jnewblk *jnewblk;
8792	uint8_t *inosused;
8793	uint8_t *blksfree;
8794	struct cg *cgp;
8795	struct fs *fs;
8796	int cleared;
8797	ino_t ino;
8798	long bno;
8799	int i;
8800
8801	if (bmsafemap->sm_state & IOSTARTED)
8802		panic("initiate_write_bmsafemap: Already started\n");
8803	bmsafemap->sm_state |= IOSTARTED;
8804	/*
8805	 * Clear any inode allocations which are pending journal writes.
8806	 */
8807	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
8808		cgp = (struct cg *)bp->b_data;
8809		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
8810		inosused = cg_inosused(cgp);
8811		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
8812			ino = jaddref->ja_ino % fs->fs_ipg;
8813			/*
8814			 * If this is a background copy the inode may not
8815			 * be marked used yet.
8816			 */
8817			if (isset(inosused, ino)) {
8818				if ((jaddref->ja_mode & IFMT) == IFDIR)
8819					cgp->cg_cs.cs_ndir--;
8820				cgp->cg_cs.cs_nifree++;
8821				clrbit(inosused, ino);
8822				jaddref->ja_state &= ~ATTACHED;
8823				jaddref->ja_state |= UNDONE;
8824				stat_jaddref++;
8825			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
8826				panic("initiate_write_bmsafemap: inode %d "
8827				    "marked free", jaddref->ja_ino);
8828		}
8829	}
8830	/*
8831	 * Clear any block allocations which are pending journal writes.
8832	 */
8833	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
8834		cgp = (struct cg *)bp->b_data;
8835		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
8836		blksfree = cg_blksfree(cgp);
8837		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
8838			bno = dtogd(fs, jnewblk->jn_blkno);
8839			cleared = 0;
8840			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
8841			    i++) {
8842				if (isclr(blksfree, bno + i)) {
8843					cleared = 1;
8844					setbit(blksfree, bno + i);
8845				}
8846			}
8847			/*
8848			 * We may not clear the block if it's a background
8849			 * copy.  In that case there is no reason to detach
8850			 * it.
8851			 */
8852			if (cleared) {
8853				stat_jnewblk++;
8854				jnewblk->jn_state &= ~ATTACHED;
8855				jnewblk->jn_state |= UNDONE;
8856			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
8857				panic("initiate_write_bmsafemap: block %jd "
8858				    "marked free", jnewblk->jn_blkno);
8859		}
8860	}
8861	/*
8862	 * Move allocation lists to the written lists so they can be
8863	 * cleared once the block write is complete.
8864	 */
8865	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
8866	    inodedep, id_deps);
8867	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
8868	    newblk, nb_deps);
8869}
8870
8871/*
8872 * This routine is called during the completion interrupt
8873 * service routine for a disk write (from the procedure called
8874 * by the device driver to inform the filesystem caches of
8875 * a request completion).  It should be called early in this
8876 * procedure, before the block is made available to other
8877 * processes or other routines are called.
8878 *
8879 */
8880static void
8881softdep_disk_write_complete(bp)
8882	struct buf *bp;		/* describes the completed disk write */
8883{
8884	struct worklist *wk;
8885	struct worklist *owk;
8886	struct workhead reattach;
8887	struct buf *sbp;
8888
8889	/*
8890	 * If an error occurred while doing the write, then the data
8891	 * has not hit the disk and the dependencies cannot be unrolled.
8892	 */
8893	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
8894		return;
8895	LIST_INIT(&reattach);
8896	/*
8897	 * This lock must not be released anywhere in this code segment.
8898	 */
8899	sbp = NULL;
8900	owk = NULL;
8901	ACQUIRE_LOCK(&lk);
8902	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
8903		WORKLIST_REMOVE(wk);
8904		if (wk == owk)
8905			panic("duplicate worklist: %p\n", wk);
8906		owk = wk;
8907		switch (wk->wk_type) {
8908
8909		case D_PAGEDEP:
8910			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
8911				WORKLIST_INSERT(&reattach, wk);
8912			continue;
8913
8914		case D_INODEDEP:
8915			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
8916				WORKLIST_INSERT(&reattach, wk);
8917			continue;
8918
8919		case D_BMSAFEMAP:
8920			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
8921				WORKLIST_INSERT(&reattach, wk);
8922			continue;
8923
8924		case D_MKDIR:
8925			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
8926			continue;
8927
8928		case D_ALLOCDIRECT:
8929			wk->wk_state |= COMPLETE;
8930			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
8931			continue;
8932
8933		case D_ALLOCINDIR:
8934			wk->wk_state |= COMPLETE;
8935			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
8936			continue;
8937
8938		case D_INDIRDEP:
8939			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
8940				WORKLIST_INSERT(&reattach, wk);
8941			continue;
8942
8943		case D_FREEBLKS:
8944			wk->wk_state |= COMPLETE;
8945			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
8946				add_to_worklist(wk, 1);
8947			continue;
8948
8949		case D_FREEWORK:
8950			handle_written_freework(WK_FREEWORK(wk));
8951			break;
8952
8953		case D_FREEDEP:
8954			free_freedep(WK_FREEDEP(wk));
8955			continue;
8956
8957		case D_JSEGDEP:
8958			free_jsegdep(WK_JSEGDEP(wk));
8959			continue;
8960
8961		case D_JSEG:
8962			handle_written_jseg(WK_JSEG(wk), bp);
8963			continue;
8964
8965		case D_SBDEP:
8966			if (handle_written_sbdep(WK_SBDEP(wk), bp))
8967				WORKLIST_INSERT(&reattach, wk);
8968			continue;
8969
8970		default:
8971			panic("handle_disk_write_complete: Unknown type %s",
8972			    TYPENAME(wk->wk_type));
8973			/* NOTREACHED */
8974		}
8975	}
8976	/*
8977	 * Reattach any requests that must be redone.
8978	 */
8979	while ((wk = LIST_FIRST(&reattach)) != NULL) {
8980		WORKLIST_REMOVE(wk);
8981		WORKLIST_INSERT(&bp->b_dep, wk);
8982	}
8983	FREE_LOCK(&lk);
8984	if (sbp)
8985		brelse(sbp);
8986}
8987
8988/*
8989 * Called from within softdep_disk_write_complete above. Note that
8990 * this routine is always called from interrupt level with further
8991 * splbio interrupts blocked.
8992 */
8993static void
8994handle_allocdirect_partdone(adp, wkhd)
8995	struct allocdirect *adp;	/* the completed allocdirect */
8996	struct workhead *wkhd;		/* Work to do when inode is writtne. */
8997{
8998	struct allocdirectlst *listhead;
8999	struct allocdirect *listadp;
9000	struct inodedep *inodedep;
9001	long bsize;
9002
9003	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
9004		return;
9005	/*
9006	 * The on-disk inode cannot claim to be any larger than the last
9007	 * fragment that has been written. Otherwise, the on-disk inode
9008	 * might have fragments that were not the last block in the file
9009	 * which would corrupt the filesystem. Thus, we cannot free any
9010	 * allocdirects after one whose ad_oldblkno claims a fragment as
9011	 * these blocks must be rolled back to zero before writing the inode.
9012	 * We check the currently active set of allocdirects in id_inoupdt
9013	 * or id_extupdt as appropriate.
9014	 */
9015	inodedep = adp->ad_inodedep;
9016	bsize = inodedep->id_fs->fs_bsize;
9017	if (adp->ad_state & EXTDATA)
9018		listhead = &inodedep->id_extupdt;
9019	else
9020		listhead = &inodedep->id_inoupdt;
9021	TAILQ_FOREACH(listadp, listhead, ad_next) {
9022		/* found our block */
9023		if (listadp == adp)
9024			break;
9025		/* continue if ad_oldlbn is not a fragment */
9026		if (listadp->ad_oldsize == 0 ||
9027		    listadp->ad_oldsize == bsize)
9028			continue;
9029		/* hit a fragment */
9030		return;
9031	}
9032	/*
9033	 * If we have reached the end of the current list without
9034	 * finding the just finished dependency, then it must be
9035	 * on the future dependency list. Future dependencies cannot
9036	 * be freed until they are moved to the current list.
9037	 */
9038	if (listadp == NULL) {
9039#ifdef DEBUG
9040		if (adp->ad_state & EXTDATA)
9041			listhead = &inodedep->id_newextupdt;
9042		else
9043			listhead = &inodedep->id_newinoupdt;
9044		TAILQ_FOREACH(listadp, listhead, ad_next)
9045			/* found our block */
9046			if (listadp == adp)
9047				break;
9048		if (listadp == NULL)
9049			panic("handle_allocdirect_partdone: lost dep");
9050#endif /* DEBUG */
9051		return;
9052	}
9053	/*
9054	 * If we have found the just finished dependency, then queue
9055	 * it along with anything that follows it that is complete.
9056	 * Since the pointer has not yet been written in the inode
9057	 * as the dependency prevents it, place the allocdirect on the
9058	 * bufwait list where it will be freed once the pointer is
9059	 * valid.
9060	 */
9061	if (wkhd == NULL)
9062		wkhd = &inodedep->id_bufwait;
9063	for (; adp; adp = listadp) {
9064		listadp = TAILQ_NEXT(adp, ad_next);
9065		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
9066			return;
9067		TAILQ_REMOVE(listhead, adp, ad_next);
9068		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
9069	}
9070}
9071
9072/*
9073 * Called from within softdep_disk_write_complete above.  This routine
9074 * completes successfully written allocindirs.
9075 */
9076static void
9077handle_allocindir_partdone(aip)
9078	struct allocindir *aip;		/* the completed allocindir */
9079{
9080	struct indirdep *indirdep;
9081
9082	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
9083		return;
9084	indirdep = aip->ai_indirdep;
9085	LIST_REMOVE(aip, ai_next);
9086	if (indirdep->ir_state & UNDONE) {
9087		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
9088		return;
9089	}
9090	if (indirdep->ir_state & UFS1FMT)
9091		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
9092		    aip->ai_newblkno;
9093	else
9094		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
9095		    aip->ai_newblkno;
9096	/*
9097	 * Await the pointer write before freeing the allocindir.
9098	 */
9099	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
9100}
9101
9102/*
9103 * Release segments held on a jwork list.
9104 */
9105static void
9106handle_jwork(wkhd)
9107	struct workhead *wkhd;
9108{
9109	struct worklist *wk;
9110
9111	while ((wk = LIST_FIRST(wkhd)) != NULL) {
9112		WORKLIST_REMOVE(wk);
9113		switch (wk->wk_type) {
9114		case D_JSEGDEP:
9115			free_jsegdep(WK_JSEGDEP(wk));
9116			continue;
9117		default:
9118			panic("handle_jwork: Unknown type %s\n",
9119			    TYPENAME(wk->wk_type));
9120		}
9121	}
9122}
9123
9124/*
9125 * Handle the bufwait list on an inode when it is safe to release items
9126 * held there.  This normally happens after an inode block is written but
9127 * may be delayed and handled later if there are pending journal items that
9128 * are not yet safe to be released.
9129 */
9130static struct freefile *
9131handle_bufwait(inodedep, refhd)
9132	struct inodedep *inodedep;
9133	struct workhead *refhd;
9134{
9135	struct jaddref *jaddref;
9136	struct freefile *freefile;
9137	struct worklist *wk;
9138
9139	freefile = NULL;
9140	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
9141		WORKLIST_REMOVE(wk);
9142		switch (wk->wk_type) {
9143		case D_FREEFILE:
9144			/*
9145			 * We defer adding freefile to the worklist
9146			 * until all other additions have been made to
9147			 * ensure that it will be done after all the
9148			 * old blocks have been freed.
9149			 */
9150			if (freefile != NULL)
9151				panic("handle_bufwait: freefile");
9152			freefile = WK_FREEFILE(wk);
9153			continue;
9154
9155		case D_MKDIR:
9156			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
9157			continue;
9158
9159		case D_DIRADD:
9160			diradd_inode_written(WK_DIRADD(wk), inodedep);
9161			continue;
9162
9163		case D_FREEFRAG:
9164			wk->wk_state |= COMPLETE;
9165			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
9166				add_to_worklist(wk, 0);
9167			continue;
9168
9169		case D_DIRREM:
9170			wk->wk_state |= COMPLETE;
9171			add_to_worklist(wk, 0);
9172			continue;
9173
9174		case D_ALLOCDIRECT:
9175		case D_ALLOCINDIR:
9176			free_newblk(WK_NEWBLK(wk));
9177			continue;
9178
9179		case D_JNEWBLK:
9180			wk->wk_state |= COMPLETE;
9181			free_jnewblk(WK_JNEWBLK(wk));
9182			continue;
9183
9184		/*
9185		 * Save freed journal segments and add references on
9186		 * the supplied list which will delay their release
9187		 * until the cg bitmap is cleared on disk.
9188		 */
9189		case D_JSEGDEP:
9190			if (refhd == NULL)
9191				free_jsegdep(WK_JSEGDEP(wk));
9192			else
9193				WORKLIST_INSERT(refhd, wk);
9194			continue;
9195
9196		case D_JADDREF:
9197			jaddref = WK_JADDREF(wk);
9198			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
9199			    if_deps);
9200			/*
9201			 * Transfer any jaddrefs to the list to be freed with
9202			 * the bitmap if we're handling a removed file.
9203			 */
9204			if (refhd == NULL) {
9205				wk->wk_state |= COMPLETE;
9206				free_jaddref(jaddref);
9207			} else
9208				WORKLIST_INSERT(refhd, wk);
9209			continue;
9210
9211		default:
9212			panic("handle_bufwait: Unknown type %p(%s)",
9213			    wk, TYPENAME(wk->wk_type));
9214			/* NOTREACHED */
9215		}
9216	}
9217	return (freefile);
9218}
9219/*
9220 * Called from within softdep_disk_write_complete above to restore
9221 * in-memory inode block contents to their most up-to-date state. Note
9222 * that this routine is always called from interrupt level with further
9223 * splbio interrupts blocked.
9224 */
9225static int
9226handle_written_inodeblock(inodedep, bp)
9227	struct inodedep *inodedep;
9228	struct buf *bp;		/* buffer containing the inode block */
9229{
9230	struct freefile *freefile;
9231	struct allocdirect *adp, *nextadp;
9232	struct ufs1_dinode *dp1 = NULL;
9233	struct ufs2_dinode *dp2 = NULL;
9234	struct workhead wkhd;
9235	int hadchanges, fstype;
9236	ino_t freelink;
9237
9238	LIST_INIT(&wkhd);
9239	hadchanges = 0;
9240	freefile = NULL;
9241	if ((inodedep->id_state & IOSTARTED) == 0)
9242		panic("handle_written_inodeblock: not started");
9243	inodedep->id_state &= ~IOSTARTED;
9244	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
9245		fstype = UFS1;
9246		dp1 = (struct ufs1_dinode *)bp->b_data +
9247		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
9248		freelink = dp1->di_freelink;
9249	} else {
9250		fstype = UFS2;
9251		dp2 = (struct ufs2_dinode *)bp->b_data +
9252		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
9253		freelink = dp2->di_freelink;
9254	}
9255	/*
9256	 * If we wrote a valid freelink pointer during the last write
9257	 * record it here.
9258	 */
9259	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9260		struct inodedep *inon;
9261
9262		inon = TAILQ_NEXT(inodedep, id_unlinked);
9263		if ((inon == NULL && freelink == 0) ||
9264		    (inon && inon->id_ino == freelink)) {
9265			if (inon)
9266				inon->id_state |= UNLINKPREV;
9267			inodedep->id_state |= UNLINKNEXT;
9268		} else
9269			hadchanges = 1;
9270	}
9271	/* Leave this inodeblock dirty until it's in the list. */
9272	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED)
9273		hadchanges = 1;
9274	/*
9275	 * If we had to rollback the inode allocation because of
9276	 * bitmaps being incomplete, then simply restore it.
9277	 * Keep the block dirty so that it will not be reclaimed until
9278	 * all associated dependencies have been cleared and the
9279	 * corresponding updates written to disk.
9280	 */
9281	if (inodedep->id_savedino1 != NULL) {
9282		hadchanges = 1;
9283		if (fstype == UFS1)
9284			*dp1 = *inodedep->id_savedino1;
9285		else
9286			*dp2 = *inodedep->id_savedino2;
9287		free(inodedep->id_savedino1, M_SAVEDINO);
9288		inodedep->id_savedino1 = NULL;
9289		if ((bp->b_flags & B_DELWRI) == 0)
9290			stat_inode_bitmap++;
9291		bdirty(bp);
9292		/*
9293		 * If the inode is clear here and GOINGAWAY it will never
9294		 * be written.  Process the bufwait and clear any pending
9295		 * work which may include the freefile.
9296		 */
9297		if (inodedep->id_state & GOINGAWAY)
9298			goto bufwait;
9299		return (1);
9300	}
9301	inodedep->id_state |= COMPLETE;
9302	/*
9303	 * Roll forward anything that had to be rolled back before
9304	 * the inode could be updated.
9305	 */
9306	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
9307		nextadp = TAILQ_NEXT(adp, ad_next);
9308		if (adp->ad_state & ATTACHED)
9309			panic("handle_written_inodeblock: new entry");
9310		if (fstype == UFS1) {
9311			if (adp->ad_offset < NDADDR) {
9312				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
9313					panic("%s %s #%jd mismatch %d != %jd",
9314					    "handle_written_inodeblock:",
9315					    "direct pointer",
9316					    (intmax_t)adp->ad_offset,
9317					    dp1->di_db[adp->ad_offset],
9318					    (intmax_t)adp->ad_oldblkno);
9319				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
9320			} else {
9321				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
9322					panic("%s: %s #%jd allocated as %d",
9323					    "handle_written_inodeblock",
9324					    "indirect pointer",
9325					    (intmax_t)adp->ad_offset - NDADDR,
9326					    dp1->di_ib[adp->ad_offset - NDADDR]);
9327				dp1->di_ib[adp->ad_offset - NDADDR] =
9328				    adp->ad_newblkno;
9329			}
9330		} else {
9331			if (adp->ad_offset < NDADDR) {
9332				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
9333					panic("%s: %s #%jd %s %jd != %jd",
9334					    "handle_written_inodeblock",
9335					    "direct pointer",
9336					    (intmax_t)adp->ad_offset, "mismatch",
9337					    (intmax_t)dp2->di_db[adp->ad_offset],
9338					    (intmax_t)adp->ad_oldblkno);
9339				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
9340			} else {
9341				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
9342					panic("%s: %s #%jd allocated as %jd",
9343					    "handle_written_inodeblock",
9344					    "indirect pointer",
9345					    (intmax_t)adp->ad_offset - NDADDR,
9346					    (intmax_t)
9347					    dp2->di_ib[adp->ad_offset - NDADDR]);
9348				dp2->di_ib[adp->ad_offset - NDADDR] =
9349				    adp->ad_newblkno;
9350			}
9351		}
9352		adp->ad_state &= ~UNDONE;
9353		adp->ad_state |= ATTACHED;
9354		hadchanges = 1;
9355	}
9356	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
9357		nextadp = TAILQ_NEXT(adp, ad_next);
9358		if (adp->ad_state & ATTACHED)
9359			panic("handle_written_inodeblock: new entry");
9360		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
9361			panic("%s: direct pointers #%jd %s %jd != %jd",
9362			    "handle_written_inodeblock",
9363			    (intmax_t)adp->ad_offset, "mismatch",
9364			    (intmax_t)dp2->di_extb[adp->ad_offset],
9365			    (intmax_t)adp->ad_oldblkno);
9366		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
9367		adp->ad_state &= ~UNDONE;
9368		adp->ad_state |= ATTACHED;
9369		hadchanges = 1;
9370	}
9371	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
9372		stat_direct_blk_ptrs++;
9373	/*
9374	 * Reset the file size to its most up-to-date value.
9375	 */
9376	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
9377		panic("handle_written_inodeblock: bad size");
9378	if (inodedep->id_savednlink > LINK_MAX)
9379		panic("handle_written_inodeblock: Invalid link count "
9380		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
9381	if (fstype == UFS1) {
9382		if (dp1->di_nlink != inodedep->id_savednlink) {
9383			dp1->di_nlink = inodedep->id_savednlink;
9384			hadchanges = 1;
9385		}
9386		if (dp1->di_size != inodedep->id_savedsize) {
9387			dp1->di_size = inodedep->id_savedsize;
9388			hadchanges = 1;
9389		}
9390	} else {
9391		if (dp2->di_nlink != inodedep->id_savednlink) {
9392			dp2->di_nlink = inodedep->id_savednlink;
9393			hadchanges = 1;
9394		}
9395		if (dp2->di_size != inodedep->id_savedsize) {
9396			dp2->di_size = inodedep->id_savedsize;
9397			hadchanges = 1;
9398		}
9399		if (dp2->di_extsize != inodedep->id_savedextsize) {
9400			dp2->di_extsize = inodedep->id_savedextsize;
9401			hadchanges = 1;
9402		}
9403	}
9404	inodedep->id_savedsize = -1;
9405	inodedep->id_savedextsize = -1;
9406	inodedep->id_savednlink = -1;
9407	/*
9408	 * If there were any rollbacks in the inode block, then it must be
9409	 * marked dirty so that its will eventually get written back in
9410	 * its correct form.
9411	 */
9412	if (hadchanges)
9413		bdirty(bp);
9414bufwait:
9415	/*
9416	 * Process any allocdirects that completed during the update.
9417	 */
9418	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
9419		handle_allocdirect_partdone(adp, &wkhd);
9420	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
9421		handle_allocdirect_partdone(adp, &wkhd);
9422	/*
9423	 * Process deallocations that were held pending until the
9424	 * inode had been written to disk. Freeing of the inode
9425	 * is delayed until after all blocks have been freed to
9426	 * avoid creation of new <vfsid, inum, lbn> triples
9427	 * before the old ones have been deleted.  Completely
9428	 * unlinked inodes are not processed until the unlinked
9429	 * inode list is written or the last reference is removed.
9430	 */
9431	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
9432		freefile = handle_bufwait(inodedep, NULL);
9433		if (freefile && !LIST_EMPTY(&wkhd)) {
9434			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
9435			freefile = NULL;
9436		}
9437	}
9438	/*
9439	 * Move rolled forward dependency completions to the bufwait list
9440	 * now that those that were already written have been processed.
9441	 */
9442	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
9443		panic("handle_written_inodeblock: bufwait but no changes");
9444	jwork_move(&inodedep->id_bufwait, &wkhd);
9445
9446	if (freefile != NULL) {
9447		/*
9448		 * If the inode is goingaway it was never written.  Fake up
9449		 * the state here so free_inodedep() can succeed.
9450		 */
9451		if (inodedep->id_state & GOINGAWAY)
9452			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
9453		if (free_inodedep(inodedep) == 0)
9454			panic("handle_written_inodeblock: live inodedep %p",
9455			    inodedep);
9456		add_to_worklist(&freefile->fx_list, 0);
9457		return (0);
9458	}
9459
9460	/*
9461	 * If no outstanding dependencies, free it.
9462	 */
9463	if (free_inodedep(inodedep) ||
9464	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
9465	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
9466	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
9467	     LIST_FIRST(&inodedep->id_bufwait) == 0))
9468		return (0);
9469	return (hadchanges);
9470}
9471
9472static int
9473handle_written_indirdep(indirdep, bp, bpp)
9474	struct indirdep *indirdep;
9475	struct buf *bp;
9476	struct buf **bpp;
9477{
9478	struct allocindir *aip;
9479	int chgs;
9480
9481	if (indirdep->ir_state & GOINGAWAY)
9482		panic("disk_write_complete: indirdep gone");
9483	chgs = 0;
9484	/*
9485	 * If there were rollbacks revert them here.
9486	 */
9487	if (indirdep->ir_saveddata) {
9488		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
9489		free(indirdep->ir_saveddata, M_INDIRDEP);
9490		indirdep->ir_saveddata = 0;
9491		chgs = 1;
9492	}
9493	indirdep->ir_state &= ~UNDONE;
9494	indirdep->ir_state |= ATTACHED;
9495	/*
9496	 * Move allocindirs with written pointers to the completehd if
9497	 * the indirdep's pointer is not yet written.  Otherwise
9498	 * free them here.
9499	 */
9500	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
9501		LIST_REMOVE(aip, ai_next);
9502		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
9503			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
9504			    ai_next);
9505			continue;
9506		}
9507		free_newblk(&aip->ai_block);
9508	}
9509	/*
9510	 * Move allocindirs that have finished dependency processing from
9511	 * the done list to the write list after updating the pointers.
9512	 */
9513	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
9514		handle_allocindir_partdone(aip);
9515		if (aip == LIST_FIRST(&indirdep->ir_donehd))
9516			panic("disk_write_complete: not gone");
9517		chgs = 1;
9518	}
9519	/*
9520	 * If this indirdep has been detached from its newblk during
9521	 * I/O we need to keep this dep attached to the buffer so
9522	 * deallocate_dependencies can find it and properly resolve
9523	 * any outstanding dependencies.
9524	 */
9525	if ((indirdep->ir_state & (ONDEPLIST | DEPCOMPLETE)) == 0)
9526		chgs = 1;
9527	if ((bp->b_flags & B_DELWRI) == 0)
9528		stat_indir_blk_ptrs++;
9529	/*
9530	 * If there were no changes we can discard the savedbp and detach
9531	 * ourselves from the buf.  We are only carrying completed pointers
9532	 * in this case.
9533	 */
9534	if (chgs == 0) {
9535		struct buf *sbp;
9536
9537		sbp = indirdep->ir_savebp;
9538		sbp->b_flags |= B_INVAL | B_NOCACHE;
9539		indirdep->ir_savebp = NULL;
9540		if (*bpp != NULL)
9541			panic("handle_written_indirdep: bp already exists.");
9542		*bpp = sbp;
9543	} else
9544		bdirty(bp);
9545	/*
9546	 * If there are no fresh dependencies and none waiting on writes
9547	 * we can free the indirdep.
9548	 */
9549	if ((indirdep->ir_state & DEPCOMPLETE) && chgs == 0) {
9550		if (indirdep->ir_state & ONDEPLIST)
9551			LIST_REMOVE(indirdep, ir_next);
9552		free_indirdep(indirdep);
9553		return (0);
9554	}
9555
9556	return (chgs);
9557}
9558
9559/*
9560 * Process a diradd entry after its dependent inode has been written.
9561 * This routine must be called with splbio interrupts blocked.
9562 */
9563static void
9564diradd_inode_written(dap, inodedep)
9565	struct diradd *dap;
9566	struct inodedep *inodedep;
9567{
9568
9569	dap->da_state |= COMPLETE;
9570	complete_diradd(dap);
9571	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9572}
9573
9574/*
9575 * Returns true if the bmsafemap will have rollbacks when written.  Must
9576 * only be called with lk and the buf lock on the cg held.
9577 */
9578static int
9579bmsafemap_rollbacks(bmsafemap)
9580	struct bmsafemap *bmsafemap;
9581{
9582
9583	return (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
9584	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd));
9585}
9586
9587/*
9588 * Complete a write to a bmsafemap structure.  Roll forward any bitmap
9589 * changes if it's not a background write.  Set all written dependencies
9590 * to DEPCOMPLETE and free the structure if possible.
9591 */
9592static int
9593handle_written_bmsafemap(bmsafemap, bp)
9594	struct bmsafemap *bmsafemap;
9595	struct buf *bp;
9596{
9597	struct newblk *newblk;
9598	struct inodedep *inodedep;
9599	struct jaddref *jaddref, *jatmp;
9600	struct jnewblk *jnewblk, *jntmp;
9601	uint8_t *inosused;
9602	uint8_t *blksfree;
9603	struct cg *cgp;
9604	struct fs *fs;
9605	ino_t ino;
9606	long bno;
9607	int chgs;
9608	int i;
9609
9610	if ((bmsafemap->sm_state & IOSTARTED) == 0)
9611		panic("initiate_write_bmsafemap: Not started\n");
9612	chgs = 0;
9613	bmsafemap->sm_state &= ~IOSTARTED;
9614	/*
9615	 * Restore unwritten inode allocation pending jaddref writes.
9616	 */
9617	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
9618		cgp = (struct cg *)bp->b_data;
9619		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
9620		inosused = cg_inosused(cgp);
9621		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
9622		    ja_bmdeps, jatmp) {
9623			if ((jaddref->ja_state & UNDONE) == 0)
9624				continue;
9625			ino = jaddref->ja_ino % fs->fs_ipg;
9626			if (isset(inosused, ino))
9627				panic("handle_written_bmsafemap: "
9628				    "re-allocated inode");
9629			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
9630				if ((jaddref->ja_mode & IFMT) == IFDIR)
9631					cgp->cg_cs.cs_ndir++;
9632				cgp->cg_cs.cs_nifree--;
9633				setbit(inosused, ino);
9634				chgs = 1;
9635			}
9636			jaddref->ja_state &= ~UNDONE;
9637			jaddref->ja_state |= ATTACHED;
9638			free_jaddref(jaddref);
9639		}
9640	}
9641	/*
9642	 * Restore any block allocations which are pending journal writes.
9643	 */
9644	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
9645		cgp = (struct cg *)bp->b_data;
9646		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
9647		blksfree = cg_blksfree(cgp);
9648		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
9649		    jntmp) {
9650			if ((jnewblk->jn_state & UNDONE) == 0)
9651				continue;
9652			bno = dtogd(fs, jnewblk->jn_blkno);
9653			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
9654			    i++) {
9655				if (bp->b_xflags & BX_BKGRDMARKER)
9656					break;
9657				if ((jnewblk->jn_state & NEWBLOCK) == 0 &&
9658				    isclr(blksfree, bno + i))
9659					panic("handle_written_bmsafemap: "
9660					    "re-allocated fragment");
9661				clrbit(blksfree, bno + i);
9662				chgs = 1;
9663			}
9664			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
9665			jnewblk->jn_state |= ATTACHED;
9666			free_jnewblk(jnewblk);
9667		}
9668	}
9669	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
9670		newblk->nb_state |= DEPCOMPLETE;
9671		newblk->nb_state &= ~ONDEPLIST;
9672		newblk->nb_bmsafemap = NULL;
9673		LIST_REMOVE(newblk, nb_deps);
9674		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
9675			handle_allocdirect_partdone(
9676			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
9677		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
9678			handle_allocindir_partdone(
9679			    WK_ALLOCINDIR(&newblk->nb_list));
9680		else if (newblk->nb_list.wk_type != D_NEWBLK)
9681			panic("handle_written_bmsafemap: Unexpected type: %s",
9682			    TYPENAME(newblk->nb_list.wk_type));
9683	}
9684	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
9685		inodedep->id_state |= DEPCOMPLETE;
9686		inodedep->id_state &= ~ONDEPLIST;
9687		LIST_REMOVE(inodedep, id_deps);
9688		inodedep->id_bmsafemap = NULL;
9689	}
9690	if (LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
9691	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
9692	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
9693	    LIST_EMPTY(&bmsafemap->sm_inodedephd)) {
9694		if (chgs)
9695			bdirty(bp);
9696		LIST_REMOVE(bmsafemap, sm_hash);
9697		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
9698		return (0);
9699	}
9700	bdirty(bp);
9701	return (1);
9702}
9703
9704/*
9705 * Try to free a mkdir dependency.
9706 */
9707static void
9708complete_mkdir(mkdir)
9709	struct mkdir *mkdir;
9710{
9711	struct diradd *dap;
9712
9713	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
9714		return;
9715	LIST_REMOVE(mkdir, md_mkdirs);
9716	dap = mkdir->md_diradd;
9717	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9718	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
9719		dap->da_state |= DEPCOMPLETE;
9720		complete_diradd(dap);
9721	}
9722	WORKITEM_FREE(mkdir, D_MKDIR);
9723}
9724
9725/*
9726 * Handle the completion of a mkdir dependency.
9727 */
9728static void
9729handle_written_mkdir(mkdir, type)
9730	struct mkdir *mkdir;
9731	int type;
9732{
9733
9734	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
9735		panic("handle_written_mkdir: bad type");
9736	mkdir->md_state |= COMPLETE;
9737	complete_mkdir(mkdir);
9738}
9739
9740static void
9741free_pagedep(pagedep)
9742	struct pagedep *pagedep;
9743{
9744	int i;
9745
9746	if (pagedep->pd_state & (NEWBLOCK | ONWORKLIST))
9747		return;
9748	for (i = 0; i < DAHASHSZ; i++)
9749		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
9750			return;
9751	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
9752		return;
9753	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
9754		return;
9755	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
9756		return;
9757	LIST_REMOVE(pagedep, pd_hash);
9758	WORKITEM_FREE(pagedep, D_PAGEDEP);
9759}
9760
9761/*
9762 * Called from within softdep_disk_write_complete above.
9763 * A write operation was just completed. Removed inodes can
9764 * now be freed and associated block pointers may be committed.
9765 * Note that this routine is always called from interrupt level
9766 * with further splbio interrupts blocked.
9767 */
9768static int
9769handle_written_filepage(pagedep, bp)
9770	struct pagedep *pagedep;
9771	struct buf *bp;		/* buffer containing the written page */
9772{
9773	struct dirrem *dirrem;
9774	struct diradd *dap, *nextdap;
9775	struct direct *ep;
9776	int i, chgs;
9777
9778	if ((pagedep->pd_state & IOSTARTED) == 0)
9779		panic("handle_written_filepage: not started");
9780	pagedep->pd_state &= ~IOSTARTED;
9781	/*
9782	 * Process any directory removals that have been committed.
9783	 */
9784	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
9785		LIST_REMOVE(dirrem, dm_next);
9786		dirrem->dm_state |= COMPLETE;
9787		dirrem->dm_dirinum = pagedep->pd_ino;
9788		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9789		    ("handle_written_filepage: Journal entries not written."));
9790		add_to_worklist(&dirrem->dm_list, 0);
9791	}
9792	/*
9793	 * Free any directory additions that have been committed.
9794	 * If it is a newly allocated block, we have to wait until
9795	 * the on-disk directory inode claims the new block.
9796	 */
9797	if ((pagedep->pd_state & NEWBLOCK) == 0)
9798		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
9799			free_diradd(dap, NULL);
9800	/*
9801	 * Uncommitted directory entries must be restored.
9802	 */
9803	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
9804		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
9805		     dap = nextdap) {
9806			nextdap = LIST_NEXT(dap, da_pdlist);
9807			if (dap->da_state & ATTACHED)
9808				panic("handle_written_filepage: attached");
9809			ep = (struct direct *)
9810			    ((char *)bp->b_data + dap->da_offset);
9811			ep->d_ino = dap->da_newinum;
9812			dap->da_state &= ~UNDONE;
9813			dap->da_state |= ATTACHED;
9814			chgs = 1;
9815			/*
9816			 * If the inode referenced by the directory has
9817			 * been written out, then the dependency can be
9818			 * moved to the pending list.
9819			 */
9820			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
9821				LIST_REMOVE(dap, da_pdlist);
9822				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
9823				    da_pdlist);
9824			}
9825		}
9826	}
9827	/*
9828	 * If there were any rollbacks in the directory, then it must be
9829	 * marked dirty so that its will eventually get written back in
9830	 * its correct form.
9831	 */
9832	if (chgs) {
9833		if ((bp->b_flags & B_DELWRI) == 0)
9834			stat_dir_entry++;
9835		bdirty(bp);
9836		return (1);
9837	}
9838	/*
9839	 * If we are not waiting for a new directory block to be
9840	 * claimed by its inode, then the pagedep will be freed.
9841	 * Otherwise it will remain to track any new entries on
9842	 * the page in case they are fsync'ed.
9843	 */
9844	if ((pagedep->pd_state & NEWBLOCK) == 0 &&
9845	    LIST_EMPTY(&pagedep->pd_jmvrefhd)) {
9846		LIST_REMOVE(pagedep, pd_hash);
9847		WORKITEM_FREE(pagedep, D_PAGEDEP);
9848	}
9849	return (0);
9850}
9851
9852/*
9853 * Writing back in-core inode structures.
9854 *
9855 * The filesystem only accesses an inode's contents when it occupies an
9856 * "in-core" inode structure.  These "in-core" structures are separate from
9857 * the page frames used to cache inode blocks.  Only the latter are
9858 * transferred to/from the disk.  So, when the updated contents of the
9859 * "in-core" inode structure are copied to the corresponding in-memory inode
9860 * block, the dependencies are also transferred.  The following procedure is
9861 * called when copying a dirty "in-core" inode to a cached inode block.
9862 */
9863
9864/*
9865 * Called when an inode is loaded from disk. If the effective link count
9866 * differed from the actual link count when it was last flushed, then we
9867 * need to ensure that the correct effective link count is put back.
9868 */
9869void
9870softdep_load_inodeblock(ip)
9871	struct inode *ip;	/* the "in_core" copy of the inode */
9872{
9873	struct inodedep *inodedep;
9874
9875	/*
9876	 * Check for alternate nlink count.
9877	 */
9878	ip->i_effnlink = ip->i_nlink;
9879	ACQUIRE_LOCK(&lk);
9880	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
9881	    &inodedep) == 0) {
9882		FREE_LOCK(&lk);
9883		return;
9884	}
9885	ip->i_effnlink -= inodedep->id_nlinkdelta;
9886	FREE_LOCK(&lk);
9887}
9888
9889/*
9890 * This routine is called just before the "in-core" inode
9891 * information is to be copied to the in-memory inode block.
9892 * Recall that an inode block contains several inodes. If
9893 * the force flag is set, then the dependencies will be
9894 * cleared so that the update can always be made. Note that
9895 * the buffer is locked when this routine is called, so we
9896 * will never be in the middle of writing the inode block
9897 * to disk.
9898 */
9899void
9900softdep_update_inodeblock(ip, bp, waitfor)
9901	struct inode *ip;	/* the "in_core" copy of the inode */
9902	struct buf *bp;		/* the buffer containing the inode block */
9903	int waitfor;		/* nonzero => update must be allowed */
9904{
9905	struct inodedep *inodedep;
9906	struct inoref *inoref;
9907	struct worklist *wk;
9908	struct mount *mp;
9909	struct buf *ibp;
9910	struct fs *fs;
9911	int error;
9912
9913	mp = UFSTOVFS(ip->i_ump);
9914	fs = ip->i_fs;
9915	/*
9916	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
9917	 * does not have access to the in-core ip so must write directly into
9918	 * the inode block buffer when setting freelink.
9919	 */
9920	if (fs->fs_magic == FS_UFS1_MAGIC)
9921		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
9922		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
9923	else
9924		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
9925		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
9926	/*
9927	 * If the effective link count is not equal to the actual link
9928	 * count, then we must track the difference in an inodedep while
9929	 * the inode is (potentially) tossed out of the cache. Otherwise,
9930	 * if there is no existing inodedep, then there are no dependencies
9931	 * to track.
9932	 */
9933	ACQUIRE_LOCK(&lk);
9934again:
9935	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
9936		FREE_LOCK(&lk);
9937		if (ip->i_effnlink != ip->i_nlink)
9938			panic("softdep_update_inodeblock: bad link count");
9939		return;
9940	}
9941	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
9942		panic("softdep_update_inodeblock: bad delta");
9943	/*
9944	 * If we're flushing all dependencies we must also move any waiting
9945	 * for journal writes onto the bufwait list prior to I/O.
9946	 */
9947	if (waitfor) {
9948		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9949			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
9950			    == DEPCOMPLETE) {
9951				stat_jwait_inode++;
9952				jwait(&inoref->if_list);
9953				goto again;
9954			}
9955		}
9956	}
9957	/*
9958	 * Changes have been initiated. Anything depending on these
9959	 * changes cannot occur until this inode has been written.
9960	 */
9961	inodedep->id_state &= ~COMPLETE;
9962	if ((inodedep->id_state & ONWORKLIST) == 0)
9963		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
9964	/*
9965	 * Any new dependencies associated with the incore inode must
9966	 * now be moved to the list associated with the buffer holding
9967	 * the in-memory copy of the inode. Once merged process any
9968	 * allocdirects that are completed by the merger.
9969	 */
9970	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
9971	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
9972		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
9973		    NULL);
9974	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
9975	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
9976		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
9977		    NULL);
9978	/*
9979	 * Now that the inode has been pushed into the buffer, the
9980	 * operations dependent on the inode being written to disk
9981	 * can be moved to the id_bufwait so that they will be
9982	 * processed when the buffer I/O completes.
9983	 */
9984	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
9985		WORKLIST_REMOVE(wk);
9986		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
9987	}
9988	/*
9989	 * Newly allocated inodes cannot be written until the bitmap
9990	 * that allocates them have been written (indicated by
9991	 * DEPCOMPLETE being set in id_state). If we are doing a
9992	 * forced sync (e.g., an fsync on a file), we force the bitmap
9993	 * to be written so that the update can be done.
9994	 */
9995	if (waitfor == 0) {
9996		FREE_LOCK(&lk);
9997		return;
9998	}
9999retry:
10000	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
10001		FREE_LOCK(&lk);
10002		return;
10003	}
10004	ibp = inodedep->id_bmsafemap->sm_buf;
10005	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
10006	if (ibp == NULL) {
10007		/*
10008		 * If ibp came back as NULL, the dependency could have been
10009		 * freed while we slept.  Look it up again, and check to see
10010		 * that it has completed.
10011		 */
10012		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
10013			goto retry;
10014		FREE_LOCK(&lk);
10015		return;
10016	}
10017	FREE_LOCK(&lk);
10018	if ((error = bwrite(ibp)) != 0)
10019		softdep_error("softdep_update_inodeblock: bwrite", error);
10020}
10021
10022/*
10023 * Merge the a new inode dependency list (such as id_newinoupdt) into an
10024 * old inode dependency list (such as id_inoupdt). This routine must be
10025 * called with splbio interrupts blocked.
10026 */
10027static void
10028merge_inode_lists(newlisthead, oldlisthead)
10029	struct allocdirectlst *newlisthead;
10030	struct allocdirectlst *oldlisthead;
10031{
10032	struct allocdirect *listadp, *newadp;
10033
10034	newadp = TAILQ_FIRST(newlisthead);
10035	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
10036		if (listadp->ad_offset < newadp->ad_offset) {
10037			listadp = TAILQ_NEXT(listadp, ad_next);
10038			continue;
10039		}
10040		TAILQ_REMOVE(newlisthead, newadp, ad_next);
10041		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
10042		if (listadp->ad_offset == newadp->ad_offset) {
10043			allocdirect_merge(oldlisthead, newadp,
10044			    listadp);
10045			listadp = newadp;
10046		}
10047		newadp = TAILQ_FIRST(newlisthead);
10048	}
10049	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
10050		TAILQ_REMOVE(newlisthead, newadp, ad_next);
10051		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
10052	}
10053}
10054
10055/*
10056 * If we are doing an fsync, then we must ensure that any directory
10057 * entries for the inode have been written after the inode gets to disk.
10058 */
10059int
10060softdep_fsync(vp)
10061	struct vnode *vp;	/* the "in_core" copy of the inode */
10062{
10063	struct inodedep *inodedep;
10064	struct pagedep *pagedep;
10065	struct inoref *inoref;
10066	struct worklist *wk;
10067	struct diradd *dap;
10068	struct mount *mp;
10069	struct vnode *pvp;
10070	struct inode *ip;
10071	struct buf *bp;
10072	struct fs *fs;
10073	struct thread *td = curthread;
10074	int error, flushparent, pagedep_new_block;
10075	ino_t parentino;
10076	ufs_lbn_t lbn;
10077
10078	ip = VTOI(vp);
10079	fs = ip->i_fs;
10080	mp = vp->v_mount;
10081	ACQUIRE_LOCK(&lk);
10082restart:
10083	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
10084		FREE_LOCK(&lk);
10085		return (0);
10086	}
10087	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10088		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10089		    == DEPCOMPLETE) {
10090			stat_jwait_inode++;
10091			jwait(&inoref->if_list);
10092			goto restart;
10093		}
10094	}
10095	if (!LIST_EMPTY(&inodedep->id_inowait) ||
10096	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
10097	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
10098	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
10099	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
10100		panic("softdep_fsync: pending ops %p", inodedep);
10101	for (error = 0, flushparent = 0; ; ) {
10102		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
10103			break;
10104		if (wk->wk_type != D_DIRADD)
10105			panic("softdep_fsync: Unexpected type %s",
10106			    TYPENAME(wk->wk_type));
10107		dap = WK_DIRADD(wk);
10108		/*
10109		 * Flush our parent if this directory entry has a MKDIR_PARENT
10110		 * dependency or is contained in a newly allocated block.
10111		 */
10112		if (dap->da_state & DIRCHG)
10113			pagedep = dap->da_previous->dm_pagedep;
10114		else
10115			pagedep = dap->da_pagedep;
10116		parentino = pagedep->pd_ino;
10117		lbn = pagedep->pd_lbn;
10118		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
10119			panic("softdep_fsync: dirty");
10120		if ((dap->da_state & MKDIR_PARENT) ||
10121		    (pagedep->pd_state & NEWBLOCK))
10122			flushparent = 1;
10123		else
10124			flushparent = 0;
10125		/*
10126		 * If we are being fsync'ed as part of vgone'ing this vnode,
10127		 * then we will not be able to release and recover the
10128		 * vnode below, so we just have to give up on writing its
10129		 * directory entry out. It will eventually be written, just
10130		 * not now, but then the user was not asking to have it
10131		 * written, so we are not breaking any promises.
10132		 */
10133		if (vp->v_iflag & VI_DOOMED)
10134			break;
10135		/*
10136		 * We prevent deadlock by always fetching inodes from the
10137		 * root, moving down the directory tree. Thus, when fetching
10138		 * our parent directory, we first try to get the lock. If
10139		 * that fails, we must unlock ourselves before requesting
10140		 * the lock on our parent. See the comment in ufs_lookup
10141		 * for details on possible races.
10142		 */
10143		FREE_LOCK(&lk);
10144		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
10145		    FFSV_FORCEINSMQ)) {
10146			error = vfs_busy(mp, MBF_NOWAIT);
10147			if (error != 0) {
10148				vfs_ref(mp);
10149				VOP_UNLOCK(vp, 0);
10150				error = vfs_busy(mp, 0);
10151				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
10152				vfs_rel(mp);
10153				if (error != 0)
10154					return (ENOENT);
10155				if (vp->v_iflag & VI_DOOMED) {
10156					vfs_unbusy(mp);
10157					return (ENOENT);
10158				}
10159			}
10160			VOP_UNLOCK(vp, 0);
10161			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
10162			    &pvp, FFSV_FORCEINSMQ);
10163			vfs_unbusy(mp);
10164			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
10165			if (vp->v_iflag & VI_DOOMED) {
10166				if (error == 0)
10167					vput(pvp);
10168				error = ENOENT;
10169			}
10170			if (error != 0)
10171				return (error);
10172		}
10173		/*
10174		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
10175		 * that are contained in direct blocks will be resolved by
10176		 * doing a ffs_update. Pagedeps contained in indirect blocks
10177		 * may require a complete sync'ing of the directory. So, we
10178		 * try the cheap and fast ffs_update first, and if that fails,
10179		 * then we do the slower ffs_syncvnode of the directory.
10180		 */
10181		if (flushparent) {
10182			int locked;
10183
10184			if ((error = ffs_update(pvp, 1)) != 0) {
10185				vput(pvp);
10186				return (error);
10187			}
10188			ACQUIRE_LOCK(&lk);
10189			locked = 1;
10190			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
10191				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
10192					if (wk->wk_type != D_DIRADD)
10193						panic("softdep_fsync: Unexpected type %s",
10194						      TYPENAME(wk->wk_type));
10195					dap = WK_DIRADD(wk);
10196					if (dap->da_state & DIRCHG)
10197						pagedep = dap->da_previous->dm_pagedep;
10198					else
10199						pagedep = dap->da_pagedep;
10200					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
10201					FREE_LOCK(&lk);
10202					locked = 0;
10203					if (pagedep_new_block &&
10204					    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
10205						vput(pvp);
10206						return (error);
10207					}
10208				}
10209			}
10210			if (locked)
10211				FREE_LOCK(&lk);
10212		}
10213		/*
10214		 * Flush directory page containing the inode's name.
10215		 */
10216		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
10217		    &bp);
10218		if (error == 0)
10219			error = bwrite(bp);
10220		else
10221			brelse(bp);
10222		vput(pvp);
10223		if (error != 0)
10224			return (error);
10225		ACQUIRE_LOCK(&lk);
10226		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
10227			break;
10228	}
10229	FREE_LOCK(&lk);
10230	return (0);
10231}
10232
10233/*
10234 * Flush all the dirty bitmaps associated with the block device
10235 * before flushing the rest of the dirty blocks so as to reduce
10236 * the number of dependencies that will have to be rolled back.
10237 */
10238void
10239softdep_fsync_mountdev(vp)
10240	struct vnode *vp;
10241{
10242	struct buf *bp, *nbp;
10243	struct worklist *wk;
10244	struct bufobj *bo;
10245
10246	if (!vn_isdisk(vp, NULL))
10247		panic("softdep_fsync_mountdev: vnode not a disk");
10248	bo = &vp->v_bufobj;
10249restart:
10250	BO_LOCK(bo);
10251	ACQUIRE_LOCK(&lk);
10252	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
10253		/*
10254		 * If it is already scheduled, skip to the next buffer.
10255		 */
10256		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
10257			continue;
10258
10259		if ((bp->b_flags & B_DELWRI) == 0)
10260			panic("softdep_fsync_mountdev: not dirty");
10261		/*
10262		 * We are only interested in bitmaps with outstanding
10263		 * dependencies.
10264		 */
10265		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
10266		    wk->wk_type != D_BMSAFEMAP ||
10267		    (bp->b_vflags & BV_BKGRDINPROG)) {
10268			BUF_UNLOCK(bp);
10269			continue;
10270		}
10271		FREE_LOCK(&lk);
10272		BO_UNLOCK(bo);
10273		bremfree(bp);
10274		(void) bawrite(bp);
10275		goto restart;
10276	}
10277	FREE_LOCK(&lk);
10278	drain_output(vp);
10279	BO_UNLOCK(bo);
10280}
10281
10282/*
10283 * This routine is called when we are trying to synchronously flush a
10284 * file. This routine must eliminate any filesystem metadata dependencies
10285 * so that the syncing routine can succeed by pushing the dirty blocks
10286 * associated with the file. If any I/O errors occur, they are returned.
10287 */
10288int
10289softdep_sync_metadata(struct vnode *vp)
10290{
10291	struct pagedep *pagedep;
10292	struct allocindir *aip;
10293	struct newblk *newblk;
10294	struct buf *bp, *nbp;
10295	struct worklist *wk;
10296	struct bufobj *bo;
10297	int i, error, waitfor;
10298
10299	if (!DOINGSOFTDEP(vp))
10300		return (0);
10301	/*
10302	 * Ensure that any direct block dependencies have been cleared.
10303	 */
10304	ACQUIRE_LOCK(&lk);
10305	if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) {
10306		FREE_LOCK(&lk);
10307		return (error);
10308	}
10309	FREE_LOCK(&lk);
10310	/*
10311	 * For most files, the only metadata dependencies are the
10312	 * cylinder group maps that allocate their inode or blocks.
10313	 * The block allocation dependencies can be found by traversing
10314	 * the dependency lists for any buffers that remain on their
10315	 * dirty buffer list. The inode allocation dependency will
10316	 * be resolved when the inode is updated with MNT_WAIT.
10317	 * This work is done in two passes. The first pass grabs most
10318	 * of the buffers and begins asynchronously writing them. The
10319	 * only way to wait for these asynchronous writes is to sleep
10320	 * on the filesystem vnode which may stay busy for a long time
10321	 * if the filesystem is active. So, instead, we make a second
10322	 * pass over the dependencies blocking on each write. In the
10323	 * usual case we will be blocking against a write that we
10324	 * initiated, so when it is done the dependency will have been
10325	 * resolved. Thus the second pass is expected to end quickly.
10326	 */
10327	waitfor = MNT_NOWAIT;
10328	bo = &vp->v_bufobj;
10329
10330top:
10331	/*
10332	 * We must wait for any I/O in progress to finish so that
10333	 * all potential buffers on the dirty list will be visible.
10334	 */
10335	BO_LOCK(bo);
10336	drain_output(vp);
10337	while ((bp = TAILQ_FIRST(&bo->bo_dirty.bv_hd)) != NULL) {
10338		bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT);
10339		if (bp)
10340			break;
10341	}
10342	BO_UNLOCK(bo);
10343	if (bp == NULL)
10344		return (0);
10345loop:
10346	/* While syncing snapshots, we must allow recursive lookups */
10347	BUF_AREC(bp);
10348	ACQUIRE_LOCK(&lk);
10349	/*
10350	 * As we hold the buffer locked, none of its dependencies
10351	 * will disappear.
10352	 */
10353	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
10354		switch (wk->wk_type) {
10355
10356		case D_ALLOCDIRECT:
10357		case D_ALLOCINDIR:
10358			newblk = WK_NEWBLK(wk);
10359			if (newblk->nb_jnewblk != NULL) {
10360				stat_jwait_newblk++;
10361				jwait(&newblk->nb_jnewblk->jn_list);
10362				goto restart;
10363			}
10364			if (newblk->nb_state & DEPCOMPLETE)
10365				continue;
10366			nbp = newblk->nb_bmsafemap->sm_buf;
10367			nbp = getdirtybuf(nbp, &lk, waitfor);
10368			if (nbp == NULL)
10369				continue;
10370			FREE_LOCK(&lk);
10371			if (waitfor == MNT_NOWAIT) {
10372				bawrite(nbp);
10373			} else if ((error = bwrite(nbp)) != 0) {
10374				break;
10375			}
10376			ACQUIRE_LOCK(&lk);
10377			continue;
10378
10379		case D_INDIRDEP:
10380		restart:
10381
10382			LIST_FOREACH(aip,
10383			    &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
10384				newblk = (struct newblk *)aip;
10385				if (newblk->nb_jnewblk != NULL) {
10386					stat_jwait_newblk++;
10387					jwait(&newblk->nb_jnewblk->jn_list);
10388					goto restart;
10389				}
10390				if (newblk->nb_state & DEPCOMPLETE)
10391					continue;
10392				nbp = newblk->nb_bmsafemap->sm_buf;
10393				nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
10394				if (nbp == NULL)
10395					goto restart;
10396				FREE_LOCK(&lk);
10397				if ((error = bwrite(nbp)) != 0) {
10398					goto loop_end;
10399				}
10400				ACQUIRE_LOCK(&lk);
10401				goto restart;
10402			}
10403			continue;
10404
10405		case D_PAGEDEP:
10406			/*
10407			 * We are trying to sync a directory that may
10408			 * have dependencies on both its own metadata
10409			 * and/or dependencies on the inodes of any
10410			 * recently allocated files. We walk its diradd
10411			 * lists pushing out the associated inode.
10412			 */
10413			pagedep = WK_PAGEDEP(wk);
10414			for (i = 0; i < DAHASHSZ; i++) {
10415				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
10416					continue;
10417				if ((error =
10418				    flush_pagedep_deps(vp, wk->wk_mp,
10419						&pagedep->pd_diraddhd[i]))) {
10420					FREE_LOCK(&lk);
10421					goto loop_end;
10422				}
10423			}
10424			continue;
10425
10426		default:
10427			panic("softdep_sync_metadata: Unknown type %s",
10428			    TYPENAME(wk->wk_type));
10429			/* NOTREACHED */
10430		}
10431	loop_end:
10432		/* We reach here only in error and unlocked */
10433		if (error == 0)
10434			panic("softdep_sync_metadata: zero error");
10435		BUF_NOREC(bp);
10436		bawrite(bp);
10437		return (error);
10438	}
10439	FREE_LOCK(&lk);
10440	BO_LOCK(bo);
10441	while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
10442		nbp = getdirtybuf(nbp, BO_MTX(bo), MNT_WAIT);
10443		if (nbp)
10444			break;
10445	}
10446	BO_UNLOCK(bo);
10447	BUF_NOREC(bp);
10448	bawrite(bp);
10449	if (nbp != NULL) {
10450		bp = nbp;
10451		goto loop;
10452	}
10453	/*
10454	 * The brief unlock is to allow any pent up dependency
10455	 * processing to be done. Then proceed with the second pass.
10456	 */
10457	if (waitfor == MNT_NOWAIT) {
10458		waitfor = MNT_WAIT;
10459		goto top;
10460	}
10461
10462	/*
10463	 * If we have managed to get rid of all the dirty buffers,
10464	 * then we are done. For certain directories and block
10465	 * devices, we may need to do further work.
10466	 *
10467	 * We must wait for any I/O in progress to finish so that
10468	 * all potential buffers on the dirty list will be visible.
10469	 */
10470	BO_LOCK(bo);
10471	drain_output(vp);
10472	BO_UNLOCK(bo);
10473	return ffs_update(vp, 1);
10474	/* return (0); */
10475}
10476
10477/*
10478 * Flush the dependencies associated with an inodedep.
10479 * Called with splbio blocked.
10480 */
10481static int
10482flush_inodedep_deps(mp, ino)
10483	struct mount *mp;
10484	ino_t ino;
10485{
10486	struct inodedep *inodedep;
10487	struct inoref *inoref;
10488	int error, waitfor;
10489
10490	/*
10491	 * This work is done in two passes. The first pass grabs most
10492	 * of the buffers and begins asynchronously writing them. The
10493	 * only way to wait for these asynchronous writes is to sleep
10494	 * on the filesystem vnode which may stay busy for a long time
10495	 * if the filesystem is active. So, instead, we make a second
10496	 * pass over the dependencies blocking on each write. In the
10497	 * usual case we will be blocking against a write that we
10498	 * initiated, so when it is done the dependency will have been
10499	 * resolved. Thus the second pass is expected to end quickly.
10500	 * We give a brief window at the top of the loop to allow
10501	 * any pending I/O to complete.
10502	 */
10503	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
10504		if (error)
10505			return (error);
10506		FREE_LOCK(&lk);
10507		ACQUIRE_LOCK(&lk);
10508restart:
10509		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
10510			return (0);
10511		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10512			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10513			    == DEPCOMPLETE) {
10514				stat_jwait_inode++;
10515				jwait(&inoref->if_list);
10516				goto restart;
10517			}
10518		}
10519		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
10520		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
10521		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
10522		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
10523			continue;
10524		/*
10525		 * If pass2, we are done, otherwise do pass 2.
10526		 */
10527		if (waitfor == MNT_WAIT)
10528			break;
10529		waitfor = MNT_WAIT;
10530	}
10531	/*
10532	 * Try freeing inodedep in case all dependencies have been removed.
10533	 */
10534	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
10535		(void) free_inodedep(inodedep);
10536	return (0);
10537}
10538
10539/*
10540 * Flush an inode dependency list.
10541 * Called with splbio blocked.
10542 */
10543static int
10544flush_deplist(listhead, waitfor, errorp)
10545	struct allocdirectlst *listhead;
10546	int waitfor;
10547	int *errorp;
10548{
10549	struct allocdirect *adp;
10550	struct newblk *newblk;
10551	struct buf *bp;
10552
10553	mtx_assert(&lk, MA_OWNED);
10554	TAILQ_FOREACH(adp, listhead, ad_next) {
10555		newblk = (struct newblk *)adp;
10556		if (newblk->nb_jnewblk != NULL) {
10557			stat_jwait_newblk++;
10558			jwait(&newblk->nb_jnewblk->jn_list);
10559			return (1);
10560		}
10561		if (newblk->nb_state & DEPCOMPLETE)
10562			continue;
10563		bp = newblk->nb_bmsafemap->sm_buf;
10564		bp = getdirtybuf(bp, &lk, waitfor);
10565		if (bp == NULL) {
10566			if (waitfor == MNT_NOWAIT)
10567				continue;
10568			return (1);
10569		}
10570		FREE_LOCK(&lk);
10571		if (waitfor == MNT_NOWAIT) {
10572			bawrite(bp);
10573		} else if ((*errorp = bwrite(bp)) != 0) {
10574			ACQUIRE_LOCK(&lk);
10575			return (1);
10576		}
10577		ACQUIRE_LOCK(&lk);
10578		return (1);
10579	}
10580	return (0);
10581}
10582
10583/*
10584 * Flush dependencies associated with an allocdirect block.
10585 */
10586static int
10587flush_newblk_dep(vp, mp, lbn)
10588	struct vnode *vp;
10589	struct mount *mp;
10590	ufs_lbn_t lbn;
10591{
10592	struct newblk *newblk;
10593	struct bufobj *bo;
10594	struct inode *ip;
10595	struct buf *bp;
10596	ufs2_daddr_t blkno;
10597	int error;
10598
10599	error = 0;
10600	bo = &vp->v_bufobj;
10601	ip = VTOI(vp);
10602	blkno = DIP(ip, i_db[lbn]);
10603	if (blkno == 0)
10604		panic("flush_newblk_dep: Missing block");
10605	ACQUIRE_LOCK(&lk);
10606	/*
10607	 * Loop until all dependencies related to this block are satisfied.
10608	 * We must be careful to restart after each sleep in case a write
10609	 * completes some part of this process for us.
10610	 */
10611	for (;;) {
10612		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
10613			FREE_LOCK(&lk);
10614			break;
10615		}
10616		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
10617			panic("flush_newblk_deps: Bad newblk %p", newblk);
10618		/*
10619		 * Flush the journal.
10620		 */
10621		if (newblk->nb_jnewblk != NULL) {
10622			stat_jwait_newblk++;
10623			jwait(&newblk->nb_jnewblk->jn_list);
10624			continue;
10625		}
10626		/*
10627		 * Write the bitmap dependency.
10628		 */
10629		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
10630			bp = newblk->nb_bmsafemap->sm_buf;
10631			bp = getdirtybuf(bp, &lk, MNT_WAIT);
10632			if (bp == NULL)
10633				continue;
10634			FREE_LOCK(&lk);
10635			error = bwrite(bp);
10636			if (error)
10637				break;
10638			ACQUIRE_LOCK(&lk);
10639			continue;
10640		}
10641		/*
10642		 * Write the buffer.
10643		 */
10644		FREE_LOCK(&lk);
10645		BO_LOCK(bo);
10646		bp = gbincore(bo, lbn);
10647		if (bp != NULL) {
10648			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
10649			    LK_INTERLOCK, BO_MTX(bo));
10650			if (error == ENOLCK) {
10651				ACQUIRE_LOCK(&lk);
10652				continue; /* Slept, retry */
10653			}
10654			if (error != 0)
10655				break;	/* Failed */
10656			if (bp->b_flags & B_DELWRI) {
10657				bremfree(bp);
10658				error = bwrite(bp);
10659				if (error)
10660					break;
10661			} else
10662				BUF_UNLOCK(bp);
10663		} else
10664			BO_UNLOCK(bo);
10665		/*
10666		 * We have to wait for the direct pointers to
10667		 * point at the newdirblk before the dependency
10668		 * will go away.
10669		 */
10670		error = ffs_update(vp, MNT_WAIT);
10671		if (error)
10672			break;
10673		ACQUIRE_LOCK(&lk);
10674	}
10675	return (error);
10676}
10677
10678/*
10679 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
10680 * Called with splbio blocked.
10681 */
10682static int
10683flush_pagedep_deps(pvp, mp, diraddhdp)
10684	struct vnode *pvp;
10685	struct mount *mp;
10686	struct diraddhd *diraddhdp;
10687{
10688	struct inodedep *inodedep;
10689	struct inoref *inoref;
10690	struct ufsmount *ump;
10691	struct diradd *dap;
10692	struct vnode *vp;
10693	int error = 0;
10694	struct buf *bp;
10695	ino_t inum;
10696
10697	ump = VFSTOUFS(mp);
10698restart:
10699	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
10700		/*
10701		 * Flush ourselves if this directory entry
10702		 * has a MKDIR_PARENT dependency.
10703		 */
10704		if (dap->da_state & MKDIR_PARENT) {
10705			FREE_LOCK(&lk);
10706			if ((error = ffs_update(pvp, MNT_WAIT)) != 0)
10707				break;
10708			ACQUIRE_LOCK(&lk);
10709			/*
10710			 * If that cleared dependencies, go on to next.
10711			 */
10712			if (dap != LIST_FIRST(diraddhdp))
10713				continue;
10714			if (dap->da_state & MKDIR_PARENT)
10715				panic("flush_pagedep_deps: MKDIR_PARENT");
10716		}
10717		/*
10718		 * A newly allocated directory must have its "." and
10719		 * ".." entries written out before its name can be
10720		 * committed in its parent.
10721		 */
10722		inum = dap->da_newinum;
10723		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
10724			panic("flush_pagedep_deps: lost inode1");
10725		/*
10726		 * Wait for any pending journal adds to complete so we don't
10727		 * cause rollbacks while syncing.
10728		 */
10729		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10730			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10731			    == DEPCOMPLETE) {
10732				stat_jwait_inode++;
10733				jwait(&inoref->if_list);
10734				goto restart;
10735			}
10736		}
10737		if (dap->da_state & MKDIR_BODY) {
10738			FREE_LOCK(&lk);
10739			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
10740			    FFSV_FORCEINSMQ)))
10741				break;
10742			error = flush_newblk_dep(vp, mp, 0);
10743			/*
10744			 * If we still have the dependency we might need to
10745			 * update the vnode to sync the new link count to
10746			 * disk.
10747			 */
10748			if (error == 0 && dap == LIST_FIRST(diraddhdp))
10749				error = ffs_update(vp, MNT_WAIT);
10750			vput(vp);
10751			if (error != 0)
10752				break;
10753			ACQUIRE_LOCK(&lk);
10754			/*
10755			 * If that cleared dependencies, go on to next.
10756			 */
10757			if (dap != LIST_FIRST(diraddhdp))
10758				continue;
10759			if (dap->da_state & MKDIR_BODY) {
10760				inodedep_lookup(UFSTOVFS(ump), inum, 0,
10761				    &inodedep);
10762				panic("flush_pagedep_deps: MKDIR_BODY "
10763				    "inodedep %p dap %p vp %p",
10764				    inodedep, dap, vp);
10765			}
10766		}
10767		/*
10768		 * Flush the inode on which the directory entry depends.
10769		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
10770		 * the only remaining dependency is that the updated inode
10771		 * count must get pushed to disk. The inode has already
10772		 * been pushed into its inode buffer (via VOP_UPDATE) at
10773		 * the time of the reference count change. So we need only
10774		 * locate that buffer, ensure that there will be no rollback
10775		 * caused by a bitmap dependency, then write the inode buffer.
10776		 */
10777retry:
10778		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
10779			panic("flush_pagedep_deps: lost inode");
10780		/*
10781		 * If the inode still has bitmap dependencies,
10782		 * push them to disk.
10783		 */
10784		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
10785			bp = inodedep->id_bmsafemap->sm_buf;
10786			bp = getdirtybuf(bp, &lk, MNT_WAIT);
10787			if (bp == NULL)
10788				goto retry;
10789			FREE_LOCK(&lk);
10790			if ((error = bwrite(bp)) != 0)
10791				break;
10792			ACQUIRE_LOCK(&lk);
10793			if (dap != LIST_FIRST(diraddhdp))
10794				continue;
10795		}
10796		/*
10797		 * If the inode is still sitting in a buffer waiting
10798		 * to be written or waiting for the link count to be
10799		 * adjusted update it here to flush it to disk.
10800		 */
10801		if (dap == LIST_FIRST(diraddhdp)) {
10802			FREE_LOCK(&lk);
10803			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
10804			    FFSV_FORCEINSMQ)))
10805				break;
10806			error = ffs_update(vp, MNT_WAIT);
10807			vput(vp);
10808			if (error)
10809				break;
10810			ACQUIRE_LOCK(&lk);
10811		}
10812		/*
10813		 * If we have failed to get rid of all the dependencies
10814		 * then something is seriously wrong.
10815		 */
10816		if (dap == LIST_FIRST(diraddhdp)) {
10817			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
10818			panic("flush_pagedep_deps: failed to flush "
10819			    "inodedep %p ino %d dap %p", inodedep, inum, dap);
10820		}
10821	}
10822	if (error)
10823		ACQUIRE_LOCK(&lk);
10824	return (error);
10825}
10826
10827/*
10828 * A large burst of file addition or deletion activity can drive the
10829 * memory load excessively high. First attempt to slow things down
10830 * using the techniques below. If that fails, this routine requests
10831 * the offending operations to fall back to running synchronously
10832 * until the memory load returns to a reasonable level.
10833 */
10834int
10835softdep_slowdown(vp)
10836	struct vnode *vp;
10837{
10838	struct ufsmount *ump;
10839	int jlow;
10840	int max_softdeps_hard;
10841
10842	ACQUIRE_LOCK(&lk);
10843	jlow = 0;
10844	/*
10845	 * Check for journal space if needed.
10846	 */
10847	if (DOINGSUJ(vp)) {
10848		ump = VFSTOUFS(vp->v_mount);
10849		if (journal_space(ump, 0) == 0)
10850			jlow = 1;
10851	}
10852	max_softdeps_hard = max_softdeps * 11 / 10;
10853	if (num_dirrem < max_softdeps_hard / 2 &&
10854	    num_inodedep < max_softdeps_hard &&
10855	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
10856	    num_freeblkdep < max_softdeps_hard && jlow == 0) {
10857		FREE_LOCK(&lk);
10858  		return (0);
10859	}
10860	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
10861		softdep_speedup();
10862	stat_sync_limit_hit += 1;
10863	FREE_LOCK(&lk);
10864	return (1);
10865}
10866
10867/*
10868 * Called by the allocation routines when they are about to fail
10869 * in the hope that we can free up some disk space.
10870 *
10871 * First check to see if the work list has anything on it. If it has,
10872 * clean up entries until we successfully free some space. Because this
10873 * process holds inodes locked, we cannot handle any remove requests
10874 * that might block on a locked inode as that could lead to deadlock.
10875 * If the worklist yields no free space, encourage the syncer daemon
10876 * to help us. In no event will we try for longer than tickdelay seconds.
10877 */
10878int
10879softdep_request_cleanup(fs, vp)
10880	struct fs *fs;
10881	struct vnode *vp;
10882{
10883	struct ufsmount *ump;
10884	long starttime;
10885	ufs2_daddr_t needed;
10886	int error;
10887
10888	ump = VTOI(vp)->i_ump;
10889	mtx_assert(UFS_MTX(ump), MA_OWNED);
10890	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
10891	starttime = time_second + tickdelay;
10892	/*
10893	 * If we are being called because of a process doing a
10894	 * copy-on-write, then it is not safe to update the vnode
10895	 * as we may recurse into the copy-on-write routine.
10896	 */
10897	if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
10898		UFS_UNLOCK(ump);
10899		error = ffs_update(vp, 1);
10900		UFS_LOCK(ump);
10901		if (error != 0)
10902			return (0);
10903	}
10904	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
10905		if (time_second > starttime)
10906			return (0);
10907		UFS_UNLOCK(ump);
10908		ACQUIRE_LOCK(&lk);
10909		process_removes(vp);
10910		if (ump->softdep_on_worklist > 0 &&
10911		    process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) {
10912			stat_worklist_push += 1;
10913			FREE_LOCK(&lk);
10914			UFS_LOCK(ump);
10915			continue;
10916		}
10917		request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT);
10918		FREE_LOCK(&lk);
10919		UFS_LOCK(ump);
10920	}
10921	return (1);
10922}
10923
10924/*
10925 * If memory utilization has gotten too high, deliberately slow things
10926 * down and speed up the I/O processing.
10927 */
10928extern struct thread *syncertd;
10929static int
10930request_cleanup(mp, resource)
10931	struct mount *mp;
10932	int resource;
10933{
10934	struct thread *td = curthread;
10935	struct ufsmount *ump;
10936
10937	mtx_assert(&lk, MA_OWNED);
10938	/*
10939	 * We never hold up the filesystem syncer or buf daemon.
10940	 */
10941	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
10942		return (0);
10943	ump = VFSTOUFS(mp);
10944	/*
10945	 * First check to see if the work list has gotten backlogged.
10946	 * If it has, co-opt this process to help clean up two entries.
10947	 * Because this process may hold inodes locked, we cannot
10948	 * handle any remove requests that might block on a locked
10949	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
10950	 * to avoid recursively processing the worklist.
10951	 */
10952	if (ump->softdep_on_worklist > max_softdeps / 10) {
10953		td->td_pflags |= TDP_SOFTDEP;
10954		process_worklist_item(mp, LK_NOWAIT);
10955		process_worklist_item(mp, LK_NOWAIT);
10956		td->td_pflags &= ~TDP_SOFTDEP;
10957		stat_worklist_push += 2;
10958		return(1);
10959	}
10960	/*
10961	 * Next, we attempt to speed up the syncer process. If that
10962	 * is successful, then we allow the process to continue.
10963	 */
10964	if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT)
10965		return(0);
10966	/*
10967	 * If we are resource constrained on inode dependencies, try
10968	 * flushing some dirty inodes. Otherwise, we are constrained
10969	 * by file deletions, so try accelerating flushes of directories
10970	 * with removal dependencies. We would like to do the cleanup
10971	 * here, but we probably hold an inode locked at this point and
10972	 * that might deadlock against one that we try to clean. So,
10973	 * the best that we can do is request the syncer daemon to do
10974	 * the cleanup for us.
10975	 */
10976	switch (resource) {
10977
10978	case FLUSH_INODES:
10979		stat_ino_limit_push += 1;
10980		req_clear_inodedeps += 1;
10981		stat_countp = &stat_ino_limit_hit;
10982		break;
10983
10984	case FLUSH_REMOVE:
10985	case FLUSH_REMOVE_WAIT:
10986		stat_blk_limit_push += 1;
10987		req_clear_remove += 1;
10988		stat_countp = &stat_blk_limit_hit;
10989		break;
10990
10991	default:
10992		panic("request_cleanup: unknown type");
10993	}
10994	/*
10995	 * Hopefully the syncer daemon will catch up and awaken us.
10996	 * We wait at most tickdelay before proceeding in any case.
10997	 */
10998	proc_waiting += 1;
10999	if (callout_pending(&softdep_callout) == FALSE)
11000		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
11001		    pause_timer, 0);
11002
11003	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
11004	proc_waiting -= 1;
11005	return (1);
11006}
11007
11008/*
11009 * Awaken processes pausing in request_cleanup and clear proc_waiting
11010 * to indicate that there is no longer a timer running.
11011 */
11012static void
11013pause_timer(arg)
11014	void *arg;
11015{
11016
11017	/*
11018	 * The callout_ API has acquired mtx and will hold it around this
11019	 * function call.
11020	 */
11021	*stat_countp += 1;
11022	wakeup_one(&proc_waiting);
11023	if (proc_waiting > 0)
11024		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
11025		    pause_timer, 0);
11026}
11027
11028/*
11029 * Flush out a directory with at least one removal dependency in an effort to
11030 * reduce the number of dirrem, freefile, and freeblks dependency structures.
11031 */
11032static void
11033clear_remove(td)
11034	struct thread *td;
11035{
11036	struct pagedep_hashhead *pagedephd;
11037	struct pagedep *pagedep;
11038	static int next = 0;
11039	struct mount *mp;
11040	struct vnode *vp;
11041	struct bufobj *bo;
11042	int error, cnt;
11043	ino_t ino;
11044
11045	mtx_assert(&lk, MA_OWNED);
11046
11047	for (cnt = 0; cnt < pagedep_hash; cnt++) {
11048		pagedephd = &pagedep_hashtbl[next++];
11049		if (next >= pagedep_hash)
11050			next = 0;
11051		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
11052			if (LIST_EMPTY(&pagedep->pd_dirremhd))
11053				continue;
11054			mp = pagedep->pd_list.wk_mp;
11055			ino = pagedep->pd_ino;
11056			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
11057				continue;
11058			FREE_LOCK(&lk);
11059
11060			/*
11061			 * Let unmount clear deps
11062			 */
11063			error = vfs_busy(mp, MBF_NOWAIT);
11064			if (error != 0)
11065				goto finish_write;
11066			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
11067			     FFSV_FORCEINSMQ);
11068			vfs_unbusy(mp);
11069			if (error != 0) {
11070				softdep_error("clear_remove: vget", error);
11071				goto finish_write;
11072			}
11073			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
11074				softdep_error("clear_remove: fsync", error);
11075			bo = &vp->v_bufobj;
11076			BO_LOCK(bo);
11077			drain_output(vp);
11078			BO_UNLOCK(bo);
11079			vput(vp);
11080		finish_write:
11081			vn_finished_write(mp);
11082			ACQUIRE_LOCK(&lk);
11083			return;
11084		}
11085	}
11086}
11087
11088/*
11089 * Clear out a block of dirty inodes in an effort to reduce
11090 * the number of inodedep dependency structures.
11091 */
11092static void
11093clear_inodedeps(td)
11094	struct thread *td;
11095{
11096	struct inodedep_hashhead *inodedephd;
11097	struct inodedep *inodedep;
11098	static int next = 0;
11099	struct mount *mp;
11100	struct vnode *vp;
11101	struct fs *fs;
11102	int error, cnt;
11103	ino_t firstino, lastino, ino;
11104
11105	mtx_assert(&lk, MA_OWNED);
11106	/*
11107	 * Pick a random inode dependency to be cleared.
11108	 * We will then gather up all the inodes in its block
11109	 * that have dependencies and flush them out.
11110	 */
11111	for (cnt = 0; cnt < inodedep_hash; cnt++) {
11112		inodedephd = &inodedep_hashtbl[next++];
11113		if (next >= inodedep_hash)
11114			next = 0;
11115		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
11116			break;
11117	}
11118	if (inodedep == NULL)
11119		return;
11120	fs = inodedep->id_fs;
11121	mp = inodedep->id_list.wk_mp;
11122	/*
11123	 * Find the last inode in the block with dependencies.
11124	 */
11125	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
11126	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
11127		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
11128			break;
11129	/*
11130	 * Asynchronously push all but the last inode with dependencies.
11131	 * Synchronously push the last inode with dependencies to ensure
11132	 * that the inode block gets written to free up the inodedeps.
11133	 */
11134	for (ino = firstino; ino <= lastino; ino++) {
11135		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
11136			continue;
11137		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
11138			continue;
11139		FREE_LOCK(&lk);
11140		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
11141		if (error != 0) {
11142			vn_finished_write(mp);
11143			ACQUIRE_LOCK(&lk);
11144			return;
11145		}
11146		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
11147		    FFSV_FORCEINSMQ)) != 0) {
11148			softdep_error("clear_inodedeps: vget", error);
11149			vfs_unbusy(mp);
11150			vn_finished_write(mp);
11151			ACQUIRE_LOCK(&lk);
11152			return;
11153		}
11154		vfs_unbusy(mp);
11155		if (ino == lastino) {
11156			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
11157				softdep_error("clear_inodedeps: fsync1", error);
11158		} else {
11159			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
11160				softdep_error("clear_inodedeps: fsync2", error);
11161			BO_LOCK(&vp->v_bufobj);
11162			drain_output(vp);
11163			BO_UNLOCK(&vp->v_bufobj);
11164		}
11165		vput(vp);
11166		vn_finished_write(mp);
11167		ACQUIRE_LOCK(&lk);
11168	}
11169}
11170
11171/*
11172 * Function to determine if the buffer has outstanding dependencies
11173 * that will cause a roll-back if the buffer is written. If wantcount
11174 * is set, return number of dependencies, otherwise just yes or no.
11175 */
11176static int
11177softdep_count_dependencies(bp, wantcount)
11178	struct buf *bp;
11179	int wantcount;
11180{
11181	struct worklist *wk;
11182	struct bmsafemap *bmsafemap;
11183	struct inodedep *inodedep;
11184	struct indirdep *indirdep;
11185	struct freeblks *freeblks;
11186	struct allocindir *aip;
11187	struct pagedep *pagedep;
11188	struct dirrem *dirrem;
11189	struct newblk *newblk;
11190	struct mkdir *mkdir;
11191	struct diradd *dap;
11192	int i, retval;
11193
11194	retval = 0;
11195	ACQUIRE_LOCK(&lk);
11196	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11197		switch (wk->wk_type) {
11198
11199		case D_INODEDEP:
11200			inodedep = WK_INODEDEP(wk);
11201			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
11202				/* bitmap allocation dependency */
11203				retval += 1;
11204				if (!wantcount)
11205					goto out;
11206			}
11207			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
11208				/* direct block pointer dependency */
11209				retval += 1;
11210				if (!wantcount)
11211					goto out;
11212			}
11213			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
11214				/* direct block pointer dependency */
11215				retval += 1;
11216				if (!wantcount)
11217					goto out;
11218			}
11219			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
11220				/* Add reference dependency. */
11221				retval += 1;
11222				if (!wantcount)
11223					goto out;
11224			}
11225			continue;
11226
11227		case D_INDIRDEP:
11228			indirdep = WK_INDIRDEP(wk);
11229
11230			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
11231				/* indirect block pointer dependency */
11232				retval += 1;
11233				if (!wantcount)
11234					goto out;
11235			}
11236			continue;
11237
11238		case D_PAGEDEP:
11239			pagedep = WK_PAGEDEP(wk);
11240			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
11241				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
11242					/* Journal remove ref dependency. */
11243					retval += 1;
11244					if (!wantcount)
11245						goto out;
11246				}
11247			}
11248			for (i = 0; i < DAHASHSZ; i++) {
11249
11250				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
11251					/* directory entry dependency */
11252					retval += 1;
11253					if (!wantcount)
11254						goto out;
11255				}
11256			}
11257			continue;
11258
11259		case D_BMSAFEMAP:
11260			bmsafemap = WK_BMSAFEMAP(wk);
11261			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
11262				/* Add reference dependency. */
11263				retval += 1;
11264				if (!wantcount)
11265					goto out;
11266			}
11267			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
11268				/* Allocate block dependency. */
11269				retval += 1;
11270				if (!wantcount)
11271					goto out;
11272			}
11273			continue;
11274
11275		case D_FREEBLKS:
11276			freeblks = WK_FREEBLKS(wk);
11277			if (LIST_FIRST(&freeblks->fb_jfreeblkhd)) {
11278				/* Freeblk journal dependency. */
11279				retval += 1;
11280				if (!wantcount)
11281					goto out;
11282			}
11283			continue;
11284
11285		case D_ALLOCDIRECT:
11286		case D_ALLOCINDIR:
11287			newblk = WK_NEWBLK(wk);
11288			if (newblk->nb_jnewblk) {
11289				/* Journal allocate dependency. */
11290				retval += 1;
11291				if (!wantcount)
11292					goto out;
11293			}
11294			continue;
11295
11296		case D_MKDIR:
11297			mkdir = WK_MKDIR(wk);
11298			if (mkdir->md_jaddref) {
11299				/* Journal reference dependency. */
11300				retval += 1;
11301				if (!wantcount)
11302					goto out;
11303			}
11304			continue;
11305
11306		case D_FREEWORK:
11307		case D_FREEDEP:
11308		case D_JSEGDEP:
11309		case D_JSEG:
11310		case D_SBDEP:
11311			/* never a dependency on these blocks */
11312			continue;
11313
11314		default:
11315			panic("softdep_count_dependencies: Unexpected type %s",
11316			    TYPENAME(wk->wk_type));
11317			/* NOTREACHED */
11318		}
11319	}
11320out:
11321	FREE_LOCK(&lk);
11322	return retval;
11323}
11324
11325/*
11326 * Acquire exclusive access to a buffer.
11327 * Must be called with a locked mtx parameter.
11328 * Return acquired buffer or NULL on failure.
11329 */
11330static struct buf *
11331getdirtybuf(bp, mtx, waitfor)
11332	struct buf *bp;
11333	struct mtx *mtx;
11334	int waitfor;
11335{
11336	int error;
11337
11338	mtx_assert(mtx, MA_OWNED);
11339	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
11340		if (waitfor != MNT_WAIT)
11341			return (NULL);
11342		error = BUF_LOCK(bp,
11343		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
11344		/*
11345		 * Even if we sucessfully acquire bp here, we have dropped
11346		 * mtx, which may violates our guarantee.
11347		 */
11348		if (error == 0)
11349			BUF_UNLOCK(bp);
11350		else if (error != ENOLCK)
11351			panic("getdirtybuf: inconsistent lock: %d", error);
11352		mtx_lock(mtx);
11353		return (NULL);
11354	}
11355	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
11356		if (mtx == &lk && waitfor == MNT_WAIT) {
11357			mtx_unlock(mtx);
11358			BO_LOCK(bp->b_bufobj);
11359			BUF_UNLOCK(bp);
11360			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
11361				bp->b_vflags |= BV_BKGRDWAIT;
11362				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
11363				       PRIBIO | PDROP, "getbuf", 0);
11364			} else
11365				BO_UNLOCK(bp->b_bufobj);
11366			mtx_lock(mtx);
11367			return (NULL);
11368		}
11369		BUF_UNLOCK(bp);
11370		if (waitfor != MNT_WAIT)
11371			return (NULL);
11372		/*
11373		 * The mtx argument must be bp->b_vp's mutex in
11374		 * this case.
11375		 */
11376#ifdef	DEBUG_VFS_LOCKS
11377		if (bp->b_vp->v_type != VCHR)
11378			ASSERT_BO_LOCKED(bp->b_bufobj);
11379#endif
11380		bp->b_vflags |= BV_BKGRDWAIT;
11381		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
11382		return (NULL);
11383	}
11384	if ((bp->b_flags & B_DELWRI) == 0) {
11385		BUF_UNLOCK(bp);
11386		return (NULL);
11387	}
11388	bremfree(bp);
11389	return (bp);
11390}
11391
11392
11393/*
11394 * Check if it is safe to suspend the file system now.  On entry,
11395 * the vnode interlock for devvp should be held.  Return 0 with
11396 * the mount interlock held if the file system can be suspended now,
11397 * otherwise return EAGAIN with the mount interlock held.
11398 */
11399int
11400softdep_check_suspend(struct mount *mp,
11401		      struct vnode *devvp,
11402		      int softdep_deps,
11403		      int softdep_accdeps,
11404		      int secondary_writes,
11405		      int secondary_accwrites)
11406{
11407	struct bufobj *bo;
11408	struct ufsmount *ump;
11409	int error;
11410
11411	ump = VFSTOUFS(mp);
11412	bo = &devvp->v_bufobj;
11413	ASSERT_BO_LOCKED(bo);
11414
11415	for (;;) {
11416		if (!TRY_ACQUIRE_LOCK(&lk)) {
11417			BO_UNLOCK(bo);
11418			ACQUIRE_LOCK(&lk);
11419			FREE_LOCK(&lk);
11420			BO_LOCK(bo);
11421			continue;
11422		}
11423		MNT_ILOCK(mp);
11424		if (mp->mnt_secondary_writes != 0) {
11425			FREE_LOCK(&lk);
11426			BO_UNLOCK(bo);
11427			msleep(&mp->mnt_secondary_writes,
11428			       MNT_MTX(mp),
11429			       (PUSER - 1) | PDROP, "secwr", 0);
11430			BO_LOCK(bo);
11431			continue;
11432		}
11433		break;
11434	}
11435
11436	/*
11437	 * Reasons for needing more work before suspend:
11438	 * - Dirty buffers on devvp.
11439	 * - Softdep activity occurred after start of vnode sync loop
11440	 * - Secondary writes occurred after start of vnode sync loop
11441	 */
11442	error = 0;
11443	if (bo->bo_numoutput > 0 ||
11444	    bo->bo_dirty.bv_cnt > 0 ||
11445	    softdep_deps != 0 ||
11446	    ump->softdep_deps != 0 ||
11447	    softdep_accdeps != ump->softdep_accdeps ||
11448	    secondary_writes != 0 ||
11449	    mp->mnt_secondary_writes != 0 ||
11450	    secondary_accwrites != mp->mnt_secondary_accwrites)
11451		error = EAGAIN;
11452	FREE_LOCK(&lk);
11453	BO_UNLOCK(bo);
11454	return (error);
11455}
11456
11457
11458/*
11459 * Get the number of dependency structures for the file system, both
11460 * the current number and the total number allocated.  These will
11461 * later be used to detect that softdep processing has occurred.
11462 */
11463void
11464softdep_get_depcounts(struct mount *mp,
11465		      int *softdep_depsp,
11466		      int *softdep_accdepsp)
11467{
11468	struct ufsmount *ump;
11469
11470	ump = VFSTOUFS(mp);
11471	ACQUIRE_LOCK(&lk);
11472	*softdep_depsp = ump->softdep_deps;
11473	*softdep_accdepsp = ump->softdep_accdeps;
11474	FREE_LOCK(&lk);
11475}
11476
11477/*
11478 * Wait for pending output on a vnode to complete.
11479 * Must be called with vnode lock and interlock locked.
11480 *
11481 * XXX: Should just be a call to bufobj_wwait().
11482 */
11483static void
11484drain_output(vp)
11485	struct vnode *vp;
11486{
11487	struct bufobj *bo;
11488
11489	bo = &vp->v_bufobj;
11490	ASSERT_VOP_LOCKED(vp, "drain_output");
11491	ASSERT_BO_LOCKED(bo);
11492
11493	while (bo->bo_numoutput) {
11494		bo->bo_flag |= BO_WWAIT;
11495		msleep((caddr_t)&bo->bo_numoutput,
11496		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
11497	}
11498}
11499
11500/*
11501 * Called whenever a buffer that is being invalidated or reallocated
11502 * contains dependencies. This should only happen if an I/O error has
11503 * occurred. The routine is called with the buffer locked.
11504 */
11505static void
11506softdep_deallocate_dependencies(bp)
11507	struct buf *bp;
11508{
11509
11510	if ((bp->b_ioflags & BIO_ERROR) == 0)
11511		panic("softdep_deallocate_dependencies: dangling deps");
11512	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
11513	panic("softdep_deallocate_dependencies: unrecovered I/O error");
11514}
11515
11516/*
11517 * Function to handle asynchronous write errors in the filesystem.
11518 */
11519static void
11520softdep_error(func, error)
11521	char *func;
11522	int error;
11523{
11524
11525	/* XXX should do something better! */
11526	printf("%s: got error %d while accessing filesystem\n", func, error);
11527}
11528
11529#ifdef DDB
11530
11531static void
11532inodedep_print(struct inodedep *inodedep, int verbose)
11533{
11534	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
11535	    " saveino %p\n",
11536	    inodedep, inodedep->id_fs, inodedep->id_state,
11537	    (intmax_t)inodedep->id_ino,
11538	    (intmax_t)fsbtodb(inodedep->id_fs,
11539	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
11540	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
11541	    inodedep->id_savedino1);
11542
11543	if (verbose == 0)
11544		return;
11545
11546	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
11547	    "mkdiradd %p\n",
11548	    LIST_FIRST(&inodedep->id_pendinghd),
11549	    LIST_FIRST(&inodedep->id_bufwait),
11550	    LIST_FIRST(&inodedep->id_inowait),
11551	    TAILQ_FIRST(&inodedep->id_inoreflst),
11552	    inodedep->id_mkdiradd);
11553	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
11554	    TAILQ_FIRST(&inodedep->id_inoupdt),
11555	    TAILQ_FIRST(&inodedep->id_newinoupdt),
11556	    TAILQ_FIRST(&inodedep->id_extupdt),
11557	    TAILQ_FIRST(&inodedep->id_newextupdt));
11558}
11559
11560DB_SHOW_COMMAND(inodedep, db_show_inodedep)
11561{
11562
11563	if (have_addr == 0) {
11564		db_printf("Address required\n");
11565		return;
11566	}
11567	inodedep_print((struct inodedep*)addr, 1);
11568}
11569
11570DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
11571{
11572	struct inodedep_hashhead *inodedephd;
11573	struct inodedep *inodedep;
11574	struct fs *fs;
11575	int cnt;
11576
11577	fs = have_addr ? (struct fs *)addr : NULL;
11578	for (cnt = 0; cnt < inodedep_hash; cnt++) {
11579		inodedephd = &inodedep_hashtbl[cnt];
11580		LIST_FOREACH(inodedep, inodedephd, id_hash) {
11581			if (fs != NULL && fs != inodedep->id_fs)
11582				continue;
11583			inodedep_print(inodedep, 0);
11584		}
11585	}
11586}
11587
11588DB_SHOW_COMMAND(worklist, db_show_worklist)
11589{
11590	struct worklist *wk;
11591
11592	if (have_addr == 0) {
11593		db_printf("Address required\n");
11594		return;
11595	}
11596	wk = (struct worklist *)addr;
11597	printf("worklist: %p type %s state 0x%X\n",
11598	    wk, TYPENAME(wk->wk_type), wk->wk_state);
11599}
11600
11601DB_SHOW_COMMAND(workhead, db_show_workhead)
11602{
11603	struct workhead *wkhd;
11604	struct worklist *wk;
11605	int i;
11606
11607	if (have_addr == 0) {
11608		db_printf("Address required\n");
11609		return;
11610	}
11611	wkhd = (struct workhead *)addr;
11612	wk = LIST_FIRST(wkhd);
11613	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
11614		db_printf("worklist: %p type %s state 0x%X",
11615		    wk, TYPENAME(wk->wk_type), wk->wk_state);
11616	if (i == 100)
11617		db_printf("workhead overflow");
11618	printf("\n");
11619}
11620
11621
11622DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
11623{
11624	struct jaddref *jaddref;
11625	struct diradd *diradd;
11626	struct mkdir *mkdir;
11627
11628	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
11629		diradd = mkdir->md_diradd;
11630		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
11631		    mkdir, mkdir->md_state, diradd, diradd->da_state);
11632		if ((jaddref = mkdir->md_jaddref) != NULL)
11633			db_printf(" jaddref %p jaddref state 0x%X",
11634			    jaddref, jaddref->ja_state);
11635		db_printf("\n");
11636	}
11637}
11638
11639#endif /* DDB */
11640
11641#endif /* SOFTUPDATES */
11642