ffs_softdep.c revision 215117
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick.
3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4 * All rights reserved.
5 *
6 * The soft updates code is derived from the appendix of a University
7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8 * "Soft Updates: A Solution to the Metadata Update Problem in File
9 * Systems", CSE-TR-254-95, August 1995).
10 *
11 * Further information about soft updates can be obtained from:
12 *
13 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14 *	1614 Oxford Street		mckusick@mckusick.com
15 *	Berkeley, CA 94709-1608		+1-510-843-9542
16 *	USA
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 215117 2010-11-11 11:54:01Z kib $");
44
45#include "opt_ffs.h"
46#include "opt_ddb.h"
47
48/*
49 * For now we want the safety net that the DEBUG flag provides.
50 */
51#ifndef DEBUG
52#define DEBUG
53#endif
54
55#include <sys/param.h>
56#include <sys/kernel.h>
57#include <sys/systm.h>
58#include <sys/bio.h>
59#include <sys/buf.h>
60#include <sys/kdb.h>
61#include <sys/kthread.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mount.h>
65#include <sys/mutex.h>
66#include <sys/namei.h>
67#include <sys/proc.h>
68#include <sys/stat.h>
69#include <sys/sysctl.h>
70#include <sys/syslog.h>
71#include <sys/vnode.h>
72#include <sys/conf.h>
73#include <ufs/ufs/dir.h>
74#include <ufs/ufs/extattr.h>
75#include <ufs/ufs/quota.h>
76#include <ufs/ufs/inode.h>
77#include <ufs/ufs/ufsmount.h>
78#include <ufs/ffs/fs.h>
79#include <ufs/ffs/softdep.h>
80#include <ufs/ffs/ffs_extern.h>
81#include <ufs/ufs/ufs_extern.h>
82
83#include <vm/vm.h>
84
85#include <ddb/ddb.h>
86
87#ifndef SOFTUPDATES
88
89int
90softdep_flushfiles(oldmnt, flags, td)
91	struct mount *oldmnt;
92	int flags;
93	struct thread *td;
94{
95
96	panic("softdep_flushfiles called");
97}
98
99int
100softdep_mount(devvp, mp, fs, cred)
101	struct vnode *devvp;
102	struct mount *mp;
103	struct fs *fs;
104	struct ucred *cred;
105{
106
107	return (0);
108}
109
110void
111softdep_initialize()
112{
113
114	return;
115}
116
117void
118softdep_uninitialize()
119{
120
121	return;
122}
123
124void
125softdep_unmount(mp)
126	struct mount *mp;
127{
128
129}
130
131void
132softdep_setup_sbupdate(ump, fs, bp)
133	struct ufsmount *ump;
134	struct fs *fs;
135	struct buf *bp;
136{
137}
138
139void
140softdep_setup_inomapdep(bp, ip, newinum)
141	struct buf *bp;
142	struct inode *ip;
143	ino_t newinum;
144{
145
146	panic("softdep_setup_inomapdep called");
147}
148
149void
150softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
151	struct buf *bp;
152	struct mount *mp;
153	ufs2_daddr_t newblkno;
154	int frags;
155	int oldfrags;
156{
157
158	panic("softdep_setup_blkmapdep called");
159}
160
161void
162softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
163	struct inode *ip;
164	ufs_lbn_t lbn;
165	ufs2_daddr_t newblkno;
166	ufs2_daddr_t oldblkno;
167	long newsize;
168	long oldsize;
169	struct buf *bp;
170{
171
172	panic("softdep_setup_allocdirect called");
173}
174
175void
176softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
177	struct inode *ip;
178	ufs_lbn_t lbn;
179	ufs2_daddr_t newblkno;
180	ufs2_daddr_t oldblkno;
181	long newsize;
182	long oldsize;
183	struct buf *bp;
184{
185
186	panic("softdep_setup_allocext called");
187}
188
189void
190softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
191	struct inode *ip;
192	ufs_lbn_t lbn;
193	struct buf *bp;
194	int ptrno;
195	ufs2_daddr_t newblkno;
196	ufs2_daddr_t oldblkno;
197	struct buf *nbp;
198{
199
200	panic("softdep_setup_allocindir_page called");
201}
202
203void
204softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
205	struct buf *nbp;
206	struct inode *ip;
207	struct buf *bp;
208	int ptrno;
209	ufs2_daddr_t newblkno;
210{
211
212	panic("softdep_setup_allocindir_meta called");
213}
214
215void
216softdep_setup_freeblocks(ip, length, flags)
217	struct inode *ip;
218	off_t length;
219	int flags;
220{
221
222	panic("softdep_setup_freeblocks called");
223}
224
225void
226softdep_freefile(pvp, ino, mode)
227		struct vnode *pvp;
228		ino_t ino;
229		int mode;
230{
231
232	panic("softdep_freefile called");
233}
234
235int
236softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
237	struct buf *bp;
238	struct inode *dp;
239	off_t diroffset;
240	ino_t newinum;
241	struct buf *newdirbp;
242	int isnewblk;
243{
244
245	panic("softdep_setup_directory_add called");
246}
247
248void
249softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
250	struct buf *bp;
251	struct inode *dp;
252	caddr_t base;
253	caddr_t oldloc;
254	caddr_t newloc;
255	int entrysize;
256{
257
258	panic("softdep_change_directoryentry_offset called");
259}
260
261void
262softdep_setup_remove(bp, dp, ip, isrmdir)
263	struct buf *bp;
264	struct inode *dp;
265	struct inode *ip;
266	int isrmdir;
267{
268
269	panic("softdep_setup_remove called");
270}
271
272void
273softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
274	struct buf *bp;
275	struct inode *dp;
276	struct inode *ip;
277	ino_t newinum;
278	int isrmdir;
279{
280
281	panic("softdep_setup_directory_change called");
282}
283
284void *
285softdep_setup_trunc(vp, length, flags)
286	struct vnode *vp;
287	off_t length;
288	int flags;
289{
290
291	panic("%s called", __FUNCTION__);
292
293	return (NULL);
294}
295
296int
297softdep_complete_trunc(vp, cookie)
298	struct vnode *vp;
299	void *cookie;
300{
301
302	panic("%s called", __FUNCTION__);
303
304	return (0);
305}
306
307void
308softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
309	struct mount *mp;
310	struct buf *bp;
311	ufs2_daddr_t blkno;
312	int frags;
313	struct workhead *wkhd;
314{
315
316	panic("%s called", __FUNCTION__);
317}
318
319void
320softdep_setup_inofree(mp, bp, ino, wkhd)
321	struct mount *mp;
322	struct buf *bp;
323	ino_t ino;
324	struct workhead *wkhd;
325{
326
327	panic("%s called", __FUNCTION__);
328}
329
330void
331softdep_setup_unlink(dp, ip)
332	struct inode *dp;
333	struct inode *ip;
334{
335
336	panic("%s called", __FUNCTION__);
337}
338
339void
340softdep_setup_link(dp, ip)
341	struct inode *dp;
342	struct inode *ip;
343{
344
345	panic("%s called", __FUNCTION__);
346}
347
348void
349softdep_revert_link(dp, ip)
350	struct inode *dp;
351	struct inode *ip;
352{
353
354	panic("%s called", __FUNCTION__);
355}
356
357void
358softdep_setup_rmdir(dp, ip)
359	struct inode *dp;
360	struct inode *ip;
361{
362
363	panic("%s called", __FUNCTION__);
364}
365
366void
367softdep_revert_rmdir(dp, ip)
368	struct inode *dp;
369	struct inode *ip;
370{
371
372	panic("%s called", __FUNCTION__);
373}
374
375void
376softdep_setup_create(dp, ip)
377	struct inode *dp;
378	struct inode *ip;
379{
380
381	panic("%s called", __FUNCTION__);
382}
383
384void
385softdep_revert_create(dp, ip)
386	struct inode *dp;
387	struct inode *ip;
388{
389
390	panic("%s called", __FUNCTION__);
391}
392
393void
394softdep_setup_mkdir(dp, ip)
395	struct inode *dp;
396	struct inode *ip;
397{
398
399	panic("%s called", __FUNCTION__);
400}
401
402void
403softdep_revert_mkdir(dp, ip)
404	struct inode *dp;
405	struct inode *ip;
406{
407
408	panic("%s called", __FUNCTION__);
409}
410
411void
412softdep_setup_dotdot_link(dp, ip)
413	struct inode *dp;
414	struct inode *ip;
415{
416
417	panic("%s called", __FUNCTION__);
418}
419
420int
421softdep_prealloc(vp, waitok)
422	struct vnode *vp;
423	int waitok;
424{
425
426	panic("%s called", __FUNCTION__);
427
428	return (0);
429}
430
431int
432softdep_journal_lookup(mp, vpp)
433	struct mount *mp;
434	struct vnode **vpp;
435{
436
437	return (ENOENT);
438}
439
440void
441softdep_change_linkcnt(ip)
442	struct inode *ip;
443{
444
445	panic("softdep_change_linkcnt called");
446}
447
448void
449softdep_load_inodeblock(ip)
450	struct inode *ip;
451{
452
453	panic("softdep_load_inodeblock called");
454}
455
456void
457softdep_update_inodeblock(ip, bp, waitfor)
458	struct inode *ip;
459	struct buf *bp;
460	int waitfor;
461{
462
463	panic("softdep_update_inodeblock called");
464}
465
466int
467softdep_fsync(vp)
468	struct vnode *vp;	/* the "in_core" copy of the inode */
469{
470
471	return (0);
472}
473
474void
475softdep_fsync_mountdev(vp)
476	struct vnode *vp;
477{
478
479	return;
480}
481
482int
483softdep_flushworklist(oldmnt, countp, td)
484	struct mount *oldmnt;
485	int *countp;
486	struct thread *td;
487{
488
489	*countp = 0;
490	return (0);
491}
492
493int
494softdep_sync_metadata(struct vnode *vp)
495{
496
497	return (0);
498}
499
500int
501softdep_slowdown(vp)
502	struct vnode *vp;
503{
504
505	panic("softdep_slowdown called");
506}
507
508void
509softdep_releasefile(ip)
510	struct inode *ip;	/* inode with the zero effective link count */
511{
512
513	panic("softdep_releasefile called");
514}
515
516int
517softdep_request_cleanup(fs, vp)
518	struct fs *fs;
519	struct vnode *vp;
520{
521
522	return (0);
523}
524
525int
526softdep_check_suspend(struct mount *mp,
527		      struct vnode *devvp,
528		      int softdep_deps,
529		      int softdep_accdeps,
530		      int secondary_writes,
531		      int secondary_accwrites)
532{
533	struct bufobj *bo;
534	int error;
535
536	(void) softdep_deps,
537	(void) softdep_accdeps;
538
539	bo = &devvp->v_bufobj;
540	ASSERT_BO_LOCKED(bo);
541
542	MNT_ILOCK(mp);
543	while (mp->mnt_secondary_writes != 0) {
544		BO_UNLOCK(bo);
545		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
546		    (PUSER - 1) | PDROP, "secwr", 0);
547		BO_LOCK(bo);
548		MNT_ILOCK(mp);
549	}
550
551	/*
552	 * Reasons for needing more work before suspend:
553	 * - Dirty buffers on devvp.
554	 * - Secondary writes occurred after start of vnode sync loop
555	 */
556	error = 0;
557	if (bo->bo_numoutput > 0 ||
558	    bo->bo_dirty.bv_cnt > 0 ||
559	    secondary_writes != 0 ||
560	    mp->mnt_secondary_writes != 0 ||
561	    secondary_accwrites != mp->mnt_secondary_accwrites)
562		error = EAGAIN;
563	BO_UNLOCK(bo);
564	return (error);
565}
566
567void
568softdep_get_depcounts(struct mount *mp,
569		      int *softdepactivep,
570		      int *softdepactiveaccp)
571{
572	(void) mp;
573	*softdepactivep = 0;
574	*softdepactiveaccp = 0;
575}
576
577#else
578/*
579 * These definitions need to be adapted to the system to which
580 * this file is being ported.
581 */
582
583#define M_SOFTDEP_FLAGS	(M_WAITOK)
584
585#define	D_PAGEDEP	0
586#define	D_INODEDEP	1
587#define	D_BMSAFEMAP	2
588#define	D_NEWBLK	3
589#define	D_ALLOCDIRECT	4
590#define	D_INDIRDEP	5
591#define	D_ALLOCINDIR	6
592#define	D_FREEFRAG	7
593#define	D_FREEBLKS	8
594#define	D_FREEFILE	9
595#define	D_DIRADD	10
596#define	D_MKDIR		11
597#define	D_DIRREM	12
598#define	D_NEWDIRBLK	13
599#define	D_FREEWORK	14
600#define	D_FREEDEP	15
601#define	D_JADDREF	16
602#define	D_JREMREF	17
603#define	D_JMVREF	18
604#define	D_JNEWBLK	19
605#define	D_JFREEBLK	20
606#define	D_JFREEFRAG	21
607#define	D_JSEG		22
608#define	D_JSEGDEP	23
609#define	D_SBDEP		24
610#define	D_JTRUNC	25
611#define	D_LAST		D_JTRUNC
612
613unsigned long dep_current[D_LAST + 1];
614unsigned long dep_total[D_LAST + 1];
615
616
617SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, "soft updates stats");
618SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
619    "total dependencies allocated");
620SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
621    "current dependencies allocated");
622
623#define	SOFTDEP_TYPE(type, str, long)					\
624    static MALLOC_DEFINE(M_ ## type, #str, long);			\
625    SYSCTL_LONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
626	&dep_total[D_ ## type], 0, "");					\
627    SYSCTL_LONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
628	&dep_current[D_ ## type], 0, "");
629
630SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
631SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
632SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
633    "Block or frag allocated from cyl group map");
634SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
635SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
636SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
637SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
638SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
639SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
640SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
641SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
642SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
643SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
644SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
645SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
646SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
647SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
648SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
649SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
650SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
651SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
652SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
653SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
654SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
655SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
656SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
657
658static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
659static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
660
661/*
662 * translate from workitem type to memory type
663 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
664 */
665static struct malloc_type *memtype[] = {
666	M_PAGEDEP,
667	M_INODEDEP,
668	M_BMSAFEMAP,
669	M_NEWBLK,
670	M_ALLOCDIRECT,
671	M_INDIRDEP,
672	M_ALLOCINDIR,
673	M_FREEFRAG,
674	M_FREEBLKS,
675	M_FREEFILE,
676	M_DIRADD,
677	M_MKDIR,
678	M_DIRREM,
679	M_NEWDIRBLK,
680	M_FREEWORK,
681	M_FREEDEP,
682	M_JADDREF,
683	M_JREMREF,
684	M_JMVREF,
685	M_JNEWBLK,
686	M_JFREEBLK,
687	M_JFREEFRAG,
688	M_JSEG,
689	M_JSEGDEP,
690	M_SBDEP,
691	M_JTRUNC
692};
693
694#define DtoM(type) (memtype[type])
695
696/*
697 * Names of malloc types.
698 */
699#define TYPENAME(type)  \
700	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
701/*
702 * End system adaptation definitions.
703 */
704
705#define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
706#define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
707
708/*
709 * Forward declarations.
710 */
711struct inodedep_hashhead;
712struct newblk_hashhead;
713struct pagedep_hashhead;
714struct bmsafemap_hashhead;
715
716/*
717 * Internal function prototypes.
718 */
719static	void softdep_error(char *, int);
720static	void drain_output(struct vnode *);
721static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
722static	void clear_remove(struct thread *);
723static	void clear_inodedeps(struct thread *);
724static	void unlinked_inodedep(struct mount *, struct inodedep *);
725static	void clear_unlinked_inodedep(struct inodedep *);
726static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
727static	int flush_pagedep_deps(struct vnode *, struct mount *,
728	    struct diraddhd *);
729static	void free_pagedep(struct pagedep *);
730static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
731static	int flush_inodedep_deps(struct mount *, ino_t);
732static	int flush_deplist(struct allocdirectlst *, int, int *);
733static	int handle_written_filepage(struct pagedep *, struct buf *);
734static	int handle_written_sbdep(struct sbdep *, struct buf *);
735static	void initiate_write_sbdep(struct sbdep *);
736static  void diradd_inode_written(struct diradd *, struct inodedep *);
737static	int handle_written_indirdep(struct indirdep *, struct buf *,
738	    struct buf**);
739static	int handle_written_inodeblock(struct inodedep *, struct buf *);
740static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
741static	void handle_written_jaddref(struct jaddref *);
742static	void handle_written_jremref(struct jremref *);
743static	void handle_written_jseg(struct jseg *, struct buf *);
744static	void handle_written_jnewblk(struct jnewblk *);
745static	void handle_written_jfreeblk(struct jfreeblk *);
746static	void handle_written_jfreefrag(struct jfreefrag *);
747static	void complete_jseg(struct jseg *);
748static	void jseg_write(struct fs *, struct jblocks *, struct jseg *,
749	    uint8_t *);
750static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
751static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
752static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
753static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
754static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
755static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
756static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
757static	inline void inoref_write(struct inoref *, struct jseg *,
758	    struct jrefrec *);
759static	void handle_allocdirect_partdone(struct allocdirect *,
760	    struct workhead *);
761static	void cancel_newblk(struct newblk *, struct workhead *);
762static	void indirdep_complete(struct indirdep *);
763static	void handle_allocindir_partdone(struct allocindir *);
764static	void initiate_write_filepage(struct pagedep *, struct buf *);
765static	void initiate_write_indirdep(struct indirdep*, struct buf *);
766static	void handle_written_mkdir(struct mkdir *, int);
767static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
768static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
769static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
770static	void handle_workitem_freefile(struct freefile *);
771static	void handle_workitem_remove(struct dirrem *, struct vnode *);
772static	struct dirrem *newdirrem(struct buf *, struct inode *,
773	    struct inode *, int, struct dirrem **);
774static	void cancel_indirdep(struct indirdep *, struct buf *, struct inodedep *,
775	    struct freeblks *);
776static	void free_indirdep(struct indirdep *);
777static	void free_diradd(struct diradd *, struct workhead *);
778static	void merge_diradd(struct inodedep *, struct diradd *);
779static	void complete_diradd(struct diradd *);
780static	struct diradd *diradd_lookup(struct pagedep *, int);
781static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
782	    struct jremref *);
783static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
784	    struct jremref *);
785static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
786	    struct jremref *, struct jremref *);
787static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
788	    struct jremref *);
789static	void cancel_allocindir(struct allocindir *, struct inodedep *,
790	    struct freeblks *);
791static	void complete_mkdir(struct mkdir *);
792static	void free_newdirblk(struct newdirblk *);
793static	void free_jremref(struct jremref *);
794static	void free_jaddref(struct jaddref *);
795static	void free_jsegdep(struct jsegdep *);
796static	void free_jseg(struct jseg *);
797static	void free_jnewblk(struct jnewblk *);
798static	void free_jfreeblk(struct jfreeblk *);
799static	void free_jfreefrag(struct jfreefrag *);
800static	void free_freedep(struct freedep *);
801static	void journal_jremref(struct dirrem *, struct jremref *,
802	    struct inodedep *);
803static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
804static	int cancel_jaddref(struct jaddref *, struct inodedep *,
805	    struct workhead *);
806static	void cancel_jfreefrag(struct jfreefrag *);
807static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
808static	int deallocate_dependencies(struct buf *, struct inodedep *,
809	    struct freeblks *);
810static	void free_newblk(struct newblk *);
811static	void cancel_allocdirect(struct allocdirectlst *,
812	    struct allocdirect *, struct freeblks *, int);
813static	int check_inode_unwritten(struct inodedep *);
814static	int free_inodedep(struct inodedep *);
815static	void freework_freeblock(struct freework *);
816static	void handle_workitem_freeblocks(struct freeblks *, int);
817static	void handle_complete_freeblocks(struct freeblks *);
818static	void handle_workitem_indirblk(struct freework *);
819static	void handle_written_freework(struct freework *);
820static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
821static	void setup_allocindir_phase2(struct buf *, struct inode *,
822	    struct inodedep *, struct allocindir *, ufs_lbn_t);
823static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
824	    ufs2_daddr_t, ufs_lbn_t);
825static	void handle_workitem_freefrag(struct freefrag *);
826static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
827	    ufs_lbn_t);
828static	void allocdirect_merge(struct allocdirectlst *,
829	    struct allocdirect *, struct allocdirect *);
830static	struct freefrag *allocindir_merge(struct allocindir *,
831	    struct allocindir *);
832static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
833	    struct bmsafemap **);
834static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
835	    int cg);
836static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
837	    int, struct newblk **);
838static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
839static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
840	    struct inodedep **);
841static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
842static	int pagedep_lookup(struct mount *, ino_t, ufs_lbn_t, int,
843	    struct pagedep **);
844static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
845	    struct mount *mp, int, struct pagedep **);
846static	void pause_timer(void *);
847static	int request_cleanup(struct mount *, int);
848static	int process_worklist_item(struct mount *, int);
849static	void process_removes(struct vnode *);
850static	void jwork_move(struct workhead *, struct workhead *);
851static	void add_to_worklist(struct worklist *, int);
852static	void remove_from_worklist(struct worklist *);
853static	void softdep_flush(void);
854static	int softdep_speedup(void);
855static	void worklist_speedup(void);
856static	int journal_mount(struct mount *, struct fs *, struct ucred *);
857static	void journal_unmount(struct mount *);
858static	int journal_space(struct ufsmount *, int);
859static	void journal_suspend(struct ufsmount *);
860static	int journal_unsuspend(struct ufsmount *ump);
861static	void softdep_prelink(struct vnode *, struct vnode *);
862static	void add_to_journal(struct worklist *);
863static	void remove_from_journal(struct worklist *);
864static	void softdep_process_journal(struct mount *, int);
865static	struct jremref *newjremref(struct dirrem *, struct inode *,
866	    struct inode *ip, off_t, nlink_t);
867static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
868	    uint16_t);
869static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
870	    uint16_t);
871static inline struct jsegdep *inoref_jseg(struct inoref *);
872static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
873static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
874	    ufs2_daddr_t, int);
875static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
876	    ufs2_daddr_t, long, ufs_lbn_t);
877static	struct freework *newfreework(struct freeblks *, struct freework *,
878	    ufs_lbn_t, ufs2_daddr_t, int, int);
879static	void jwait(struct worklist *wk);
880static	struct inodedep *inodedep_lookup_ip(struct inode *);
881static	int bmsafemap_rollbacks(struct bmsafemap *);
882static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
883static	void handle_jwork(struct workhead *);
884static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
885	    struct mkdir **);
886static	struct jblocks *jblocks_create(void);
887static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
888static	void jblocks_free(struct jblocks *, struct mount *, int);
889static	void jblocks_destroy(struct jblocks *);
890static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
891
892/*
893 * Exported softdep operations.
894 */
895static	void softdep_disk_io_initiation(struct buf *);
896static	void softdep_disk_write_complete(struct buf *);
897static	void softdep_deallocate_dependencies(struct buf *);
898static	int softdep_count_dependencies(struct buf *bp, int);
899
900static struct mtx lk;
901MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
902
903#define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
904#define ACQUIRE_LOCK(lk)		mtx_lock(lk)
905#define FREE_LOCK(lk)			mtx_unlock(lk)
906
907#define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
908#define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
909
910/*
911 * Worklist queue management.
912 * These routines require that the lock be held.
913 */
914#ifndef /* NOT */ DEBUG
915#define WORKLIST_INSERT(head, item) do {	\
916	(item)->wk_state |= ONWORKLIST;		\
917	LIST_INSERT_HEAD(head, item, wk_list);	\
918} while (0)
919#define WORKLIST_REMOVE(item) do {		\
920	(item)->wk_state &= ~ONWORKLIST;	\
921	LIST_REMOVE(item, wk_list);		\
922} while (0)
923#define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
924#define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
925
926#else /* DEBUG */
927static	void worklist_insert(struct workhead *, struct worklist *, int);
928static	void worklist_remove(struct worklist *, int);
929
930#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
931#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
932#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
933#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
934
935static void
936worklist_insert(head, item, locked)
937	struct workhead *head;
938	struct worklist *item;
939	int locked;
940{
941
942	if (locked)
943		mtx_assert(&lk, MA_OWNED);
944	if (item->wk_state & ONWORKLIST)
945		panic("worklist_insert: %p %s(0x%X) already on list",
946		    item, TYPENAME(item->wk_type), item->wk_state);
947	item->wk_state |= ONWORKLIST;
948	LIST_INSERT_HEAD(head, item, wk_list);
949}
950
951static void
952worklist_remove(item, locked)
953	struct worklist *item;
954	int locked;
955{
956
957	if (locked)
958		mtx_assert(&lk, MA_OWNED);
959	if ((item->wk_state & ONWORKLIST) == 0)
960		panic("worklist_remove: %p %s(0x%X) not on list",
961		    item, TYPENAME(item->wk_type), item->wk_state);
962	item->wk_state &= ~ONWORKLIST;
963	LIST_REMOVE(item, wk_list);
964}
965#endif /* DEBUG */
966
967/*
968 * Merge two jsegdeps keeping only the oldest one as newer references
969 * can't be discarded until after older references.
970 */
971static inline struct jsegdep *
972jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
973{
974	struct jsegdep *swp;
975
976	if (two == NULL)
977		return (one);
978
979	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
980		swp = one;
981		one = two;
982		two = swp;
983	}
984	WORKLIST_REMOVE(&two->jd_list);
985	free_jsegdep(two);
986
987	return (one);
988}
989
990/*
991 * If two freedeps are compatible free one to reduce list size.
992 */
993static inline struct freedep *
994freedep_merge(struct freedep *one, struct freedep *two)
995{
996	if (two == NULL)
997		return (one);
998
999	if (one->fd_freework == two->fd_freework) {
1000		WORKLIST_REMOVE(&two->fd_list);
1001		free_freedep(two);
1002	}
1003	return (one);
1004}
1005
1006/*
1007 * Move journal work from one list to another.  Duplicate freedeps and
1008 * jsegdeps are coalesced to keep the lists as small as possible.
1009 */
1010static void
1011jwork_move(dst, src)
1012	struct workhead *dst;
1013	struct workhead *src;
1014{
1015	struct freedep *freedep;
1016	struct jsegdep *jsegdep;
1017	struct worklist *wkn;
1018	struct worklist *wk;
1019
1020	KASSERT(dst != src,
1021	    ("jwork_move: dst == src"));
1022	freedep = NULL;
1023	jsegdep = NULL;
1024	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1025		if (wk->wk_type == D_JSEGDEP)
1026			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1027		if (wk->wk_type == D_FREEDEP)
1028			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1029	}
1030
1031	mtx_assert(&lk, MA_OWNED);
1032	while ((wk = LIST_FIRST(src)) != NULL) {
1033		WORKLIST_REMOVE(wk);
1034		WORKLIST_INSERT(dst, wk);
1035		if (wk->wk_type == D_JSEGDEP) {
1036			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1037			continue;
1038		}
1039		if (wk->wk_type == D_FREEDEP)
1040			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1041	}
1042}
1043
1044/*
1045 * Routines for tracking and managing workitems.
1046 */
1047static	void workitem_free(struct worklist *, int);
1048static	void workitem_alloc(struct worklist *, int, struct mount *);
1049
1050#define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1051
1052static void
1053workitem_free(item, type)
1054	struct worklist *item;
1055	int type;
1056{
1057	struct ufsmount *ump;
1058	mtx_assert(&lk, MA_OWNED);
1059
1060#ifdef DEBUG
1061	if (item->wk_state & ONWORKLIST)
1062		panic("workitem_free: %s(0x%X) still on list",
1063		    TYPENAME(item->wk_type), item->wk_state);
1064	if (item->wk_type != type)
1065		panic("workitem_free: type mismatch %s != %s",
1066		    TYPENAME(item->wk_type), TYPENAME(type));
1067#endif
1068	ump = VFSTOUFS(item->wk_mp);
1069	if (--ump->softdep_deps == 0 && ump->softdep_req)
1070		wakeup(&ump->softdep_deps);
1071	dep_current[type]--;
1072	free(item, DtoM(type));
1073}
1074
1075static void
1076workitem_alloc(item, type, mp)
1077	struct worklist *item;
1078	int type;
1079	struct mount *mp;
1080{
1081	item->wk_type = type;
1082	item->wk_mp = mp;
1083	item->wk_state = 0;
1084	ACQUIRE_LOCK(&lk);
1085	dep_current[type]++;
1086	dep_total[type]++;
1087	VFSTOUFS(mp)->softdep_deps++;
1088	VFSTOUFS(mp)->softdep_accdeps++;
1089	FREE_LOCK(&lk);
1090}
1091
1092/*
1093 * Workitem queue management
1094 */
1095static int max_softdeps;	/* maximum number of structs before slowdown */
1096static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1097static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1098static int proc_waiting;	/* tracks whether we have a timeout posted */
1099static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1100static struct callout softdep_callout;
1101static int req_pending;
1102static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1103#define FLUSH_INODES		1
1104static int req_clear_remove;	/* syncer process flush some freeblks */
1105#define FLUSH_REMOVE		2
1106#define FLUSH_REMOVE_WAIT	3
1107static long num_freeblkdep;	/* number of freeblks workitems allocated */
1108
1109/*
1110 * runtime statistics
1111 */
1112static int stat_worklist_push;	/* number of worklist cleanups */
1113static int stat_blk_limit_push;	/* number of times block limit neared */
1114static int stat_ino_limit_push;	/* number of times inode limit neared */
1115static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1116static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1117static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1118static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1119static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1120static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1121static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1122static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1123static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1124static int stat_journal_min;	/* Times hit journal min threshold */
1125static int stat_journal_low;	/* Times hit journal low threshold */
1126static int stat_journal_wait;	/* Times blocked in jwait(). */
1127static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1128static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1129static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1130static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1131
1132SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1133    &max_softdeps, 0, "");
1134SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1135    &tickdelay, 0, "");
1136SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1137    &maxindirdeps, 0, "");
1138SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1139    &stat_worklist_push, 0,"");
1140SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1141    &stat_blk_limit_push, 0,"");
1142SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1143    &stat_ino_limit_push, 0,"");
1144SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1145    &stat_blk_limit_hit, 0, "");
1146SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1147    &stat_ino_limit_hit, 0, "");
1148SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1149    &stat_sync_limit_hit, 0, "");
1150SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1151    &stat_indir_blk_ptrs, 0, "");
1152SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1153    &stat_inode_bitmap, 0, "");
1154SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1155    &stat_direct_blk_ptrs, 0, "");
1156SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1157    &stat_dir_entry, 0, "");
1158SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1159    &stat_jaddref, 0, "");
1160SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1161    &stat_jnewblk, 0, "");
1162SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1163    &stat_journal_low, 0, "");
1164SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1165    &stat_journal_min, 0, "");
1166SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1167    &stat_journal_wait, 0, "");
1168SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1169    &stat_jwait_filepage, 0, "");
1170SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1171    &stat_jwait_freeblks, 0, "");
1172SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1173    &stat_jwait_inode, 0, "");
1174SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1175    &stat_jwait_newblk, 0, "");
1176
1177SYSCTL_DECL(_vfs_ffs);
1178
1179LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1180static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1181
1182static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1183SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1184	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1185
1186static struct proc *softdepproc;
1187static struct kproc_desc softdep_kp = {
1188	"softdepflush",
1189	softdep_flush,
1190	&softdepproc
1191};
1192SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1193    &softdep_kp);
1194
1195static void
1196softdep_flush(void)
1197{
1198	struct mount *nmp;
1199	struct mount *mp;
1200	struct ufsmount *ump;
1201	struct thread *td;
1202	int remaining;
1203	int progress;
1204	int vfslocked;
1205
1206	td = curthread;
1207	td->td_pflags |= TDP_NORUNNINGBUF;
1208
1209	for (;;) {
1210		kproc_suspend_check(softdepproc);
1211		vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
1212		ACQUIRE_LOCK(&lk);
1213		/*
1214		 * If requested, try removing inode or removal dependencies.
1215		 */
1216		if (req_clear_inodedeps) {
1217			clear_inodedeps(td);
1218			req_clear_inodedeps -= 1;
1219			wakeup_one(&proc_waiting);
1220		}
1221		if (req_clear_remove) {
1222			clear_remove(td);
1223			req_clear_remove -= 1;
1224			wakeup_one(&proc_waiting);
1225		}
1226		FREE_LOCK(&lk);
1227		VFS_UNLOCK_GIANT(vfslocked);
1228		remaining = progress = 0;
1229		mtx_lock(&mountlist_mtx);
1230		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1231			nmp = TAILQ_NEXT(mp, mnt_list);
1232			if ((mp->mnt_flag & MNT_SOFTDEP) == 0)
1233				continue;
1234			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1235				continue;
1236			vfslocked = VFS_LOCK_GIANT(mp);
1237			progress += softdep_process_worklist(mp, 0);
1238			ump = VFSTOUFS(mp);
1239			remaining += ump->softdep_on_worklist -
1240				ump->softdep_on_worklist_inprogress;
1241			VFS_UNLOCK_GIANT(vfslocked);
1242			mtx_lock(&mountlist_mtx);
1243			nmp = TAILQ_NEXT(mp, mnt_list);
1244			vfs_unbusy(mp);
1245		}
1246		mtx_unlock(&mountlist_mtx);
1247		if (remaining && progress)
1248			continue;
1249		ACQUIRE_LOCK(&lk);
1250		if (!req_pending)
1251			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1252		req_pending = 0;
1253		FREE_LOCK(&lk);
1254	}
1255}
1256
1257static void
1258worklist_speedup(void)
1259{
1260	mtx_assert(&lk, MA_OWNED);
1261	if (req_pending == 0) {
1262		req_pending = 1;
1263		wakeup(&req_pending);
1264	}
1265}
1266
1267static int
1268softdep_speedup(void)
1269{
1270
1271	worklist_speedup();
1272	bd_speedup();
1273	return speedup_syncer();
1274}
1275
1276/*
1277 * Add an item to the end of the work queue.
1278 * This routine requires that the lock be held.
1279 * This is the only routine that adds items to the list.
1280 * The following routine is the only one that removes items
1281 * and does so in order from first to last.
1282 */
1283static void
1284add_to_worklist(wk, nodelay)
1285	struct worklist *wk;
1286	int nodelay;
1287{
1288	struct ufsmount *ump;
1289
1290	mtx_assert(&lk, MA_OWNED);
1291	ump = VFSTOUFS(wk->wk_mp);
1292	if (wk->wk_state & ONWORKLIST)
1293		panic("add_to_worklist: %s(0x%X) already on list",
1294		    TYPENAME(wk->wk_type), wk->wk_state);
1295	wk->wk_state |= ONWORKLIST;
1296	if (LIST_EMPTY(&ump->softdep_workitem_pending))
1297		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1298	else
1299		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1300	ump->softdep_worklist_tail = wk;
1301	ump->softdep_on_worklist += 1;
1302	if (nodelay)
1303		worklist_speedup();
1304}
1305
1306/*
1307 * Remove the item to be processed. If we are removing the last
1308 * item on the list, we need to recalculate the tail pointer.
1309 */
1310static void
1311remove_from_worklist(wk)
1312	struct worklist *wk;
1313{
1314	struct ufsmount *ump;
1315	struct worklist *wkend;
1316
1317	ump = VFSTOUFS(wk->wk_mp);
1318	WORKLIST_REMOVE(wk);
1319	if (wk == ump->softdep_worklist_tail) {
1320		LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list)
1321			if (LIST_NEXT(wkend, wk_list) == NULL)
1322				break;
1323		ump->softdep_worklist_tail = wkend;
1324	}
1325	ump->softdep_on_worklist -= 1;
1326}
1327
1328/*
1329 * Process that runs once per second to handle items in the background queue.
1330 *
1331 * Note that we ensure that everything is done in the order in which they
1332 * appear in the queue. The code below depends on this property to ensure
1333 * that blocks of a file are freed before the inode itself is freed. This
1334 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1335 * until all the old ones have been purged from the dependency lists.
1336 */
1337int
1338softdep_process_worklist(mp, full)
1339	struct mount *mp;
1340	int full;
1341{
1342	struct thread *td = curthread;
1343	int cnt, matchcnt, loopcount;
1344	struct ufsmount *ump;
1345	long starttime;
1346
1347	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1348	/*
1349	 * Record the process identifier of our caller so that we can give
1350	 * this process preferential treatment in request_cleanup below.
1351	 */
1352	matchcnt = 0;
1353	ump = VFSTOUFS(mp);
1354	ACQUIRE_LOCK(&lk);
1355	loopcount = 1;
1356	starttime = time_second;
1357	softdep_process_journal(mp, full?MNT_WAIT:0);
1358	while (ump->softdep_on_worklist > 0) {
1359		if ((cnt = process_worklist_item(mp, LK_NOWAIT)) == -1)
1360			break;
1361		else
1362			matchcnt += cnt;
1363		/*
1364		 * If requested, try removing inode or removal dependencies.
1365		 */
1366		if (req_clear_inodedeps) {
1367			clear_inodedeps(td);
1368			req_clear_inodedeps -= 1;
1369			wakeup_one(&proc_waiting);
1370		}
1371		if (req_clear_remove) {
1372			clear_remove(td);
1373			req_clear_remove -= 1;
1374			wakeup_one(&proc_waiting);
1375		}
1376		/*
1377		 * We do not generally want to stop for buffer space, but if
1378		 * we are really being a buffer hog, we will stop and wait.
1379		 */
1380		if (loopcount++ % 128 == 0) {
1381			FREE_LOCK(&lk);
1382			uio_yield();
1383			bwillwrite();
1384			ACQUIRE_LOCK(&lk);
1385		}
1386		/*
1387		 * Never allow processing to run for more than one
1388		 * second. Otherwise the other mountpoints may get
1389		 * excessively backlogged.
1390		 */
1391		if (!full && starttime != time_second)
1392			break;
1393	}
1394	if (full == 0)
1395		journal_unsuspend(ump);
1396	FREE_LOCK(&lk);
1397	return (matchcnt);
1398}
1399
1400/*
1401 * Process all removes associated with a vnode if we are running out of
1402 * journal space.  Any other process which attempts to flush these will
1403 * be unable as we have the vnodes locked.
1404 */
1405static void
1406process_removes(vp)
1407	struct vnode *vp;
1408{
1409	struct inodedep *inodedep;
1410	struct dirrem *dirrem;
1411	struct mount *mp;
1412	ino_t inum;
1413
1414	mtx_assert(&lk, MA_OWNED);
1415
1416	mp = vp->v_mount;
1417	inum = VTOI(vp)->i_number;
1418	for (;;) {
1419		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1420			return;
1421		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext)
1422			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1423			    (COMPLETE | ONWORKLIST))
1424				break;
1425		if (dirrem == NULL)
1426			return;
1427		/*
1428		 * If another thread is trying to lock this vnode it will
1429		 * fail but we must wait for it to do so before we can
1430		 * proceed.
1431		 */
1432		if (dirrem->dm_state & INPROGRESS) {
1433			dirrem->dm_state |= IOWAITING;
1434			msleep(&dirrem->dm_list, &lk, PVM, "pwrwait", 0);
1435			continue;
1436		}
1437		remove_from_worklist(&dirrem->dm_list);
1438		FREE_LOCK(&lk);
1439		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1440			panic("process_removes: suspended filesystem");
1441		handle_workitem_remove(dirrem, vp);
1442		vn_finished_secondary_write(mp);
1443		ACQUIRE_LOCK(&lk);
1444	}
1445}
1446
1447/*
1448 * Process one item on the worklist.
1449 */
1450static int
1451process_worklist_item(mp, flags)
1452	struct mount *mp;
1453	int flags;
1454{
1455	struct worklist *wk;
1456	struct ufsmount *ump;
1457	struct vnode *vp;
1458	int matchcnt = 0;
1459
1460	mtx_assert(&lk, MA_OWNED);
1461	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1462	/*
1463	 * If we are being called because of a process doing a
1464	 * copy-on-write, then it is not safe to write as we may
1465	 * recurse into the copy-on-write routine.
1466	 */
1467	if (curthread->td_pflags & TDP_COWINPROGRESS)
1468		return (-1);
1469	/*
1470	 * Normally we just process each item on the worklist in order.
1471	 * However, if we are in a situation where we cannot lock any
1472	 * inodes, we have to skip over any dirrem requests whose
1473	 * vnodes are resident and locked.
1474	 */
1475	vp = NULL;
1476	ump = VFSTOUFS(mp);
1477	LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) {
1478		if (wk->wk_state & INPROGRESS)
1479			continue;
1480		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
1481			break;
1482		wk->wk_state |= INPROGRESS;
1483		ump->softdep_on_worklist_inprogress++;
1484		FREE_LOCK(&lk);
1485		ffs_vgetf(mp, WK_DIRREM(wk)->dm_oldinum,
1486		    LK_NOWAIT | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ);
1487		ACQUIRE_LOCK(&lk);
1488		if (wk->wk_state & IOWAITING) {
1489			wk->wk_state &= ~IOWAITING;
1490			wakeup(wk);
1491		}
1492		wk->wk_state &= ~INPROGRESS;
1493		ump->softdep_on_worklist_inprogress--;
1494		if (vp != NULL)
1495			break;
1496	}
1497	if (wk == 0)
1498		return (-1);
1499	remove_from_worklist(wk);
1500	FREE_LOCK(&lk);
1501	if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1502		panic("process_worklist_item: suspended filesystem");
1503	matchcnt++;
1504	switch (wk->wk_type) {
1505
1506	case D_DIRREM:
1507		/* removal of a directory entry */
1508		handle_workitem_remove(WK_DIRREM(wk), vp);
1509		if (vp)
1510			vput(vp);
1511		break;
1512
1513	case D_FREEBLKS:
1514		/* releasing blocks and/or fragments from a file */
1515		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
1516		break;
1517
1518	case D_FREEFRAG:
1519		/* releasing a fragment when replaced as a file grows */
1520		handle_workitem_freefrag(WK_FREEFRAG(wk));
1521		break;
1522
1523	case D_FREEFILE:
1524		/* releasing an inode when its link count drops to 0 */
1525		handle_workitem_freefile(WK_FREEFILE(wk));
1526		break;
1527
1528	case D_FREEWORK:
1529		/* Final block in an indirect was freed. */
1530		handle_workitem_indirblk(WK_FREEWORK(wk));
1531		break;
1532
1533	default:
1534		panic("%s_process_worklist: Unknown type %s",
1535		    "softdep", TYPENAME(wk->wk_type));
1536		/* NOTREACHED */
1537	}
1538	vn_finished_secondary_write(mp);
1539	ACQUIRE_LOCK(&lk);
1540	return (matchcnt);
1541}
1542
1543/*
1544 * Move dependencies from one buffer to another.
1545 */
1546int
1547softdep_move_dependencies(oldbp, newbp)
1548	struct buf *oldbp;
1549	struct buf *newbp;
1550{
1551	struct worklist *wk, *wktail;
1552	int dirty;
1553
1554	dirty = 0;
1555	wktail = NULL;
1556	ACQUIRE_LOCK(&lk);
1557	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1558		LIST_REMOVE(wk, wk_list);
1559		if (wk->wk_type == D_BMSAFEMAP &&
1560		    bmsafemap_rollbacks(WK_BMSAFEMAP(wk)))
1561			dirty = 1;
1562		if (wktail == 0)
1563			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1564		else
1565			LIST_INSERT_AFTER(wktail, wk, wk_list);
1566		wktail = wk;
1567	}
1568	FREE_LOCK(&lk);
1569
1570	return (dirty);
1571}
1572
1573/*
1574 * Purge the work list of all items associated with a particular mount point.
1575 */
1576int
1577softdep_flushworklist(oldmnt, countp, td)
1578	struct mount *oldmnt;
1579	int *countp;
1580	struct thread *td;
1581{
1582	struct vnode *devvp;
1583	int count, error = 0;
1584	struct ufsmount *ump;
1585
1586	/*
1587	 * Alternately flush the block device associated with the mount
1588	 * point and process any dependencies that the flushing
1589	 * creates. We continue until no more worklist dependencies
1590	 * are found.
1591	 */
1592	*countp = 0;
1593	ump = VFSTOUFS(oldmnt);
1594	devvp = ump->um_devvp;
1595	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1596		*countp += count;
1597		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1598		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1599		VOP_UNLOCK(devvp, 0);
1600		if (error)
1601			break;
1602	}
1603	return (error);
1604}
1605
1606int
1607softdep_waitidle(struct mount *mp)
1608{
1609	struct ufsmount *ump;
1610	int error;
1611	int i;
1612
1613	ump = VFSTOUFS(mp);
1614	ACQUIRE_LOCK(&lk);
1615	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1616		ump->softdep_req = 1;
1617		if (ump->softdep_on_worklist)
1618			panic("softdep_waitidle: work added after flush.");
1619		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1620	}
1621	ump->softdep_req = 0;
1622	FREE_LOCK(&lk);
1623	error = 0;
1624	if (i == 10) {
1625		error = EBUSY;
1626		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1627		    mp);
1628	}
1629
1630	return (error);
1631}
1632
1633/*
1634 * Flush all vnodes and worklist items associated with a specified mount point.
1635 */
1636int
1637softdep_flushfiles(oldmnt, flags, td)
1638	struct mount *oldmnt;
1639	int flags;
1640	struct thread *td;
1641{
1642	int error, depcount, loopcnt, retry_flush_count, retry;
1643
1644	loopcnt = 10;
1645	retry_flush_count = 3;
1646retry_flush:
1647	error = 0;
1648
1649	/*
1650	 * Alternately flush the vnodes associated with the mount
1651	 * point and process any dependencies that the flushing
1652	 * creates. In theory, this loop can happen at most twice,
1653	 * but we give it a few extra just to be sure.
1654	 */
1655	for (; loopcnt > 0; loopcnt--) {
1656		/*
1657		 * Do another flush in case any vnodes were brought in
1658		 * as part of the cleanup operations.
1659		 */
1660		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1661			break;
1662		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1663		    depcount == 0)
1664			break;
1665	}
1666	/*
1667	 * If we are unmounting then it is an error to fail. If we
1668	 * are simply trying to downgrade to read-only, then filesystem
1669	 * activity can keep us busy forever, so we just fail with EBUSY.
1670	 */
1671	if (loopcnt == 0) {
1672		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1673			panic("softdep_flushfiles: looping");
1674		error = EBUSY;
1675	}
1676	if (!error)
1677		error = softdep_waitidle(oldmnt);
1678	if (!error) {
1679		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1680			retry = 0;
1681			MNT_ILOCK(oldmnt);
1682			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1683			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1684			if (oldmnt->mnt_nvnodelistsize > 0) {
1685				if (--retry_flush_count > 0) {
1686					retry = 1;
1687					loopcnt = 3;
1688				} else
1689					error = EBUSY;
1690			}
1691			MNT_IUNLOCK(oldmnt);
1692			if (retry)
1693				goto retry_flush;
1694		}
1695	}
1696	return (error);
1697}
1698
1699/*
1700 * Structure hashing.
1701 *
1702 * There are three types of structures that can be looked up:
1703 *	1) pagedep structures identified by mount point, inode number,
1704 *	   and logical block.
1705 *	2) inodedep structures identified by mount point and inode number.
1706 *	3) newblk structures identified by mount point and
1707 *	   physical block number.
1708 *
1709 * The "pagedep" and "inodedep" dependency structures are hashed
1710 * separately from the file blocks and inodes to which they correspond.
1711 * This separation helps when the in-memory copy of an inode or
1712 * file block must be replaced. It also obviates the need to access
1713 * an inode or file page when simply updating (or de-allocating)
1714 * dependency structures. Lookup of newblk structures is needed to
1715 * find newly allocated blocks when trying to associate them with
1716 * their allocdirect or allocindir structure.
1717 *
1718 * The lookup routines optionally create and hash a new instance when
1719 * an existing entry is not found.
1720 */
1721#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1722#define NODELAY		0x0002	/* cannot do background work */
1723
1724/*
1725 * Structures and routines associated with pagedep caching.
1726 */
1727LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1728u_long	pagedep_hash;		/* size of hash table - 1 */
1729#define	PAGEDEP_HASH(mp, inum, lbn) \
1730	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1731	    pagedep_hash])
1732
1733static int
1734pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1735	struct pagedep_hashhead *pagedephd;
1736	ino_t ino;
1737	ufs_lbn_t lbn;
1738	struct mount *mp;
1739	int flags;
1740	struct pagedep **pagedeppp;
1741{
1742	struct pagedep *pagedep;
1743
1744	LIST_FOREACH(pagedep, pagedephd, pd_hash)
1745		if (ino == pagedep->pd_ino &&
1746		    lbn == pagedep->pd_lbn &&
1747		    mp == pagedep->pd_list.wk_mp)
1748			break;
1749	if (pagedep) {
1750		*pagedeppp = pagedep;
1751		if ((flags & DEPALLOC) != 0 &&
1752		    (pagedep->pd_state & ONWORKLIST) == 0)
1753			return (0);
1754		return (1);
1755	}
1756	*pagedeppp = NULL;
1757	return (0);
1758}
1759/*
1760 * Look up a pagedep. Return 1 if found, 0 if not found or found
1761 * when asked to allocate but not associated with any buffer.
1762 * If not found, allocate if DEPALLOC flag is passed.
1763 * Found or allocated entry is returned in pagedeppp.
1764 * This routine must be called with splbio interrupts blocked.
1765 */
1766static int
1767pagedep_lookup(mp, ino, lbn, flags, pagedeppp)
1768	struct mount *mp;
1769	ino_t ino;
1770	ufs_lbn_t lbn;
1771	int flags;
1772	struct pagedep **pagedeppp;
1773{
1774	struct pagedep *pagedep;
1775	struct pagedep_hashhead *pagedephd;
1776	int ret;
1777	int i;
1778
1779	mtx_assert(&lk, MA_OWNED);
1780	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
1781
1782	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
1783	if (*pagedeppp || (flags & DEPALLOC) == 0)
1784		return (ret);
1785	FREE_LOCK(&lk);
1786	pagedep = malloc(sizeof(struct pagedep),
1787	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
1788	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
1789	ACQUIRE_LOCK(&lk);
1790	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
1791	if (*pagedeppp) {
1792		WORKITEM_FREE(pagedep, D_PAGEDEP);
1793		return (ret);
1794	}
1795	pagedep->pd_ino = ino;
1796	pagedep->pd_lbn = lbn;
1797	LIST_INIT(&pagedep->pd_dirremhd);
1798	LIST_INIT(&pagedep->pd_pendinghd);
1799	for (i = 0; i < DAHASHSZ; i++)
1800		LIST_INIT(&pagedep->pd_diraddhd[i]);
1801	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
1802	*pagedeppp = pagedep;
1803	return (0);
1804}
1805
1806/*
1807 * Structures and routines associated with inodedep caching.
1808 */
1809LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1810static u_long	inodedep_hash;	/* size of hash table - 1 */
1811static long	num_inodedep;	/* number of inodedep allocated */
1812#define	INODEDEP_HASH(fs, inum) \
1813      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1814
1815static int
1816inodedep_find(inodedephd, fs, inum, inodedeppp)
1817	struct inodedep_hashhead *inodedephd;
1818	struct fs *fs;
1819	ino_t inum;
1820	struct inodedep **inodedeppp;
1821{
1822	struct inodedep *inodedep;
1823
1824	LIST_FOREACH(inodedep, inodedephd, id_hash)
1825		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1826			break;
1827	if (inodedep) {
1828		*inodedeppp = inodedep;
1829		return (1);
1830	}
1831	*inodedeppp = NULL;
1832
1833	return (0);
1834}
1835/*
1836 * Look up an inodedep. Return 1 if found, 0 if not found.
1837 * If not found, allocate if DEPALLOC flag is passed.
1838 * Found or allocated entry is returned in inodedeppp.
1839 * This routine must be called with splbio interrupts blocked.
1840 */
1841static int
1842inodedep_lookup(mp, inum, flags, inodedeppp)
1843	struct mount *mp;
1844	ino_t inum;
1845	int flags;
1846	struct inodedep **inodedeppp;
1847{
1848	struct inodedep *inodedep;
1849	struct inodedep_hashhead *inodedephd;
1850	struct fs *fs;
1851
1852	mtx_assert(&lk, MA_OWNED);
1853	fs = VFSTOUFS(mp)->um_fs;
1854	inodedephd = INODEDEP_HASH(fs, inum);
1855
1856	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
1857		return (1);
1858	if ((flags & DEPALLOC) == 0)
1859		return (0);
1860	/*
1861	 * If we are over our limit, try to improve the situation.
1862	 */
1863	if (num_inodedep > max_softdeps && (flags & NODELAY) == 0)
1864		request_cleanup(mp, FLUSH_INODES);
1865	FREE_LOCK(&lk);
1866	inodedep = malloc(sizeof(struct inodedep),
1867		M_INODEDEP, M_SOFTDEP_FLAGS);
1868	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
1869	ACQUIRE_LOCK(&lk);
1870	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
1871		WORKITEM_FREE(inodedep, D_INODEDEP);
1872		return (1);
1873	}
1874	num_inodedep += 1;
1875	inodedep->id_fs = fs;
1876	inodedep->id_ino = inum;
1877	inodedep->id_state = ALLCOMPLETE;
1878	inodedep->id_nlinkdelta = 0;
1879	inodedep->id_savedino1 = NULL;
1880	inodedep->id_savedsize = -1;
1881	inodedep->id_savedextsize = -1;
1882	inodedep->id_savednlink = -1;
1883	inodedep->id_bmsafemap = NULL;
1884	inodedep->id_mkdiradd = NULL;
1885	LIST_INIT(&inodedep->id_dirremhd);
1886	LIST_INIT(&inodedep->id_pendinghd);
1887	LIST_INIT(&inodedep->id_inowait);
1888	LIST_INIT(&inodedep->id_bufwait);
1889	TAILQ_INIT(&inodedep->id_inoreflst);
1890	TAILQ_INIT(&inodedep->id_inoupdt);
1891	TAILQ_INIT(&inodedep->id_newinoupdt);
1892	TAILQ_INIT(&inodedep->id_extupdt);
1893	TAILQ_INIT(&inodedep->id_newextupdt);
1894	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1895	*inodedeppp = inodedep;
1896	return (0);
1897}
1898
1899/*
1900 * Structures and routines associated with newblk caching.
1901 */
1902LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1903u_long	newblk_hash;		/* size of hash table - 1 */
1904#define	NEWBLK_HASH(fs, inum) \
1905	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1906
1907static int
1908newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
1909	struct newblk_hashhead *newblkhd;
1910	struct mount *mp;
1911	ufs2_daddr_t newblkno;
1912	int flags;
1913	struct newblk **newblkpp;
1914{
1915	struct newblk *newblk;
1916
1917	LIST_FOREACH(newblk, newblkhd, nb_hash) {
1918		if (newblkno != newblk->nb_newblkno)
1919			continue;
1920		if (mp != newblk->nb_list.wk_mp)
1921			continue;
1922		/*
1923		 * If we're creating a new dependency don't match those that
1924		 * have already been converted to allocdirects.  This is for
1925		 * a frag extend.
1926		 */
1927		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
1928			continue;
1929		break;
1930	}
1931	if (newblk) {
1932		*newblkpp = newblk;
1933		return (1);
1934	}
1935	*newblkpp = NULL;
1936	return (0);
1937}
1938
1939/*
1940 * Look up a newblk. Return 1 if found, 0 if not found.
1941 * If not found, allocate if DEPALLOC flag is passed.
1942 * Found or allocated entry is returned in newblkpp.
1943 */
1944static int
1945newblk_lookup(mp, newblkno, flags, newblkpp)
1946	struct mount *mp;
1947	ufs2_daddr_t newblkno;
1948	int flags;
1949	struct newblk **newblkpp;
1950{
1951	struct newblk *newblk;
1952	struct newblk_hashhead *newblkhd;
1953
1954	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
1955	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
1956		return (1);
1957	if ((flags & DEPALLOC) == 0)
1958		return (0);
1959	FREE_LOCK(&lk);
1960	newblk = malloc(sizeof(union allblk), M_NEWBLK,
1961	    M_SOFTDEP_FLAGS | M_ZERO);
1962	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
1963	ACQUIRE_LOCK(&lk);
1964	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
1965		WORKITEM_FREE(newblk, D_NEWBLK);
1966		return (1);
1967	}
1968	newblk->nb_freefrag = NULL;
1969	LIST_INIT(&newblk->nb_indirdeps);
1970	LIST_INIT(&newblk->nb_newdirblk);
1971	LIST_INIT(&newblk->nb_jwork);
1972	newblk->nb_state = ATTACHED;
1973	newblk->nb_newblkno = newblkno;
1974	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1975	*newblkpp = newblk;
1976	return (0);
1977}
1978
1979/*
1980 * Executed during filesystem system initialization before
1981 * mounting any filesystems.
1982 */
1983void
1984softdep_initialize()
1985{
1986
1987	LIST_INIT(&mkdirlisthd);
1988	max_softdeps = desiredvnodes * 4;
1989	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
1990	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1991	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
1992	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
1993
1994	/* initialise bioops hack */
1995	bioops.io_start = softdep_disk_io_initiation;
1996	bioops.io_complete = softdep_disk_write_complete;
1997	bioops.io_deallocate = softdep_deallocate_dependencies;
1998	bioops.io_countdeps = softdep_count_dependencies;
1999
2000	/* Initialize the callout with an mtx. */
2001	callout_init_mtx(&softdep_callout, &lk, 0);
2002}
2003
2004/*
2005 * Executed after all filesystems have been unmounted during
2006 * filesystem module unload.
2007 */
2008void
2009softdep_uninitialize()
2010{
2011
2012	callout_drain(&softdep_callout);
2013	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2014	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2015	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2016	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2017}
2018
2019/*
2020 * Called at mount time to notify the dependency code that a
2021 * filesystem wishes to use it.
2022 */
2023int
2024softdep_mount(devvp, mp, fs, cred)
2025	struct vnode *devvp;
2026	struct mount *mp;
2027	struct fs *fs;
2028	struct ucred *cred;
2029{
2030	struct csum_total cstotal;
2031	struct ufsmount *ump;
2032	struct cg *cgp;
2033	struct buf *bp;
2034	int error, cyl;
2035
2036	MNT_ILOCK(mp);
2037	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2038	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2039		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2040			MNTK_SOFTDEP;
2041		mp->mnt_noasync++;
2042	}
2043	MNT_IUNLOCK(mp);
2044	ump = VFSTOUFS(mp);
2045	LIST_INIT(&ump->softdep_workitem_pending);
2046	LIST_INIT(&ump->softdep_journal_pending);
2047	TAILQ_INIT(&ump->softdep_unlinked);
2048	ump->softdep_worklist_tail = NULL;
2049	ump->softdep_on_worklist = 0;
2050	ump->softdep_deps = 0;
2051	if ((fs->fs_flags & FS_SUJ) &&
2052	    (error = journal_mount(mp, fs, cred)) != 0) {
2053		printf("Failed to start journal: %d\n", error);
2054		return (error);
2055	}
2056	/*
2057	 * When doing soft updates, the counters in the
2058	 * superblock may have gotten out of sync. Recomputation
2059	 * can take a long time and can be deferred for background
2060	 * fsck.  However, the old behavior of scanning the cylinder
2061	 * groups and recalculating them at mount time is available
2062	 * by setting vfs.ffs.compute_summary_at_mount to one.
2063	 */
2064	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2065		return (0);
2066	bzero(&cstotal, sizeof cstotal);
2067	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2068		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2069		    fs->fs_cgsize, cred, &bp)) != 0) {
2070			brelse(bp);
2071			return (error);
2072		}
2073		cgp = (struct cg *)bp->b_data;
2074		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2075		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2076		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2077		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2078		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2079		brelse(bp);
2080	}
2081#ifdef DEBUG
2082	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2083		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2084#endif
2085	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2086	return (0);
2087}
2088
2089void
2090softdep_unmount(mp)
2091	struct mount *mp;
2092{
2093
2094	if (mp->mnt_kern_flag & MNTK_SUJ)
2095		journal_unmount(mp);
2096}
2097
2098struct jblocks {
2099	struct jseglst	jb_segs;	/* TAILQ of current segments. */
2100	struct jseg	*jb_writeseg;	/* Next write to complete. */
2101	struct jextent	*jb_extent;	/* Extent array. */
2102	uint64_t	jb_nextseq;	/* Next sequence number. */
2103	uint64_t	jb_oldestseq;	/* Oldest active sequence number. */
2104	int		jb_avail;	/* Available extents. */
2105	int		jb_used;	/* Last used extent. */
2106	int		jb_head;	/* Allocator head. */
2107	int		jb_off;		/* Allocator extent offset. */
2108	int		jb_blocks;	/* Total disk blocks covered. */
2109	int		jb_free;	/* Total disk blocks free. */
2110	int		jb_min;		/* Minimum free space. */
2111	int		jb_low;		/* Low on space. */
2112	int		jb_age;		/* Insertion time of oldest rec. */
2113	int		jb_suspended;	/* Did journal suspend writes? */
2114};
2115
2116struct jextent {
2117	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2118	int		je_blocks;	/* Disk block count. */
2119};
2120
2121static struct jblocks *
2122jblocks_create(void)
2123{
2124	struct jblocks *jblocks;
2125
2126	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2127	TAILQ_INIT(&jblocks->jb_segs);
2128	jblocks->jb_avail = 10;
2129	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2130	    M_JBLOCKS, M_WAITOK | M_ZERO);
2131
2132	return (jblocks);
2133}
2134
2135static ufs2_daddr_t
2136jblocks_alloc(jblocks, bytes, actual)
2137	struct jblocks *jblocks;
2138	int bytes;
2139	int *actual;
2140{
2141	ufs2_daddr_t daddr;
2142	struct jextent *jext;
2143	int freecnt;
2144	int blocks;
2145
2146	blocks = bytes / DEV_BSIZE;
2147	jext = &jblocks->jb_extent[jblocks->jb_head];
2148	freecnt = jext->je_blocks - jblocks->jb_off;
2149	if (freecnt == 0) {
2150		jblocks->jb_off = 0;
2151		if (++jblocks->jb_head > jblocks->jb_used)
2152			jblocks->jb_head = 0;
2153		jext = &jblocks->jb_extent[jblocks->jb_head];
2154		freecnt = jext->je_blocks;
2155	}
2156	if (freecnt > blocks)
2157		freecnt = blocks;
2158	*actual = freecnt * DEV_BSIZE;
2159	daddr = jext->je_daddr + jblocks->jb_off;
2160	jblocks->jb_off += freecnt;
2161	jblocks->jb_free -= freecnt;
2162
2163	return (daddr);
2164}
2165
2166static void
2167jblocks_free(jblocks, mp, bytes)
2168	struct jblocks *jblocks;
2169	struct mount *mp;
2170	int bytes;
2171{
2172
2173	jblocks->jb_free += bytes / DEV_BSIZE;
2174	if (jblocks->jb_suspended)
2175		worklist_speedup();
2176	wakeup(jblocks);
2177}
2178
2179static void
2180jblocks_destroy(jblocks)
2181	struct jblocks *jblocks;
2182{
2183
2184	if (jblocks->jb_extent)
2185		free(jblocks->jb_extent, M_JBLOCKS);
2186	free(jblocks, M_JBLOCKS);
2187}
2188
2189static void
2190jblocks_add(jblocks, daddr, blocks)
2191	struct jblocks *jblocks;
2192	ufs2_daddr_t daddr;
2193	int blocks;
2194{
2195	struct jextent *jext;
2196
2197	jblocks->jb_blocks += blocks;
2198	jblocks->jb_free += blocks;
2199	jext = &jblocks->jb_extent[jblocks->jb_used];
2200	/* Adding the first block. */
2201	if (jext->je_daddr == 0) {
2202		jext->je_daddr = daddr;
2203		jext->je_blocks = blocks;
2204		return;
2205	}
2206	/* Extending the last extent. */
2207	if (jext->je_daddr + jext->je_blocks == daddr) {
2208		jext->je_blocks += blocks;
2209		return;
2210	}
2211	/* Adding a new extent. */
2212	if (++jblocks->jb_used == jblocks->jb_avail) {
2213		jblocks->jb_avail *= 2;
2214		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2215		    M_JBLOCKS, M_WAITOK | M_ZERO);
2216		memcpy(jext, jblocks->jb_extent,
2217		    sizeof(struct jextent) * jblocks->jb_used);
2218		free(jblocks->jb_extent, M_JBLOCKS);
2219		jblocks->jb_extent = jext;
2220	}
2221	jext = &jblocks->jb_extent[jblocks->jb_used];
2222	jext->je_daddr = daddr;
2223	jext->je_blocks = blocks;
2224	return;
2225}
2226
2227int
2228softdep_journal_lookup(mp, vpp)
2229	struct mount *mp;
2230	struct vnode **vpp;
2231{
2232	struct componentname cnp;
2233	struct vnode *dvp;
2234	ino_t sujournal;
2235	int error;
2236
2237	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2238	if (error)
2239		return (error);
2240	bzero(&cnp, sizeof(cnp));
2241	cnp.cn_nameiop = LOOKUP;
2242	cnp.cn_flags = ISLASTCN;
2243	cnp.cn_thread = curthread;
2244	cnp.cn_cred = curthread->td_ucred;
2245	cnp.cn_pnbuf = SUJ_FILE;
2246	cnp.cn_nameptr = SUJ_FILE;
2247	cnp.cn_namelen = strlen(SUJ_FILE);
2248	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2249	vput(dvp);
2250	if (error != 0)
2251		return (error);
2252	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2253	return (error);
2254}
2255
2256/*
2257 * Open and verify the journal file.
2258 */
2259static int
2260journal_mount(mp, fs, cred)
2261	struct mount *mp;
2262	struct fs *fs;
2263	struct ucred *cred;
2264{
2265	struct jblocks *jblocks;
2266	struct vnode *vp;
2267	struct inode *ip;
2268	ufs2_daddr_t blkno;
2269	int bcount;
2270	int error;
2271	int i;
2272
2273	error = softdep_journal_lookup(mp, &vp);
2274	if (error != 0) {
2275		printf("Failed to find journal.  Use tunefs to create one\n");
2276		return (error);
2277	}
2278	ip = VTOI(vp);
2279	if (ip->i_size < SUJ_MIN) {
2280		error = ENOSPC;
2281		goto out;
2282	}
2283	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2284	jblocks = jblocks_create();
2285	for (i = 0; i < bcount; i++) {
2286		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2287		if (error)
2288			break;
2289		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2290	}
2291	if (error) {
2292		jblocks_destroy(jblocks);
2293		goto out;
2294	}
2295	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2296	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2297	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2298out:
2299	if (error == 0) {
2300		MNT_ILOCK(mp);
2301		mp->mnt_kern_flag |= MNTK_SUJ;
2302		MNT_IUNLOCK(mp);
2303		/*
2304		 * Only validate the journal contents if the
2305		 * filesystem is clean, otherwise we write the logs
2306		 * but they'll never be used.  If the filesystem was
2307		 * still dirty when we mounted it the journal is
2308		 * invalid and a new journal can only be valid if it
2309		 * starts from a clean mount.
2310		 */
2311		if (fs->fs_clean) {
2312			DIP_SET(ip, i_modrev, fs->fs_mtime);
2313			ip->i_flags |= IN_MODIFIED;
2314			ffs_update(vp, 1);
2315		}
2316	}
2317	vput(vp);
2318	return (error);
2319}
2320
2321static void
2322journal_unmount(mp)
2323	struct mount *mp;
2324{
2325	struct ufsmount *ump;
2326
2327	ump = VFSTOUFS(mp);
2328	if (ump->softdep_jblocks)
2329		jblocks_destroy(ump->softdep_jblocks);
2330	ump->softdep_jblocks = NULL;
2331}
2332
2333/*
2334 * Called when a journal record is ready to be written.  Space is allocated
2335 * and the journal entry is created when the journal is flushed to stable
2336 * store.
2337 */
2338static void
2339add_to_journal(wk)
2340	struct worklist *wk;
2341{
2342	struct ufsmount *ump;
2343
2344	mtx_assert(&lk, MA_OWNED);
2345	ump = VFSTOUFS(wk->wk_mp);
2346	if (wk->wk_state & ONWORKLIST)
2347		panic("add_to_journal: %s(0x%X) already on list",
2348		    TYPENAME(wk->wk_type), wk->wk_state);
2349	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2350	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2351		ump->softdep_jblocks->jb_age = ticks;
2352		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2353	} else
2354		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2355	ump->softdep_journal_tail = wk;
2356	ump->softdep_on_journal += 1;
2357}
2358
2359/*
2360 * Remove an arbitrary item for the journal worklist maintain the tail
2361 * pointer.  This happens when a new operation obviates the need to
2362 * journal an old operation.
2363 */
2364static void
2365remove_from_journal(wk)
2366	struct worklist *wk;
2367{
2368	struct ufsmount *ump;
2369
2370	mtx_assert(&lk, MA_OWNED);
2371	ump = VFSTOUFS(wk->wk_mp);
2372#ifdef SUJ_DEBUG
2373	{
2374		struct worklist *wkn;
2375
2376		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2377			if (wkn == wk)
2378				break;
2379		if (wkn == NULL)
2380			panic("remove_from_journal: %p is not in journal", wk);
2381	}
2382#endif
2383	/*
2384	 * We emulate a TAILQ to save space in most structures which do not
2385	 * require TAILQ semantics.  Here we must update the tail position
2386	 * when removing the tail which is not the final entry. This works
2387	 * only if the worklist linkage are at the beginning of the structure.
2388	 */
2389	if (ump->softdep_journal_tail == wk)
2390		ump->softdep_journal_tail =
2391		    (struct worklist *)wk->wk_list.le_prev;
2392
2393	WORKLIST_REMOVE(wk);
2394	ump->softdep_on_journal -= 1;
2395}
2396
2397/*
2398 * Check for journal space as well as dependency limits so the prelink
2399 * code can throttle both journaled and non-journaled filesystems.
2400 * Threshold is 0 for low and 1 for min.
2401 */
2402static int
2403journal_space(ump, thresh)
2404	struct ufsmount *ump;
2405	int thresh;
2406{
2407	struct jblocks *jblocks;
2408	int avail;
2409
2410	jblocks = ump->softdep_jblocks;
2411	if (jblocks == NULL)
2412		return (1);
2413	/*
2414	 * We use a tighter restriction here to prevent request_cleanup()
2415	 * running in threads from running into locks we currently hold.
2416	 */
2417	if (num_inodedep > (max_softdeps / 10) * 9)
2418		return (0);
2419	if (thresh)
2420		thresh = jblocks->jb_min;
2421	else
2422		thresh = jblocks->jb_low;
2423	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2424	avail = jblocks->jb_free - avail;
2425
2426	return (avail > thresh);
2427}
2428
2429static void
2430journal_suspend(ump)
2431	struct ufsmount *ump;
2432{
2433	struct jblocks *jblocks;
2434	struct mount *mp;
2435
2436	mp = UFSTOVFS(ump);
2437	jblocks = ump->softdep_jblocks;
2438	MNT_ILOCK(mp);
2439	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2440		stat_journal_min++;
2441		mp->mnt_kern_flag |= MNTK_SUSPEND;
2442		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2443	}
2444	jblocks->jb_suspended = 1;
2445	MNT_IUNLOCK(mp);
2446}
2447
2448static int
2449journal_unsuspend(struct ufsmount *ump)
2450{
2451	struct jblocks *jblocks;
2452	struct mount *mp;
2453
2454	mp = UFSTOVFS(ump);
2455	jblocks = ump->softdep_jblocks;
2456
2457	if (jblocks != NULL && jblocks->jb_suspended &&
2458	    journal_space(ump, jblocks->jb_min)) {
2459		jblocks->jb_suspended = 0;
2460		FREE_LOCK(&lk);
2461		mp->mnt_susp_owner = curthread;
2462		vfs_write_resume(mp);
2463		ACQUIRE_LOCK(&lk);
2464		return (1);
2465	}
2466	return (0);
2467}
2468
2469/*
2470 * Called before any allocation function to be certain that there is
2471 * sufficient space in the journal prior to creating any new records.
2472 * Since in the case of block allocation we may have multiple locked
2473 * buffers at the time of the actual allocation we can not block
2474 * when the journal records are created.  Doing so would create a deadlock
2475 * if any of these buffers needed to be flushed to reclaim space.  Instead
2476 * we require a sufficiently large amount of available space such that
2477 * each thread in the system could have passed this allocation check and
2478 * still have sufficient free space.  With 20% of a minimum journal size
2479 * of 1MB we have 6553 records available.
2480 */
2481int
2482softdep_prealloc(vp, waitok)
2483	struct vnode *vp;
2484	int waitok;
2485{
2486	struct ufsmount *ump;
2487
2488	if (DOINGSUJ(vp) == 0)
2489		return (0);
2490	ump = VFSTOUFS(vp->v_mount);
2491	ACQUIRE_LOCK(&lk);
2492	if (journal_space(ump, 0)) {
2493		FREE_LOCK(&lk);
2494		return (0);
2495	}
2496	stat_journal_low++;
2497	FREE_LOCK(&lk);
2498	if (waitok == MNT_NOWAIT)
2499		return (ENOSPC);
2500	/*
2501	 * Attempt to sync this vnode once to flush any journal
2502	 * work attached to it.
2503	 */
2504	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2505		ffs_syncvnode(vp, waitok);
2506	ACQUIRE_LOCK(&lk);
2507	process_removes(vp);
2508	if (journal_space(ump, 0) == 0) {
2509		softdep_speedup();
2510		if (journal_space(ump, 1) == 0)
2511			journal_suspend(ump);
2512	}
2513	FREE_LOCK(&lk);
2514
2515	return (0);
2516}
2517
2518/*
2519 * Before adjusting a link count on a vnode verify that we have sufficient
2520 * journal space.  If not, process operations that depend on the currently
2521 * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2522 * and softdep flush threads can not acquire these locks to reclaim space.
2523 */
2524static void
2525softdep_prelink(dvp, vp)
2526	struct vnode *dvp;
2527	struct vnode *vp;
2528{
2529	struct ufsmount *ump;
2530
2531	ump = VFSTOUFS(dvp->v_mount);
2532	mtx_assert(&lk, MA_OWNED);
2533	if (journal_space(ump, 0))
2534		return;
2535	stat_journal_low++;
2536	FREE_LOCK(&lk);
2537	if (vp)
2538		ffs_syncvnode(vp, MNT_NOWAIT);
2539	ffs_syncvnode(dvp, MNT_WAIT);
2540	ACQUIRE_LOCK(&lk);
2541	/* Process vp before dvp as it may create .. removes. */
2542	if (vp)
2543		process_removes(vp);
2544	process_removes(dvp);
2545	softdep_speedup();
2546	process_worklist_item(UFSTOVFS(ump), LK_NOWAIT);
2547	process_worklist_item(UFSTOVFS(ump), LK_NOWAIT);
2548	if (journal_space(ump, 0) == 0) {
2549		softdep_speedup();
2550		if (journal_space(ump, 1) == 0)
2551			journal_suspend(ump);
2552	}
2553}
2554
2555static void
2556jseg_write(fs, jblocks, jseg, data)
2557	struct fs *fs;
2558	struct jblocks *jblocks;
2559	struct jseg *jseg;
2560	uint8_t *data;
2561{
2562	struct jsegrec *rec;
2563
2564	rec = (struct jsegrec *)data;
2565	rec->jsr_seq = jseg->js_seq;
2566	rec->jsr_oldest = jblocks->jb_oldestseq;
2567	rec->jsr_cnt = jseg->js_cnt;
2568	rec->jsr_blocks = jseg->js_size / DEV_BSIZE;
2569	rec->jsr_crc = 0;
2570	rec->jsr_time = fs->fs_mtime;
2571}
2572
2573static inline void
2574inoref_write(inoref, jseg, rec)
2575	struct inoref *inoref;
2576	struct jseg *jseg;
2577	struct jrefrec *rec;
2578{
2579
2580	inoref->if_jsegdep->jd_seg = jseg;
2581	rec->jr_ino = inoref->if_ino;
2582	rec->jr_parent = inoref->if_parent;
2583	rec->jr_nlink = inoref->if_nlink;
2584	rec->jr_mode = inoref->if_mode;
2585	rec->jr_diroff = inoref->if_diroff;
2586}
2587
2588static void
2589jaddref_write(jaddref, jseg, data)
2590	struct jaddref *jaddref;
2591	struct jseg *jseg;
2592	uint8_t *data;
2593{
2594	struct jrefrec *rec;
2595
2596	rec = (struct jrefrec *)data;
2597	rec->jr_op = JOP_ADDREF;
2598	inoref_write(&jaddref->ja_ref, jseg, rec);
2599}
2600
2601static void
2602jremref_write(jremref, jseg, data)
2603	struct jremref *jremref;
2604	struct jseg *jseg;
2605	uint8_t *data;
2606{
2607	struct jrefrec *rec;
2608
2609	rec = (struct jrefrec *)data;
2610	rec->jr_op = JOP_REMREF;
2611	inoref_write(&jremref->jr_ref, jseg, rec);
2612}
2613
2614static void
2615jmvref_write(jmvref, jseg, data)
2616	struct jmvref *jmvref;
2617	struct jseg *jseg;
2618	uint8_t *data;
2619{
2620	struct jmvrec *rec;
2621
2622	rec = (struct jmvrec *)data;
2623	rec->jm_op = JOP_MVREF;
2624	rec->jm_ino = jmvref->jm_ino;
2625	rec->jm_parent = jmvref->jm_parent;
2626	rec->jm_oldoff = jmvref->jm_oldoff;
2627	rec->jm_newoff = jmvref->jm_newoff;
2628}
2629
2630static void
2631jnewblk_write(jnewblk, jseg, data)
2632	struct jnewblk *jnewblk;
2633	struct jseg *jseg;
2634	uint8_t *data;
2635{
2636	struct jblkrec *rec;
2637
2638	jnewblk->jn_jsegdep->jd_seg = jseg;
2639	rec = (struct jblkrec *)data;
2640	rec->jb_op = JOP_NEWBLK;
2641	rec->jb_ino = jnewblk->jn_ino;
2642	rec->jb_blkno = jnewblk->jn_blkno;
2643	rec->jb_lbn = jnewblk->jn_lbn;
2644	rec->jb_frags = jnewblk->jn_frags;
2645	rec->jb_oldfrags = jnewblk->jn_oldfrags;
2646}
2647
2648static void
2649jfreeblk_write(jfreeblk, jseg, data)
2650	struct jfreeblk *jfreeblk;
2651	struct jseg *jseg;
2652	uint8_t *data;
2653{
2654	struct jblkrec *rec;
2655
2656	jfreeblk->jf_jsegdep->jd_seg = jseg;
2657	rec = (struct jblkrec *)data;
2658	rec->jb_op = JOP_FREEBLK;
2659	rec->jb_ino = jfreeblk->jf_ino;
2660	rec->jb_blkno = jfreeblk->jf_blkno;
2661	rec->jb_lbn = jfreeblk->jf_lbn;
2662	rec->jb_frags = jfreeblk->jf_frags;
2663	rec->jb_oldfrags = 0;
2664}
2665
2666static void
2667jfreefrag_write(jfreefrag, jseg, data)
2668	struct jfreefrag *jfreefrag;
2669	struct jseg *jseg;
2670	uint8_t *data;
2671{
2672	struct jblkrec *rec;
2673
2674	jfreefrag->fr_jsegdep->jd_seg = jseg;
2675	rec = (struct jblkrec *)data;
2676	rec->jb_op = JOP_FREEBLK;
2677	rec->jb_ino = jfreefrag->fr_ino;
2678	rec->jb_blkno = jfreefrag->fr_blkno;
2679	rec->jb_lbn = jfreefrag->fr_lbn;
2680	rec->jb_frags = jfreefrag->fr_frags;
2681	rec->jb_oldfrags = 0;
2682}
2683
2684static void
2685jtrunc_write(jtrunc, jseg, data)
2686	struct jtrunc *jtrunc;
2687	struct jseg *jseg;
2688	uint8_t *data;
2689{
2690	struct jtrncrec *rec;
2691
2692	rec = (struct jtrncrec *)data;
2693	rec->jt_op = JOP_TRUNC;
2694	rec->jt_ino = jtrunc->jt_ino;
2695	rec->jt_size = jtrunc->jt_size;
2696	rec->jt_extsize = jtrunc->jt_extsize;
2697}
2698
2699/*
2700 * Flush some journal records to disk.
2701 */
2702static void
2703softdep_process_journal(mp, flags)
2704	struct mount *mp;
2705	int flags;
2706{
2707	struct jblocks *jblocks;
2708	struct ufsmount *ump;
2709	struct worklist *wk;
2710	struct jseg *jseg;
2711	struct buf *bp;
2712	uint8_t *data;
2713	struct fs *fs;
2714	int segwritten;
2715	int jrecmin;	/* Minimum records per block. */
2716	int jrecmax;	/* Maximum records per block. */
2717	int size;
2718	int cnt;
2719	int off;
2720
2721	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0)
2722		return;
2723	ump = VFSTOUFS(mp);
2724	fs = ump->um_fs;
2725	jblocks = ump->softdep_jblocks;
2726	/*
2727	 * We write anywhere between a disk block and fs block.  The upper
2728	 * bound is picked to prevent buffer cache fragmentation and limit
2729	 * processing time per I/O.
2730	 */
2731	jrecmin = (DEV_BSIZE / JREC_SIZE) - 1; /* -1 for seg header */
2732	jrecmax = (fs->fs_bsize / DEV_BSIZE) * jrecmin;
2733	segwritten = 0;
2734	while ((cnt = ump->softdep_on_journal) != 0) {
2735		/*
2736		 * Create a new segment to hold as many as 'cnt' journal
2737		 * entries and add them to the segment.  Notice cnt is
2738		 * off by one to account for the space required by the
2739		 * jsegrec.  If we don't have a full block to log skip it
2740		 * unless we haven't written anything.
2741		 */
2742		cnt++;
2743		if (cnt < jrecmax && segwritten)
2744			break;
2745		/*
2746		 * Verify some free journal space.  softdep_prealloc() should
2747	 	 * guarantee that we don't run out so this is indicative of
2748		 * a problem with the flow control.  Try to recover
2749		 * gracefully in any event.
2750		 */
2751		while (jblocks->jb_free == 0) {
2752			if (flags != MNT_WAIT)
2753				break;
2754			printf("softdep: Out of journal space!\n");
2755			softdep_speedup();
2756			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
2757		}
2758		FREE_LOCK(&lk);
2759		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
2760		workitem_alloc(&jseg->js_list, D_JSEG, mp);
2761		LIST_INIT(&jseg->js_entries);
2762		jseg->js_state = ATTACHED;
2763		jseg->js_jblocks = jblocks;
2764		bp = geteblk(fs->fs_bsize, 0);
2765		ACQUIRE_LOCK(&lk);
2766		/*
2767		 * If there was a race while we were allocating the block
2768		 * and jseg the entry we care about was likely written.
2769		 * We bail out in both the WAIT and NOWAIT case and assume
2770		 * the caller will loop if the entry it cares about is
2771		 * not written.
2772		 */
2773		if (ump->softdep_on_journal == 0 || jblocks->jb_free == 0) {
2774			bp->b_flags |= B_INVAL | B_NOCACHE;
2775			WORKITEM_FREE(jseg, D_JSEG);
2776			FREE_LOCK(&lk);
2777			brelse(bp);
2778			ACQUIRE_LOCK(&lk);
2779			break;
2780		}
2781		/*
2782		 * Calculate the disk block size required for the available
2783		 * records rounded to the min size.
2784		 */
2785		cnt = ump->softdep_on_journal;
2786		if (cnt < jrecmax)
2787			size = howmany(cnt, jrecmin) * DEV_BSIZE;
2788		else
2789			size = fs->fs_bsize;
2790		/*
2791		 * Allocate a disk block for this journal data and account
2792		 * for truncation of the requested size if enough contiguous
2793		 * space was not available.
2794		 */
2795		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
2796		bp->b_lblkno = bp->b_blkno;
2797		bp->b_offset = bp->b_blkno * DEV_BSIZE;
2798		bp->b_bcount = size;
2799		bp->b_bufobj = &ump->um_devvp->v_bufobj;
2800		bp->b_flags &= ~B_INVAL;
2801		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
2802		/*
2803		 * Initialize our jseg with cnt records.  Assign the next
2804		 * sequence number to it and link it in-order.
2805		 */
2806		cnt = MIN(ump->softdep_on_journal,
2807		    (size / DEV_BSIZE) * jrecmin);
2808		jseg->js_buf = bp;
2809		jseg->js_cnt = cnt;
2810		jseg->js_refs = cnt + 1;	/* Self ref. */
2811		jseg->js_size = size;
2812		jseg->js_seq = jblocks->jb_nextseq++;
2813		if (TAILQ_EMPTY(&jblocks->jb_segs))
2814			jblocks->jb_oldestseq = jseg->js_seq;
2815		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
2816		if (jblocks->jb_writeseg == NULL)
2817			jblocks->jb_writeseg = jseg;
2818		/*
2819		 * Start filling in records from the pending list.
2820		 */
2821		data = bp->b_data;
2822		off = 0;
2823		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
2824		    != NULL) {
2825			/* Place a segment header on every device block. */
2826			if ((off % DEV_BSIZE) == 0) {
2827				jseg_write(fs, jblocks, jseg, data);
2828				off += JREC_SIZE;
2829				data = bp->b_data + off;
2830			}
2831			remove_from_journal(wk);
2832			wk->wk_state |= IOSTARTED;
2833			WORKLIST_INSERT(&jseg->js_entries, wk);
2834			switch (wk->wk_type) {
2835			case D_JADDREF:
2836				jaddref_write(WK_JADDREF(wk), jseg, data);
2837				break;
2838			case D_JREMREF:
2839				jremref_write(WK_JREMREF(wk), jseg, data);
2840				break;
2841			case D_JMVREF:
2842				jmvref_write(WK_JMVREF(wk), jseg, data);
2843				break;
2844			case D_JNEWBLK:
2845				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
2846				break;
2847			case D_JFREEBLK:
2848				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
2849				break;
2850			case D_JFREEFRAG:
2851				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
2852				break;
2853			case D_JTRUNC:
2854				jtrunc_write(WK_JTRUNC(wk), jseg, data);
2855				break;
2856			default:
2857				panic("process_journal: Unknown type %s",
2858				    TYPENAME(wk->wk_type));
2859				/* NOTREACHED */
2860			}
2861			if (--cnt == 0)
2862				break;
2863			off += JREC_SIZE;
2864			data = bp->b_data + off;
2865		}
2866		/*
2867		 * Write this one buffer and continue.
2868		 */
2869		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
2870		FREE_LOCK(&lk);
2871		BO_LOCK(bp->b_bufobj);
2872		bgetvp(ump->um_devvp, bp);
2873		BO_UNLOCK(bp->b_bufobj);
2874		if (flags == MNT_NOWAIT)
2875			bawrite(bp);
2876		else
2877			bwrite(bp);
2878		ACQUIRE_LOCK(&lk);
2879	}
2880	/*
2881	 * If we've suspended the filesystem because we ran out of journal
2882	 * space either try to sync it here to make some progress or
2883	 * unsuspend it if we already have.
2884	 */
2885	if (flags == 0 && jblocks->jb_suspended) {
2886		if (journal_unsuspend(ump))
2887			return;
2888		FREE_LOCK(&lk);
2889		VFS_SYNC(mp, MNT_NOWAIT);
2890		ffs_sbupdate(ump, MNT_WAIT, 0);
2891		ACQUIRE_LOCK(&lk);
2892	}
2893}
2894
2895/*
2896 * Complete a jseg, allowing all dependencies awaiting journal writes
2897 * to proceed.  Each journal dependency also attaches a jsegdep to dependent
2898 * structures so that the journal segment can be freed to reclaim space.
2899 */
2900static void
2901complete_jseg(jseg)
2902	struct jseg *jseg;
2903{
2904	struct worklist *wk;
2905	struct jmvref *jmvref;
2906	int waiting;
2907#ifdef INVARIANTS
2908	int i = 0;
2909#endif
2910
2911	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
2912		WORKLIST_REMOVE(wk);
2913		waiting = wk->wk_state & IOWAITING;
2914		wk->wk_state &= ~(IOSTARTED | IOWAITING);
2915		wk->wk_state |= COMPLETE;
2916		KASSERT(i++ < jseg->js_cnt,
2917		    ("handle_written_jseg: overflow %d >= %d",
2918		    i - 1, jseg->js_cnt));
2919		switch (wk->wk_type) {
2920		case D_JADDREF:
2921			handle_written_jaddref(WK_JADDREF(wk));
2922			break;
2923		case D_JREMREF:
2924			handle_written_jremref(WK_JREMREF(wk));
2925			break;
2926		case D_JMVREF:
2927			/* No jsegdep here. */
2928			free_jseg(jseg);
2929			jmvref = WK_JMVREF(wk);
2930			LIST_REMOVE(jmvref, jm_deps);
2931			free_pagedep(jmvref->jm_pagedep);
2932			WORKITEM_FREE(jmvref, D_JMVREF);
2933			break;
2934		case D_JNEWBLK:
2935			handle_written_jnewblk(WK_JNEWBLK(wk));
2936			break;
2937		case D_JFREEBLK:
2938			handle_written_jfreeblk(WK_JFREEBLK(wk));
2939			break;
2940		case D_JFREEFRAG:
2941			handle_written_jfreefrag(WK_JFREEFRAG(wk));
2942			break;
2943		case D_JTRUNC:
2944			WK_JTRUNC(wk)->jt_jsegdep->jd_seg = jseg;
2945			WORKITEM_FREE(wk, D_JTRUNC);
2946			break;
2947		default:
2948			panic("handle_written_jseg: Unknown type %s",
2949			    TYPENAME(wk->wk_type));
2950			/* NOTREACHED */
2951		}
2952		if (waiting)
2953			wakeup(wk);
2954	}
2955	/* Release the self reference so the structure may be freed. */
2956	free_jseg(jseg);
2957}
2958
2959/*
2960 * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Handle jseg
2961 * completions in order only.
2962 */
2963static void
2964handle_written_jseg(jseg, bp)
2965	struct jseg *jseg;
2966	struct buf *bp;
2967{
2968	struct jblocks *jblocks;
2969	struct jseg *jsegn;
2970
2971	if (jseg->js_refs == 0)
2972		panic("handle_written_jseg: No self-reference on %p", jseg);
2973	jseg->js_state |= DEPCOMPLETE;
2974	/*
2975	 * We'll never need this buffer again, set flags so it will be
2976	 * discarded.
2977	 */
2978	bp->b_flags |= B_INVAL | B_NOCACHE;
2979	jblocks = jseg->js_jblocks;
2980	/*
2981	 * Don't allow out of order completions.  If this isn't the first
2982	 * block wait for it to write before we're done.
2983	 */
2984	if (jseg != jblocks->jb_writeseg)
2985		return;
2986	/* Iterate through available jsegs processing their entries. */
2987	do {
2988		jsegn = TAILQ_NEXT(jseg, js_next);
2989		complete_jseg(jseg);
2990		jseg = jsegn;
2991	} while (jseg && jseg->js_state & DEPCOMPLETE);
2992	jblocks->jb_writeseg = jseg;
2993}
2994
2995static inline struct jsegdep *
2996inoref_jseg(inoref)
2997	struct inoref *inoref;
2998{
2999	struct jsegdep *jsegdep;
3000
3001	jsegdep = inoref->if_jsegdep;
3002	inoref->if_jsegdep = NULL;
3003
3004	return (jsegdep);
3005}
3006
3007/*
3008 * Called once a jremref has made it to stable store.  The jremref is marked
3009 * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3010 * for the jremref to complete will be awoken by free_jremref.
3011 */
3012static void
3013handle_written_jremref(jremref)
3014	struct jremref *jremref;
3015{
3016	struct inodedep *inodedep;
3017	struct jsegdep *jsegdep;
3018	struct dirrem *dirrem;
3019
3020	/* Grab the jsegdep. */
3021	jsegdep = inoref_jseg(&jremref->jr_ref);
3022	/*
3023	 * Remove us from the inoref list.
3024	 */
3025	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3026	    0, &inodedep) == 0)
3027		panic("handle_written_jremref: Lost inodedep");
3028	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3029	/*
3030	 * Complete the dirrem.
3031	 */
3032	dirrem = jremref->jr_dirrem;
3033	jremref->jr_dirrem = NULL;
3034	LIST_REMOVE(jremref, jr_deps);
3035	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3036	WORKLIST_INSERT(&dirrem->dm_jwork, &jsegdep->jd_list);
3037	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3038	    (dirrem->dm_state & COMPLETE) != 0)
3039		add_to_worklist(&dirrem->dm_list, 0);
3040	free_jremref(jremref);
3041}
3042
3043/*
3044 * Called once a jaddref has made it to stable store.  The dependency is
3045 * marked complete and any dependent structures are added to the inode
3046 * bufwait list to be completed as soon as it is written.  If a bitmap write
3047 * depends on this entry we move the inode into the inodedephd of the
3048 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3049 */
3050static void
3051handle_written_jaddref(jaddref)
3052	struct jaddref *jaddref;
3053{
3054	struct jsegdep *jsegdep;
3055	struct inodedep *inodedep;
3056	struct diradd *diradd;
3057	struct mkdir *mkdir;
3058
3059	/* Grab the jsegdep. */
3060	jsegdep = inoref_jseg(&jaddref->ja_ref);
3061	mkdir = NULL;
3062	diradd = NULL;
3063	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3064	    0, &inodedep) == 0)
3065		panic("handle_written_jaddref: Lost inodedep.");
3066	if (jaddref->ja_diradd == NULL)
3067		panic("handle_written_jaddref: No dependency");
3068	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3069		diradd = jaddref->ja_diradd;
3070		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3071	} else if (jaddref->ja_state & MKDIR_PARENT) {
3072		mkdir = jaddref->ja_mkdir;
3073		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3074	} else if (jaddref->ja_state & MKDIR_BODY)
3075		mkdir = jaddref->ja_mkdir;
3076	else
3077		panic("handle_written_jaddref: Unknown dependency %p",
3078		    jaddref->ja_diradd);
3079	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3080	/*
3081	 * Remove us from the inode list.
3082	 */
3083	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3084	/*
3085	 * The mkdir may be waiting on the jaddref to clear before freeing.
3086	 */
3087	if (mkdir) {
3088		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3089		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3090		    TYPENAME(mkdir->md_list.wk_type)));
3091		mkdir->md_jaddref = NULL;
3092		diradd = mkdir->md_diradd;
3093		mkdir->md_state |= DEPCOMPLETE;
3094		complete_mkdir(mkdir);
3095	}
3096	WORKLIST_INSERT(&diradd->da_jwork, &jsegdep->jd_list);
3097	if (jaddref->ja_state & NEWBLOCK) {
3098		inodedep->id_state |= ONDEPLIST;
3099		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3100		    inodedep, id_deps);
3101	}
3102	free_jaddref(jaddref);
3103}
3104
3105/*
3106 * Called once a jnewblk journal is written.  The allocdirect or allocindir
3107 * is placed in the bmsafemap to await notification of a written bitmap.
3108 */
3109static void
3110handle_written_jnewblk(jnewblk)
3111	struct jnewblk *jnewblk;
3112{
3113	struct bmsafemap *bmsafemap;
3114	struct jsegdep *jsegdep;
3115	struct newblk *newblk;
3116
3117	/* Grab the jsegdep. */
3118	jsegdep = jnewblk->jn_jsegdep;
3119	jnewblk->jn_jsegdep = NULL;
3120	/*
3121	 * Add the written block to the bmsafemap so it can be notified when
3122	 * the bitmap is on disk.
3123	 */
3124	newblk = jnewblk->jn_newblk;
3125	jnewblk->jn_newblk = NULL;
3126	if (newblk == NULL)
3127		panic("handle_written_jnewblk: No dependency for the segdep.");
3128
3129	newblk->nb_jnewblk = NULL;
3130	bmsafemap = newblk->nb_bmsafemap;
3131	WORKLIST_INSERT(&newblk->nb_jwork, &jsegdep->jd_list);
3132	newblk->nb_state |= ONDEPLIST;
3133	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
3134	free_jnewblk(jnewblk);
3135}
3136
3137/*
3138 * Cancel a jfreefrag that won't be needed, probably due to colliding with
3139 * an in-flight allocation that has not yet been committed.  Divorce us
3140 * from the freefrag and mark it DEPCOMPLETE so that it may be added
3141 * to the worklist.
3142 */
3143static void
3144cancel_jfreefrag(jfreefrag)
3145	struct jfreefrag *jfreefrag;
3146{
3147	struct freefrag *freefrag;
3148
3149	if (jfreefrag->fr_jsegdep) {
3150		free_jsegdep(jfreefrag->fr_jsegdep);
3151		jfreefrag->fr_jsegdep = NULL;
3152	}
3153	freefrag = jfreefrag->fr_freefrag;
3154	jfreefrag->fr_freefrag = NULL;
3155	freefrag->ff_jfreefrag = NULL;
3156	free_jfreefrag(jfreefrag);
3157	freefrag->ff_state |= DEPCOMPLETE;
3158}
3159
3160/*
3161 * Free a jfreefrag when the parent freefrag is rendered obsolete.
3162 */
3163static void
3164free_jfreefrag(jfreefrag)
3165	struct jfreefrag *jfreefrag;
3166{
3167
3168	if (jfreefrag->fr_state & IOSTARTED)
3169		WORKLIST_REMOVE(&jfreefrag->fr_list);
3170	else if (jfreefrag->fr_state & ONWORKLIST)
3171		remove_from_journal(&jfreefrag->fr_list);
3172	if (jfreefrag->fr_freefrag != NULL)
3173		panic("free_jfreefrag:  Still attached to a freefrag.");
3174	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3175}
3176
3177/*
3178 * Called when the journal write for a jfreefrag completes.  The parent
3179 * freefrag is added to the worklist if this completes its dependencies.
3180 */
3181static void
3182handle_written_jfreefrag(jfreefrag)
3183	struct jfreefrag *jfreefrag;
3184{
3185	struct jsegdep *jsegdep;
3186	struct freefrag *freefrag;
3187
3188	/* Grab the jsegdep. */
3189	jsegdep = jfreefrag->fr_jsegdep;
3190	jfreefrag->fr_jsegdep = NULL;
3191	freefrag = jfreefrag->fr_freefrag;
3192	if (freefrag == NULL)
3193		panic("handle_written_jfreefrag: No freefrag.");
3194	freefrag->ff_state |= DEPCOMPLETE;
3195	freefrag->ff_jfreefrag = NULL;
3196	WORKLIST_INSERT(&freefrag->ff_jwork, &jsegdep->jd_list);
3197	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3198		add_to_worklist(&freefrag->ff_list, 0);
3199	jfreefrag->fr_freefrag = NULL;
3200	free_jfreefrag(jfreefrag);
3201}
3202
3203/*
3204 * Called when the journal write for a jfreeblk completes.  The jfreeblk
3205 * is removed from the freeblks list of pending journal writes and the
3206 * jsegdep is moved to the freeblks jwork to be completed when all blocks
3207 * have been reclaimed.
3208 */
3209static void
3210handle_written_jfreeblk(jfreeblk)
3211	struct jfreeblk *jfreeblk;
3212{
3213	struct freeblks *freeblks;
3214	struct jsegdep *jsegdep;
3215
3216	/* Grab the jsegdep. */
3217	jsegdep = jfreeblk->jf_jsegdep;
3218	jfreeblk->jf_jsegdep = NULL;
3219	freeblks = jfreeblk->jf_freeblks;
3220	LIST_REMOVE(jfreeblk, jf_deps);
3221	WORKLIST_INSERT(&freeblks->fb_jwork, &jsegdep->jd_list);
3222	/*
3223	 * If the freeblks is all journaled, we can add it to the worklist.
3224	 */
3225	if (LIST_EMPTY(&freeblks->fb_jfreeblkhd) &&
3226	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) {
3227		/* Remove from the b_dep that is waiting on this write. */
3228		if (freeblks->fb_state & ONWORKLIST)
3229			WORKLIST_REMOVE(&freeblks->fb_list);
3230		add_to_worklist(&freeblks->fb_list, 1);
3231	}
3232
3233	free_jfreeblk(jfreeblk);
3234}
3235
3236static struct jsegdep *
3237newjsegdep(struct worklist *wk)
3238{
3239	struct jsegdep *jsegdep;
3240
3241	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3242	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3243	jsegdep->jd_seg = NULL;
3244
3245	return (jsegdep);
3246}
3247
3248static struct jmvref *
3249newjmvref(dp, ino, oldoff, newoff)
3250	struct inode *dp;
3251	ino_t ino;
3252	off_t oldoff;
3253	off_t newoff;
3254{
3255	struct jmvref *jmvref;
3256
3257	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3258	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3259	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3260	jmvref->jm_parent = dp->i_number;
3261	jmvref->jm_ino = ino;
3262	jmvref->jm_oldoff = oldoff;
3263	jmvref->jm_newoff = newoff;
3264
3265	return (jmvref);
3266}
3267
3268/*
3269 * Allocate a new jremref that tracks the removal of ip from dp with the
3270 * directory entry offset of diroff.  Mark the entry as ATTACHED and
3271 * DEPCOMPLETE as we have all the information required for the journal write
3272 * and the directory has already been removed from the buffer.  The caller
3273 * is responsible for linking the jremref into the pagedep and adding it
3274 * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3275 * a DOTDOT addition so handle_workitem_remove() can properly assign
3276 * the jsegdep when we're done.
3277 */
3278static struct jremref *
3279newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3280    off_t diroff, nlink_t nlink)
3281{
3282	struct jremref *jremref;
3283
3284	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3285	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3286	jremref->jr_state = ATTACHED;
3287	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3288	   nlink, ip->i_mode);
3289	jremref->jr_dirrem = dirrem;
3290
3291	return (jremref);
3292}
3293
3294static inline void
3295newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3296    nlink_t nlink, uint16_t mode)
3297{
3298
3299	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3300	inoref->if_diroff = diroff;
3301	inoref->if_ino = ino;
3302	inoref->if_parent = parent;
3303	inoref->if_nlink = nlink;
3304	inoref->if_mode = mode;
3305}
3306
3307/*
3308 * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3309 * directory offset may not be known until later.  The caller is responsible
3310 * adding the entry to the journal when this information is available.  nlink
3311 * should be the link count prior to the addition and mode is only required
3312 * to have the correct FMT.
3313 */
3314static struct jaddref *
3315newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3316    uint16_t mode)
3317{
3318	struct jaddref *jaddref;
3319
3320	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3321	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3322	jaddref->ja_state = ATTACHED;
3323	jaddref->ja_mkdir = NULL;
3324	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3325
3326	return (jaddref);
3327}
3328
3329/*
3330 * Create a new free dependency for a freework.  The caller is responsible
3331 * for adjusting the reference count when it has the lock held.  The freedep
3332 * will track an outstanding bitmap write that will ultimately clear the
3333 * freework to continue.
3334 */
3335static struct freedep *
3336newfreedep(struct freework *freework)
3337{
3338	struct freedep *freedep;
3339
3340	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3341	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3342	freedep->fd_freework = freework;
3343
3344	return (freedep);
3345}
3346
3347/*
3348 * Free a freedep structure once the buffer it is linked to is written.  If
3349 * this is the last reference to the freework schedule it for completion.
3350 */
3351static void
3352free_freedep(freedep)
3353	struct freedep *freedep;
3354{
3355
3356	if (--freedep->fd_freework->fw_ref == 0)
3357		add_to_worklist(&freedep->fd_freework->fw_list, 1);
3358	WORKITEM_FREE(freedep, D_FREEDEP);
3359}
3360
3361/*
3362 * Allocate a new freework structure that may be a level in an indirect
3363 * when parent is not NULL or a top level block when it is.  The top level
3364 * freework structures are allocated without lk held and before the freeblks
3365 * is visible outside of softdep_setup_freeblocks().
3366 */
3367static struct freework *
3368newfreework(freeblks, parent, lbn, nb, frags, journal)
3369	struct freeblks *freeblks;
3370	struct freework *parent;
3371	ufs_lbn_t lbn;
3372	ufs2_daddr_t nb;
3373	int frags;
3374	int journal;
3375{
3376	struct freework *freework;
3377
3378	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3379	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3380	freework->fw_freeblks = freeblks;
3381	freework->fw_parent = parent;
3382	freework->fw_lbn = lbn;
3383	freework->fw_blkno = nb;
3384	freework->fw_frags = frags;
3385	freework->fw_ref = 0;
3386	freework->fw_off = 0;
3387	LIST_INIT(&freework->fw_jwork);
3388
3389	if (parent == NULL) {
3390		WORKLIST_INSERT_UNLOCKED(&freeblks->fb_freeworkhd,
3391		    &freework->fw_list);
3392		freeblks->fb_ref++;
3393	}
3394	if (journal)
3395		newjfreeblk(freeblks, lbn, nb, frags);
3396
3397	return (freework);
3398}
3399
3400/*
3401 * Allocate a new jfreeblk to journal top level block pointer when truncating
3402 * a file.  The caller must add this to the worklist when lk is held.
3403 */
3404static struct jfreeblk *
3405newjfreeblk(freeblks, lbn, blkno, frags)
3406	struct freeblks *freeblks;
3407	ufs_lbn_t lbn;
3408	ufs2_daddr_t blkno;
3409	int frags;
3410{
3411	struct jfreeblk *jfreeblk;
3412
3413	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
3414	workitem_alloc(&jfreeblk->jf_list, D_JFREEBLK, freeblks->fb_list.wk_mp);
3415	jfreeblk->jf_jsegdep = newjsegdep(&jfreeblk->jf_list);
3416	jfreeblk->jf_state = ATTACHED | DEPCOMPLETE;
3417	jfreeblk->jf_ino = freeblks->fb_previousinum;
3418	jfreeblk->jf_lbn = lbn;
3419	jfreeblk->jf_blkno = blkno;
3420	jfreeblk->jf_frags = frags;
3421	jfreeblk->jf_freeblks = freeblks;
3422	LIST_INSERT_HEAD(&freeblks->fb_jfreeblkhd, jfreeblk, jf_deps);
3423
3424	return (jfreeblk);
3425}
3426
3427static void move_newblock_dep(struct jaddref *, struct inodedep *);
3428/*
3429 * If we're canceling a new bitmap we have to search for another ref
3430 * to move into the bmsafemap dep.  This might be better expressed
3431 * with another structure.
3432 */
3433static void
3434move_newblock_dep(jaddref, inodedep)
3435	struct jaddref *jaddref;
3436	struct inodedep *inodedep;
3437{
3438	struct inoref *inoref;
3439	struct jaddref *jaddrefn;
3440
3441	jaddrefn = NULL;
3442	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3443	    inoref = TAILQ_NEXT(inoref, if_deps)) {
3444		if ((jaddref->ja_state & NEWBLOCK) &&
3445		    inoref->if_list.wk_type == D_JADDREF) {
3446			jaddrefn = (struct jaddref *)inoref;
3447			break;
3448		}
3449	}
3450	if (jaddrefn == NULL)
3451		return;
3452	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
3453	jaddrefn->ja_state |= jaddref->ja_state &
3454	    (ATTACHED | UNDONE | NEWBLOCK);
3455	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
3456	jaddref->ja_state |= ATTACHED;
3457	LIST_REMOVE(jaddref, ja_bmdeps);
3458	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
3459	    ja_bmdeps);
3460}
3461
3462/*
3463 * Cancel a jaddref either before it has been written or while it is being
3464 * written.  This happens when a link is removed before the add reaches
3465 * the disk.  The jaddref dependency is kept linked into the bmsafemap
3466 * and inode to prevent the link count or bitmap from reaching the disk
3467 * until handle_workitem_remove() re-adjusts the counts and bitmaps as
3468 * required.
3469 *
3470 * Returns 1 if the canceled addref requires journaling of the remove and
3471 * 0 otherwise.
3472 */
3473static int
3474cancel_jaddref(jaddref, inodedep, wkhd)
3475	struct jaddref *jaddref;
3476	struct inodedep *inodedep;
3477	struct workhead *wkhd;
3478{
3479	struct inoref *inoref;
3480	struct jsegdep *jsegdep;
3481	int needsj;
3482
3483	KASSERT((jaddref->ja_state & COMPLETE) == 0,
3484	    ("cancel_jaddref: Canceling complete jaddref"));
3485	if (jaddref->ja_state & (IOSTARTED | COMPLETE))
3486		needsj = 1;
3487	else
3488		needsj = 0;
3489	if (inodedep == NULL)
3490		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3491		    0, &inodedep) == 0)
3492			panic("cancel_jaddref: Lost inodedep");
3493	/*
3494	 * We must adjust the nlink of any reference operation that follows
3495	 * us so that it is consistent with the in-memory reference.  This
3496	 * ensures that inode nlink rollbacks always have the correct link.
3497	 */
3498	if (needsj == 0)
3499		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3500		    inoref = TAILQ_NEXT(inoref, if_deps))
3501			inoref->if_nlink--;
3502	jsegdep = inoref_jseg(&jaddref->ja_ref);
3503	if (jaddref->ja_state & NEWBLOCK)
3504		move_newblock_dep(jaddref, inodedep);
3505	if (jaddref->ja_state & IOWAITING) {
3506		jaddref->ja_state &= ~IOWAITING;
3507		wakeup(&jaddref->ja_list);
3508	}
3509	jaddref->ja_mkdir = NULL;
3510	if (jaddref->ja_state & IOSTARTED) {
3511		jaddref->ja_state &= ~IOSTARTED;
3512		WORKLIST_REMOVE(&jaddref->ja_list);
3513		WORKLIST_INSERT(wkhd, &jsegdep->jd_list);
3514	} else {
3515		free_jsegdep(jsegdep);
3516		if (jaddref->ja_state & DEPCOMPLETE)
3517			remove_from_journal(&jaddref->ja_list);
3518	}
3519	/*
3520	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
3521	 * can arrange for them to be freed with the bitmap.  Otherwise we
3522	 * no longer need this addref attached to the inoreflst and it
3523	 * will incorrectly adjust nlink if we leave it.
3524	 */
3525	if ((jaddref->ja_state & NEWBLOCK) == 0) {
3526		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
3527		    if_deps);
3528		jaddref->ja_state |= COMPLETE;
3529		free_jaddref(jaddref);
3530		return (needsj);
3531	}
3532	jaddref->ja_state |= GOINGAWAY;
3533	/*
3534	 * Leave the head of the list for jsegdeps for fast merging.
3535	 */
3536	if (LIST_FIRST(wkhd) != NULL) {
3537		jaddref->ja_state |= ONWORKLIST;
3538		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
3539	} else
3540		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
3541
3542	return (needsj);
3543}
3544
3545/*
3546 * Attempt to free a jaddref structure when some work completes.  This
3547 * should only succeed once the entry is written and all dependencies have
3548 * been notified.
3549 */
3550static void
3551free_jaddref(jaddref)
3552	struct jaddref *jaddref;
3553{
3554
3555	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
3556		return;
3557	if (jaddref->ja_ref.if_jsegdep)
3558		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
3559		    jaddref, jaddref->ja_state);
3560	if (jaddref->ja_state & NEWBLOCK)
3561		LIST_REMOVE(jaddref, ja_bmdeps);
3562	if (jaddref->ja_state & (IOSTARTED | ONWORKLIST))
3563		panic("free_jaddref: Bad state %p(0x%X)",
3564		    jaddref, jaddref->ja_state);
3565	if (jaddref->ja_mkdir != NULL)
3566		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
3567	WORKITEM_FREE(jaddref, D_JADDREF);
3568}
3569
3570/*
3571 * Free a jremref structure once it has been written or discarded.
3572 */
3573static void
3574free_jremref(jremref)
3575	struct jremref *jremref;
3576{
3577
3578	if (jremref->jr_ref.if_jsegdep)
3579		free_jsegdep(jremref->jr_ref.if_jsegdep);
3580	if (jremref->jr_state & IOSTARTED)
3581		panic("free_jremref: IO still pending");
3582	WORKITEM_FREE(jremref, D_JREMREF);
3583}
3584
3585/*
3586 * Free a jnewblk structure.
3587 */
3588static void
3589free_jnewblk(jnewblk)
3590	struct jnewblk *jnewblk;
3591{
3592
3593	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
3594		return;
3595	LIST_REMOVE(jnewblk, jn_deps);
3596	if (jnewblk->jn_newblk != NULL)
3597		panic("free_jnewblk: Dependency still attached.");
3598	WORKITEM_FREE(jnewblk, D_JNEWBLK);
3599}
3600
3601/*
3602 * Cancel a jnewblk which has been superseded by a freeblk.  The jnewblk
3603 * is kept linked into the bmsafemap until the free completes, thus
3604 * preventing the modified state from ever reaching disk.  The free
3605 * routine must pass this structure via ffs_blkfree() to
3606 * softdep_setup_freeblks() so there is no race in releasing the space.
3607 */
3608static void
3609cancel_jnewblk(jnewblk, wkhd)
3610	struct jnewblk *jnewblk;
3611	struct workhead *wkhd;
3612{
3613	struct jsegdep *jsegdep;
3614
3615	jsegdep = jnewblk->jn_jsegdep;
3616	jnewblk->jn_jsegdep  = NULL;
3617	free_jsegdep(jsegdep);
3618	jnewblk->jn_newblk = NULL;
3619	jnewblk->jn_state |= GOINGAWAY;
3620	if (jnewblk->jn_state & IOSTARTED) {
3621		jnewblk->jn_state &= ~IOSTARTED;
3622		WORKLIST_REMOVE(&jnewblk->jn_list);
3623	} else
3624		remove_from_journal(&jnewblk->jn_list);
3625	/*
3626	 * Leave the head of the list for jsegdeps for fast merging.
3627	 */
3628	if (LIST_FIRST(wkhd) != NULL) {
3629		jnewblk->jn_state |= ONWORKLIST;
3630		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jnewblk->jn_list, wk_list);
3631	} else
3632		WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
3633	if (jnewblk->jn_state & IOWAITING) {
3634		jnewblk->jn_state &= ~IOWAITING;
3635		wakeup(&jnewblk->jn_list);
3636	}
3637}
3638
3639static void
3640free_jfreeblk(jfreeblk)
3641	struct jfreeblk *jfreeblk;
3642{
3643
3644	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3645}
3646
3647/*
3648 * Release one reference to a jseg and free it if the count reaches 0.  This
3649 * should eventually reclaim journal space as well.
3650 */
3651static void
3652free_jseg(jseg)
3653	struct jseg *jseg;
3654{
3655	struct jblocks *jblocks;
3656
3657	KASSERT(jseg->js_refs > 0,
3658	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
3659	if (--jseg->js_refs != 0)
3660		return;
3661	/*
3662	 * Free only those jsegs which have none allocated before them to
3663	 * preserve the journal space ordering.
3664	 */
3665	jblocks = jseg->js_jblocks;
3666	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
3667		jblocks->jb_oldestseq = jseg->js_seq;
3668		if (jseg->js_refs != 0)
3669			break;
3670		TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
3671		jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
3672		KASSERT(LIST_EMPTY(&jseg->js_entries),
3673		    ("free_jseg: Freed jseg has valid entries."));
3674		WORKITEM_FREE(jseg, D_JSEG);
3675	}
3676}
3677
3678/*
3679 * Release a jsegdep and decrement the jseg count.
3680 */
3681static void
3682free_jsegdep(jsegdep)
3683	struct jsegdep *jsegdep;
3684{
3685
3686	if (jsegdep->jd_seg)
3687		free_jseg(jsegdep->jd_seg);
3688	WORKITEM_FREE(jsegdep, D_JSEGDEP);
3689}
3690
3691/*
3692 * Wait for a journal item to make it to disk.  Initiate journal processing
3693 * if required.
3694 */
3695static void
3696jwait(wk)
3697	struct worklist *wk;
3698{
3699
3700	stat_journal_wait++;
3701	/*
3702	 * If IO has not started we process the journal.  We can't mark the
3703	 * worklist item as IOWAITING because we drop the lock while
3704	 * processing the journal and the worklist entry may be freed after
3705	 * this point.  The caller may call back in and re-issue the request.
3706	 */
3707	if ((wk->wk_state & IOSTARTED) == 0) {
3708		softdep_process_journal(wk->wk_mp, MNT_WAIT);
3709		return;
3710	}
3711	wk->wk_state |= IOWAITING;
3712	msleep(wk, &lk, PRIBIO, "jwait", 0);
3713}
3714
3715/*
3716 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
3717 * appropriate.  This is a convenience function to reduce duplicate code
3718 * for the setup and revert functions below.
3719 */
3720static struct inodedep *
3721inodedep_lookup_ip(ip)
3722	struct inode *ip;
3723{
3724	struct inodedep *inodedep;
3725
3726	KASSERT(ip->i_nlink >= ip->i_effnlink,
3727	    ("inodedep_lookup_ip: bad delta"));
3728	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
3729	    DEPALLOC, &inodedep);
3730	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3731
3732	return (inodedep);
3733}
3734
3735/*
3736 * Create a journal entry that describes a truncate that we're about to
3737 * perform.  The inode allocations and frees between here and the completion
3738 * of the operation are done asynchronously and without journaling.  At
3739 * the end of the operation the vnode is sync'd and the journal space
3740 * is released.  Recovery will discover the partially completed truncate
3741 * and complete it.
3742 */
3743void *
3744softdep_setup_trunc(vp, length, flags)
3745	struct vnode *vp;
3746	off_t length;
3747	int flags;
3748{
3749	struct jsegdep *jsegdep;
3750	struct jtrunc *jtrunc;
3751	struct ufsmount *ump;
3752	struct inode *ip;
3753
3754	softdep_prealloc(vp, MNT_WAIT);
3755	ip = VTOI(vp);
3756	ump = VFSTOUFS(vp->v_mount);
3757	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
3758	workitem_alloc(&jtrunc->jt_list, D_JTRUNC, vp->v_mount);
3759	jsegdep = jtrunc->jt_jsegdep = newjsegdep(&jtrunc->jt_list);
3760	jtrunc->jt_ino = ip->i_number;
3761	jtrunc->jt_extsize = 0;
3762	jtrunc->jt_size = length;
3763	if ((flags & IO_EXT) == 0 && ump->um_fstype == UFS2)
3764		jtrunc->jt_extsize = ip->i_din2->di_extsize;
3765	if ((flags & IO_NORMAL) == 0)
3766		jtrunc->jt_size = DIP(ip, i_size);
3767	ACQUIRE_LOCK(&lk);
3768	add_to_journal(&jtrunc->jt_list);
3769	while (jsegdep->jd_seg == NULL) {
3770		stat_jwait_freeblks++;
3771		jwait(&jtrunc->jt_list);
3772	}
3773	FREE_LOCK(&lk);
3774
3775	return (jsegdep);
3776}
3777
3778/*
3779 * After synchronous truncation is complete we free sync the vnode and
3780 * release the jsegdep so the journal space can be freed.
3781 */
3782int
3783softdep_complete_trunc(vp, cookie)
3784	struct vnode *vp;
3785	void *cookie;
3786{
3787	int error;
3788
3789	error = ffs_syncvnode(vp, MNT_WAIT);
3790	ACQUIRE_LOCK(&lk);
3791	free_jsegdep((struct jsegdep *)cookie);
3792	FREE_LOCK(&lk);
3793
3794	return (error);
3795}
3796
3797/*
3798 * Called prior to creating a new inode and linking it to a directory.  The
3799 * jaddref structure must already be allocated by softdep_setup_inomapdep
3800 * and it is discovered here so we can initialize the mode and update
3801 * nlinkdelta.
3802 */
3803void
3804softdep_setup_create(dp, ip)
3805	struct inode *dp;
3806	struct inode *ip;
3807{
3808	struct inodedep *inodedep;
3809	struct jaddref *jaddref;
3810	struct vnode *dvp;
3811
3812	KASSERT(ip->i_nlink == 1,
3813	    ("softdep_setup_create: Invalid link count."));
3814	dvp = ITOV(dp);
3815	ACQUIRE_LOCK(&lk);
3816	inodedep = inodedep_lookup_ip(ip);
3817	if (DOINGSUJ(dvp)) {
3818		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3819		    inoreflst);
3820		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
3821		    ("softdep_setup_create: No addref structure present."));
3822		jaddref->ja_mode = ip->i_mode;
3823	}
3824	softdep_prelink(dvp, NULL);
3825	FREE_LOCK(&lk);
3826}
3827
3828/*
3829 * Create a jaddref structure to track the addition of a DOTDOT link when
3830 * we are reparenting an inode as part of a rename.  This jaddref will be
3831 * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
3832 * non-journaling softdep.
3833 */
3834void
3835softdep_setup_dotdot_link(dp, ip)
3836	struct inode *dp;
3837	struct inode *ip;
3838{
3839	struct inodedep *inodedep;
3840	struct jaddref *jaddref;
3841	struct vnode *dvp;
3842	struct vnode *vp;
3843
3844	dvp = ITOV(dp);
3845	vp = ITOV(ip);
3846	jaddref = NULL;
3847	/*
3848	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
3849	 * is used as a normal link would be.
3850	 */
3851	if (DOINGSUJ(dvp))
3852		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
3853		    dp->i_effnlink - 1, dp->i_mode);
3854	ACQUIRE_LOCK(&lk);
3855	inodedep = inodedep_lookup_ip(dp);
3856	if (jaddref)
3857		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
3858		    if_deps);
3859	softdep_prelink(dvp, ITOV(ip));
3860	FREE_LOCK(&lk);
3861}
3862
3863/*
3864 * Create a jaddref structure to track a new link to an inode.  The directory
3865 * offset is not known until softdep_setup_directory_add or
3866 * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
3867 * softdep.
3868 */
3869void
3870softdep_setup_link(dp, ip)
3871	struct inode *dp;
3872	struct inode *ip;
3873{
3874	struct inodedep *inodedep;
3875	struct jaddref *jaddref;
3876	struct vnode *dvp;
3877
3878	dvp = ITOV(dp);
3879	jaddref = NULL;
3880	if (DOINGSUJ(dvp))
3881		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
3882		    ip->i_mode);
3883	ACQUIRE_LOCK(&lk);
3884	inodedep = inodedep_lookup_ip(ip);
3885	if (jaddref)
3886		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
3887		    if_deps);
3888	softdep_prelink(dvp, ITOV(ip));
3889	FREE_LOCK(&lk);
3890}
3891
3892/*
3893 * Called to create the jaddref structures to track . and .. references as
3894 * well as lookup and further initialize the incomplete jaddref created
3895 * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
3896 * nlinkdelta for non-journaling softdep.
3897 */
3898void
3899softdep_setup_mkdir(dp, ip)
3900	struct inode *dp;
3901	struct inode *ip;
3902{
3903	struct inodedep *inodedep;
3904	struct jaddref *dotdotaddref;
3905	struct jaddref *dotaddref;
3906	struct jaddref *jaddref;
3907	struct vnode *dvp;
3908
3909	dvp = ITOV(dp);
3910	dotaddref = dotdotaddref = NULL;
3911	if (DOINGSUJ(dvp)) {
3912		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
3913		    ip->i_mode);
3914		dotaddref->ja_state |= MKDIR_BODY;
3915		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
3916		    dp->i_effnlink - 1, dp->i_mode);
3917		dotdotaddref->ja_state |= MKDIR_PARENT;
3918	}
3919	ACQUIRE_LOCK(&lk);
3920	inodedep = inodedep_lookup_ip(ip);
3921	if (DOINGSUJ(dvp)) {
3922		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3923		    inoreflst);
3924		KASSERT(jaddref != NULL,
3925		    ("softdep_setup_mkdir: No addref structure present."));
3926		KASSERT(jaddref->ja_parent == dp->i_number,
3927		    ("softdep_setup_mkdir: bad parent %d",
3928		    jaddref->ja_parent));
3929		jaddref->ja_mode = ip->i_mode;
3930		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
3931		    if_deps);
3932	}
3933	inodedep = inodedep_lookup_ip(dp);
3934	if (DOINGSUJ(dvp))
3935		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
3936		    &dotdotaddref->ja_ref, if_deps);
3937	softdep_prelink(ITOV(dp), NULL);
3938	FREE_LOCK(&lk);
3939}
3940
3941/*
3942 * Called to track nlinkdelta of the inode and parent directories prior to
3943 * unlinking a directory.
3944 */
3945void
3946softdep_setup_rmdir(dp, ip)
3947	struct inode *dp;
3948	struct inode *ip;
3949{
3950	struct vnode *dvp;
3951
3952	dvp = ITOV(dp);
3953	ACQUIRE_LOCK(&lk);
3954	(void) inodedep_lookup_ip(ip);
3955	(void) inodedep_lookup_ip(dp);
3956	softdep_prelink(dvp, ITOV(ip));
3957	FREE_LOCK(&lk);
3958}
3959
3960/*
3961 * Called to track nlinkdelta of the inode and parent directories prior to
3962 * unlink.
3963 */
3964void
3965softdep_setup_unlink(dp, ip)
3966	struct inode *dp;
3967	struct inode *ip;
3968{
3969	struct vnode *dvp;
3970
3971	dvp = ITOV(dp);
3972	ACQUIRE_LOCK(&lk);
3973	(void) inodedep_lookup_ip(ip);
3974	(void) inodedep_lookup_ip(dp);
3975	softdep_prelink(dvp, ITOV(ip));
3976	FREE_LOCK(&lk);
3977}
3978
3979/*
3980 * Called to release the journal structures created by a failed non-directory
3981 * creation.  Adjusts nlinkdelta for non-journaling softdep.
3982 */
3983void
3984softdep_revert_create(dp, ip)
3985	struct inode *dp;
3986	struct inode *ip;
3987{
3988	struct inodedep *inodedep;
3989	struct jaddref *jaddref;
3990	struct vnode *dvp;
3991
3992	dvp = ITOV(dp);
3993	ACQUIRE_LOCK(&lk);
3994	inodedep = inodedep_lookup_ip(ip);
3995	if (DOINGSUJ(dvp)) {
3996		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3997		    inoreflst);
3998		KASSERT(jaddref->ja_parent == dp->i_number,
3999		    ("softdep_revert_create: addref parent mismatch"));
4000		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4001	}
4002	FREE_LOCK(&lk);
4003}
4004
4005/*
4006 * Called to release the journal structures created by a failed dotdot link
4007 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4008 */
4009void
4010softdep_revert_dotdot_link(dp, ip)
4011	struct inode *dp;
4012	struct inode *ip;
4013{
4014	struct inodedep *inodedep;
4015	struct jaddref *jaddref;
4016	struct vnode *dvp;
4017
4018	dvp = ITOV(dp);
4019	ACQUIRE_LOCK(&lk);
4020	inodedep = inodedep_lookup_ip(dp);
4021	if (DOINGSUJ(dvp)) {
4022		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4023		    inoreflst);
4024		KASSERT(jaddref->ja_parent == ip->i_number,
4025		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4026		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4027	}
4028	FREE_LOCK(&lk);
4029}
4030
4031/*
4032 * Called to release the journal structures created by a failed link
4033 * addition.  Adjusts nlinkdelta for non-journaling softdep.
4034 */
4035void
4036softdep_revert_link(dp, ip)
4037	struct inode *dp;
4038	struct inode *ip;
4039{
4040	struct inodedep *inodedep;
4041	struct jaddref *jaddref;
4042	struct vnode *dvp;
4043
4044	dvp = ITOV(dp);
4045	ACQUIRE_LOCK(&lk);
4046	inodedep = inodedep_lookup_ip(ip);
4047	if (DOINGSUJ(dvp)) {
4048		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4049		    inoreflst);
4050		KASSERT(jaddref->ja_parent == dp->i_number,
4051		    ("softdep_revert_link: addref parent mismatch"));
4052		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4053	}
4054	FREE_LOCK(&lk);
4055}
4056
4057/*
4058 * Called to release the journal structures created by a failed mkdir
4059 * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4060 */
4061void
4062softdep_revert_mkdir(dp, ip)
4063	struct inode *dp;
4064	struct inode *ip;
4065{
4066	struct inodedep *inodedep;
4067	struct jaddref *jaddref;
4068	struct vnode *dvp;
4069
4070	dvp = ITOV(dp);
4071
4072	ACQUIRE_LOCK(&lk);
4073	inodedep = inodedep_lookup_ip(dp);
4074	if (DOINGSUJ(dvp)) {
4075		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4076		    inoreflst);
4077		KASSERT(jaddref->ja_parent == ip->i_number,
4078		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4079		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4080	}
4081	inodedep = inodedep_lookup_ip(ip);
4082	if (DOINGSUJ(dvp)) {
4083		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4084		    inoreflst);
4085		KASSERT(jaddref->ja_parent == dp->i_number,
4086		    ("softdep_revert_mkdir: addref parent mismatch"));
4087		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4088		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4089		    inoreflst);
4090		KASSERT(jaddref->ja_parent == ip->i_number,
4091		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4092		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4093	}
4094	FREE_LOCK(&lk);
4095}
4096
4097/*
4098 * Called to correct nlinkdelta after a failed rmdir.
4099 */
4100void
4101softdep_revert_rmdir(dp, ip)
4102	struct inode *dp;
4103	struct inode *ip;
4104{
4105
4106	ACQUIRE_LOCK(&lk);
4107	(void) inodedep_lookup_ip(ip);
4108	(void) inodedep_lookup_ip(dp);
4109	FREE_LOCK(&lk);
4110}
4111
4112/*
4113 * Protecting the freemaps (or bitmaps).
4114 *
4115 * To eliminate the need to execute fsck before mounting a filesystem
4116 * after a power failure, one must (conservatively) guarantee that the
4117 * on-disk copy of the bitmaps never indicate that a live inode or block is
4118 * free.  So, when a block or inode is allocated, the bitmap should be
4119 * updated (on disk) before any new pointers.  When a block or inode is
4120 * freed, the bitmap should not be updated until all pointers have been
4121 * reset.  The latter dependency is handled by the delayed de-allocation
4122 * approach described below for block and inode de-allocation.  The former
4123 * dependency is handled by calling the following procedure when a block or
4124 * inode is allocated. When an inode is allocated an "inodedep" is created
4125 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4126 * Each "inodedep" is also inserted into the hash indexing structure so
4127 * that any additional link additions can be made dependent on the inode
4128 * allocation.
4129 *
4130 * The ufs filesystem maintains a number of free block counts (e.g., per
4131 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4132 * in addition to the bitmaps.  These counts are used to improve efficiency
4133 * during allocation and therefore must be consistent with the bitmaps.
4134 * There is no convenient way to guarantee post-crash consistency of these
4135 * counts with simple update ordering, for two main reasons: (1) The counts
4136 * and bitmaps for a single cylinder group block are not in the same disk
4137 * sector.  If a disk write is interrupted (e.g., by power failure), one may
4138 * be written and the other not.  (2) Some of the counts are located in the
4139 * superblock rather than the cylinder group block. So, we focus our soft
4140 * updates implementation on protecting the bitmaps. When mounting a
4141 * filesystem, we recompute the auxiliary counts from the bitmaps.
4142 */
4143
4144/*
4145 * Called just after updating the cylinder group block to allocate an inode.
4146 */
4147void
4148softdep_setup_inomapdep(bp, ip, newinum)
4149	struct buf *bp;		/* buffer for cylgroup block with inode map */
4150	struct inode *ip;	/* inode related to allocation */
4151	ino_t newinum;		/* new inode number being allocated */
4152{
4153	struct inodedep *inodedep;
4154	struct bmsafemap *bmsafemap;
4155	struct jaddref *jaddref;
4156	struct mount *mp;
4157	struct fs *fs;
4158
4159	mp = UFSTOVFS(ip->i_ump);
4160	fs = ip->i_ump->um_fs;
4161	jaddref = NULL;
4162
4163	/*
4164	 * Allocate the journal reference add structure so that the bitmap
4165	 * can be dependent on it.
4166	 */
4167	if (mp->mnt_kern_flag & MNTK_SUJ) {
4168		jaddref = newjaddref(ip, newinum, 0, 0, 0);
4169		jaddref->ja_state |= NEWBLOCK;
4170	}
4171
4172	/*
4173	 * Create a dependency for the newly allocated inode.
4174	 * Panic if it already exists as something is seriously wrong.
4175	 * Otherwise add it to the dependency list for the buffer holding
4176	 * the cylinder group map from which it was allocated.
4177	 */
4178	ACQUIRE_LOCK(&lk);
4179	if ((inodedep_lookup(mp, newinum, DEPALLOC|NODELAY, &inodedep)))
4180		panic("softdep_setup_inomapdep: dependency %p for new"
4181		    "inode already exists", inodedep);
4182	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum));
4183	if (jaddref) {
4184		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4185		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4186		    if_deps);
4187	} else {
4188		inodedep->id_state |= ONDEPLIST;
4189		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4190	}
4191	inodedep->id_bmsafemap = bmsafemap;
4192	inodedep->id_state &= ~DEPCOMPLETE;
4193	FREE_LOCK(&lk);
4194}
4195
4196/*
4197 * Called just after updating the cylinder group block to
4198 * allocate block or fragment.
4199 */
4200void
4201softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4202	struct buf *bp;		/* buffer for cylgroup block with block map */
4203	struct mount *mp;	/* filesystem doing allocation */
4204	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4205	int frags;		/* Number of fragments. */
4206	int oldfrags;		/* Previous number of fragments for extend. */
4207{
4208	struct newblk *newblk;
4209	struct bmsafemap *bmsafemap;
4210	struct jnewblk *jnewblk;
4211	struct fs *fs;
4212
4213	fs = VFSTOUFS(mp)->um_fs;
4214	jnewblk = NULL;
4215	/*
4216	 * Create a dependency for the newly allocated block.
4217	 * Add it to the dependency list for the buffer holding
4218	 * the cylinder group map from which it was allocated.
4219	 */
4220	if (mp->mnt_kern_flag & MNTK_SUJ) {
4221		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4222		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4223		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4224		jnewblk->jn_state = ATTACHED;
4225		jnewblk->jn_blkno = newblkno;
4226		jnewblk->jn_frags = frags;
4227		jnewblk->jn_oldfrags = oldfrags;
4228#ifdef SUJ_DEBUG
4229		{
4230			struct cg *cgp;
4231			uint8_t *blksfree;
4232			long bno;
4233			int i;
4234
4235			cgp = (struct cg *)bp->b_data;
4236			blksfree = cg_blksfree(cgp);
4237			bno = dtogd(fs, jnewblk->jn_blkno);
4238			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4239			    i++) {
4240				if (isset(blksfree, bno + i))
4241					panic("softdep_setup_blkmapdep: "
4242					    "free fragment %d from %d-%d "
4243					    "state 0x%X dep %p", i,
4244					    jnewblk->jn_oldfrags,
4245					    jnewblk->jn_frags,
4246					    jnewblk->jn_state,
4247					    jnewblk->jn_newblk);
4248			}
4249		}
4250#endif
4251	}
4252	ACQUIRE_LOCK(&lk);
4253	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4254		panic("softdep_setup_blkmapdep: found block");
4255	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4256	    dtog(fs, newblkno));
4257	if (jnewblk) {
4258		jnewblk->jn_newblk = newblk;
4259		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4260	} else {
4261		newblk->nb_state |= ONDEPLIST;
4262		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4263	}
4264	newblk->nb_bmsafemap = bmsafemap;
4265	newblk->nb_jnewblk = jnewblk;
4266	FREE_LOCK(&lk);
4267}
4268
4269#define	BMSAFEMAP_HASH(fs, cg) \
4270      (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4271
4272static int
4273bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4274	struct bmsafemap_hashhead *bmsafemaphd;
4275	struct mount *mp;
4276	int cg;
4277	struct bmsafemap **bmsafemapp;
4278{
4279	struct bmsafemap *bmsafemap;
4280
4281	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4282		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4283			break;
4284	if (bmsafemap) {
4285		*bmsafemapp = bmsafemap;
4286		return (1);
4287	}
4288	*bmsafemapp = NULL;
4289
4290	return (0);
4291}
4292
4293/*
4294 * Find the bmsafemap associated with a cylinder group buffer.
4295 * If none exists, create one. The buffer must be locked when
4296 * this routine is called and this routine must be called with
4297 * splbio interrupts blocked.
4298 */
4299static struct bmsafemap *
4300bmsafemap_lookup(mp, bp, cg)
4301	struct mount *mp;
4302	struct buf *bp;
4303	int cg;
4304{
4305	struct bmsafemap_hashhead *bmsafemaphd;
4306	struct bmsafemap *bmsafemap, *collision;
4307	struct worklist *wk;
4308	struct fs *fs;
4309
4310	mtx_assert(&lk, MA_OWNED);
4311	if (bp)
4312		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4313			if (wk->wk_type == D_BMSAFEMAP)
4314				return (WK_BMSAFEMAP(wk));
4315	fs = VFSTOUFS(mp)->um_fs;
4316	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4317	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1)
4318		return (bmsafemap);
4319	FREE_LOCK(&lk);
4320	bmsafemap = malloc(sizeof(struct bmsafemap),
4321		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4322	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4323	bmsafemap->sm_buf = bp;
4324	LIST_INIT(&bmsafemap->sm_inodedephd);
4325	LIST_INIT(&bmsafemap->sm_inodedepwr);
4326	LIST_INIT(&bmsafemap->sm_newblkhd);
4327	LIST_INIT(&bmsafemap->sm_newblkwr);
4328	LIST_INIT(&bmsafemap->sm_jaddrefhd);
4329	LIST_INIT(&bmsafemap->sm_jnewblkhd);
4330	ACQUIRE_LOCK(&lk);
4331	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
4332		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4333		return (collision);
4334	}
4335	bmsafemap->sm_cg = cg;
4336	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
4337	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
4338	return (bmsafemap);
4339}
4340
4341/*
4342 * Direct block allocation dependencies.
4343 *
4344 * When a new block is allocated, the corresponding disk locations must be
4345 * initialized (with zeros or new data) before the on-disk inode points to
4346 * them.  Also, the freemap from which the block was allocated must be
4347 * updated (on disk) before the inode's pointer. These two dependencies are
4348 * independent of each other and are needed for all file blocks and indirect
4349 * blocks that are pointed to directly by the inode.  Just before the
4350 * "in-core" version of the inode is updated with a newly allocated block
4351 * number, a procedure (below) is called to setup allocation dependency
4352 * structures.  These structures are removed when the corresponding
4353 * dependencies are satisfied or when the block allocation becomes obsolete
4354 * (i.e., the file is deleted, the block is de-allocated, or the block is a
4355 * fragment that gets upgraded).  All of these cases are handled in
4356 * procedures described later.
4357 *
4358 * When a file extension causes a fragment to be upgraded, either to a larger
4359 * fragment or to a full block, the on-disk location may change (if the
4360 * previous fragment could not simply be extended). In this case, the old
4361 * fragment must be de-allocated, but not until after the inode's pointer has
4362 * been updated. In most cases, this is handled by later procedures, which
4363 * will construct a "freefrag" structure to be added to the workitem queue
4364 * when the inode update is complete (or obsolete).  The main exception to
4365 * this is when an allocation occurs while a pending allocation dependency
4366 * (for the same block pointer) remains.  This case is handled in the main
4367 * allocation dependency setup procedure by immediately freeing the
4368 * unreferenced fragments.
4369 */
4370void
4371softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4372	struct inode *ip;	/* inode to which block is being added */
4373	ufs_lbn_t off;		/* block pointer within inode */
4374	ufs2_daddr_t newblkno;	/* disk block number being added */
4375	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
4376	long newsize;		/* size of new block */
4377	long oldsize;		/* size of new block */
4378	struct buf *bp;		/* bp for allocated block */
4379{
4380	struct allocdirect *adp, *oldadp;
4381	struct allocdirectlst *adphead;
4382	struct freefrag *freefrag;
4383	struct inodedep *inodedep;
4384	struct pagedep *pagedep;
4385	struct jnewblk *jnewblk;
4386	struct newblk *newblk;
4387	struct mount *mp;
4388	ufs_lbn_t lbn;
4389
4390	lbn = bp->b_lblkno;
4391	mp = UFSTOVFS(ip->i_ump);
4392	if (oldblkno && oldblkno != newblkno)
4393		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4394	else
4395		freefrag = NULL;
4396
4397	ACQUIRE_LOCK(&lk);
4398	if (off >= NDADDR) {
4399		if (lbn > 0)
4400			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
4401			    lbn, off);
4402		/* allocating an indirect block */
4403		if (oldblkno != 0)
4404			panic("softdep_setup_allocdirect: non-zero indir");
4405	} else {
4406		if (off != lbn)
4407			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
4408			    lbn, off);
4409		/*
4410		 * Allocating a direct block.
4411		 *
4412		 * If we are allocating a directory block, then we must
4413		 * allocate an associated pagedep to track additions and
4414		 * deletions.
4415		 */
4416		if ((ip->i_mode & IFMT) == IFDIR &&
4417		    pagedep_lookup(mp, ip->i_number, off, DEPALLOC,
4418		    &pagedep) == 0)
4419			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
4420	}
4421	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4422		panic("softdep_setup_allocdirect: lost block");
4423	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4424	    ("softdep_setup_allocdirect: newblk already initialized"));
4425	/*
4426	 * Convert the newblk to an allocdirect.
4427	 */
4428	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4429	adp = (struct allocdirect *)newblk;
4430	newblk->nb_freefrag = freefrag;
4431	adp->ad_offset = off;
4432	adp->ad_oldblkno = oldblkno;
4433	adp->ad_newsize = newsize;
4434	adp->ad_oldsize = oldsize;
4435
4436	/*
4437	 * Finish initializing the journal.
4438	 */
4439	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4440		jnewblk->jn_ino = ip->i_number;
4441		jnewblk->jn_lbn = lbn;
4442		add_to_journal(&jnewblk->jn_list);
4443	}
4444	if (freefrag && freefrag->ff_jfreefrag != NULL)
4445		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4446	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4447	adp->ad_inodedep = inodedep;
4448
4449	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4450	/*
4451	 * The list of allocdirects must be kept in sorted and ascending
4452	 * order so that the rollback routines can quickly determine the
4453	 * first uncommitted block (the size of the file stored on disk
4454	 * ends at the end of the lowest committed fragment, or if there
4455	 * are no fragments, at the end of the highest committed block).
4456	 * Since files generally grow, the typical case is that the new
4457	 * block is to be added at the end of the list. We speed this
4458	 * special case by checking against the last allocdirect in the
4459	 * list before laboriously traversing the list looking for the
4460	 * insertion point.
4461	 */
4462	adphead = &inodedep->id_newinoupdt;
4463	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4464	if (oldadp == NULL || oldadp->ad_offset <= off) {
4465		/* insert at end of list */
4466		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4467		if (oldadp != NULL && oldadp->ad_offset == off)
4468			allocdirect_merge(adphead, adp, oldadp);
4469		FREE_LOCK(&lk);
4470		return;
4471	}
4472	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4473		if (oldadp->ad_offset >= off)
4474			break;
4475	}
4476	if (oldadp == NULL)
4477		panic("softdep_setup_allocdirect: lost entry");
4478	/* insert in middle of list */
4479	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
4480	if (oldadp->ad_offset == off)
4481		allocdirect_merge(adphead, adp, oldadp);
4482
4483	FREE_LOCK(&lk);
4484}
4485
4486/*
4487 * Replace an old allocdirect dependency with a newer one.
4488 * This routine must be called with splbio interrupts blocked.
4489 */
4490static void
4491allocdirect_merge(adphead, newadp, oldadp)
4492	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
4493	struct allocdirect *newadp;	/* allocdirect being added */
4494	struct allocdirect *oldadp;	/* existing allocdirect being checked */
4495{
4496	struct worklist *wk;
4497	struct freefrag *freefrag;
4498	struct newdirblk *newdirblk;
4499
4500	freefrag = NULL;
4501	mtx_assert(&lk, MA_OWNED);
4502	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
4503	    newadp->ad_oldsize != oldadp->ad_newsize ||
4504	    newadp->ad_offset >= NDADDR)
4505		panic("%s %jd != new %jd || old size %ld != new %ld",
4506		    "allocdirect_merge: old blkno",
4507		    (intmax_t)newadp->ad_oldblkno,
4508		    (intmax_t)oldadp->ad_newblkno,
4509		    newadp->ad_oldsize, oldadp->ad_newsize);
4510	newadp->ad_oldblkno = oldadp->ad_oldblkno;
4511	newadp->ad_oldsize = oldadp->ad_oldsize;
4512	/*
4513	 * If the old dependency had a fragment to free or had never
4514	 * previously had a block allocated, then the new dependency
4515	 * can immediately post its freefrag and adopt the old freefrag.
4516	 * This action is done by swapping the freefrag dependencies.
4517	 * The new dependency gains the old one's freefrag, and the
4518	 * old one gets the new one and then immediately puts it on
4519	 * the worklist when it is freed by free_newblk. It is
4520	 * not possible to do this swap when the old dependency had a
4521	 * non-zero size but no previous fragment to free. This condition
4522	 * arises when the new block is an extension of the old block.
4523	 * Here, the first part of the fragment allocated to the new
4524	 * dependency is part of the block currently claimed on disk by
4525	 * the old dependency, so cannot legitimately be freed until the
4526	 * conditions for the new dependency are fulfilled.
4527	 */
4528	freefrag = newadp->ad_freefrag;
4529	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
4530		newadp->ad_freefrag = oldadp->ad_freefrag;
4531		oldadp->ad_freefrag = freefrag;
4532	}
4533	/*
4534	 * If we are tracking a new directory-block allocation,
4535	 * move it from the old allocdirect to the new allocdirect.
4536	 */
4537	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
4538		newdirblk = WK_NEWDIRBLK(wk);
4539		WORKLIST_REMOVE(&newdirblk->db_list);
4540		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
4541			panic("allocdirect_merge: extra newdirblk");
4542		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
4543	}
4544	TAILQ_REMOVE(adphead, oldadp, ad_next);
4545	/*
4546	 * We need to move any journal dependencies over to the freefrag
4547	 * that releases this block if it exists.  Otherwise we are
4548	 * extending an existing block and we'll wait until that is
4549	 * complete to release the journal space and extend the
4550	 * new journal to cover this old space as well.
4551	 */
4552	if (freefrag == NULL) {
4553		struct jnewblk *jnewblk;
4554		struct jnewblk *njnewblk;
4555
4556		if (oldadp->ad_newblkno != newadp->ad_newblkno)
4557			panic("allocdirect_merge: %jd != %jd",
4558			    oldadp->ad_newblkno, newadp->ad_newblkno);
4559		jnewblk = oldadp->ad_block.nb_jnewblk;
4560		cancel_newblk(&oldadp->ad_block, &newadp->ad_block.nb_jwork);
4561		/*
4562		 * We have an unwritten jnewblk, we need to merge the
4563		 * frag bits with our own.  The newer adp's journal can not
4564		 * be written prior to the old one so no need to check for
4565		 * it here.
4566		 */
4567		if (jnewblk) {
4568			njnewblk = newadp->ad_block.nb_jnewblk;
4569			if (njnewblk == NULL)
4570				panic("allocdirect_merge: No jnewblk");
4571			if (jnewblk->jn_state & UNDONE) {
4572				njnewblk->jn_state |= UNDONE | NEWBLOCK;
4573				njnewblk->jn_state &= ~ATTACHED;
4574				jnewblk->jn_state &= ~UNDONE;
4575			}
4576			njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
4577			WORKLIST_REMOVE(&jnewblk->jn_list);
4578			jnewblk->jn_state |= ATTACHED | COMPLETE;
4579			free_jnewblk(jnewblk);
4580		}
4581	} else {
4582		/*
4583		 * We can skip journaling for this freefrag and just complete
4584		 * any pending journal work for the allocdirect that is being
4585		 * removed after the freefrag completes.
4586		 */
4587		if (freefrag->ff_jfreefrag)
4588			cancel_jfreefrag(freefrag->ff_jfreefrag);
4589		cancel_newblk(&oldadp->ad_block, &freefrag->ff_jwork);
4590	}
4591	free_newblk(&oldadp->ad_block);
4592}
4593
4594/*
4595 * Allocate a jfreefrag structure to journal a single block free.
4596 */
4597static struct jfreefrag *
4598newjfreefrag(freefrag, ip, blkno, size, lbn)
4599	struct freefrag *freefrag;
4600	struct inode *ip;
4601	ufs2_daddr_t blkno;
4602	long size;
4603	ufs_lbn_t lbn;
4604{
4605	struct jfreefrag *jfreefrag;
4606	struct fs *fs;
4607
4608	fs = ip->i_fs;
4609	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
4610	    M_SOFTDEP_FLAGS);
4611	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
4612	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
4613	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
4614	jfreefrag->fr_ino = ip->i_number;
4615	jfreefrag->fr_lbn = lbn;
4616	jfreefrag->fr_blkno = blkno;
4617	jfreefrag->fr_frags = numfrags(fs, size);
4618	jfreefrag->fr_freefrag = freefrag;
4619
4620	return (jfreefrag);
4621}
4622
4623/*
4624 * Allocate a new freefrag structure.
4625 */
4626static struct freefrag *
4627newfreefrag(ip, blkno, size, lbn)
4628	struct inode *ip;
4629	ufs2_daddr_t blkno;
4630	long size;
4631	ufs_lbn_t lbn;
4632{
4633	struct freefrag *freefrag;
4634	struct fs *fs;
4635
4636	fs = ip->i_fs;
4637	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
4638		panic("newfreefrag: frag size");
4639	freefrag = malloc(sizeof(struct freefrag),
4640	    M_FREEFRAG, M_SOFTDEP_FLAGS);
4641	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
4642	freefrag->ff_state = ATTACHED;
4643	LIST_INIT(&freefrag->ff_jwork);
4644	freefrag->ff_inum = ip->i_number;
4645	freefrag->ff_blkno = blkno;
4646	freefrag->ff_fragsize = size;
4647
4648	if (fs->fs_flags & FS_SUJ) {
4649		freefrag->ff_jfreefrag =
4650		    newjfreefrag(freefrag, ip, blkno, size, lbn);
4651	} else {
4652		freefrag->ff_state |= DEPCOMPLETE;
4653		freefrag->ff_jfreefrag = NULL;
4654	}
4655
4656	return (freefrag);
4657}
4658
4659/*
4660 * This workitem de-allocates fragments that were replaced during
4661 * file block allocation.
4662 */
4663static void
4664handle_workitem_freefrag(freefrag)
4665	struct freefrag *freefrag;
4666{
4667	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
4668	struct workhead wkhd;
4669
4670	/*
4671	 * It would be illegal to add new completion items to the
4672	 * freefrag after it was schedule to be done so it must be
4673	 * safe to modify the list head here.
4674	 */
4675	LIST_INIT(&wkhd);
4676	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
4677	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
4678	    freefrag->ff_fragsize, freefrag->ff_inum, &wkhd);
4679	ACQUIRE_LOCK(&lk);
4680	WORKITEM_FREE(freefrag, D_FREEFRAG);
4681	FREE_LOCK(&lk);
4682}
4683
4684/*
4685 * Set up a dependency structure for an external attributes data block.
4686 * This routine follows much of the structure of softdep_setup_allocdirect.
4687 * See the description of softdep_setup_allocdirect above for details.
4688 */
4689void
4690softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4691	struct inode *ip;
4692	ufs_lbn_t off;
4693	ufs2_daddr_t newblkno;
4694	ufs2_daddr_t oldblkno;
4695	long newsize;
4696	long oldsize;
4697	struct buf *bp;
4698{
4699	struct allocdirect *adp, *oldadp;
4700	struct allocdirectlst *adphead;
4701	struct freefrag *freefrag;
4702	struct inodedep *inodedep;
4703	struct jnewblk *jnewblk;
4704	struct newblk *newblk;
4705	struct mount *mp;
4706	ufs_lbn_t lbn;
4707
4708	if (off >= NXADDR)
4709		panic("softdep_setup_allocext: lbn %lld > NXADDR",
4710		    (long long)off);
4711
4712	lbn = bp->b_lblkno;
4713	mp = UFSTOVFS(ip->i_ump);
4714	if (oldblkno && oldblkno != newblkno)
4715		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4716	else
4717		freefrag = NULL;
4718
4719	ACQUIRE_LOCK(&lk);
4720	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4721		panic("softdep_setup_allocext: lost block");
4722	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4723	    ("softdep_setup_allocext: newblk already initialized"));
4724	/*
4725	 * Convert the newblk to an allocdirect.
4726	 */
4727	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4728	adp = (struct allocdirect *)newblk;
4729	newblk->nb_freefrag = freefrag;
4730	adp->ad_offset = off;
4731	adp->ad_oldblkno = oldblkno;
4732	adp->ad_newsize = newsize;
4733	adp->ad_oldsize = oldsize;
4734	adp->ad_state |=  EXTDATA;
4735
4736	/*
4737	 * Finish initializing the journal.
4738	 */
4739	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4740		jnewblk->jn_ino = ip->i_number;
4741		jnewblk->jn_lbn = lbn;
4742		add_to_journal(&jnewblk->jn_list);
4743	}
4744	if (freefrag && freefrag->ff_jfreefrag != NULL)
4745		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4746	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4747	adp->ad_inodedep = inodedep;
4748
4749	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4750	/*
4751	 * The list of allocdirects must be kept in sorted and ascending
4752	 * order so that the rollback routines can quickly determine the
4753	 * first uncommitted block (the size of the file stored on disk
4754	 * ends at the end of the lowest committed fragment, or if there
4755	 * are no fragments, at the end of the highest committed block).
4756	 * Since files generally grow, the typical case is that the new
4757	 * block is to be added at the end of the list. We speed this
4758	 * special case by checking against the last allocdirect in the
4759	 * list before laboriously traversing the list looking for the
4760	 * insertion point.
4761	 */
4762	adphead = &inodedep->id_newextupdt;
4763	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4764	if (oldadp == NULL || oldadp->ad_offset <= off) {
4765		/* insert at end of list */
4766		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4767		if (oldadp != NULL && oldadp->ad_offset == off)
4768			allocdirect_merge(adphead, adp, oldadp);
4769		FREE_LOCK(&lk);
4770		return;
4771	}
4772	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4773		if (oldadp->ad_offset >= off)
4774			break;
4775	}
4776	if (oldadp == NULL)
4777		panic("softdep_setup_allocext: lost entry");
4778	/* insert in middle of list */
4779	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
4780	if (oldadp->ad_offset == off)
4781		allocdirect_merge(adphead, adp, oldadp);
4782	FREE_LOCK(&lk);
4783}
4784
4785/*
4786 * Indirect block allocation dependencies.
4787 *
4788 * The same dependencies that exist for a direct block also exist when
4789 * a new block is allocated and pointed to by an entry in a block of
4790 * indirect pointers. The undo/redo states described above are also
4791 * used here. Because an indirect block contains many pointers that
4792 * may have dependencies, a second copy of the entire in-memory indirect
4793 * block is kept. The buffer cache copy is always completely up-to-date.
4794 * The second copy, which is used only as a source for disk writes,
4795 * contains only the safe pointers (i.e., those that have no remaining
4796 * update dependencies). The second copy is freed when all pointers
4797 * are safe. The cache is not allowed to replace indirect blocks with
4798 * pending update dependencies. If a buffer containing an indirect
4799 * block with dependencies is written, these routines will mark it
4800 * dirty again. It can only be successfully written once all the
4801 * dependencies are removed. The ffs_fsync routine in conjunction with
4802 * softdep_sync_metadata work together to get all the dependencies
4803 * removed so that a file can be successfully written to disk. Three
4804 * procedures are used when setting up indirect block pointer
4805 * dependencies. The division is necessary because of the organization
4806 * of the "balloc" routine and because of the distinction between file
4807 * pages and file metadata blocks.
4808 */
4809
4810/*
4811 * Allocate a new allocindir structure.
4812 */
4813static struct allocindir *
4814newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
4815	struct inode *ip;	/* inode for file being extended */
4816	int ptrno;		/* offset of pointer in indirect block */
4817	ufs2_daddr_t newblkno;	/* disk block number being added */
4818	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
4819	ufs_lbn_t lbn;
4820{
4821	struct newblk *newblk;
4822	struct allocindir *aip;
4823	struct freefrag *freefrag;
4824	struct jnewblk *jnewblk;
4825
4826	if (oldblkno)
4827		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
4828	else
4829		freefrag = NULL;
4830	ACQUIRE_LOCK(&lk);
4831	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
4832		panic("new_allocindir: lost block");
4833	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4834	    ("newallocindir: newblk already initialized"));
4835	newblk->nb_list.wk_type = D_ALLOCINDIR;
4836	newblk->nb_freefrag = freefrag;
4837	aip = (struct allocindir *)newblk;
4838	aip->ai_offset = ptrno;
4839	aip->ai_oldblkno = oldblkno;
4840	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4841		jnewblk->jn_ino = ip->i_number;
4842		jnewblk->jn_lbn = lbn;
4843		add_to_journal(&jnewblk->jn_list);
4844	}
4845	if (freefrag && freefrag->ff_jfreefrag != NULL)
4846		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4847	return (aip);
4848}
4849
4850/*
4851 * Called just before setting an indirect block pointer
4852 * to a newly allocated file page.
4853 */
4854void
4855softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
4856	struct inode *ip;	/* inode for file being extended */
4857	ufs_lbn_t lbn;		/* allocated block number within file */
4858	struct buf *bp;		/* buffer with indirect blk referencing page */
4859	int ptrno;		/* offset of pointer in indirect block */
4860	ufs2_daddr_t newblkno;	/* disk block number being added */
4861	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
4862	struct buf *nbp;	/* buffer holding allocated page */
4863{
4864	struct inodedep *inodedep;
4865	struct allocindir *aip;
4866	struct pagedep *pagedep;
4867	struct mount *mp;
4868
4869	if (lbn != nbp->b_lblkno)
4870		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
4871		    lbn, bp->b_lblkno);
4872	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
4873	mp = UFSTOVFS(ip->i_ump);
4874	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
4875	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
4876	/*
4877	 * If we are allocating a directory page, then we must
4878	 * allocate an associated pagedep to track additions and
4879	 * deletions.
4880	 */
4881	if ((ip->i_mode & IFMT) == IFDIR &&
4882	    pagedep_lookup(mp, ip->i_number, lbn, DEPALLOC, &pagedep) == 0)
4883		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
4884	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
4885	setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
4886	FREE_LOCK(&lk);
4887}
4888
4889/*
4890 * Called just before setting an indirect block pointer to a
4891 * newly allocated indirect block.
4892 */
4893void
4894softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
4895	struct buf *nbp;	/* newly allocated indirect block */
4896	struct inode *ip;	/* inode for file being extended */
4897	struct buf *bp;		/* indirect block referencing allocated block */
4898	int ptrno;		/* offset of pointer in indirect block */
4899	ufs2_daddr_t newblkno;	/* disk block number being added */
4900{
4901	struct inodedep *inodedep;
4902	struct allocindir *aip;
4903	ufs_lbn_t lbn;
4904
4905	lbn = nbp->b_lblkno;
4906	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
4907	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
4908	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
4909	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
4910	setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
4911	FREE_LOCK(&lk);
4912}
4913
4914static void
4915indirdep_complete(indirdep)
4916	struct indirdep *indirdep;
4917{
4918	struct allocindir *aip;
4919
4920	LIST_REMOVE(indirdep, ir_next);
4921	indirdep->ir_state &= ~ONDEPLIST;
4922
4923	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
4924		LIST_REMOVE(aip, ai_next);
4925		free_newblk(&aip->ai_block);
4926	}
4927	/*
4928	 * If this indirdep is not attached to a buf it was simply waiting
4929	 * on completion to clear completehd.  free_indirdep() asserts
4930	 * that nothing is dangling.
4931	 */
4932	if ((indirdep->ir_state & ONWORKLIST) == 0)
4933		free_indirdep(indirdep);
4934}
4935
4936/*
4937 * Called to finish the allocation of the "aip" allocated
4938 * by one of the two routines above.
4939 */
4940static void
4941setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
4942	struct buf *bp;		/* in-memory copy of the indirect block */
4943	struct inode *ip;	/* inode for file being extended */
4944	struct inodedep *inodedep; /* Inodedep for ip */
4945	struct allocindir *aip;	/* allocindir allocated by the above routines */
4946	ufs_lbn_t lbn;		/* Logical block number for this block. */
4947{
4948	struct worklist *wk;
4949	struct fs *fs;
4950	struct newblk *newblk;
4951	struct indirdep *indirdep, *newindirdep;
4952	struct allocindir *oldaip;
4953	struct freefrag *freefrag;
4954	struct mount *mp;
4955	ufs2_daddr_t blkno;
4956
4957	mp = UFSTOVFS(ip->i_ump);
4958	fs = ip->i_fs;
4959	mtx_assert(&lk, MA_OWNED);
4960	if (bp->b_lblkno >= 0)
4961		panic("setup_allocindir_phase2: not indir blk");
4962	for (freefrag = NULL, indirdep = NULL, newindirdep = NULL; ; ) {
4963		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4964			if (wk->wk_type != D_INDIRDEP)
4965				continue;
4966			indirdep = WK_INDIRDEP(wk);
4967			break;
4968		}
4969		if (indirdep == NULL && newindirdep) {
4970			indirdep = newindirdep;
4971			newindirdep = NULL;
4972			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
4973			if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0,
4974			    &newblk)) {
4975				indirdep->ir_state |= ONDEPLIST;
4976				LIST_INSERT_HEAD(&newblk->nb_indirdeps,
4977				    indirdep, ir_next);
4978			} else
4979				indirdep->ir_state |= DEPCOMPLETE;
4980		}
4981		if (indirdep) {
4982			aip->ai_indirdep = indirdep;
4983			/*
4984			 * Check to see if there is an existing dependency
4985			 * for this block. If there is, merge the old
4986			 * dependency into the new one.  This happens
4987			 * as a result of reallocblk only.
4988			 */
4989			if (aip->ai_oldblkno == 0)
4990				oldaip = NULL;
4991			else
4992
4993				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd,
4994				    ai_next)
4995					if (oldaip->ai_offset == aip->ai_offset)
4996						break;
4997			if (oldaip != NULL)
4998				freefrag = allocindir_merge(aip, oldaip);
4999			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5000			KASSERT(aip->ai_offset >= 0 &&
5001			    aip->ai_offset < NINDIR(ip->i_ump->um_fs),
5002			    ("setup_allocindir_phase2: Bad offset %d",
5003			    aip->ai_offset));
5004			KASSERT(indirdep->ir_savebp != NULL,
5005			    ("setup_allocindir_phase2 NULL ir_savebp"));
5006			if (ip->i_ump->um_fstype == UFS1)
5007				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
5008				    [aip->ai_offset] = aip->ai_oldblkno;
5009			else
5010				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
5011				    [aip->ai_offset] = aip->ai_oldblkno;
5012			FREE_LOCK(&lk);
5013			if (freefrag != NULL)
5014				handle_workitem_freefrag(freefrag);
5015		} else
5016			FREE_LOCK(&lk);
5017		if (newindirdep) {
5018			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
5019			brelse(newindirdep->ir_savebp);
5020			ACQUIRE_LOCK(&lk);
5021			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
5022			if (indirdep)
5023				break;
5024			FREE_LOCK(&lk);
5025		}
5026		if (indirdep) {
5027			ACQUIRE_LOCK(&lk);
5028			break;
5029		}
5030		newindirdep = malloc(sizeof(struct indirdep),
5031			M_INDIRDEP, M_SOFTDEP_FLAGS);
5032		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5033		newindirdep->ir_state = ATTACHED;
5034		if (ip->i_ump->um_fstype == UFS1)
5035			newindirdep->ir_state |= UFS1FMT;
5036		newindirdep->ir_saveddata = NULL;
5037		LIST_INIT(&newindirdep->ir_deplisthd);
5038		LIST_INIT(&newindirdep->ir_donehd);
5039		LIST_INIT(&newindirdep->ir_writehd);
5040		LIST_INIT(&newindirdep->ir_completehd);
5041		LIST_INIT(&newindirdep->ir_jwork);
5042		if (bp->b_blkno == bp->b_lblkno) {
5043			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5044			    NULL, NULL);
5045			bp->b_blkno = blkno;
5046		}
5047		newindirdep->ir_savebp =
5048		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5049		BUF_KERNPROC(newindirdep->ir_savebp);
5050		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5051		ACQUIRE_LOCK(&lk);
5052	}
5053}
5054
5055/*
5056 * Merge two allocindirs which refer to the same block.  Move newblock
5057 * dependencies and setup the freefrags appropriately.
5058 */
5059static struct freefrag *
5060allocindir_merge(aip, oldaip)
5061	struct allocindir *aip;
5062	struct allocindir *oldaip;
5063{
5064	struct newdirblk *newdirblk;
5065	struct freefrag *freefrag;
5066	struct worklist *wk;
5067
5068	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5069		panic("allocindir_merge: blkno");
5070	aip->ai_oldblkno = oldaip->ai_oldblkno;
5071	freefrag = aip->ai_freefrag;
5072	aip->ai_freefrag = oldaip->ai_freefrag;
5073	oldaip->ai_freefrag = NULL;
5074	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5075	/*
5076	 * If we are tracking a new directory-block allocation,
5077	 * move it from the old allocindir to the new allocindir.
5078	 */
5079	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5080		newdirblk = WK_NEWDIRBLK(wk);
5081		WORKLIST_REMOVE(&newdirblk->db_list);
5082		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5083			panic("allocindir_merge: extra newdirblk");
5084		WORKLIST_INSERT(&aip->ai_newdirblk, &newdirblk->db_list);
5085	}
5086	/*
5087	 * We can skip journaling for this freefrag and just complete
5088	 * any pending journal work for the allocindir that is being
5089	 * removed after the freefrag completes.
5090	 */
5091	if (freefrag->ff_jfreefrag)
5092		cancel_jfreefrag(freefrag->ff_jfreefrag);
5093	LIST_REMOVE(oldaip, ai_next);
5094	cancel_newblk(&oldaip->ai_block, &freefrag->ff_jwork);
5095	free_newblk(&oldaip->ai_block);
5096
5097	return (freefrag);
5098}
5099
5100/*
5101 * Block de-allocation dependencies.
5102 *
5103 * When blocks are de-allocated, the on-disk pointers must be nullified before
5104 * the blocks are made available for use by other files.  (The true
5105 * requirement is that old pointers must be nullified before new on-disk
5106 * pointers are set.  We chose this slightly more stringent requirement to
5107 * reduce complexity.) Our implementation handles this dependency by updating
5108 * the inode (or indirect block) appropriately but delaying the actual block
5109 * de-allocation (i.e., freemap and free space count manipulation) until
5110 * after the updated versions reach stable storage.  After the disk is
5111 * updated, the blocks can be safely de-allocated whenever it is convenient.
5112 * This implementation handles only the common case of reducing a file's
5113 * length to zero. Other cases are handled by the conventional synchronous
5114 * write approach.
5115 *
5116 * The ffs implementation with which we worked double-checks
5117 * the state of the block pointers and file size as it reduces
5118 * a file's length.  Some of this code is replicated here in our
5119 * soft updates implementation.  The freeblks->fb_chkcnt field is
5120 * used to transfer a part of this information to the procedure
5121 * that eventually de-allocates the blocks.
5122 *
5123 * This routine should be called from the routine that shortens
5124 * a file's length, before the inode's size or block pointers
5125 * are modified. It will save the block pointer information for
5126 * later release and zero the inode so that the calling routine
5127 * can release it.
5128 */
5129void
5130softdep_setup_freeblocks(ip, length, flags)
5131	struct inode *ip;	/* The inode whose length is to be reduced */
5132	off_t length;		/* The new length for the file */
5133	int flags;		/* IO_EXT and/or IO_NORMAL */
5134{
5135	struct ufs1_dinode *dp1;
5136	struct ufs2_dinode *dp2;
5137	struct freeblks *freeblks;
5138	struct inodedep *inodedep;
5139	struct allocdirect *adp;
5140	struct jfreeblk *jfreeblk;
5141	struct bufobj *bo;
5142	struct vnode *vp;
5143	struct buf *bp;
5144	struct fs *fs;
5145	ufs2_daddr_t extblocks, datablocks;
5146	struct mount *mp;
5147	int i, delay, error;
5148	ufs2_daddr_t blkno;
5149	ufs_lbn_t tmpval;
5150	ufs_lbn_t lbn;
5151	long oldextsize;
5152	long oldsize;
5153	int frags;
5154	int needj;
5155
5156	fs = ip->i_fs;
5157	mp = UFSTOVFS(ip->i_ump);
5158	if (length != 0)
5159		panic("softdep_setup_freeblocks: non-zero length");
5160	freeblks = malloc(sizeof(struct freeblks),
5161		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5162	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5163	LIST_INIT(&freeblks->fb_jfreeblkhd);
5164	LIST_INIT(&freeblks->fb_jwork);
5165	freeblks->fb_state = ATTACHED;
5166	freeblks->fb_uid = ip->i_uid;
5167	freeblks->fb_previousinum = ip->i_number;
5168	freeblks->fb_devvp = ip->i_devvp;
5169	freeblks->fb_chkcnt = 0;
5170	ACQUIRE_LOCK(&lk);
5171	/*
5172	 * If we're truncating a removed file that will never be written
5173	 * we don't need to journal the block frees.  The canceled journals
5174	 * for the allocations will suffice.
5175	 */
5176	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5177	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED ||
5178	    (fs->fs_flags & FS_SUJ) == 0)
5179		needj = 0;
5180	else
5181		needj = 1;
5182	num_freeblkdep++;
5183	FREE_LOCK(&lk);
5184	extblocks = 0;
5185	if (fs->fs_magic == FS_UFS2_MAGIC)
5186		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
5187	datablocks = DIP(ip, i_blocks) - extblocks;
5188	if ((flags & IO_NORMAL) != 0) {
5189		oldsize = ip->i_size;
5190		ip->i_size = 0;
5191		DIP_SET(ip, i_size, 0);
5192		freeblks->fb_chkcnt = datablocks;
5193		for (i = 0; i < NDADDR; i++) {
5194			blkno = DIP(ip, i_db[i]);
5195			DIP_SET(ip, i_db[i], 0);
5196			if (blkno == 0)
5197				continue;
5198			frags = sblksize(fs, oldsize, i);
5199			frags = numfrags(fs, frags);
5200			newfreework(freeblks, NULL, i, blkno, frags, needj);
5201		}
5202		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
5203		    i++, tmpval *= NINDIR(fs)) {
5204			blkno = DIP(ip, i_ib[i]);
5205			DIP_SET(ip, i_ib[i], 0);
5206			if (blkno)
5207				newfreework(freeblks, NULL, -lbn - i, blkno,
5208				    fs->fs_frag, needj);
5209			lbn += tmpval;
5210		}
5211		UFS_LOCK(ip->i_ump);
5212		fs->fs_pendingblocks += datablocks;
5213		UFS_UNLOCK(ip->i_ump);
5214	}
5215	if ((flags & IO_EXT) != 0) {
5216		oldextsize = ip->i_din2->di_extsize;
5217		ip->i_din2->di_extsize = 0;
5218		freeblks->fb_chkcnt += extblocks;
5219		for (i = 0; i < NXADDR; i++) {
5220			blkno = ip->i_din2->di_extb[i];
5221			ip->i_din2->di_extb[i] = 0;
5222			if (blkno == 0)
5223				continue;
5224			frags = sblksize(fs, oldextsize, i);
5225			frags = numfrags(fs, frags);
5226			newfreework(freeblks, NULL, -1 - i, blkno, frags,
5227			    needj);
5228		}
5229	}
5230	if (LIST_EMPTY(&freeblks->fb_jfreeblkhd))
5231		needj = 0;
5232	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
5233	/*
5234	 * Push the zero'ed inode to to its disk buffer so that we are free
5235	 * to delete its dependencies below. Once the dependencies are gone
5236	 * the buffer can be safely released.
5237	 */
5238	if ((error = bread(ip->i_devvp,
5239	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
5240	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
5241		brelse(bp);
5242		softdep_error("softdep_setup_freeblocks", error);
5243	}
5244	if (ip->i_ump->um_fstype == UFS1) {
5245		dp1 = ((struct ufs1_dinode *)bp->b_data +
5246		    ino_to_fsbo(fs, ip->i_number));
5247		ip->i_din1->di_freelink = dp1->di_freelink;
5248		*dp1 = *ip->i_din1;
5249	} else {
5250		dp2 = ((struct ufs2_dinode *)bp->b_data +
5251		    ino_to_fsbo(fs, ip->i_number));
5252		ip->i_din2->di_freelink = dp2->di_freelink;
5253		*dp2 = *ip->i_din2;
5254	}
5255	/*
5256	 * Find and eliminate any inode dependencies.
5257	 */
5258	ACQUIRE_LOCK(&lk);
5259	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5260	if ((inodedep->id_state & IOSTARTED) != 0)
5261		panic("softdep_setup_freeblocks: inode busy");
5262	/*
5263	 * Add the freeblks structure to the list of operations that
5264	 * must await the zero'ed inode being written to disk. If we
5265	 * still have a bitmap dependency (delay == 0), then the inode
5266	 * has never been written to disk, so we can process the
5267	 * freeblks below once we have deleted the dependencies.
5268	 */
5269	delay = (inodedep->id_state & DEPCOMPLETE);
5270	if (delay)
5271		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
5272	else if (needj)
5273		freeblks->fb_state |= COMPLETE;
5274	/*
5275	 * Because the file length has been truncated to zero, any
5276	 * pending block allocation dependency structures associated
5277	 * with this inode are obsolete and can simply be de-allocated.
5278	 * We must first merge the two dependency lists to get rid of
5279	 * any duplicate freefrag structures, then purge the merged list.
5280	 * If we still have a bitmap dependency, then the inode has never
5281	 * been written to disk, so we can free any fragments without delay.
5282	 */
5283	if (flags & IO_NORMAL) {
5284		merge_inode_lists(&inodedep->id_newinoupdt,
5285		    &inodedep->id_inoupdt);
5286		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
5287			cancel_allocdirect(&inodedep->id_inoupdt, adp,
5288			    freeblks, delay);
5289	}
5290	if (flags & IO_EXT) {
5291		merge_inode_lists(&inodedep->id_newextupdt,
5292		    &inodedep->id_extupdt);
5293		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
5294			cancel_allocdirect(&inodedep->id_extupdt, adp,
5295			    freeblks, delay);
5296	}
5297	LIST_FOREACH(jfreeblk, &freeblks->fb_jfreeblkhd, jf_deps)
5298		add_to_journal(&jfreeblk->jf_list);
5299
5300	FREE_LOCK(&lk);
5301	bdwrite(bp);
5302	/*
5303	 * We must wait for any I/O in progress to finish so that
5304	 * all potential buffers on the dirty list will be visible.
5305	 * Once they are all there, walk the list and get rid of
5306	 * any dependencies.
5307	 */
5308	vp = ITOV(ip);
5309	bo = &vp->v_bufobj;
5310	BO_LOCK(bo);
5311	drain_output(vp);
5312restart:
5313	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
5314		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
5315		    ((flags & IO_NORMAL) == 0 &&
5316		      (bp->b_xflags & BX_ALTDATA) == 0))
5317			continue;
5318		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
5319			goto restart;
5320		BO_UNLOCK(bo);
5321		ACQUIRE_LOCK(&lk);
5322		(void) inodedep_lookup(mp, ip->i_number, 0, &inodedep);
5323		if (deallocate_dependencies(bp, inodedep, freeblks))
5324			bp->b_flags |= B_INVAL | B_NOCACHE;
5325		FREE_LOCK(&lk);
5326		brelse(bp);
5327		BO_LOCK(bo);
5328		goto restart;
5329	}
5330	BO_UNLOCK(bo);
5331	ACQUIRE_LOCK(&lk);
5332	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
5333		(void) free_inodedep(inodedep);
5334
5335	if (delay || needj)
5336		freeblks->fb_state |= DEPCOMPLETE;
5337	if (delay) {
5338		/*
5339		 * If the inode with zeroed block pointers is now on disk
5340		 * we can start freeing blocks. Add freeblks to the worklist
5341		 * instead of calling  handle_workitem_freeblocks directly as
5342		 * it is more likely that additional IO is needed to complete
5343		 * the request here than in the !delay case.
5344		 */
5345		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
5346			add_to_worklist(&freeblks->fb_list, 1);
5347	}
5348	if (needj && LIST_EMPTY(&freeblks->fb_jfreeblkhd))
5349		needj = 0;
5350
5351	FREE_LOCK(&lk);
5352	/*
5353	 * If the inode has never been written to disk (delay == 0) and
5354	 * we're not waiting on any journal writes, then we can process the
5355	 * freeblks now that we have deleted the dependencies.
5356	 */
5357	if (!delay && !needj)
5358		handle_workitem_freeblocks(freeblks, 0);
5359}
5360
5361/*
5362 * Reclaim any dependency structures from a buffer that is about to
5363 * be reallocated to a new vnode. The buffer must be locked, thus,
5364 * no I/O completion operations can occur while we are manipulating
5365 * its associated dependencies. The mutex is held so that other I/O's
5366 * associated with related dependencies do not occur.  Returns 1 if
5367 * all dependencies were cleared, 0 otherwise.
5368 */
5369static int
5370deallocate_dependencies(bp, inodedep, freeblks)
5371	struct buf *bp;
5372	struct inodedep *inodedep;
5373	struct freeblks *freeblks;
5374{
5375	struct worklist *wk;
5376	struct indirdep *indirdep;
5377	struct newdirblk *newdirblk;
5378	struct allocindir *aip;
5379	struct pagedep *pagedep;
5380	struct jremref *jremref;
5381	struct jmvref *jmvref;
5382	struct dirrem *dirrem;
5383	int i;
5384
5385	mtx_assert(&lk, MA_OWNED);
5386	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
5387		switch (wk->wk_type) {
5388
5389		case D_INDIRDEP:
5390			indirdep = WK_INDIRDEP(wk);
5391			if (bp->b_lblkno >= 0 ||
5392			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
5393				panic("deallocate_dependencies: not indir");
5394			cancel_indirdep(indirdep, bp, inodedep, freeblks);
5395			continue;
5396
5397		case D_PAGEDEP:
5398			pagedep = WK_PAGEDEP(wk);
5399			/*
5400			 * There should be no directory add dependencies present
5401			 * as the directory could not be truncated until all
5402			 * children were removed.
5403			 */
5404			KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
5405			    ("deallocate_dependencies: pendinghd != NULL"));
5406			for (i = 0; i < DAHASHSZ; i++)
5407				KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
5408				    ("deallocate_dependencies: diraddhd != NULL"));
5409			/*
5410			 * Copy any directory remove dependencies to the list
5411			 * to be processed after the zero'ed inode is written.
5412			 * If the inode has already been written, then they
5413			 * can be dumped directly onto the work list.
5414			 */
5415			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
5416				/*
5417				 * If there are any dirrems we wait for
5418				 * the journal write to complete and
5419				 * then restart the buf scan as the lock
5420				 * has been dropped.
5421				 */
5422				while ((jremref =
5423				    LIST_FIRST(&dirrem->dm_jremrefhd))
5424				    != NULL) {
5425					stat_jwait_filepage++;
5426					jwait(&jremref->jr_list);
5427					return (0);
5428				}
5429				LIST_REMOVE(dirrem, dm_next);
5430				dirrem->dm_dirinum = pagedep->pd_ino;
5431				if (inodedep == NULL ||
5432				    (inodedep->id_state & ALLCOMPLETE) ==
5433				     ALLCOMPLETE) {
5434					dirrem->dm_state |= COMPLETE;
5435					add_to_worklist(&dirrem->dm_list, 0);
5436				} else
5437					WORKLIST_INSERT(&inodedep->id_bufwait,
5438					    &dirrem->dm_list);
5439			}
5440			if ((pagedep->pd_state & NEWBLOCK) != 0) {
5441				newdirblk = pagedep->pd_newdirblk;
5442				WORKLIST_REMOVE(&newdirblk->db_list);
5443				free_newdirblk(newdirblk);
5444			}
5445			while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd))
5446			    != NULL) {
5447				stat_jwait_filepage++;
5448				jwait(&jmvref->jm_list);
5449				return (0);
5450			}
5451			WORKLIST_REMOVE(&pagedep->pd_list);
5452			LIST_REMOVE(pagedep, pd_hash);
5453			WORKITEM_FREE(pagedep, D_PAGEDEP);
5454			continue;
5455
5456		case D_ALLOCINDIR:
5457			aip = WK_ALLOCINDIR(wk);
5458			cancel_allocindir(aip, inodedep, freeblks);
5459			continue;
5460
5461		case D_ALLOCDIRECT:
5462		case D_INODEDEP:
5463			panic("deallocate_dependencies: Unexpected type %s",
5464			    TYPENAME(wk->wk_type));
5465			/* NOTREACHED */
5466
5467		default:
5468			panic("deallocate_dependencies: Unknown type %s",
5469			    TYPENAME(wk->wk_type));
5470			/* NOTREACHED */
5471		}
5472	}
5473
5474	return (1);
5475}
5476
5477/*
5478 * An allocdirect is being canceled due to a truncate.  We must make sure
5479 * the journal entry is released in concert with the blkfree that releases
5480 * the storage.  Completed journal entries must not be released until the
5481 * space is no longer pointed to by the inode or in the bitmap.
5482 */
5483static void
5484cancel_allocdirect(adphead, adp, freeblks, delay)
5485	struct allocdirectlst *adphead;
5486	struct allocdirect *adp;
5487	struct freeblks *freeblks;
5488	int delay;
5489{
5490	struct freework *freework;
5491	struct newblk *newblk;
5492	struct worklist *wk;
5493	ufs_lbn_t lbn;
5494
5495	TAILQ_REMOVE(adphead, adp, ad_next);
5496	newblk = (struct newblk *)adp;
5497	/*
5498	 * If the journal hasn't been written the jnewblk must be passed
5499	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
5500	 * this by linking the journal dependency into the freework to be
5501	 * freed when freework_freeblock() is called.  If the journal has
5502	 * been written we can simply reclaim the journal space when the
5503	 * freeblks work is complete.
5504	 */
5505	if (newblk->nb_jnewblk == NULL) {
5506		cancel_newblk(newblk, &freeblks->fb_jwork);
5507		goto found;
5508	}
5509	lbn = newblk->nb_jnewblk->jn_lbn;
5510	/*
5511	 * Find the correct freework structure so it releases the canceled
5512	 * journal when the bitmap is cleared.  This preserves rollback
5513	 * until the allocation is reverted.
5514	 */
5515	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
5516		freework = WK_FREEWORK(wk);
5517		if (freework->fw_lbn != lbn)
5518			continue;
5519		cancel_newblk(newblk, &freework->fw_jwork);
5520		goto found;
5521	}
5522	panic("cancel_allocdirect: Freework not found for lbn %jd\n", lbn);
5523found:
5524	if (delay)
5525		WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
5526		    &newblk->nb_list);
5527	else
5528		free_newblk(newblk);
5529	return;
5530}
5531
5532
5533static void
5534cancel_newblk(newblk, wkhd)
5535	struct newblk *newblk;
5536	struct workhead *wkhd;
5537{
5538	struct indirdep *indirdep;
5539	struct allocindir *aip;
5540
5541	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) {
5542		indirdep->ir_state &= ~ONDEPLIST;
5543		LIST_REMOVE(indirdep, ir_next);
5544		/*
5545		 * If an indirdep is not on the buf worklist we need to
5546		 * free it here as deallocate_dependencies() will never
5547		 * find it.  These pointers were never visible on disk and
5548		 * can be discarded immediately.
5549		 */
5550		while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5551			LIST_REMOVE(aip, ai_next);
5552			cancel_newblk(&aip->ai_block, wkhd);
5553			free_newblk(&aip->ai_block);
5554		}
5555		/*
5556		 * If this indirdep is not attached to a buf it was simply
5557		 * waiting on completion to clear completehd.  free_indirdep()
5558		 * asserts that nothing is dangling.
5559		 */
5560		if ((indirdep->ir_state & ONWORKLIST) == 0)
5561			free_indirdep(indirdep);
5562	}
5563	if (newblk->nb_state & ONDEPLIST) {
5564		newblk->nb_state &= ~ONDEPLIST;
5565		LIST_REMOVE(newblk, nb_deps);
5566	}
5567	if (newblk->nb_state & ONWORKLIST)
5568		WORKLIST_REMOVE(&newblk->nb_list);
5569	/*
5570	 * If the journal entry hasn't been written we hold onto the dep
5571	 * until it is safe to free along with the other journal work.
5572	 */
5573	if (newblk->nb_jnewblk != NULL) {
5574		cancel_jnewblk(newblk->nb_jnewblk, wkhd);
5575		newblk->nb_jnewblk = NULL;
5576	}
5577	if (!LIST_EMPTY(&newblk->nb_jwork))
5578		jwork_move(wkhd, &newblk->nb_jwork);
5579}
5580
5581/*
5582 * Free a newblk. Generate a new freefrag work request if appropriate.
5583 * This must be called after the inode pointer and any direct block pointers
5584 * are valid or fully removed via truncate or frag extension.
5585 */
5586static void
5587free_newblk(newblk)
5588	struct newblk *newblk;
5589{
5590	struct indirdep *indirdep;
5591	struct newdirblk *newdirblk;
5592	struct freefrag *freefrag;
5593	struct worklist *wk;
5594
5595	mtx_assert(&lk, MA_OWNED);
5596	if (newblk->nb_state & ONDEPLIST)
5597		LIST_REMOVE(newblk, nb_deps);
5598	if (newblk->nb_state & ONWORKLIST)
5599		WORKLIST_REMOVE(&newblk->nb_list);
5600	LIST_REMOVE(newblk, nb_hash);
5601	if ((freefrag = newblk->nb_freefrag) != NULL) {
5602		freefrag->ff_state |= COMPLETE;
5603		if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
5604			add_to_worklist(&freefrag->ff_list, 0);
5605	}
5606	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) {
5607		newdirblk = WK_NEWDIRBLK(wk);
5608		WORKLIST_REMOVE(&newdirblk->db_list);
5609		if (!LIST_EMPTY(&newblk->nb_newdirblk))
5610			panic("free_newblk: extra newdirblk");
5611		free_newdirblk(newdirblk);
5612	}
5613	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) {
5614		indirdep->ir_state |= DEPCOMPLETE;
5615		indirdep_complete(indirdep);
5616	}
5617	KASSERT(newblk->nb_jnewblk == NULL,
5618	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
5619	handle_jwork(&newblk->nb_jwork);
5620	newblk->nb_list.wk_type = D_NEWBLK;
5621	WORKITEM_FREE(newblk, D_NEWBLK);
5622}
5623
5624/*
5625 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
5626 * This routine must be called with splbio interrupts blocked.
5627 */
5628static void
5629free_newdirblk(newdirblk)
5630	struct newdirblk *newdirblk;
5631{
5632	struct pagedep *pagedep;
5633	struct diradd *dap;
5634	struct worklist *wk;
5635	int i;
5636
5637	mtx_assert(&lk, MA_OWNED);
5638	/*
5639	 * If the pagedep is still linked onto the directory buffer
5640	 * dependency chain, then some of the entries on the
5641	 * pd_pendinghd list may not be committed to disk yet. In
5642	 * this case, we will simply clear the NEWBLOCK flag and
5643	 * let the pd_pendinghd list be processed when the pagedep
5644	 * is next written. If the pagedep is no longer on the buffer
5645	 * dependency chain, then all the entries on the pd_pending
5646	 * list are committed to disk and we can free them here.
5647	 */
5648	pagedep = newdirblk->db_pagedep;
5649	pagedep->pd_state &= ~NEWBLOCK;
5650	if ((pagedep->pd_state & ONWORKLIST) == 0)
5651		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
5652			free_diradd(dap, NULL);
5653	/*
5654	 * If no dependencies remain, the pagedep will be freed.
5655	 */
5656	for (i = 0; i < DAHASHSZ; i++)
5657		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
5658			break;
5659	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0 &&
5660	    LIST_EMPTY(&pagedep->pd_jmvrefhd)) {
5661		KASSERT(LIST_FIRST(&pagedep->pd_dirremhd) == NULL,
5662		    ("free_newdirblk: Freeing non-free pagedep %p", pagedep));
5663		LIST_REMOVE(pagedep, pd_hash);
5664		WORKITEM_FREE(pagedep, D_PAGEDEP);
5665	}
5666	/* Should only ever be one item in the list. */
5667	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
5668		WORKLIST_REMOVE(wk);
5669		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
5670	}
5671	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
5672}
5673
5674/*
5675 * Prepare an inode to be freed. The actual free operation is not
5676 * done until the zero'ed inode has been written to disk.
5677 */
5678void
5679softdep_freefile(pvp, ino, mode)
5680	struct vnode *pvp;
5681	ino_t ino;
5682	int mode;
5683{
5684	struct inode *ip = VTOI(pvp);
5685	struct inodedep *inodedep;
5686	struct freefile *freefile;
5687
5688	/*
5689	 * This sets up the inode de-allocation dependency.
5690	 */
5691	freefile = malloc(sizeof(struct freefile),
5692		M_FREEFILE, M_SOFTDEP_FLAGS);
5693	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
5694	freefile->fx_mode = mode;
5695	freefile->fx_oldinum = ino;
5696	freefile->fx_devvp = ip->i_devvp;
5697	LIST_INIT(&freefile->fx_jwork);
5698	UFS_LOCK(ip->i_ump);
5699	ip->i_fs->fs_pendinginodes += 1;
5700	UFS_UNLOCK(ip->i_ump);
5701
5702	/*
5703	 * If the inodedep does not exist, then the zero'ed inode has
5704	 * been written to disk. If the allocated inode has never been
5705	 * written to disk, then the on-disk inode is zero'ed. In either
5706	 * case we can free the file immediately.  If the journal was
5707	 * canceled before being written the inode will never make it to
5708	 * disk and we must send the canceled journal entrys to
5709	 * ffs_freefile() to be cleared in conjunction with the bitmap.
5710	 * Any blocks waiting on the inode to write can be safely freed
5711	 * here as it will never been written.
5712	 */
5713	ACQUIRE_LOCK(&lk);
5714	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
5715	/*
5716	 * Remove this inode from the unlinked list and set
5717	 * GOINGAWAY as appropriate to indicate that this inode
5718	 * will never be written.
5719	 */
5720	if (inodedep && inodedep->id_state & UNLINKED) {
5721		/*
5722		 * Save the journal work to be freed with the bitmap
5723		 * before we clear UNLINKED.  Otherwise it can be lost
5724		 * if the inode block is written.
5725		 */
5726		handle_bufwait(inodedep, &freefile->fx_jwork);
5727		clear_unlinked_inodedep(inodedep);
5728		/* Re-acquire inodedep as we've dropped lk. */
5729		inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
5730		if (inodedep && (inodedep->id_state & DEPCOMPLETE) == 0)
5731			inodedep->id_state |= GOINGAWAY;
5732	}
5733	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
5734		FREE_LOCK(&lk);
5735		handle_workitem_freefile(freefile);
5736		return;
5737	}
5738	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
5739	FREE_LOCK(&lk);
5740	if (ip->i_number == ino)
5741		ip->i_flag |= IN_MODIFIED;
5742}
5743
5744/*
5745 * Check to see if an inode has never been written to disk. If
5746 * so free the inodedep and return success, otherwise return failure.
5747 * This routine must be called with splbio interrupts blocked.
5748 *
5749 * If we still have a bitmap dependency, then the inode has never
5750 * been written to disk. Drop the dependency as it is no longer
5751 * necessary since the inode is being deallocated. We set the
5752 * ALLCOMPLETE flags since the bitmap now properly shows that the
5753 * inode is not allocated. Even if the inode is actively being
5754 * written, it has been rolled back to its zero'ed state, so we
5755 * are ensured that a zero inode is what is on the disk. For short
5756 * lived files, this change will usually result in removing all the
5757 * dependencies from the inode so that it can be freed immediately.
5758 */
5759static int
5760check_inode_unwritten(inodedep)
5761	struct inodedep *inodedep;
5762{
5763
5764	mtx_assert(&lk, MA_OWNED);
5765
5766	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
5767	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
5768	    !LIST_EMPTY(&inodedep->id_bufwait) ||
5769	    !LIST_EMPTY(&inodedep->id_inowait) ||
5770	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5771	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
5772	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5773	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5774	    inodedep->id_mkdiradd != NULL ||
5775	    inodedep->id_nlinkdelta != 0)
5776		return (0);
5777	/*
5778	 * Another process might be in initiate_write_inodeblock_ufs[12]
5779	 * trying to allocate memory without holding "Softdep Lock".
5780	 */
5781	if ((inodedep->id_state & IOSTARTED) != 0 &&
5782	    inodedep->id_savedino1 == NULL)
5783		return (0);
5784
5785	if (inodedep->id_state & ONDEPLIST)
5786		LIST_REMOVE(inodedep, id_deps);
5787	inodedep->id_state &= ~ONDEPLIST;
5788	inodedep->id_state |= ALLCOMPLETE;
5789	inodedep->id_bmsafemap = NULL;
5790	if (inodedep->id_state & ONWORKLIST)
5791		WORKLIST_REMOVE(&inodedep->id_list);
5792	if (inodedep->id_savedino1 != NULL) {
5793		free(inodedep->id_savedino1, M_SAVEDINO);
5794		inodedep->id_savedino1 = NULL;
5795	}
5796	if (free_inodedep(inodedep) == 0)
5797		panic("check_inode_unwritten: busy inode");
5798	return (1);
5799}
5800
5801/*
5802 * Try to free an inodedep structure. Return 1 if it could be freed.
5803 */
5804static int
5805free_inodedep(inodedep)
5806	struct inodedep *inodedep;
5807{
5808
5809	mtx_assert(&lk, MA_OWNED);
5810	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
5811	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
5812	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
5813	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
5814	    !LIST_EMPTY(&inodedep->id_bufwait) ||
5815	    !LIST_EMPTY(&inodedep->id_inowait) ||
5816	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
5817	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5818	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
5819	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5820	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5821	    inodedep->id_mkdiradd != NULL ||
5822	    inodedep->id_nlinkdelta != 0 ||
5823	    inodedep->id_savedino1 != NULL)
5824		return (0);
5825	if (inodedep->id_state & ONDEPLIST)
5826		LIST_REMOVE(inodedep, id_deps);
5827	LIST_REMOVE(inodedep, id_hash);
5828	WORKITEM_FREE(inodedep, D_INODEDEP);
5829	num_inodedep -= 1;
5830	return (1);
5831}
5832
5833/*
5834 * Free the block referenced by a freework structure.  The parent freeblks
5835 * structure is released and completed when the final cg bitmap reaches
5836 * the disk.  This routine may be freeing a jnewblk which never made it to
5837 * disk in which case we do not have to wait as the operation is undone
5838 * in memory immediately.
5839 */
5840static void
5841freework_freeblock(freework)
5842	struct freework *freework;
5843{
5844	struct freeblks *freeblks;
5845	struct ufsmount *ump;
5846	struct workhead wkhd;
5847	struct fs *fs;
5848	int complete;
5849	int pending;
5850	int bsize;
5851	int needj;
5852
5853	freeblks = freework->fw_freeblks;
5854	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
5855	fs = ump->um_fs;
5856	needj = freeblks->fb_list.wk_mp->mnt_kern_flag & MNTK_SUJ;
5857	complete = 0;
5858	LIST_INIT(&wkhd);
5859	/*
5860	 * If we are canceling an existing jnewblk pass it to the free
5861	 * routine, otherwise pass the freeblk which will ultimately
5862	 * release the freeblks.  If we're not journaling, we can just
5863	 * free the freeblks immediately.
5864	 */
5865	if (!LIST_EMPTY(&freework->fw_jwork)) {
5866		LIST_SWAP(&wkhd, &freework->fw_jwork, worklist, wk_list);
5867		complete = 1;
5868	} else if (needj)
5869		WORKLIST_INSERT_UNLOCKED(&wkhd, &freework->fw_list);
5870	bsize = lfragtosize(fs, freework->fw_frags);
5871	pending = btodb(bsize);
5872	ACQUIRE_LOCK(&lk);
5873	freeblks->fb_chkcnt -= pending;
5874	FREE_LOCK(&lk);
5875	/*
5876	 * extattr blocks don't show up in pending blocks.  XXX why?
5877	 */
5878	if (freework->fw_lbn >= 0 || freework->fw_lbn <= -NDADDR) {
5879		UFS_LOCK(ump);
5880		fs->fs_pendingblocks -= pending;
5881		UFS_UNLOCK(ump);
5882	}
5883	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno,
5884	    bsize, freeblks->fb_previousinum, &wkhd);
5885	if (complete == 0 && needj)
5886		return;
5887	/*
5888	 * The jnewblk will be discarded and the bits in the map never
5889	 * made it to disk.  We can immediately free the freeblk.
5890	 */
5891	ACQUIRE_LOCK(&lk);
5892	handle_written_freework(freework);
5893	FREE_LOCK(&lk);
5894}
5895
5896/*
5897 * Start, continue, or finish the process of freeing an indirect block tree.
5898 * The free operation may be paused at any point with fw_off containing the
5899 * offset to restart from.  This enables us to implement some flow control
5900 * for large truncates which may fan out and generate a huge number of
5901 * dependencies.
5902 */
5903static void
5904handle_workitem_indirblk(freework)
5905	struct freework *freework;
5906{
5907	struct freeblks *freeblks;
5908	struct ufsmount *ump;
5909	struct fs *fs;
5910
5911
5912	freeblks = freework->fw_freeblks;
5913	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
5914	fs = ump->um_fs;
5915	if (freework->fw_off == NINDIR(fs))
5916		freework_freeblock(freework);
5917	else
5918		indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
5919		    freework->fw_lbn);
5920}
5921
5922/*
5923 * Called when a freework structure attached to a cg buf is written.  The
5924 * ref on either the parent or the freeblks structure is released and
5925 * either may be added to the worklist if it is the final ref.
5926 */
5927static void
5928handle_written_freework(freework)
5929	struct freework *freework;
5930{
5931	struct freeblks *freeblks;
5932	struct freework *parent;
5933
5934	freeblks = freework->fw_freeblks;
5935	parent = freework->fw_parent;
5936	if (parent) {
5937		if (--parent->fw_ref != 0)
5938			parent = NULL;
5939		freeblks = NULL;
5940	} else if (--freeblks->fb_ref != 0)
5941		freeblks = NULL;
5942	WORKITEM_FREE(freework, D_FREEWORK);
5943	/*
5944	 * Don't delay these block frees or it takes an intolerable amount
5945	 * of time to process truncates and free their journal entries.
5946	 */
5947	if (freeblks)
5948		add_to_worklist(&freeblks->fb_list, 1);
5949	if (parent)
5950		add_to_worklist(&parent->fw_list, 1);
5951}
5952
5953/*
5954 * This workitem routine performs the block de-allocation.
5955 * The workitem is added to the pending list after the updated
5956 * inode block has been written to disk.  As mentioned above,
5957 * checks regarding the number of blocks de-allocated (compared
5958 * to the number of blocks allocated for the file) are also
5959 * performed in this function.
5960 */
5961static void
5962handle_workitem_freeblocks(freeblks, flags)
5963	struct freeblks *freeblks;
5964	int flags;
5965{
5966	struct freework *freework;
5967	struct worklist *wk;
5968
5969	KASSERT(LIST_EMPTY(&freeblks->fb_jfreeblkhd),
5970	    ("handle_workitem_freeblocks: Journal entries not written."));
5971	if (LIST_EMPTY(&freeblks->fb_freeworkhd)) {
5972		handle_complete_freeblocks(freeblks);
5973		return;
5974	}
5975	freeblks->fb_ref++;
5976	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
5977		KASSERT(wk->wk_type == D_FREEWORK,
5978		    ("handle_workitem_freeblocks: Unknown type %s",
5979		    TYPENAME(wk->wk_type)));
5980		WORKLIST_REMOVE_UNLOCKED(wk);
5981		freework = WK_FREEWORK(wk);
5982		if (freework->fw_lbn <= -NDADDR)
5983			handle_workitem_indirblk(freework);
5984		else
5985			freework_freeblock(freework);
5986	}
5987	ACQUIRE_LOCK(&lk);
5988	if (--freeblks->fb_ref != 0)
5989		freeblks = NULL;
5990	FREE_LOCK(&lk);
5991	if (freeblks)
5992		handle_complete_freeblocks(freeblks);
5993}
5994
5995/*
5996 * Once all of the freework workitems are complete we can retire the
5997 * freeblocks dependency and any journal work awaiting completion.  This
5998 * can not be called until all other dependencies are stable on disk.
5999 */
6000static void
6001handle_complete_freeblocks(freeblks)
6002	struct freeblks *freeblks;
6003{
6004	struct inode *ip;
6005	struct vnode *vp;
6006	struct fs *fs;
6007	struct ufsmount *ump;
6008	int flags;
6009
6010	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
6011	fs = ump->um_fs;
6012	flags = LK_NOWAIT;
6013
6014	/*
6015	 * If we still have not finished background cleanup, then check
6016	 * to see if the block count needs to be adjusted.
6017	 */
6018	if (freeblks->fb_chkcnt != 0 && (fs->fs_flags & FS_UNCLEAN) != 0 &&
6019	    ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_previousinum,
6020	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ) == 0) {
6021		ip = VTOI(vp);
6022		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + freeblks->fb_chkcnt);
6023		ip->i_flag |= IN_CHANGE;
6024		vput(vp);
6025	}
6026
6027	KASSERT(freeblks->fb_chkcnt == 0 ||
6028	    ((fs->fs_flags & FS_UNCLEAN) != 0 && (flags & LK_NOWAIT) == 0),
6029	    ("handle_workitem_freeblocks: inode %ju block count %jd\n",
6030	    (uintmax_t)freeblks->fb_previousinum,
6031	    (intmax_t)freeblks->fb_chkcnt));
6032
6033	ACQUIRE_LOCK(&lk);
6034	/*
6035	 * All of the freeblock deps must be complete prior to this call
6036	 * so it's now safe to complete earlier outstanding journal entries.
6037	 */
6038	handle_jwork(&freeblks->fb_jwork);
6039	WORKITEM_FREE(freeblks, D_FREEBLKS);
6040	num_freeblkdep--;
6041	FREE_LOCK(&lk);
6042}
6043
6044/*
6045 * Release blocks associated with the inode ip and stored in the indirect
6046 * block dbn. If level is greater than SINGLE, the block is an indirect block
6047 * and recursive calls to indirtrunc must be used to cleanse other indirect
6048 * blocks.
6049 */
6050static void
6051indir_trunc(freework, dbn, lbn)
6052	struct freework *freework;
6053	ufs2_daddr_t dbn;
6054	ufs_lbn_t lbn;
6055{
6056	struct freework *nfreework;
6057	struct workhead wkhd;
6058	struct jnewblk *jnewblk;
6059	struct freeblks *freeblks;
6060	struct buf *bp;
6061	struct fs *fs;
6062	struct worklist *wkn;
6063	struct worklist *wk;
6064	struct indirdep *indirdep;
6065	struct ufsmount *ump;
6066	ufs1_daddr_t *bap1 = 0;
6067	ufs2_daddr_t nb, nnb, *bap2 = 0;
6068	ufs_lbn_t lbnadd;
6069	int i, nblocks, ufs1fmt;
6070	int fs_pendingblocks;
6071	int freedeps;
6072	int needj;
6073	int level;
6074	int cnt;
6075
6076	LIST_INIT(&wkhd);
6077	level = lbn_level(lbn);
6078	if (level == -1)
6079		panic("indir_trunc: Invalid lbn %jd\n", lbn);
6080	freeblks = freework->fw_freeblks;
6081	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
6082	fs = ump->um_fs;
6083	fs_pendingblocks = 0;
6084	freedeps = 0;
6085	needj = UFSTOVFS(ump)->mnt_kern_flag & MNTK_SUJ;
6086	lbnadd = lbn_offset(fs, level);
6087	/*
6088	 * Get buffer of block pointers to be freed. This routine is not
6089	 * called until the zero'ed inode has been written, so it is safe
6090	 * to free blocks as they are encountered. Because the inode has
6091	 * been zero'ed, calls to bmap on these blocks will fail. So, we
6092	 * have to use the on-disk address and the block device for the
6093	 * filesystem to look them up. If the file was deleted before its
6094	 * indirect blocks were all written to disk, the routine that set
6095	 * us up (deallocate_dependencies) will have arranged to leave
6096	 * a complete copy of the indirect block in memory for our use.
6097	 * Otherwise we have to read the blocks in from the disk.
6098	 */
6099#ifdef notyet
6100	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
6101	    GB_NOCREAT);
6102#else
6103	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
6104#endif
6105	ACQUIRE_LOCK(&lk);
6106	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
6107		if (wk->wk_type != D_INDIRDEP ||
6108		    (wk->wk_state & GOINGAWAY) == 0)
6109			panic("indir_trunc: lost indirdep %p", wk);
6110		indirdep = WK_INDIRDEP(wk);
6111		LIST_SWAP(&wkhd, &indirdep->ir_jwork, worklist, wk_list);
6112		free_indirdep(indirdep);
6113		if (!LIST_EMPTY(&bp->b_dep))
6114			panic("indir_trunc: dangling dep %p",
6115			    LIST_FIRST(&bp->b_dep));
6116		ump->um_numindirdeps -= 1;
6117		FREE_LOCK(&lk);
6118	} else {
6119#ifdef notyet
6120		if (bp)
6121			brelse(bp);
6122#endif
6123		FREE_LOCK(&lk);
6124		if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
6125		    NOCRED, &bp) != 0) {
6126			brelse(bp);
6127			return;
6128		}
6129	}
6130	/*
6131	 * Recursively free indirect blocks.
6132	 */
6133	if (ump->um_fstype == UFS1) {
6134		ufs1fmt = 1;
6135		bap1 = (ufs1_daddr_t *)bp->b_data;
6136	} else {
6137		ufs1fmt = 0;
6138		bap2 = (ufs2_daddr_t *)bp->b_data;
6139	}
6140	/*
6141	 * Reclaim indirect blocks which never made it to disk.
6142	 */
6143	cnt = 0;
6144	LIST_FOREACH_SAFE(wk, &wkhd, wk_list, wkn) {
6145		struct workhead freewk;
6146		if (wk->wk_type != D_JNEWBLK)
6147			continue;
6148		WORKLIST_REMOVE_UNLOCKED(wk);
6149		LIST_INIT(&freewk);
6150		WORKLIST_INSERT_UNLOCKED(&freewk, wk);
6151		jnewblk = WK_JNEWBLK(wk);
6152		if (jnewblk->jn_lbn > 0)
6153			i = (jnewblk->jn_lbn - -lbn) / lbnadd;
6154		else
6155			i = (jnewblk->jn_lbn - (lbn + 1)) / lbnadd;
6156		KASSERT(i >= 0 && i < NINDIR(fs),
6157		    ("indir_trunc: Index out of range %d parent %jd lbn %jd",
6158		    i, lbn, jnewblk->jn_lbn));
6159		/* Clear the pointer so it isn't found below. */
6160		if (ufs1fmt) {
6161			nb = bap1[i];
6162			bap1[i] = 0;
6163		} else {
6164			nb = bap2[i];
6165			bap2[i] = 0;
6166		}
6167		KASSERT(nb == jnewblk->jn_blkno,
6168		    ("indir_trunc: Block mismatch %jd != %jd",
6169		    nb, jnewblk->jn_blkno));
6170		ffs_blkfree(ump, fs, freeblks->fb_devvp, jnewblk->jn_blkno,
6171		    fs->fs_bsize, freeblks->fb_previousinum, &freewk);
6172		cnt++;
6173	}
6174	ACQUIRE_LOCK(&lk);
6175	if (needj)
6176		freework->fw_ref += NINDIR(fs) + 1;
6177	/* Any remaining journal work can be completed with freeblks. */
6178	jwork_move(&freeblks->fb_jwork, &wkhd);
6179	FREE_LOCK(&lk);
6180	nblocks = btodb(fs->fs_bsize);
6181	if (ufs1fmt)
6182		nb = bap1[0];
6183	else
6184		nb = bap2[0];
6185	nfreework = freework;
6186	/*
6187	 * Reclaim on disk blocks.
6188	 */
6189	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
6190		if (i != NINDIR(fs) - 1) {
6191			if (ufs1fmt)
6192				nnb = bap1[i+1];
6193			else
6194				nnb = bap2[i+1];
6195		} else
6196			nnb = 0;
6197		if (nb == 0)
6198			continue;
6199		cnt++;
6200		if (level != 0) {
6201			ufs_lbn_t nlbn;
6202
6203			nlbn = (lbn + 1) - (i * lbnadd);
6204			if (needj != 0) {
6205				nfreework = newfreework(freeblks, freework,
6206				    nlbn, nb, fs->fs_frag, 0);
6207				freedeps++;
6208			}
6209			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
6210		} else {
6211			struct freedep *freedep;
6212
6213			/*
6214			 * Attempt to aggregate freedep dependencies for
6215			 * all blocks being released to the same CG.
6216			 */
6217			LIST_INIT(&wkhd);
6218			if (needj != 0 &&
6219			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
6220				freedep = newfreedep(freework);
6221				WORKLIST_INSERT_UNLOCKED(&wkhd,
6222				    &freedep->fd_list);
6223				freedeps++;
6224			}
6225			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
6226			    fs->fs_bsize, freeblks->fb_previousinum, &wkhd);
6227		}
6228	}
6229	if (level == 0)
6230		fs_pendingblocks = (nblocks * cnt);
6231	/*
6232	 * If we're not journaling we can free the indirect now.  Otherwise
6233	 * setup the ref counts and offset so this indirect can be completed
6234	 * when its children are free.
6235	 */
6236	if (needj == 0) {
6237		fs_pendingblocks += nblocks;
6238		dbn = dbtofsb(fs, dbn);
6239		ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
6240		    freeblks->fb_previousinum, NULL);
6241		ACQUIRE_LOCK(&lk);
6242		freeblks->fb_chkcnt -= fs_pendingblocks;
6243		if (freework->fw_blkno == dbn)
6244			handle_written_freework(freework);
6245		FREE_LOCK(&lk);
6246		freework = NULL;
6247	} else {
6248		ACQUIRE_LOCK(&lk);
6249		freework->fw_off = i;
6250		freework->fw_ref += freedeps;
6251		freework->fw_ref -= NINDIR(fs) + 1;
6252		if (freework->fw_ref != 0)
6253			freework = NULL;
6254		freeblks->fb_chkcnt -= fs_pendingblocks;
6255		FREE_LOCK(&lk);
6256	}
6257	if (fs_pendingblocks) {
6258		UFS_LOCK(ump);
6259		fs->fs_pendingblocks -= fs_pendingblocks;
6260		UFS_UNLOCK(ump);
6261	}
6262	bp->b_flags |= B_INVAL | B_NOCACHE;
6263	brelse(bp);
6264	if (freework)
6265		handle_workitem_indirblk(freework);
6266	return;
6267}
6268
6269/*
6270 * Cancel an allocindir when it is removed via truncation.
6271 */
6272static void
6273cancel_allocindir(aip, inodedep, freeblks)
6274	struct allocindir *aip;
6275	struct inodedep *inodedep;
6276	struct freeblks *freeblks;
6277{
6278	struct newblk *newblk;
6279
6280	/*
6281	 * If the journal hasn't been written the jnewblk must be passed
6282	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
6283	 * this by linking the journal dependency into the indirdep to be
6284	 * freed when indir_trunc() is called.  If the journal has already
6285	 * been written we can simply reclaim the journal space when the
6286	 * freeblks work is complete.
6287	 */
6288	LIST_REMOVE(aip, ai_next);
6289	newblk = (struct newblk *)aip;
6290	if (newblk->nb_jnewblk == NULL)
6291		cancel_newblk(newblk, &freeblks->fb_jwork);
6292	else
6293		cancel_newblk(newblk, &aip->ai_indirdep->ir_jwork);
6294	if (inodedep && inodedep->id_state & DEPCOMPLETE)
6295		WORKLIST_INSERT(&inodedep->id_bufwait, &newblk->nb_list);
6296	else
6297		free_newblk(newblk);
6298}
6299
6300/*
6301 * Create the mkdir dependencies for . and .. in a new directory.  Link them
6302 * in to a newdirblk so any subsequent additions are tracked properly.  The
6303 * caller is responsible for adding the mkdir1 dependency to the journal
6304 * and updating id_mkdiradd.  This function returns with lk held.
6305 */
6306static struct mkdir *
6307setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
6308	struct diradd *dap;
6309	ino_t newinum;
6310	ino_t dinum;
6311	struct buf *newdirbp;
6312	struct mkdir **mkdirp;
6313{
6314	struct newblk *newblk;
6315	struct pagedep *pagedep;
6316	struct inodedep *inodedep;
6317	struct newdirblk *newdirblk = 0;
6318	struct mkdir *mkdir1, *mkdir2;
6319	struct worklist *wk;
6320	struct jaddref *jaddref;
6321	struct mount *mp;
6322
6323	mp = dap->da_list.wk_mp;
6324	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
6325	    M_SOFTDEP_FLAGS);
6326	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
6327	LIST_INIT(&newdirblk->db_mkdir);
6328	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
6329	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
6330	mkdir1->md_state = ATTACHED | MKDIR_BODY;
6331	mkdir1->md_diradd = dap;
6332	mkdir1->md_jaddref = NULL;
6333	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
6334	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
6335	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
6336	mkdir2->md_diradd = dap;
6337	mkdir2->md_jaddref = NULL;
6338	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0) {
6339		mkdir1->md_state |= DEPCOMPLETE;
6340		mkdir2->md_state |= DEPCOMPLETE;
6341	}
6342	/*
6343	 * Dependency on "." and ".." being written to disk.
6344	 */
6345	mkdir1->md_buf = newdirbp;
6346	ACQUIRE_LOCK(&lk);
6347	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
6348	/*
6349	 * We must link the pagedep, allocdirect, and newdirblk for
6350	 * the initial file page so the pointer to the new directory
6351	 * is not written until the directory contents are live and
6352	 * any subsequent additions are not marked live until the
6353	 * block is reachable via the inode.
6354	 */
6355	if (pagedep_lookup(mp, newinum, 0, 0, &pagedep) == 0)
6356		panic("setup_newdir: lost pagedep");
6357	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
6358		if (wk->wk_type == D_ALLOCDIRECT)
6359			break;
6360	if (wk == NULL)
6361		panic("setup_newdir: lost allocdirect");
6362	newblk = WK_NEWBLK(wk);
6363	pagedep->pd_state |= NEWBLOCK;
6364	pagedep->pd_newdirblk = newdirblk;
6365	newdirblk->db_pagedep = pagedep;
6366	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
6367	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
6368	/*
6369	 * Look up the inodedep for the parent directory so that we
6370	 * can link mkdir2 into the pending dotdot jaddref or
6371	 * the inode write if there is none.  If the inode is
6372	 * ALLCOMPLETE and no jaddref is present all dependencies have
6373	 * been satisfied and mkdir2 can be freed.
6374	 */
6375	inodedep_lookup(mp, dinum, 0, &inodedep);
6376	if (mp->mnt_kern_flag & MNTK_SUJ) {
6377		if (inodedep == NULL)
6378			panic("setup_newdir: Lost parent.");
6379		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
6380		    inoreflst);
6381		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
6382		    (jaddref->ja_state & MKDIR_PARENT),
6383		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
6384		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
6385		mkdir2->md_jaddref = jaddref;
6386		jaddref->ja_mkdir = mkdir2;
6387	} else if (inodedep == NULL ||
6388	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
6389		dap->da_state &= ~MKDIR_PARENT;
6390		WORKITEM_FREE(mkdir2, D_MKDIR);
6391	} else {
6392		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
6393		WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
6394	}
6395	*mkdirp = mkdir2;
6396
6397	return (mkdir1);
6398}
6399
6400/*
6401 * Directory entry addition dependencies.
6402 *
6403 * When adding a new directory entry, the inode (with its incremented link
6404 * count) must be written to disk before the directory entry's pointer to it.
6405 * Also, if the inode is newly allocated, the corresponding freemap must be
6406 * updated (on disk) before the directory entry's pointer. These requirements
6407 * are met via undo/redo on the directory entry's pointer, which consists
6408 * simply of the inode number.
6409 *
6410 * As directory entries are added and deleted, the free space within a
6411 * directory block can become fragmented.  The ufs filesystem will compact
6412 * a fragmented directory block to make space for a new entry. When this
6413 * occurs, the offsets of previously added entries change. Any "diradd"
6414 * dependency structures corresponding to these entries must be updated with
6415 * the new offsets.
6416 */
6417
6418/*
6419 * This routine is called after the in-memory inode's link
6420 * count has been incremented, but before the directory entry's
6421 * pointer to the inode has been set.
6422 */
6423int
6424softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
6425	struct buf *bp;		/* buffer containing directory block */
6426	struct inode *dp;	/* inode for directory */
6427	off_t diroffset;	/* offset of new entry in directory */
6428	ino_t newinum;		/* inode referenced by new directory entry */
6429	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
6430	int isnewblk;		/* entry is in a newly allocated block */
6431{
6432	int offset;		/* offset of new entry within directory block */
6433	ufs_lbn_t lbn;		/* block in directory containing new entry */
6434	struct fs *fs;
6435	struct diradd *dap;
6436	struct newblk *newblk;
6437	struct pagedep *pagedep;
6438	struct inodedep *inodedep;
6439	struct newdirblk *newdirblk = 0;
6440	struct mkdir *mkdir1, *mkdir2;
6441	struct jaddref *jaddref;
6442	struct mount *mp;
6443	int isindir;
6444
6445	/*
6446	 * Whiteouts have no dependencies.
6447	 */
6448	if (newinum == WINO) {
6449		if (newdirbp != NULL)
6450			bdwrite(newdirbp);
6451		return (0);
6452	}
6453	jaddref = NULL;
6454	mkdir1 = mkdir2 = NULL;
6455	mp = UFSTOVFS(dp->i_ump);
6456	fs = dp->i_fs;
6457	lbn = lblkno(fs, diroffset);
6458	offset = blkoff(fs, diroffset);
6459	dap = malloc(sizeof(struct diradd), M_DIRADD,
6460		M_SOFTDEP_FLAGS|M_ZERO);
6461	workitem_alloc(&dap->da_list, D_DIRADD, mp);
6462	dap->da_offset = offset;
6463	dap->da_newinum = newinum;
6464	dap->da_state = ATTACHED;
6465	LIST_INIT(&dap->da_jwork);
6466	isindir = bp->b_lblkno >= NDADDR;
6467	if (isnewblk &&
6468	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
6469		newdirblk = malloc(sizeof(struct newdirblk),
6470		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
6471		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
6472		LIST_INIT(&newdirblk->db_mkdir);
6473	}
6474	/*
6475	 * If we're creating a new directory setup the dependencies and set
6476	 * the dap state to wait for them.  Otherwise it's COMPLETE and
6477	 * we can move on.
6478	 */
6479	if (newdirbp == NULL) {
6480		dap->da_state |= DEPCOMPLETE;
6481		ACQUIRE_LOCK(&lk);
6482	} else {
6483		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
6484		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
6485		    &mkdir2);
6486	}
6487	/*
6488	 * Link into parent directory pagedep to await its being written.
6489	 */
6490	if (pagedep_lookup(mp, dp->i_number, lbn, DEPALLOC, &pagedep) == 0)
6491		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
6492#ifdef DEBUG
6493	if (diradd_lookup(pagedep, offset) != NULL)
6494		panic("softdep_setup_directory_add: %p already at off %d\n",
6495		    diradd_lookup(pagedep, offset), offset);
6496#endif
6497	dap->da_pagedep = pagedep;
6498	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
6499	    da_pdlist);
6500	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
6501	/*
6502	 * If we're journaling, link the diradd into the jaddref so it
6503	 * may be completed after the journal entry is written.  Otherwise,
6504	 * link the diradd into its inodedep.  If the inode is not yet
6505	 * written place it on the bufwait list, otherwise do the post-inode
6506	 * write processing to put it on the id_pendinghd list.
6507	 */
6508	if (mp->mnt_kern_flag & MNTK_SUJ) {
6509		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
6510		    inoreflst);
6511		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
6512		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
6513		jaddref->ja_diroff = diroffset;
6514		jaddref->ja_diradd = dap;
6515		add_to_journal(&jaddref->ja_list);
6516	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
6517		diradd_inode_written(dap, inodedep);
6518	else
6519		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
6520	/*
6521	 * Add the journal entries for . and .. links now that the primary
6522	 * link is written.
6523	 */
6524	if (mkdir1 != NULL && mp->mnt_kern_flag & MNTK_SUJ) {
6525		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
6526		    inoreflst, if_deps);
6527		KASSERT(jaddref != NULL &&
6528		    jaddref->ja_ino == jaddref->ja_parent &&
6529		    (jaddref->ja_state & MKDIR_BODY),
6530		    ("softdep_setup_directory_add: bad dot jaddref %p",
6531		    jaddref));
6532		mkdir1->md_jaddref = jaddref;
6533		jaddref->ja_mkdir = mkdir1;
6534		/*
6535		 * It is important that the dotdot journal entry
6536		 * is added prior to the dot entry since dot writes
6537		 * both the dot and dotdot links.  These both must
6538		 * be added after the primary link for the journal
6539		 * to remain consistent.
6540		 */
6541		add_to_journal(&mkdir2->md_jaddref->ja_list);
6542		add_to_journal(&jaddref->ja_list);
6543	}
6544	/*
6545	 * If we are adding a new directory remember this diradd so that if
6546	 * we rename it we can keep the dot and dotdot dependencies.  If
6547	 * we are adding a new name for an inode that has a mkdiradd we
6548	 * must be in rename and we have to move the dot and dotdot
6549	 * dependencies to this new name.  The old name is being orphaned
6550	 * soon.
6551	 */
6552	if (mkdir1 != NULL) {
6553		if (inodedep->id_mkdiradd != NULL)
6554			panic("softdep_setup_directory_add: Existing mkdir");
6555		inodedep->id_mkdiradd = dap;
6556	} else if (inodedep->id_mkdiradd)
6557		merge_diradd(inodedep, dap);
6558	if (newdirblk) {
6559		/*
6560		 * There is nothing to do if we are already tracking
6561		 * this block.
6562		 */
6563		if ((pagedep->pd_state & NEWBLOCK) != 0) {
6564			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
6565			FREE_LOCK(&lk);
6566			return (0);
6567		}
6568		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
6569		    == 0)
6570			panic("softdep_setup_directory_add: lost entry");
6571		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
6572		pagedep->pd_state |= NEWBLOCK;
6573		pagedep->pd_newdirblk = newdirblk;
6574		newdirblk->db_pagedep = pagedep;
6575		FREE_LOCK(&lk);
6576		/*
6577		 * If we extended into an indirect signal direnter to sync.
6578		 */
6579		if (isindir)
6580			return (1);
6581		return (0);
6582	}
6583	FREE_LOCK(&lk);
6584	return (0);
6585}
6586
6587/*
6588 * This procedure is called to change the offset of a directory
6589 * entry when compacting a directory block which must be owned
6590 * exclusively by the caller. Note that the actual entry movement
6591 * must be done in this procedure to ensure that no I/O completions
6592 * occur while the move is in progress.
6593 */
6594void
6595softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
6596	struct buf *bp;		/* Buffer holding directory block. */
6597	struct inode *dp;	/* inode for directory */
6598	caddr_t base;		/* address of dp->i_offset */
6599	caddr_t oldloc;		/* address of old directory location */
6600	caddr_t newloc;		/* address of new directory location */
6601	int entrysize;		/* size of directory entry */
6602{
6603	int offset, oldoffset, newoffset;
6604	struct pagedep *pagedep;
6605	struct jmvref *jmvref;
6606	struct diradd *dap;
6607	struct direct *de;
6608	struct mount *mp;
6609	ufs_lbn_t lbn;
6610	int flags;
6611
6612	mp = UFSTOVFS(dp->i_ump);
6613	de = (struct direct *)oldloc;
6614	jmvref = NULL;
6615	flags = 0;
6616	/*
6617	 * Moves are always journaled as it would be too complex to
6618	 * determine if any affected adds or removes are present in the
6619	 * journal.
6620	 */
6621	if (mp->mnt_kern_flag & MNTK_SUJ)  {
6622		flags = DEPALLOC;
6623		jmvref = newjmvref(dp, de->d_ino,
6624		    dp->i_offset + (oldloc - base),
6625		    dp->i_offset + (newloc - base));
6626	}
6627	lbn = lblkno(dp->i_fs, dp->i_offset);
6628	offset = blkoff(dp->i_fs, dp->i_offset);
6629	oldoffset = offset + (oldloc - base);
6630	newoffset = offset + (newloc - base);
6631	ACQUIRE_LOCK(&lk);
6632	if (pagedep_lookup(mp, dp->i_number, lbn, flags, &pagedep) == 0) {
6633		if (pagedep)
6634			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
6635		goto done;
6636	}
6637	dap = diradd_lookup(pagedep, oldoffset);
6638	if (dap) {
6639		dap->da_offset = newoffset;
6640		newoffset = DIRADDHASH(newoffset);
6641		oldoffset = DIRADDHASH(oldoffset);
6642		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
6643		    newoffset != oldoffset) {
6644			LIST_REMOVE(dap, da_pdlist);
6645			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
6646			    dap, da_pdlist);
6647		}
6648	}
6649done:
6650	if (jmvref) {
6651		jmvref->jm_pagedep = pagedep;
6652		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
6653		add_to_journal(&jmvref->jm_list);
6654	}
6655	bcopy(oldloc, newloc, entrysize);
6656	FREE_LOCK(&lk);
6657}
6658
6659/*
6660 * Move the mkdir dependencies and journal work from one diradd to another
6661 * when renaming a directory.  The new name must depend on the mkdir deps
6662 * completing as the old name did.  Directories can only have one valid link
6663 * at a time so one must be canonical.
6664 */
6665static void
6666merge_diradd(inodedep, newdap)
6667	struct inodedep *inodedep;
6668	struct diradd *newdap;
6669{
6670	struct diradd *olddap;
6671	struct mkdir *mkdir, *nextmd;
6672	short state;
6673
6674	olddap = inodedep->id_mkdiradd;
6675	inodedep->id_mkdiradd = newdap;
6676	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6677		newdap->da_state &= ~DEPCOMPLETE;
6678		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
6679			nextmd = LIST_NEXT(mkdir, md_mkdirs);
6680			if (mkdir->md_diradd != olddap)
6681				continue;
6682			mkdir->md_diradd = newdap;
6683			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
6684			newdap->da_state |= state;
6685			olddap->da_state &= ~state;
6686			if ((olddap->da_state &
6687			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
6688				break;
6689		}
6690		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
6691			panic("merge_diradd: unfound ref");
6692	}
6693	/*
6694	 * Any mkdir related journal items are not safe to be freed until
6695	 * the new name is stable.
6696	 */
6697	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
6698	olddap->da_state |= DEPCOMPLETE;
6699	complete_diradd(olddap);
6700}
6701
6702/*
6703 * Move the diradd to the pending list when all diradd dependencies are
6704 * complete.
6705 */
6706static void
6707complete_diradd(dap)
6708	struct diradd *dap;
6709{
6710	struct pagedep *pagedep;
6711
6712	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
6713		if (dap->da_state & DIRCHG)
6714			pagedep = dap->da_previous->dm_pagedep;
6715		else
6716			pagedep = dap->da_pagedep;
6717		LIST_REMOVE(dap, da_pdlist);
6718		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
6719	}
6720}
6721
6722/*
6723 * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
6724 * add entries and conditonally journal the remove.
6725 */
6726static void
6727cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
6728	struct diradd *dap;
6729	struct dirrem *dirrem;
6730	struct jremref *jremref;
6731	struct jremref *dotremref;
6732	struct jremref *dotdotremref;
6733{
6734	struct inodedep *inodedep;
6735	struct jaddref *jaddref;
6736	struct inoref *inoref;
6737	struct mkdir *mkdir;
6738
6739	/*
6740	 * If no remove references were allocated we're on a non-journaled
6741	 * filesystem and can skip the cancel step.
6742	 */
6743	if (jremref == NULL) {
6744		free_diradd(dap, NULL);
6745		return;
6746	}
6747	/*
6748	 * Cancel the primary name an free it if it does not require
6749	 * journaling.
6750	 */
6751	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
6752	    0, &inodedep) != 0) {
6753		/* Abort the addref that reference this diradd.  */
6754		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
6755			if (inoref->if_list.wk_type != D_JADDREF)
6756				continue;
6757			jaddref = (struct jaddref *)inoref;
6758			if (jaddref->ja_diradd != dap)
6759				continue;
6760			if (cancel_jaddref(jaddref, inodedep,
6761			    &dirrem->dm_jwork) == 0) {
6762				free_jremref(jremref);
6763				jremref = NULL;
6764			}
6765			break;
6766		}
6767	}
6768	/*
6769	 * Cancel subordinate names and free them if they do not require
6770	 * journaling.
6771	 */
6772	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6773		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
6774			if (mkdir->md_diradd != dap)
6775				continue;
6776			if ((jaddref = mkdir->md_jaddref) == NULL)
6777				continue;
6778			mkdir->md_jaddref = NULL;
6779			if (mkdir->md_state & MKDIR_PARENT) {
6780				if (cancel_jaddref(jaddref, NULL,
6781				    &dirrem->dm_jwork) == 0) {
6782					free_jremref(dotdotremref);
6783					dotdotremref = NULL;
6784				}
6785			} else {
6786				if (cancel_jaddref(jaddref, inodedep,
6787				    &dirrem->dm_jwork) == 0) {
6788					free_jremref(dotremref);
6789					dotremref = NULL;
6790				}
6791			}
6792		}
6793	}
6794
6795	if (jremref)
6796		journal_jremref(dirrem, jremref, inodedep);
6797	if (dotremref)
6798		journal_jremref(dirrem, dotremref, inodedep);
6799	if (dotdotremref)
6800		journal_jremref(dirrem, dotdotremref, NULL);
6801	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
6802	free_diradd(dap, &dirrem->dm_jwork);
6803}
6804
6805/*
6806 * Free a diradd dependency structure. This routine must be called
6807 * with splbio interrupts blocked.
6808 */
6809static void
6810free_diradd(dap, wkhd)
6811	struct diradd *dap;
6812	struct workhead *wkhd;
6813{
6814	struct dirrem *dirrem;
6815	struct pagedep *pagedep;
6816	struct inodedep *inodedep;
6817	struct mkdir *mkdir, *nextmd;
6818
6819	mtx_assert(&lk, MA_OWNED);
6820	LIST_REMOVE(dap, da_pdlist);
6821	if (dap->da_state & ONWORKLIST)
6822		WORKLIST_REMOVE(&dap->da_list);
6823	if ((dap->da_state & DIRCHG) == 0) {
6824		pagedep = dap->da_pagedep;
6825	} else {
6826		dirrem = dap->da_previous;
6827		pagedep = dirrem->dm_pagedep;
6828		dirrem->dm_dirinum = pagedep->pd_ino;
6829		dirrem->dm_state |= COMPLETE;
6830		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
6831			add_to_worklist(&dirrem->dm_list, 0);
6832	}
6833	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
6834	    0, &inodedep) != 0)
6835		if (inodedep->id_mkdiradd == dap)
6836			inodedep->id_mkdiradd = NULL;
6837	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6838		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
6839			nextmd = LIST_NEXT(mkdir, md_mkdirs);
6840			if (mkdir->md_diradd != dap)
6841				continue;
6842			dap->da_state &=
6843			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
6844			LIST_REMOVE(mkdir, md_mkdirs);
6845			if (mkdir->md_state & ONWORKLIST)
6846				WORKLIST_REMOVE(&mkdir->md_list);
6847			if (mkdir->md_jaddref != NULL)
6848				panic("free_diradd: Unexpected jaddref");
6849			WORKITEM_FREE(mkdir, D_MKDIR);
6850			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
6851				break;
6852		}
6853		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
6854			panic("free_diradd: unfound ref");
6855	}
6856	if (inodedep)
6857		free_inodedep(inodedep);
6858	/*
6859	 * Free any journal segments waiting for the directory write.
6860	 */
6861	handle_jwork(&dap->da_jwork);
6862	WORKITEM_FREE(dap, D_DIRADD);
6863}
6864
6865/*
6866 * Directory entry removal dependencies.
6867 *
6868 * When removing a directory entry, the entry's inode pointer must be
6869 * zero'ed on disk before the corresponding inode's link count is decremented
6870 * (possibly freeing the inode for re-use). This dependency is handled by
6871 * updating the directory entry but delaying the inode count reduction until
6872 * after the directory block has been written to disk. After this point, the
6873 * inode count can be decremented whenever it is convenient.
6874 */
6875
6876/*
6877 * This routine should be called immediately after removing
6878 * a directory entry.  The inode's link count should not be
6879 * decremented by the calling procedure -- the soft updates
6880 * code will do this task when it is safe.
6881 */
6882void
6883softdep_setup_remove(bp, dp, ip, isrmdir)
6884	struct buf *bp;		/* buffer containing directory block */
6885	struct inode *dp;	/* inode for the directory being modified */
6886	struct inode *ip;	/* inode for directory entry being removed */
6887	int isrmdir;		/* indicates if doing RMDIR */
6888{
6889	struct dirrem *dirrem, *prevdirrem;
6890	struct inodedep *inodedep;
6891	int direct;
6892
6893	/*
6894	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
6895	 * newdirrem() to setup the full directory remove which requires
6896	 * isrmdir > 1.
6897	 */
6898	dirrem = newdirrem(bp, dp, ip, isrmdir?2:0, &prevdirrem);
6899	/*
6900	 * Add the dirrem to the inodedep's pending remove list for quick
6901	 * discovery later.
6902	 */
6903	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
6904	    &inodedep) == 0)
6905		panic("softdep_setup_remove: Lost inodedep.");
6906	dirrem->dm_state |= ONDEPLIST;
6907	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
6908
6909	/*
6910	 * If the COMPLETE flag is clear, then there were no active
6911	 * entries and we want to roll back to a zeroed entry until
6912	 * the new inode is committed to disk. If the COMPLETE flag is
6913	 * set then we have deleted an entry that never made it to
6914	 * disk. If the entry we deleted resulted from a name change,
6915	 * then the old name still resides on disk. We cannot delete
6916	 * its inode (returned to us in prevdirrem) until the zeroed
6917	 * directory entry gets to disk. The new inode has never been
6918	 * referenced on the disk, so can be deleted immediately.
6919	 */
6920	if ((dirrem->dm_state & COMPLETE) == 0) {
6921		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
6922		    dm_next);
6923		FREE_LOCK(&lk);
6924	} else {
6925		if (prevdirrem != NULL)
6926			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
6927			    prevdirrem, dm_next);
6928		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
6929		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
6930		FREE_LOCK(&lk);
6931		if (direct)
6932			handle_workitem_remove(dirrem, NULL);
6933	}
6934}
6935
6936/*
6937 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
6938 * pd_pendinghd list of a pagedep.
6939 */
6940static struct diradd *
6941diradd_lookup(pagedep, offset)
6942	struct pagedep *pagedep;
6943	int offset;
6944{
6945	struct diradd *dap;
6946
6947	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
6948		if (dap->da_offset == offset)
6949			return (dap);
6950	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6951		if (dap->da_offset == offset)
6952			return (dap);
6953	return (NULL);
6954}
6955
6956/*
6957 * Search for a .. diradd dependency in a directory that is being removed.
6958 * If the directory was renamed to a new parent we have a diradd rather
6959 * than a mkdir for the .. entry.  We need to cancel it now before
6960 * it is found in truncate().
6961 */
6962static struct jremref *
6963cancel_diradd_dotdot(ip, dirrem, jremref)
6964	struct inode *ip;
6965	struct dirrem *dirrem;
6966	struct jremref *jremref;
6967{
6968	struct pagedep *pagedep;
6969	struct diradd *dap;
6970	struct worklist *wk;
6971
6972	if (pagedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 0,
6973	    &pagedep) == 0)
6974		return (jremref);
6975	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
6976	if (dap == NULL)
6977		return (jremref);
6978	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
6979	/*
6980	 * Mark any journal work as belonging to the parent so it is freed
6981	 * with the .. reference.
6982	 */
6983	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
6984		wk->wk_state |= MKDIR_PARENT;
6985	return (NULL);
6986}
6987
6988/*
6989 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
6990 * replace it with a dirrem/diradd pair as a result of re-parenting a
6991 * directory.  This ensures that we don't simultaneously have a mkdir and
6992 * a diradd for the same .. entry.
6993 */
6994static struct jremref *
6995cancel_mkdir_dotdot(ip, dirrem, jremref)
6996	struct inode *ip;
6997	struct dirrem *dirrem;
6998	struct jremref *jremref;
6999{
7000	struct inodedep *inodedep;
7001	struct jaddref *jaddref;
7002	struct mkdir *mkdir;
7003	struct diradd *dap;
7004
7005	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
7006	    &inodedep) == 0)
7007		panic("cancel_mkdir_dotdot: Lost inodedep");
7008	dap = inodedep->id_mkdiradd;
7009	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
7010		return (jremref);
7011	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
7012	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
7013		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
7014			break;
7015	if (mkdir == NULL)
7016		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
7017	if ((jaddref = mkdir->md_jaddref) != NULL) {
7018		mkdir->md_jaddref = NULL;
7019		jaddref->ja_state &= ~MKDIR_PARENT;
7020		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
7021		    &inodedep) == 0)
7022			panic("cancel_mkdir_dotdot: Lost parent inodedep");
7023		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
7024			journal_jremref(dirrem, jremref, inodedep);
7025			jremref = NULL;
7026		}
7027	}
7028	if (mkdir->md_state & ONWORKLIST)
7029		WORKLIST_REMOVE(&mkdir->md_list);
7030	mkdir->md_state |= ALLCOMPLETE;
7031	complete_mkdir(mkdir);
7032	return (jremref);
7033}
7034
7035static void
7036journal_jremref(dirrem, jremref, inodedep)
7037	struct dirrem *dirrem;
7038	struct jremref *jremref;
7039	struct inodedep *inodedep;
7040{
7041
7042	if (inodedep == NULL)
7043		if (inodedep_lookup(jremref->jr_list.wk_mp,
7044		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
7045			panic("journal_jremref: Lost inodedep");
7046	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
7047	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
7048	add_to_journal(&jremref->jr_list);
7049}
7050
7051static void
7052dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
7053	struct dirrem *dirrem;
7054	struct jremref *jremref;
7055	struct jremref *dotremref;
7056	struct jremref *dotdotremref;
7057{
7058	struct inodedep *inodedep;
7059
7060
7061	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
7062	    &inodedep) == 0)
7063		panic("dirrem_journal: Lost inodedep");
7064	journal_jremref(dirrem, jremref, inodedep);
7065	if (dotremref)
7066		journal_jremref(dirrem, dotremref, inodedep);
7067	if (dotdotremref)
7068		journal_jremref(dirrem, dotdotremref, NULL);
7069}
7070
7071/*
7072 * Allocate a new dirrem if appropriate and return it along with
7073 * its associated pagedep. Called without a lock, returns with lock.
7074 */
7075static long num_dirrem;		/* number of dirrem allocated */
7076static struct dirrem *
7077newdirrem(bp, dp, ip, isrmdir, prevdirremp)
7078	struct buf *bp;		/* buffer containing directory block */
7079	struct inode *dp;	/* inode for the directory being modified */
7080	struct inode *ip;	/* inode for directory entry being removed */
7081	int isrmdir;		/* indicates if doing RMDIR */
7082	struct dirrem **prevdirremp; /* previously referenced inode, if any */
7083{
7084	int offset;
7085	ufs_lbn_t lbn;
7086	struct diradd *dap;
7087	struct dirrem *dirrem;
7088	struct pagedep *pagedep;
7089	struct jremref *jremref;
7090	struct jremref *dotremref;
7091	struct jremref *dotdotremref;
7092	struct vnode *dvp;
7093
7094	/*
7095	 * Whiteouts have no deletion dependencies.
7096	 */
7097	if (ip == NULL)
7098		panic("newdirrem: whiteout");
7099	dvp = ITOV(dp);
7100	/*
7101	 * If we are over our limit, try to improve the situation.
7102	 * Limiting the number of dirrem structures will also limit
7103	 * the number of freefile and freeblks structures.
7104	 */
7105	ACQUIRE_LOCK(&lk);
7106	if (!(ip->i_flags & SF_SNAPSHOT) && num_dirrem > max_softdeps / 2)
7107		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE);
7108	num_dirrem += 1;
7109	FREE_LOCK(&lk);
7110	dirrem = malloc(sizeof(struct dirrem),
7111		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
7112	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
7113	LIST_INIT(&dirrem->dm_jremrefhd);
7114	LIST_INIT(&dirrem->dm_jwork);
7115	dirrem->dm_state = isrmdir ? RMDIR : 0;
7116	dirrem->dm_oldinum = ip->i_number;
7117	*prevdirremp = NULL;
7118	/*
7119	 * Allocate remove reference structures to track journal write
7120	 * dependencies.  We will always have one for the link and
7121	 * when doing directories we will always have one more for dot.
7122	 * When renaming a directory we skip the dotdot link change so
7123	 * this is not needed.
7124	 */
7125	jremref = dotremref = dotdotremref = NULL;
7126	if (DOINGSUJ(dvp)) {
7127		if (isrmdir) {
7128			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
7129			    ip->i_effnlink + 2);
7130			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
7131			    ip->i_effnlink + 1);
7132		} else
7133			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
7134			    ip->i_effnlink + 1);
7135		if (isrmdir > 1) {
7136			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
7137			    dp->i_effnlink + 1);
7138			dotdotremref->jr_state |= MKDIR_PARENT;
7139		}
7140	}
7141	ACQUIRE_LOCK(&lk);
7142	lbn = lblkno(dp->i_fs, dp->i_offset);
7143	offset = blkoff(dp->i_fs, dp->i_offset);
7144	if (pagedep_lookup(UFSTOVFS(dp->i_ump), dp->i_number, lbn, DEPALLOC,
7145	    &pagedep) == 0)
7146		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
7147	dirrem->dm_pagedep = pagedep;
7148	/*
7149	 * If we're renaming a .. link to a new directory, cancel any
7150	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
7151	 * the jremref is preserved for any potential diradd in this
7152	 * location.  This can not coincide with a rmdir.
7153	 */
7154	if (dp->i_offset == DOTDOT_OFFSET) {
7155		if (isrmdir)
7156			panic("newdirrem: .. directory change during remove?");
7157		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
7158	}
7159	/*
7160	 * If we're removing a directory search for the .. dependency now and
7161	 * cancel it.  Any pending journal work will be added to the dirrem
7162	 * to be completed when the workitem remove completes.
7163	 */
7164	if (isrmdir > 1)
7165		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
7166	/*
7167	 * Check for a diradd dependency for the same directory entry.
7168	 * If present, then both dependencies become obsolete and can
7169	 * be de-allocated.
7170	 */
7171	dap = diradd_lookup(pagedep, offset);
7172	if (dap == NULL) {
7173		/*
7174		 * Link the jremref structures into the dirrem so they are
7175		 * written prior to the pagedep.
7176		 */
7177		if (jremref)
7178			dirrem_journal(dirrem, jremref, dotremref,
7179			    dotdotremref);
7180		return (dirrem);
7181	}
7182	/*
7183	 * Must be ATTACHED at this point.
7184	 */
7185	if ((dap->da_state & ATTACHED) == 0)
7186		panic("newdirrem: not ATTACHED");
7187	if (dap->da_newinum != ip->i_number)
7188		panic("newdirrem: inum %d should be %d",
7189		    ip->i_number, dap->da_newinum);
7190	/*
7191	 * If we are deleting a changed name that never made it to disk,
7192	 * then return the dirrem describing the previous inode (which
7193	 * represents the inode currently referenced from this entry on disk).
7194	 */
7195	if ((dap->da_state & DIRCHG) != 0) {
7196		*prevdirremp = dap->da_previous;
7197		dap->da_state &= ~DIRCHG;
7198		dap->da_pagedep = pagedep;
7199	}
7200	/*
7201	 * We are deleting an entry that never made it to disk.
7202	 * Mark it COMPLETE so we can delete its inode immediately.
7203	 */
7204	dirrem->dm_state |= COMPLETE;
7205	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
7206#ifdef SUJ_DEBUG
7207	if (isrmdir == 0) {
7208		struct worklist *wk;
7209
7210		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
7211			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
7212				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
7213	}
7214#endif
7215
7216	return (dirrem);
7217}
7218
7219/*
7220 * Directory entry change dependencies.
7221 *
7222 * Changing an existing directory entry requires that an add operation
7223 * be completed first followed by a deletion. The semantics for the addition
7224 * are identical to the description of adding a new entry above except
7225 * that the rollback is to the old inode number rather than zero. Once
7226 * the addition dependency is completed, the removal is done as described
7227 * in the removal routine above.
7228 */
7229
7230/*
7231 * This routine should be called immediately after changing
7232 * a directory entry.  The inode's link count should not be
7233 * decremented by the calling procedure -- the soft updates
7234 * code will perform this task when it is safe.
7235 */
7236void
7237softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
7238	struct buf *bp;		/* buffer containing directory block */
7239	struct inode *dp;	/* inode for the directory being modified */
7240	struct inode *ip;	/* inode for directory entry being removed */
7241	ino_t newinum;		/* new inode number for changed entry */
7242	int isrmdir;		/* indicates if doing RMDIR */
7243{
7244	int offset;
7245	struct diradd *dap = NULL;
7246	struct dirrem *dirrem, *prevdirrem;
7247	struct pagedep *pagedep;
7248	struct inodedep *inodedep;
7249	struct jaddref *jaddref;
7250	struct mount *mp;
7251
7252	offset = blkoff(dp->i_fs, dp->i_offset);
7253	mp = UFSTOVFS(dp->i_ump);
7254
7255	/*
7256	 * Whiteouts do not need diradd dependencies.
7257	 */
7258	if (newinum != WINO) {
7259		dap = malloc(sizeof(struct diradd),
7260		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
7261		workitem_alloc(&dap->da_list, D_DIRADD, mp);
7262		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
7263		dap->da_offset = offset;
7264		dap->da_newinum = newinum;
7265		LIST_INIT(&dap->da_jwork);
7266	}
7267
7268	/*
7269	 * Allocate a new dirrem and ACQUIRE_LOCK.
7270	 */
7271	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
7272	pagedep = dirrem->dm_pagedep;
7273	/*
7274	 * The possible values for isrmdir:
7275	 *	0 - non-directory file rename
7276	 *	1 - directory rename within same directory
7277	 *   inum - directory rename to new directory of given inode number
7278	 * When renaming to a new directory, we are both deleting and
7279	 * creating a new directory entry, so the link count on the new
7280	 * directory should not change. Thus we do not need the followup
7281	 * dirrem which is usually done in handle_workitem_remove. We set
7282	 * the DIRCHG flag to tell handle_workitem_remove to skip the
7283	 * followup dirrem.
7284	 */
7285	if (isrmdir > 1)
7286		dirrem->dm_state |= DIRCHG;
7287
7288	/*
7289	 * Whiteouts have no additional dependencies,
7290	 * so just put the dirrem on the correct list.
7291	 */
7292	if (newinum == WINO) {
7293		if ((dirrem->dm_state & COMPLETE) == 0) {
7294			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
7295			    dm_next);
7296		} else {
7297			dirrem->dm_dirinum = pagedep->pd_ino;
7298			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
7299				add_to_worklist(&dirrem->dm_list, 0);
7300		}
7301		FREE_LOCK(&lk);
7302		return;
7303	}
7304	/*
7305	 * Add the dirrem to the inodedep's pending remove list for quick
7306	 * discovery later.  A valid nlinkdelta ensures that this lookup
7307	 * will not fail.
7308	 */
7309	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
7310		panic("softdep_setup_directory_change: Lost inodedep.");
7311	dirrem->dm_state |= ONDEPLIST;
7312	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
7313
7314	/*
7315	 * If the COMPLETE flag is clear, then there were no active
7316	 * entries and we want to roll back to the previous inode until
7317	 * the new inode is committed to disk. If the COMPLETE flag is
7318	 * set, then we have deleted an entry that never made it to disk.
7319	 * If the entry we deleted resulted from a name change, then the old
7320	 * inode reference still resides on disk. Any rollback that we do
7321	 * needs to be to that old inode (returned to us in prevdirrem). If
7322	 * the entry we deleted resulted from a create, then there is
7323	 * no entry on the disk, so we want to roll back to zero rather
7324	 * than the uncommitted inode. In either of the COMPLETE cases we
7325	 * want to immediately free the unwritten and unreferenced inode.
7326	 */
7327	if ((dirrem->dm_state & COMPLETE) == 0) {
7328		dap->da_previous = dirrem;
7329	} else {
7330		if (prevdirrem != NULL) {
7331			dap->da_previous = prevdirrem;
7332		} else {
7333			dap->da_state &= ~DIRCHG;
7334			dap->da_pagedep = pagedep;
7335		}
7336		dirrem->dm_dirinum = pagedep->pd_ino;
7337		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
7338			add_to_worklist(&dirrem->dm_list, 0);
7339	}
7340	/*
7341	 * Lookup the jaddref for this journal entry.  We must finish
7342	 * initializing it and make the diradd write dependent on it.
7343	 * If we're not journaling Put it on the id_bufwait list if the inode
7344	 * is not yet written. If it is written, do the post-inode write
7345	 * processing to put it on the id_pendinghd list.
7346	 */
7347	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
7348	if (mp->mnt_kern_flag & MNTK_SUJ) {
7349		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
7350		    inoreflst);
7351		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
7352		    ("softdep_setup_directory_change: bad jaddref %p",
7353		    jaddref));
7354		jaddref->ja_diroff = dp->i_offset;
7355		jaddref->ja_diradd = dap;
7356		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
7357		    dap, da_pdlist);
7358		add_to_journal(&jaddref->ja_list);
7359	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
7360		dap->da_state |= COMPLETE;
7361		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
7362		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
7363	} else {
7364		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
7365		    dap, da_pdlist);
7366		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
7367	}
7368	/*
7369	 * If we're making a new name for a directory that has not been
7370	 * committed when need to move the dot and dotdot references to
7371	 * this new name.
7372	 */
7373	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
7374		merge_diradd(inodedep, dap);
7375	FREE_LOCK(&lk);
7376}
7377
7378/*
7379 * Called whenever the link count on an inode is changed.
7380 * It creates an inode dependency so that the new reference(s)
7381 * to the inode cannot be committed to disk until the updated
7382 * inode has been written.
7383 */
7384void
7385softdep_change_linkcnt(ip)
7386	struct inode *ip;	/* the inode with the increased link count */
7387{
7388	struct inodedep *inodedep;
7389
7390	ACQUIRE_LOCK(&lk);
7391	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
7392	if (ip->i_nlink < ip->i_effnlink)
7393		panic("softdep_change_linkcnt: bad delta");
7394	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7395	FREE_LOCK(&lk);
7396}
7397
7398/*
7399 * Attach a sbdep dependency to the superblock buf so that we can keep
7400 * track of the head of the linked list of referenced but unlinked inodes.
7401 */
7402void
7403softdep_setup_sbupdate(ump, fs, bp)
7404	struct ufsmount *ump;
7405	struct fs *fs;
7406	struct buf *bp;
7407{
7408	struct sbdep *sbdep;
7409	struct worklist *wk;
7410
7411	if ((fs->fs_flags & FS_SUJ) == 0)
7412		return;
7413	LIST_FOREACH(wk, &bp->b_dep, wk_list)
7414		if (wk->wk_type == D_SBDEP)
7415			break;
7416	if (wk != NULL)
7417		return;
7418	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
7419	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
7420	sbdep->sb_fs = fs;
7421	sbdep->sb_ump = ump;
7422	ACQUIRE_LOCK(&lk);
7423	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
7424	FREE_LOCK(&lk);
7425}
7426
7427/*
7428 * Return the first unlinked inodedep which is ready to be the head of the
7429 * list.  The inodedep and all those after it must have valid next pointers.
7430 */
7431static struct inodedep *
7432first_unlinked_inodedep(ump)
7433	struct ufsmount *ump;
7434{
7435	struct inodedep *inodedep;
7436	struct inodedep *idp;
7437
7438	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
7439	    inodedep; inodedep = idp) {
7440		if ((inodedep->id_state & UNLINKNEXT) == 0)
7441			return (NULL);
7442		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7443		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
7444			break;
7445		if ((inodedep->id_state & UNLINKPREV) == 0)
7446			panic("first_unlinked_inodedep: prev != next");
7447	}
7448	if (inodedep == NULL)
7449		return (NULL);
7450
7451	return (inodedep);
7452}
7453
7454/*
7455 * Set the sujfree unlinked head pointer prior to writing a superblock.
7456 */
7457static void
7458initiate_write_sbdep(sbdep)
7459	struct sbdep *sbdep;
7460{
7461	struct inodedep *inodedep;
7462	struct fs *bpfs;
7463	struct fs *fs;
7464
7465	bpfs = sbdep->sb_fs;
7466	fs = sbdep->sb_ump->um_fs;
7467	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
7468	if (inodedep) {
7469		fs->fs_sujfree = inodedep->id_ino;
7470		inodedep->id_state |= UNLINKPREV;
7471	} else
7472		fs->fs_sujfree = 0;
7473	bpfs->fs_sujfree = fs->fs_sujfree;
7474}
7475
7476/*
7477 * After a superblock is written determine whether it must be written again
7478 * due to a changing unlinked list head.
7479 */
7480static int
7481handle_written_sbdep(sbdep, bp)
7482	struct sbdep *sbdep;
7483	struct buf *bp;
7484{
7485	struct inodedep *inodedep;
7486	struct mount *mp;
7487	struct fs *fs;
7488
7489	fs = sbdep->sb_fs;
7490	mp = UFSTOVFS(sbdep->sb_ump);
7491	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
7492	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
7493	    (inodedep == NULL && fs->fs_sujfree != 0)) {
7494		bdirty(bp);
7495		return (1);
7496	}
7497	WORKITEM_FREE(sbdep, D_SBDEP);
7498	if (fs->fs_sujfree == 0)
7499		return (0);
7500	if (inodedep_lookup(mp, fs->fs_sujfree, 0, &inodedep) == 0)
7501		panic("handle_written_sbdep: lost inodedep");
7502	/*
7503	 * Now that we have a record of this inode in stable store allow it
7504	 * to be written to free up pending work.  Inodes may see a lot of
7505	 * write activity after they are unlinked which we must not hold up.
7506	 */
7507	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
7508		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
7509			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
7510			    inodedep, inodedep->id_state);
7511		if (inodedep->id_state & UNLINKONLIST)
7512			break;
7513		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
7514	}
7515
7516	return (0);
7517}
7518
7519/*
7520 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
7521 */
7522static void
7523unlinked_inodedep(mp, inodedep)
7524	struct mount *mp;
7525	struct inodedep *inodedep;
7526{
7527	struct ufsmount *ump;
7528
7529	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0)
7530		return;
7531	ump = VFSTOUFS(mp);
7532	ump->um_fs->fs_fmod = 1;
7533	inodedep->id_state |= UNLINKED;
7534	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
7535}
7536
7537/*
7538 * Remove an inodedep from the unlinked inodedep list.  This may require
7539 * disk writes if the inode has made it that far.
7540 */
7541static void
7542clear_unlinked_inodedep(inodedep)
7543	struct inodedep *inodedep;
7544{
7545	struct ufsmount *ump;
7546	struct inodedep *idp;
7547	struct inodedep *idn;
7548	struct fs *fs;
7549	struct buf *bp;
7550	ino_t ino;
7551	ino_t nino;
7552	ino_t pino;
7553	int error;
7554
7555	ump = VFSTOUFS(inodedep->id_list.wk_mp);
7556	fs = ump->um_fs;
7557	ino = inodedep->id_ino;
7558	error = 0;
7559	for (;;) {
7560		/*
7561		 * If nothing has yet been written simply remove us from
7562		 * the in memory list and return.  This is the most common
7563		 * case where handle_workitem_remove() loses the final
7564		 * reference.
7565		 */
7566		if ((inodedep->id_state & UNLINKLINKS) == 0)
7567			break;
7568		/*
7569		 * If we have a NEXT pointer and no PREV pointer we can simply
7570		 * clear NEXT's PREV and remove ourselves from the list.  Be
7571		 * careful not to clear PREV if the superblock points at
7572		 * next as well.
7573		 */
7574		idn = TAILQ_NEXT(inodedep, id_unlinked);
7575		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
7576			if (idn && fs->fs_sujfree != idn->id_ino)
7577				idn->id_state &= ~UNLINKPREV;
7578			break;
7579		}
7580		/*
7581		 * Here we have an inodedep which is actually linked into
7582		 * the list.  We must remove it by forcing a write to the
7583		 * link before us, whether it be the superblock or an inode.
7584		 * Unfortunately the list may change while we're waiting
7585		 * on the buf lock for either resource so we must loop until
7586		 * we lock the right one.  If both the superblock and an
7587		 * inode point to this inode we must clear the inode first
7588		 * followed by the superblock.
7589		 */
7590		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7591		pino = 0;
7592		if (idp && (idp->id_state & UNLINKNEXT))
7593			pino = idp->id_ino;
7594		FREE_LOCK(&lk);
7595		if (pino == 0)
7596			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
7597			    (int)fs->fs_sbsize, 0, 0, 0);
7598		else
7599			error = bread(ump->um_devvp,
7600			    fsbtodb(fs, ino_to_fsba(fs, pino)),
7601			    (int)fs->fs_bsize, NOCRED, &bp);
7602		ACQUIRE_LOCK(&lk);
7603		if (error)
7604			break;
7605		/* If the list has changed restart the loop. */
7606		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7607		nino = 0;
7608		if (idp && (idp->id_state & UNLINKNEXT))
7609			nino = idp->id_ino;
7610		if (nino != pino ||
7611		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
7612			FREE_LOCK(&lk);
7613			brelse(bp);
7614			ACQUIRE_LOCK(&lk);
7615			continue;
7616		}
7617		/*
7618		 * Remove us from the in memory list.  After this we cannot
7619		 * access the inodedep.
7620		 */
7621		idn = TAILQ_NEXT(inodedep, id_unlinked);
7622		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
7623		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
7624		/*
7625		 * Determine the next inode number.
7626		 */
7627		nino = 0;
7628		if (idn) {
7629			/*
7630			 * If next isn't on the list we can just clear prev's
7631			 * state and schedule it to be fixed later.  No need
7632			 * to synchronously write if we're not in the real
7633			 * list.
7634			 */
7635			if ((idn->id_state & UNLINKPREV) == 0 && pino != 0) {
7636				idp->id_state &= ~UNLINKNEXT;
7637				if ((idp->id_state & ONWORKLIST) == 0)
7638					WORKLIST_INSERT(&bp->b_dep,
7639					    &idp->id_list);
7640				FREE_LOCK(&lk);
7641				bawrite(bp);
7642				ACQUIRE_LOCK(&lk);
7643				return;
7644			}
7645			nino = idn->id_ino;
7646		}
7647		FREE_LOCK(&lk);
7648		/*
7649		 * The predecessor's next pointer is manually updated here
7650		 * so that the NEXT flag is never cleared for an element
7651		 * that is in the list.
7652		 */
7653		if (pino == 0) {
7654			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
7655			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
7656			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
7657			    bp);
7658		} else if (fs->fs_magic == FS_UFS1_MAGIC)
7659			((struct ufs1_dinode *)bp->b_data +
7660			    ino_to_fsbo(fs, pino))->di_freelink = nino;
7661		else
7662			((struct ufs2_dinode *)bp->b_data +
7663			    ino_to_fsbo(fs, pino))->di_freelink = nino;
7664		/*
7665		 * If the bwrite fails we have no recourse to recover.  The
7666		 * filesystem is corrupted already.
7667		 */
7668		bwrite(bp);
7669		ACQUIRE_LOCK(&lk);
7670		/*
7671		 * If the superblock pointer still needs to be cleared force
7672		 * a write here.
7673		 */
7674		if (fs->fs_sujfree == ino) {
7675			FREE_LOCK(&lk);
7676			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
7677			    (int)fs->fs_sbsize, 0, 0, 0);
7678			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
7679			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
7680			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
7681			    bp);
7682			bwrite(bp);
7683			ACQUIRE_LOCK(&lk);
7684		}
7685		if (fs->fs_sujfree != ino)
7686			return;
7687		panic("clear_unlinked_inodedep: Failed to clear free head");
7688	}
7689	if (inodedep->id_ino == fs->fs_sujfree)
7690		panic("clear_unlinked_inodedep: Freeing head of free list");
7691	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
7692	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
7693	return;
7694}
7695
7696/*
7697 * This workitem decrements the inode's link count.
7698 * If the link count reaches zero, the file is removed.
7699 */
7700static void
7701handle_workitem_remove(dirrem, xp)
7702	struct dirrem *dirrem;
7703	struct vnode *xp;
7704{
7705	struct inodedep *inodedep;
7706	struct workhead dotdotwk;
7707	struct worklist *wk;
7708	struct ufsmount *ump;
7709	struct mount *mp;
7710	struct vnode *vp;
7711	struct inode *ip;
7712	ino_t oldinum;
7713	int error;
7714
7715	if (dirrem->dm_state & ONWORKLIST)
7716		panic("handle_workitem_remove: dirrem %p still on worklist",
7717		    dirrem);
7718	oldinum = dirrem->dm_oldinum;
7719	mp = dirrem->dm_list.wk_mp;
7720	ump = VFSTOUFS(mp);
7721	if ((vp = xp) == NULL &&
7722	    (error = ffs_vgetf(mp, oldinum, LK_EXCLUSIVE, &vp,
7723	    FFSV_FORCEINSMQ)) != 0) {
7724		softdep_error("handle_workitem_remove: vget", error);
7725		return;
7726	}
7727	ip = VTOI(vp);
7728	ACQUIRE_LOCK(&lk);
7729	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
7730		panic("handle_workitem_remove: lost inodedep");
7731	if (dirrem->dm_state & ONDEPLIST)
7732		LIST_REMOVE(dirrem, dm_inonext);
7733	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
7734	    ("handle_workitem_remove:  Journal entries not written."));
7735
7736	/*
7737	 * Move all dependencies waiting on the remove to complete
7738	 * from the dirrem to the inode inowait list to be completed
7739	 * after the inode has been updated and written to disk.  Any
7740	 * marked MKDIR_PARENT are saved to be completed when the .. ref
7741	 * is removed.
7742	 */
7743	LIST_INIT(&dotdotwk);
7744	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
7745		WORKLIST_REMOVE(wk);
7746		if (wk->wk_state & MKDIR_PARENT) {
7747			wk->wk_state &= ~MKDIR_PARENT;
7748			WORKLIST_INSERT(&dotdotwk, wk);
7749			continue;
7750		}
7751		WORKLIST_INSERT(&inodedep->id_inowait, wk);
7752	}
7753	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
7754	/*
7755	 * Normal file deletion.
7756	 */
7757	if ((dirrem->dm_state & RMDIR) == 0) {
7758		ip->i_nlink--;
7759		DIP_SET(ip, i_nlink, ip->i_nlink);
7760		ip->i_flag |= IN_CHANGE;
7761		if (ip->i_nlink < ip->i_effnlink)
7762			panic("handle_workitem_remove: bad file delta");
7763		if (ip->i_nlink == 0)
7764			unlinked_inodedep(mp, inodedep);
7765		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7766		num_dirrem -= 1;
7767		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
7768		    ("handle_workitem_remove: worklist not empty. %s",
7769		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
7770		WORKITEM_FREE(dirrem, D_DIRREM);
7771		FREE_LOCK(&lk);
7772		goto out;
7773	}
7774	/*
7775	 * Directory deletion. Decrement reference count for both the
7776	 * just deleted parent directory entry and the reference for ".".
7777	 * Arrange to have the reference count on the parent decremented
7778	 * to account for the loss of "..".
7779	 */
7780	ip->i_nlink -= 2;
7781	DIP_SET(ip, i_nlink, ip->i_nlink);
7782	ip->i_flag |= IN_CHANGE;
7783	if (ip->i_nlink < ip->i_effnlink)
7784		panic("handle_workitem_remove: bad dir delta");
7785	if (ip->i_nlink == 0)
7786		unlinked_inodedep(mp, inodedep);
7787	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7788	/*
7789	 * Rename a directory to a new parent. Since, we are both deleting
7790	 * and creating a new directory entry, the link count on the new
7791	 * directory should not change. Thus we skip the followup dirrem.
7792	 */
7793	if (dirrem->dm_state & DIRCHG) {
7794		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
7795		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
7796		num_dirrem -= 1;
7797		WORKITEM_FREE(dirrem, D_DIRREM);
7798		FREE_LOCK(&lk);
7799		goto out;
7800	}
7801	dirrem->dm_state = ONDEPLIST;
7802	dirrem->dm_oldinum = dirrem->dm_dirinum;
7803	/*
7804	 * Place the dirrem on the parent's diremhd list.
7805	 */
7806	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
7807		panic("handle_workitem_remove: lost dir inodedep");
7808	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
7809	/*
7810	 * If the allocated inode has never been written to disk, then
7811	 * the on-disk inode is zero'ed and we can remove the file
7812	 * immediately.  When journaling if the inode has been marked
7813	 * unlinked and not DEPCOMPLETE we know it can never be written.
7814	 */
7815	inodedep_lookup(mp, oldinum, 0, &inodedep);
7816	if (inodedep == NULL ||
7817	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
7818	    check_inode_unwritten(inodedep)) {
7819		if (xp != NULL)
7820			add_to_worklist(&dirrem->dm_list, 0);
7821		FREE_LOCK(&lk);
7822		if (xp == NULL) {
7823			vput(vp);
7824			handle_workitem_remove(dirrem, NULL);
7825		}
7826		return;
7827	}
7828	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
7829	FREE_LOCK(&lk);
7830	ip->i_flag |= IN_CHANGE;
7831out:
7832	ffs_update(vp, 0);
7833	if (xp == NULL)
7834		vput(vp);
7835}
7836
7837/*
7838 * Inode de-allocation dependencies.
7839 *
7840 * When an inode's link count is reduced to zero, it can be de-allocated. We
7841 * found it convenient to postpone de-allocation until after the inode is
7842 * written to disk with its new link count (zero).  At this point, all of the
7843 * on-disk inode's block pointers are nullified and, with careful dependency
7844 * list ordering, all dependencies related to the inode will be satisfied and
7845 * the corresponding dependency structures de-allocated.  So, if/when the
7846 * inode is reused, there will be no mixing of old dependencies with new
7847 * ones.  This artificial dependency is set up by the block de-allocation
7848 * procedure above (softdep_setup_freeblocks) and completed by the
7849 * following procedure.
7850 */
7851static void
7852handle_workitem_freefile(freefile)
7853	struct freefile *freefile;
7854{
7855	struct workhead wkhd;
7856	struct fs *fs;
7857	struct inodedep *idp;
7858	struct ufsmount *ump;
7859	int error;
7860
7861	ump = VFSTOUFS(freefile->fx_list.wk_mp);
7862	fs = ump->um_fs;
7863#ifdef DEBUG
7864	ACQUIRE_LOCK(&lk);
7865	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
7866	FREE_LOCK(&lk);
7867	if (error)
7868		panic("handle_workitem_freefile: inodedep %p survived", idp);
7869#endif
7870	UFS_LOCK(ump);
7871	fs->fs_pendinginodes -= 1;
7872	UFS_UNLOCK(ump);
7873	LIST_INIT(&wkhd);
7874	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
7875	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
7876	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
7877		softdep_error("handle_workitem_freefile", error);
7878	ACQUIRE_LOCK(&lk);
7879	WORKITEM_FREE(freefile, D_FREEFILE);
7880	FREE_LOCK(&lk);
7881}
7882
7883
7884/*
7885 * Helper function which unlinks marker element from work list and returns
7886 * the next element on the list.
7887 */
7888static __inline struct worklist *
7889markernext(struct worklist *marker)
7890{
7891	struct worklist *next;
7892
7893	next = LIST_NEXT(marker, wk_list);
7894	LIST_REMOVE(marker, wk_list);
7895	return next;
7896}
7897
7898/*
7899 * Disk writes.
7900 *
7901 * The dependency structures constructed above are most actively used when file
7902 * system blocks are written to disk.  No constraints are placed on when a
7903 * block can be written, but unsatisfied update dependencies are made safe by
7904 * modifying (or replacing) the source memory for the duration of the disk
7905 * write.  When the disk write completes, the memory block is again brought
7906 * up-to-date.
7907 *
7908 * In-core inode structure reclamation.
7909 *
7910 * Because there are a finite number of "in-core" inode structures, they are
7911 * reused regularly.  By transferring all inode-related dependencies to the
7912 * in-memory inode block and indexing them separately (via "inodedep"s), we
7913 * can allow "in-core" inode structures to be reused at any time and avoid
7914 * any increase in contention.
7915 *
7916 * Called just before entering the device driver to initiate a new disk I/O.
7917 * The buffer must be locked, thus, no I/O completion operations can occur
7918 * while we are manipulating its associated dependencies.
7919 */
7920static void
7921softdep_disk_io_initiation(bp)
7922	struct buf *bp;		/* structure describing disk write to occur */
7923{
7924	struct worklist *wk;
7925	struct worklist marker;
7926	struct inodedep *inodedep;
7927	struct freeblks *freeblks;
7928	struct jfreeblk *jfreeblk;
7929	struct newblk *newblk;
7930
7931	/*
7932	 * We only care about write operations. There should never
7933	 * be dependencies for reads.
7934	 */
7935	if (bp->b_iocmd != BIO_WRITE)
7936		panic("softdep_disk_io_initiation: not write");
7937
7938	if (bp->b_vflags & BV_BKGRDINPROG)
7939		panic("softdep_disk_io_initiation: Writing buffer with "
7940		    "background write in progress: %p", bp);
7941
7942	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
7943	PHOLD(curproc);			/* Don't swap out kernel stack */
7944
7945	ACQUIRE_LOCK(&lk);
7946	/*
7947	 * Do any necessary pre-I/O processing.
7948	 */
7949	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
7950	     wk = markernext(&marker)) {
7951		LIST_INSERT_AFTER(wk, &marker, wk_list);
7952		switch (wk->wk_type) {
7953
7954		case D_PAGEDEP:
7955			initiate_write_filepage(WK_PAGEDEP(wk), bp);
7956			continue;
7957
7958		case D_INODEDEP:
7959			inodedep = WK_INODEDEP(wk);
7960			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
7961				initiate_write_inodeblock_ufs1(inodedep, bp);
7962			else
7963				initiate_write_inodeblock_ufs2(inodedep, bp);
7964			continue;
7965
7966		case D_INDIRDEP:
7967			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
7968			continue;
7969
7970		case D_BMSAFEMAP:
7971			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
7972			continue;
7973
7974		case D_JSEG:
7975			WK_JSEG(wk)->js_buf = NULL;
7976			continue;
7977
7978		case D_FREEBLKS:
7979			freeblks = WK_FREEBLKS(wk);
7980			jfreeblk = LIST_FIRST(&freeblks->fb_jfreeblkhd);
7981			/*
7982			 * We have to wait for the jfreeblks to be journaled
7983			 * before we can write an inodeblock with updated
7984			 * pointers.  Be careful to arrange the marker so
7985			 * we revisit the jfreeblk if it's not removed by
7986			 * the first jwait().
7987			 */
7988			if (jfreeblk != NULL) {
7989				LIST_REMOVE(&marker, wk_list);
7990				LIST_INSERT_BEFORE(wk, &marker, wk_list);
7991				jwait(&jfreeblk->jf_list);
7992			}
7993			continue;
7994		case D_ALLOCDIRECT:
7995		case D_ALLOCINDIR:
7996			/*
7997			 * We have to wait for the jnewblk to be journaled
7998			 * before we can write to a block otherwise the
7999			 * contents may be confused with an earlier file
8000			 * at recovery time.  Handle the marker as described
8001			 * above.
8002			 */
8003			newblk = WK_NEWBLK(wk);
8004			if (newblk->nb_jnewblk != NULL) {
8005				LIST_REMOVE(&marker, wk_list);
8006				LIST_INSERT_BEFORE(wk, &marker, wk_list);
8007				jwait(&newblk->nb_jnewblk->jn_list);
8008			}
8009			continue;
8010
8011		case D_SBDEP:
8012			initiate_write_sbdep(WK_SBDEP(wk));
8013			continue;
8014
8015		case D_MKDIR:
8016		case D_FREEWORK:
8017		case D_FREEDEP:
8018		case D_JSEGDEP:
8019			continue;
8020
8021		default:
8022			panic("handle_disk_io_initiation: Unexpected type %s",
8023			    TYPENAME(wk->wk_type));
8024			/* NOTREACHED */
8025		}
8026	}
8027	FREE_LOCK(&lk);
8028	PRELE(curproc);			/* Allow swapout of kernel stack */
8029}
8030
8031/*
8032 * Called from within the procedure above to deal with unsatisfied
8033 * allocation dependencies in a directory. The buffer must be locked,
8034 * thus, no I/O completion operations can occur while we are
8035 * manipulating its associated dependencies.
8036 */
8037static void
8038initiate_write_filepage(pagedep, bp)
8039	struct pagedep *pagedep;
8040	struct buf *bp;
8041{
8042	struct jremref *jremref;
8043	struct jmvref *jmvref;
8044	struct dirrem *dirrem;
8045	struct diradd *dap;
8046	struct direct *ep;
8047	int i;
8048
8049	if (pagedep->pd_state & IOSTARTED) {
8050		/*
8051		 * This can only happen if there is a driver that does not
8052		 * understand chaining. Here biodone will reissue the call
8053		 * to strategy for the incomplete buffers.
8054		 */
8055		printf("initiate_write_filepage: already started\n");
8056		return;
8057	}
8058	pagedep->pd_state |= IOSTARTED;
8059	/*
8060	 * Wait for all journal remove dependencies to hit the disk.
8061	 * We can not allow any potentially conflicting directory adds
8062	 * to be visible before removes and rollback is too difficult.
8063	 * lk may be dropped and re-acquired, however we hold the buf
8064	 * locked so the dependency can not go away.
8065	 */
8066	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
8067		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
8068			stat_jwait_filepage++;
8069			jwait(&jremref->jr_list);
8070		}
8071	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
8072		stat_jwait_filepage++;
8073		jwait(&jmvref->jm_list);
8074	}
8075	for (i = 0; i < DAHASHSZ; i++) {
8076		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
8077			ep = (struct direct *)
8078			    ((char *)bp->b_data + dap->da_offset);
8079			if (ep->d_ino != dap->da_newinum)
8080				panic("%s: dir inum %d != new %d",
8081				    "initiate_write_filepage",
8082				    ep->d_ino, dap->da_newinum);
8083			if (dap->da_state & DIRCHG)
8084				ep->d_ino = dap->da_previous->dm_oldinum;
8085			else
8086				ep->d_ino = 0;
8087			dap->da_state &= ~ATTACHED;
8088			dap->da_state |= UNDONE;
8089		}
8090	}
8091}
8092
8093/*
8094 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
8095 * Note that any bug fixes made to this routine must be done in the
8096 * version found below.
8097 *
8098 * Called from within the procedure above to deal with unsatisfied
8099 * allocation dependencies in an inodeblock. The buffer must be
8100 * locked, thus, no I/O completion operations can occur while we
8101 * are manipulating its associated dependencies.
8102 */
8103static void
8104initiate_write_inodeblock_ufs1(inodedep, bp)
8105	struct inodedep *inodedep;
8106	struct buf *bp;			/* The inode block */
8107{
8108	struct allocdirect *adp, *lastadp;
8109	struct ufs1_dinode *dp;
8110	struct ufs1_dinode *sip;
8111	struct inoref *inoref;
8112	struct fs *fs;
8113	ufs_lbn_t i;
8114#ifdef INVARIANTS
8115	ufs_lbn_t prevlbn = 0;
8116#endif
8117	int deplist;
8118
8119	if (inodedep->id_state & IOSTARTED)
8120		panic("initiate_write_inodeblock_ufs1: already started");
8121	inodedep->id_state |= IOSTARTED;
8122	fs = inodedep->id_fs;
8123	dp = (struct ufs1_dinode *)bp->b_data +
8124	    ino_to_fsbo(fs, inodedep->id_ino);
8125
8126	/*
8127	 * If we're on the unlinked list but have not yet written our
8128	 * next pointer initialize it here.
8129	 */
8130	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
8131		struct inodedep *inon;
8132
8133		inon = TAILQ_NEXT(inodedep, id_unlinked);
8134		dp->di_freelink = inon ? inon->id_ino : 0;
8135	}
8136	/*
8137	 * If the bitmap is not yet written, then the allocated
8138	 * inode cannot be written to disk.
8139	 */
8140	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
8141		if (inodedep->id_savedino1 != NULL)
8142			panic("initiate_write_inodeblock_ufs1: I/O underway");
8143		FREE_LOCK(&lk);
8144		sip = malloc(sizeof(struct ufs1_dinode),
8145		    M_SAVEDINO, M_SOFTDEP_FLAGS);
8146		ACQUIRE_LOCK(&lk);
8147		inodedep->id_savedino1 = sip;
8148		*inodedep->id_savedino1 = *dp;
8149		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
8150		dp->di_gen = inodedep->id_savedino1->di_gen;
8151		dp->di_freelink = inodedep->id_savedino1->di_freelink;
8152		return;
8153	}
8154	/*
8155	 * If no dependencies, then there is nothing to roll back.
8156	 */
8157	inodedep->id_savedsize = dp->di_size;
8158	inodedep->id_savedextsize = 0;
8159	inodedep->id_savednlink = dp->di_nlink;
8160	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
8161	    TAILQ_EMPTY(&inodedep->id_inoreflst))
8162		return;
8163	/*
8164	 * Revert the link count to that of the first unwritten journal entry.
8165	 */
8166	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
8167	if (inoref)
8168		dp->di_nlink = inoref->if_nlink;
8169	/*
8170	 * Set the dependencies to busy.
8171	 */
8172	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8173	     adp = TAILQ_NEXT(adp, ad_next)) {
8174#ifdef INVARIANTS
8175		if (deplist != 0 && prevlbn >= adp->ad_offset)
8176			panic("softdep_write_inodeblock: lbn order");
8177		prevlbn = adp->ad_offset;
8178		if (adp->ad_offset < NDADDR &&
8179		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
8180			panic("%s: direct pointer #%jd mismatch %d != %jd",
8181			    "softdep_write_inodeblock",
8182			    (intmax_t)adp->ad_offset,
8183			    dp->di_db[adp->ad_offset],
8184			    (intmax_t)adp->ad_newblkno);
8185		if (adp->ad_offset >= NDADDR &&
8186		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
8187			panic("%s: indirect pointer #%jd mismatch %d != %jd",
8188			    "softdep_write_inodeblock",
8189			    (intmax_t)adp->ad_offset - NDADDR,
8190			    dp->di_ib[adp->ad_offset - NDADDR],
8191			    (intmax_t)adp->ad_newblkno);
8192		deplist |= 1 << adp->ad_offset;
8193		if ((adp->ad_state & ATTACHED) == 0)
8194			panic("softdep_write_inodeblock: Unknown state 0x%x",
8195			    adp->ad_state);
8196#endif /* INVARIANTS */
8197		adp->ad_state &= ~ATTACHED;
8198		adp->ad_state |= UNDONE;
8199	}
8200	/*
8201	 * The on-disk inode cannot claim to be any larger than the last
8202	 * fragment that has been written. Otherwise, the on-disk inode
8203	 * might have fragments that were not the last block in the file
8204	 * which would corrupt the filesystem.
8205	 */
8206	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8207	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8208		if (adp->ad_offset >= NDADDR)
8209			break;
8210		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
8211		/* keep going until hitting a rollback to a frag */
8212		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8213			continue;
8214		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8215		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
8216#ifdef INVARIANTS
8217			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
8218				panic("softdep_write_inodeblock: lost dep1");
8219#endif /* INVARIANTS */
8220			dp->di_db[i] = 0;
8221		}
8222		for (i = 0; i < NIADDR; i++) {
8223#ifdef INVARIANTS
8224			if (dp->di_ib[i] != 0 &&
8225			    (deplist & ((1 << NDADDR) << i)) == 0)
8226				panic("softdep_write_inodeblock: lost dep2");
8227#endif /* INVARIANTS */
8228			dp->di_ib[i] = 0;
8229		}
8230		return;
8231	}
8232	/*
8233	 * If we have zero'ed out the last allocated block of the file,
8234	 * roll back the size to the last currently allocated block.
8235	 * We know that this last allocated block is a full-sized as
8236	 * we already checked for fragments in the loop above.
8237	 */
8238	if (lastadp != NULL &&
8239	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8240		for (i = lastadp->ad_offset; i >= 0; i--)
8241			if (dp->di_db[i] != 0)
8242				break;
8243		dp->di_size = (i + 1) * fs->fs_bsize;
8244	}
8245	/*
8246	 * The only dependencies are for indirect blocks.
8247	 *
8248	 * The file size for indirect block additions is not guaranteed.
8249	 * Such a guarantee would be non-trivial to achieve. The conventional
8250	 * synchronous write implementation also does not make this guarantee.
8251	 * Fsck should catch and fix discrepancies. Arguably, the file size
8252	 * can be over-estimated without destroying integrity when the file
8253	 * moves into the indirect blocks (i.e., is large). If we want to
8254	 * postpone fsck, we are stuck with this argument.
8255	 */
8256	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
8257		dp->di_ib[adp->ad_offset - NDADDR] = 0;
8258}
8259
8260/*
8261 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
8262 * Note that any bug fixes made to this routine must be done in the
8263 * version found above.
8264 *
8265 * Called from within the procedure above to deal with unsatisfied
8266 * allocation dependencies in an inodeblock. The buffer must be
8267 * locked, thus, no I/O completion operations can occur while we
8268 * are manipulating its associated dependencies.
8269 */
8270static void
8271initiate_write_inodeblock_ufs2(inodedep, bp)
8272	struct inodedep *inodedep;
8273	struct buf *bp;			/* The inode block */
8274{
8275	struct allocdirect *adp, *lastadp;
8276	struct ufs2_dinode *dp;
8277	struct ufs2_dinode *sip;
8278	struct inoref *inoref;
8279	struct fs *fs;
8280	ufs_lbn_t i;
8281#ifdef INVARIANTS
8282	ufs_lbn_t prevlbn = 0;
8283#endif
8284	int deplist;
8285
8286	if (inodedep->id_state & IOSTARTED)
8287		panic("initiate_write_inodeblock_ufs2: already started");
8288	inodedep->id_state |= IOSTARTED;
8289	fs = inodedep->id_fs;
8290	dp = (struct ufs2_dinode *)bp->b_data +
8291	    ino_to_fsbo(fs, inodedep->id_ino);
8292
8293	/*
8294	 * If we're on the unlinked list but have not yet written our
8295	 * next pointer initialize it here.
8296	 */
8297	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
8298		struct inodedep *inon;
8299
8300		inon = TAILQ_NEXT(inodedep, id_unlinked);
8301		dp->di_freelink = inon ? inon->id_ino : 0;
8302	}
8303	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) ==
8304	    (UNLINKED | UNLINKNEXT)) {
8305		struct inodedep *inon;
8306		ino_t freelink;
8307
8308		inon = TAILQ_NEXT(inodedep, id_unlinked);
8309		freelink = inon ? inon->id_ino : 0;
8310		if (freelink != dp->di_freelink)
8311			panic("ino %p(0x%X) %d, %d != %d",
8312			    inodedep, inodedep->id_state, inodedep->id_ino,
8313			    freelink, dp->di_freelink);
8314	}
8315	/*
8316	 * If the bitmap is not yet written, then the allocated
8317	 * inode cannot be written to disk.
8318	 */
8319	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
8320		if (inodedep->id_savedino2 != NULL)
8321			panic("initiate_write_inodeblock_ufs2: I/O underway");
8322		FREE_LOCK(&lk);
8323		sip = malloc(sizeof(struct ufs2_dinode),
8324		    M_SAVEDINO, M_SOFTDEP_FLAGS);
8325		ACQUIRE_LOCK(&lk);
8326		inodedep->id_savedino2 = sip;
8327		*inodedep->id_savedino2 = *dp;
8328		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
8329		dp->di_gen = inodedep->id_savedino2->di_gen;
8330		dp->di_freelink = inodedep->id_savedino2->di_freelink;
8331		return;
8332	}
8333	/*
8334	 * If no dependencies, then there is nothing to roll back.
8335	 */
8336	inodedep->id_savedsize = dp->di_size;
8337	inodedep->id_savedextsize = dp->di_extsize;
8338	inodedep->id_savednlink = dp->di_nlink;
8339	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
8340	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
8341	    TAILQ_EMPTY(&inodedep->id_inoreflst))
8342		return;
8343	/*
8344	 * Revert the link count to that of the first unwritten journal entry.
8345	 */
8346	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
8347	if (inoref)
8348		dp->di_nlink = inoref->if_nlink;
8349
8350	/*
8351	 * Set the ext data dependencies to busy.
8352	 */
8353	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
8354	     adp = TAILQ_NEXT(adp, ad_next)) {
8355#ifdef INVARIANTS
8356		if (deplist != 0 && prevlbn >= adp->ad_offset)
8357			panic("softdep_write_inodeblock: lbn order");
8358		prevlbn = adp->ad_offset;
8359		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
8360			panic("%s: direct pointer #%jd mismatch %jd != %jd",
8361			    "softdep_write_inodeblock",
8362			    (intmax_t)adp->ad_offset,
8363			    (intmax_t)dp->di_extb[adp->ad_offset],
8364			    (intmax_t)adp->ad_newblkno);
8365		deplist |= 1 << adp->ad_offset;
8366		if ((adp->ad_state & ATTACHED) == 0)
8367			panic("softdep_write_inodeblock: Unknown state 0x%x",
8368			    adp->ad_state);
8369#endif /* INVARIANTS */
8370		adp->ad_state &= ~ATTACHED;
8371		adp->ad_state |= UNDONE;
8372	}
8373	/*
8374	 * The on-disk inode cannot claim to be any larger than the last
8375	 * fragment that has been written. Otherwise, the on-disk inode
8376	 * might have fragments that were not the last block in the ext
8377	 * data which would corrupt the filesystem.
8378	 */
8379	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
8380	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8381		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
8382		/* keep going until hitting a rollback to a frag */
8383		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8384			continue;
8385		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8386		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
8387#ifdef INVARIANTS
8388			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
8389				panic("softdep_write_inodeblock: lost dep1");
8390#endif /* INVARIANTS */
8391			dp->di_extb[i] = 0;
8392		}
8393		lastadp = NULL;
8394		break;
8395	}
8396	/*
8397	 * If we have zero'ed out the last allocated block of the ext
8398	 * data, roll back the size to the last currently allocated block.
8399	 * We know that this last allocated block is a full-sized as
8400	 * we already checked for fragments in the loop above.
8401	 */
8402	if (lastadp != NULL &&
8403	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8404		for (i = lastadp->ad_offset; i >= 0; i--)
8405			if (dp->di_extb[i] != 0)
8406				break;
8407		dp->di_extsize = (i + 1) * fs->fs_bsize;
8408	}
8409	/*
8410	 * Set the file data dependencies to busy.
8411	 */
8412	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8413	     adp = TAILQ_NEXT(adp, ad_next)) {
8414#ifdef INVARIANTS
8415		if (deplist != 0 && prevlbn >= adp->ad_offset)
8416			panic("softdep_write_inodeblock: lbn order");
8417		prevlbn = adp->ad_offset;
8418		if (adp->ad_offset < NDADDR &&
8419		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
8420			panic("%s: direct pointer #%jd mismatch %jd != %jd",
8421			    "softdep_write_inodeblock",
8422			    (intmax_t)adp->ad_offset,
8423			    (intmax_t)dp->di_db[adp->ad_offset],
8424			    (intmax_t)adp->ad_newblkno);
8425		if (adp->ad_offset >= NDADDR &&
8426		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
8427			panic("%s indirect pointer #%jd mismatch %jd != %jd",
8428			    "softdep_write_inodeblock:",
8429			    (intmax_t)adp->ad_offset - NDADDR,
8430			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
8431			    (intmax_t)adp->ad_newblkno);
8432		deplist |= 1 << adp->ad_offset;
8433		if ((adp->ad_state & ATTACHED) == 0)
8434			panic("softdep_write_inodeblock: Unknown state 0x%x",
8435			    adp->ad_state);
8436#endif /* INVARIANTS */
8437		adp->ad_state &= ~ATTACHED;
8438		adp->ad_state |= UNDONE;
8439	}
8440	/*
8441	 * The on-disk inode cannot claim to be any larger than the last
8442	 * fragment that has been written. Otherwise, the on-disk inode
8443	 * might have fragments that were not the last block in the file
8444	 * which would corrupt the filesystem.
8445	 */
8446	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8447	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8448		if (adp->ad_offset >= NDADDR)
8449			break;
8450		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
8451		/* keep going until hitting a rollback to a frag */
8452		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8453			continue;
8454		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8455		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
8456#ifdef INVARIANTS
8457			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
8458				panic("softdep_write_inodeblock: lost dep2");
8459#endif /* INVARIANTS */
8460			dp->di_db[i] = 0;
8461		}
8462		for (i = 0; i < NIADDR; i++) {
8463#ifdef INVARIANTS
8464			if (dp->di_ib[i] != 0 &&
8465			    (deplist & ((1 << NDADDR) << i)) == 0)
8466				panic("softdep_write_inodeblock: lost dep3");
8467#endif /* INVARIANTS */
8468			dp->di_ib[i] = 0;
8469		}
8470		return;
8471	}
8472	/*
8473	 * If we have zero'ed out the last allocated block of the file,
8474	 * roll back the size to the last currently allocated block.
8475	 * We know that this last allocated block is a full-sized as
8476	 * we already checked for fragments in the loop above.
8477	 */
8478	if (lastadp != NULL &&
8479	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8480		for (i = lastadp->ad_offset; i >= 0; i--)
8481			if (dp->di_db[i] != 0)
8482				break;
8483		dp->di_size = (i + 1) * fs->fs_bsize;
8484	}
8485	/*
8486	 * The only dependencies are for indirect blocks.
8487	 *
8488	 * The file size for indirect block additions is not guaranteed.
8489	 * Such a guarantee would be non-trivial to achieve. The conventional
8490	 * synchronous write implementation also does not make this guarantee.
8491	 * Fsck should catch and fix discrepancies. Arguably, the file size
8492	 * can be over-estimated without destroying integrity when the file
8493	 * moves into the indirect blocks (i.e., is large). If we want to
8494	 * postpone fsck, we are stuck with this argument.
8495	 */
8496	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
8497		dp->di_ib[adp->ad_offset - NDADDR] = 0;
8498}
8499
8500/*
8501 * Cancel an indirdep as a result of truncation.  Release all of the
8502 * children allocindirs and place their journal work on the appropriate
8503 * list.
8504 */
8505static void
8506cancel_indirdep(indirdep, bp, inodedep, freeblks)
8507	struct indirdep *indirdep;
8508	struct buf *bp;
8509	struct inodedep *inodedep;
8510	struct freeblks *freeblks;
8511{
8512	struct allocindir *aip;
8513
8514	/*
8515	 * None of the indirect pointers will ever be visible,
8516	 * so they can simply be tossed. GOINGAWAY ensures
8517	 * that allocated pointers will be saved in the buffer
8518	 * cache until they are freed. Note that they will
8519	 * only be able to be found by their physical address
8520	 * since the inode mapping the logical address will
8521	 * be gone. The save buffer used for the safe copy
8522	 * was allocated in setup_allocindir_phase2 using
8523	 * the physical address so it could be used for this
8524	 * purpose. Hence we swap the safe copy with the real
8525	 * copy, allowing the safe copy to be freed and holding
8526	 * on to the real copy for later use in indir_trunc.
8527	 */
8528	if (indirdep->ir_state & GOINGAWAY)
8529		panic("cancel_indirdep: already gone");
8530	if (indirdep->ir_state & ONDEPLIST) {
8531		indirdep->ir_state &= ~ONDEPLIST;
8532		LIST_REMOVE(indirdep, ir_next);
8533	}
8534	indirdep->ir_state |= GOINGAWAY;
8535	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
8536	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
8537		cancel_allocindir(aip, inodedep, freeblks);
8538	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
8539		cancel_allocindir(aip, inodedep, freeblks);
8540	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
8541		cancel_allocindir(aip, inodedep, freeblks);
8542	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
8543		cancel_allocindir(aip, inodedep, freeblks);
8544	bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
8545	WORKLIST_REMOVE(&indirdep->ir_list);
8546	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
8547	indirdep->ir_savebp = NULL;
8548}
8549
8550/*
8551 * Free an indirdep once it no longer has new pointers to track.
8552 */
8553static void
8554free_indirdep(indirdep)
8555	struct indirdep *indirdep;
8556{
8557
8558	KASSERT(LIST_EMPTY(&indirdep->ir_jwork),
8559	    ("free_indirdep: Journal work not empty."));
8560	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
8561	    ("free_indirdep: Complete head not empty."));
8562	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
8563	    ("free_indirdep: write head not empty."));
8564	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
8565	    ("free_indirdep: done head not empty."));
8566	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
8567	    ("free_indirdep: deplist head not empty."));
8568	KASSERT(indirdep->ir_savebp == NULL,
8569	    ("free_indirdep: %p ir_savebp != NULL", indirdep));
8570	KASSERT((indirdep->ir_state & ONDEPLIST) == 0,
8571	    ("free_indirdep: %p still on deplist.", indirdep));
8572	if (indirdep->ir_state & ONWORKLIST)
8573		WORKLIST_REMOVE(&indirdep->ir_list);
8574	WORKITEM_FREE(indirdep, D_INDIRDEP);
8575}
8576
8577/*
8578 * Called before a write to an indirdep.  This routine is responsible for
8579 * rolling back pointers to a safe state which includes only those
8580 * allocindirs which have been completed.
8581 */
8582static void
8583initiate_write_indirdep(indirdep, bp)
8584	struct indirdep *indirdep;
8585	struct buf *bp;
8586{
8587
8588	if (indirdep->ir_state & GOINGAWAY)
8589		panic("disk_io_initiation: indirdep gone");
8590
8591	/*
8592	 * If there are no remaining dependencies, this will be writing
8593	 * the real pointers.
8594	 */
8595	if (LIST_EMPTY(&indirdep->ir_deplisthd))
8596		return;
8597	/*
8598	 * Replace up-to-date version with safe version.
8599	 */
8600	FREE_LOCK(&lk);
8601	indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
8602	    M_SOFTDEP_FLAGS);
8603	ACQUIRE_LOCK(&lk);
8604	indirdep->ir_state &= ~ATTACHED;
8605	indirdep->ir_state |= UNDONE;
8606	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
8607	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
8608	    bp->b_bcount);
8609}
8610
8611/*
8612 * Called when an inode has been cleared in a cg bitmap.  This finally
8613 * eliminates any canceled jaddrefs
8614 */
8615void
8616softdep_setup_inofree(mp, bp, ino, wkhd)
8617	struct mount *mp;
8618	struct buf *bp;
8619	ino_t ino;
8620	struct workhead *wkhd;
8621{
8622	struct worklist *wk, *wkn;
8623	struct inodedep *inodedep;
8624	uint8_t *inosused;
8625	struct cg *cgp;
8626	struct fs *fs;
8627
8628	ACQUIRE_LOCK(&lk);
8629	fs = VFSTOUFS(mp)->um_fs;
8630	cgp = (struct cg *)bp->b_data;
8631	inosused = cg_inosused(cgp);
8632	if (isset(inosused, ino % fs->fs_ipg))
8633		panic("softdep_setup_inofree: inode %d not freed.", ino);
8634	if (inodedep_lookup(mp, ino, 0, &inodedep))
8635		panic("softdep_setup_inofree: ino %d has existing inodedep %p",
8636		    ino, inodedep);
8637	if (wkhd) {
8638		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
8639			if (wk->wk_type != D_JADDREF)
8640				continue;
8641			WORKLIST_REMOVE(wk);
8642			/*
8643			 * We can free immediately even if the jaddref
8644			 * isn't attached in a background write as now
8645			 * the bitmaps are reconciled.
8646		 	 */
8647			wk->wk_state |= COMPLETE | ATTACHED;
8648			free_jaddref(WK_JADDREF(wk));
8649		}
8650		jwork_move(&bp->b_dep, wkhd);
8651	}
8652	FREE_LOCK(&lk);
8653}
8654
8655
8656/*
8657 * Called via ffs_blkfree() after a set of frags has been cleared from a cg
8658 * map.  Any dependencies waiting for the write to clear are added to the
8659 * buf's list and any jnewblks that are being canceled are discarded
8660 * immediately.
8661 */
8662void
8663softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
8664	struct mount *mp;
8665	struct buf *bp;
8666	ufs2_daddr_t blkno;
8667	int frags;
8668	struct workhead *wkhd;
8669{
8670	struct jnewblk *jnewblk;
8671	struct worklist *wk, *wkn;
8672#ifdef SUJ_DEBUG
8673	struct bmsafemap *bmsafemap;
8674	struct fs *fs;
8675	uint8_t *blksfree;
8676	struct cg *cgp;
8677	ufs2_daddr_t jstart;
8678	ufs2_daddr_t jend;
8679	ufs2_daddr_t end;
8680	long bno;
8681	int i;
8682#endif
8683
8684	ACQUIRE_LOCK(&lk);
8685	/*
8686	 * Detach any jnewblks which have been canceled.  They must linger
8687	 * until the bitmap is cleared again by ffs_blkfree() to prevent
8688	 * an unjournaled allocation from hitting the disk.
8689	 */
8690	if (wkhd) {
8691		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
8692			if (wk->wk_type != D_JNEWBLK)
8693				continue;
8694			jnewblk = WK_JNEWBLK(wk);
8695			KASSERT(jnewblk->jn_state & GOINGAWAY,
8696			    ("softdep_setup_blkfree: jnewblk not canceled."));
8697			WORKLIST_REMOVE(wk);
8698#ifdef SUJ_DEBUG
8699			/*
8700			 * Assert that this block is free in the bitmap
8701			 * before we discard the jnewblk.
8702			 */
8703			fs = VFSTOUFS(mp)->um_fs;
8704			cgp = (struct cg *)bp->b_data;
8705			blksfree = cg_blksfree(cgp);
8706			bno = dtogd(fs, jnewblk->jn_blkno);
8707			for (i = jnewblk->jn_oldfrags;
8708			    i < jnewblk->jn_frags; i++) {
8709				if (isset(blksfree, bno + i))
8710					continue;
8711				panic("softdep_setup_blkfree: not free");
8712			}
8713#endif
8714			/*
8715			 * Even if it's not attached we can free immediately
8716			 * as the new bitmap is correct.
8717			 */
8718			wk->wk_state |= COMPLETE | ATTACHED;
8719			free_jnewblk(jnewblk);
8720		}
8721		/*
8722		 * The buf must be locked by the caller otherwise these could
8723		 * be added while it's being written and the write would
8724		 * complete them before they made it to disk.
8725		 */
8726		jwork_move(&bp->b_dep, wkhd);
8727	}
8728
8729#ifdef SUJ_DEBUG
8730	/*
8731	 * Assert that we are not freeing a block which has an outstanding
8732	 * allocation dependency.
8733	 */
8734	fs = VFSTOUFS(mp)->um_fs;
8735	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
8736	end = blkno + frags;
8737	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
8738		/*
8739		 * Don't match against blocks that will be freed when the
8740		 * background write is done.
8741		 */
8742		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
8743		    (COMPLETE | DEPCOMPLETE))
8744			continue;
8745		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
8746		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
8747		if ((blkno >= jstart && blkno < jend) ||
8748		    (end > jstart && end <= jend)) {
8749			printf("state 0x%X %jd - %d %d dep %p\n",
8750			    jnewblk->jn_state, jnewblk->jn_blkno,
8751			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
8752			    jnewblk->jn_newblk);
8753			panic("softdep_setup_blkfree: "
8754			    "%jd-%jd(%d) overlaps with %jd-%jd",
8755			    blkno, end, frags, jstart, jend);
8756		}
8757	}
8758#endif
8759	FREE_LOCK(&lk);
8760}
8761
8762static void
8763initiate_write_bmsafemap(bmsafemap, bp)
8764	struct bmsafemap *bmsafemap;
8765	struct buf *bp;			/* The cg block. */
8766{
8767	struct jaddref *jaddref;
8768	struct jnewblk *jnewblk;
8769	uint8_t *inosused;
8770	uint8_t *blksfree;
8771	struct cg *cgp;
8772	struct fs *fs;
8773	int cleared;
8774	ino_t ino;
8775	long bno;
8776	int i;
8777
8778	if (bmsafemap->sm_state & IOSTARTED)
8779		panic("initiate_write_bmsafemap: Already started\n");
8780	bmsafemap->sm_state |= IOSTARTED;
8781	/*
8782	 * Clear any inode allocations which are pending journal writes.
8783	 */
8784	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
8785		cgp = (struct cg *)bp->b_data;
8786		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
8787		inosused = cg_inosused(cgp);
8788		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
8789			ino = jaddref->ja_ino % fs->fs_ipg;
8790			/*
8791			 * If this is a background copy the inode may not
8792			 * be marked used yet.
8793			 */
8794			if (isset(inosused, ino)) {
8795				if ((jaddref->ja_mode & IFMT) == IFDIR)
8796					cgp->cg_cs.cs_ndir--;
8797				cgp->cg_cs.cs_nifree++;
8798				clrbit(inosused, ino);
8799				jaddref->ja_state &= ~ATTACHED;
8800				jaddref->ja_state |= UNDONE;
8801				stat_jaddref++;
8802			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
8803				panic("initiate_write_bmsafemap: inode %d "
8804				    "marked free", jaddref->ja_ino);
8805		}
8806	}
8807	/*
8808	 * Clear any block allocations which are pending journal writes.
8809	 */
8810	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
8811		cgp = (struct cg *)bp->b_data;
8812		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
8813		blksfree = cg_blksfree(cgp);
8814		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
8815			bno = dtogd(fs, jnewblk->jn_blkno);
8816			cleared = 0;
8817			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
8818			    i++) {
8819				if (isclr(blksfree, bno + i)) {
8820					cleared = 1;
8821					setbit(blksfree, bno + i);
8822				}
8823			}
8824			/*
8825			 * We may not clear the block if it's a background
8826			 * copy.  In that case there is no reason to detach
8827			 * it.
8828			 */
8829			if (cleared) {
8830				stat_jnewblk++;
8831				jnewblk->jn_state &= ~ATTACHED;
8832				jnewblk->jn_state |= UNDONE;
8833			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
8834				panic("initiate_write_bmsafemap: block %jd "
8835				    "marked free", jnewblk->jn_blkno);
8836		}
8837	}
8838	/*
8839	 * Move allocation lists to the written lists so they can be
8840	 * cleared once the block write is complete.
8841	 */
8842	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
8843	    inodedep, id_deps);
8844	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
8845	    newblk, nb_deps);
8846}
8847
8848/*
8849 * This routine is called during the completion interrupt
8850 * service routine for a disk write (from the procedure called
8851 * by the device driver to inform the filesystem caches of
8852 * a request completion).  It should be called early in this
8853 * procedure, before the block is made available to other
8854 * processes or other routines are called.
8855 *
8856 */
8857static void
8858softdep_disk_write_complete(bp)
8859	struct buf *bp;		/* describes the completed disk write */
8860{
8861	struct worklist *wk;
8862	struct worklist *owk;
8863	struct workhead reattach;
8864	struct buf *sbp;
8865
8866	/*
8867	 * If an error occurred while doing the write, then the data
8868	 * has not hit the disk and the dependencies cannot be unrolled.
8869	 */
8870	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
8871		return;
8872	LIST_INIT(&reattach);
8873	/*
8874	 * This lock must not be released anywhere in this code segment.
8875	 */
8876	sbp = NULL;
8877	owk = NULL;
8878	ACQUIRE_LOCK(&lk);
8879	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
8880		WORKLIST_REMOVE(wk);
8881		if (wk == owk)
8882			panic("duplicate worklist: %p\n", wk);
8883		owk = wk;
8884		switch (wk->wk_type) {
8885
8886		case D_PAGEDEP:
8887			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
8888				WORKLIST_INSERT(&reattach, wk);
8889			continue;
8890
8891		case D_INODEDEP:
8892			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
8893				WORKLIST_INSERT(&reattach, wk);
8894			continue;
8895
8896		case D_BMSAFEMAP:
8897			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
8898				WORKLIST_INSERT(&reattach, wk);
8899			continue;
8900
8901		case D_MKDIR:
8902			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
8903			continue;
8904
8905		case D_ALLOCDIRECT:
8906			wk->wk_state |= COMPLETE;
8907			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
8908			continue;
8909
8910		case D_ALLOCINDIR:
8911			wk->wk_state |= COMPLETE;
8912			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
8913			continue;
8914
8915		case D_INDIRDEP:
8916			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
8917				WORKLIST_INSERT(&reattach, wk);
8918			continue;
8919
8920		case D_FREEBLKS:
8921			wk->wk_state |= COMPLETE;
8922			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
8923				add_to_worklist(wk, 1);
8924			continue;
8925
8926		case D_FREEWORK:
8927			handle_written_freework(WK_FREEWORK(wk));
8928			break;
8929
8930		case D_FREEDEP:
8931			free_freedep(WK_FREEDEP(wk));
8932			continue;
8933
8934		case D_JSEGDEP:
8935			free_jsegdep(WK_JSEGDEP(wk));
8936			continue;
8937
8938		case D_JSEG:
8939			handle_written_jseg(WK_JSEG(wk), bp);
8940			continue;
8941
8942		case D_SBDEP:
8943			if (handle_written_sbdep(WK_SBDEP(wk), bp))
8944				WORKLIST_INSERT(&reattach, wk);
8945			continue;
8946
8947		default:
8948			panic("handle_disk_write_complete: Unknown type %s",
8949			    TYPENAME(wk->wk_type));
8950			/* NOTREACHED */
8951		}
8952	}
8953	/*
8954	 * Reattach any requests that must be redone.
8955	 */
8956	while ((wk = LIST_FIRST(&reattach)) != NULL) {
8957		WORKLIST_REMOVE(wk);
8958		WORKLIST_INSERT(&bp->b_dep, wk);
8959	}
8960	FREE_LOCK(&lk);
8961	if (sbp)
8962		brelse(sbp);
8963}
8964
8965/*
8966 * Called from within softdep_disk_write_complete above. Note that
8967 * this routine is always called from interrupt level with further
8968 * splbio interrupts blocked.
8969 */
8970static void
8971handle_allocdirect_partdone(adp, wkhd)
8972	struct allocdirect *adp;	/* the completed allocdirect */
8973	struct workhead *wkhd;		/* Work to do when inode is writtne. */
8974{
8975	struct allocdirectlst *listhead;
8976	struct allocdirect *listadp;
8977	struct inodedep *inodedep;
8978	long bsize;
8979
8980	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
8981		return;
8982	/*
8983	 * The on-disk inode cannot claim to be any larger than the last
8984	 * fragment that has been written. Otherwise, the on-disk inode
8985	 * might have fragments that were not the last block in the file
8986	 * which would corrupt the filesystem. Thus, we cannot free any
8987	 * allocdirects after one whose ad_oldblkno claims a fragment as
8988	 * these blocks must be rolled back to zero before writing the inode.
8989	 * We check the currently active set of allocdirects in id_inoupdt
8990	 * or id_extupdt as appropriate.
8991	 */
8992	inodedep = adp->ad_inodedep;
8993	bsize = inodedep->id_fs->fs_bsize;
8994	if (adp->ad_state & EXTDATA)
8995		listhead = &inodedep->id_extupdt;
8996	else
8997		listhead = &inodedep->id_inoupdt;
8998	TAILQ_FOREACH(listadp, listhead, ad_next) {
8999		/* found our block */
9000		if (listadp == adp)
9001			break;
9002		/* continue if ad_oldlbn is not a fragment */
9003		if (listadp->ad_oldsize == 0 ||
9004		    listadp->ad_oldsize == bsize)
9005			continue;
9006		/* hit a fragment */
9007		return;
9008	}
9009	/*
9010	 * If we have reached the end of the current list without
9011	 * finding the just finished dependency, then it must be
9012	 * on the future dependency list. Future dependencies cannot
9013	 * be freed until they are moved to the current list.
9014	 */
9015	if (listadp == NULL) {
9016#ifdef DEBUG
9017		if (adp->ad_state & EXTDATA)
9018			listhead = &inodedep->id_newextupdt;
9019		else
9020			listhead = &inodedep->id_newinoupdt;
9021		TAILQ_FOREACH(listadp, listhead, ad_next)
9022			/* found our block */
9023			if (listadp == adp)
9024				break;
9025		if (listadp == NULL)
9026			panic("handle_allocdirect_partdone: lost dep");
9027#endif /* DEBUG */
9028		return;
9029	}
9030	/*
9031	 * If we have found the just finished dependency, then queue
9032	 * it along with anything that follows it that is complete.
9033	 * Since the pointer has not yet been written in the inode
9034	 * as the dependency prevents it, place the allocdirect on the
9035	 * bufwait list where it will be freed once the pointer is
9036	 * valid.
9037	 */
9038	if (wkhd == NULL)
9039		wkhd = &inodedep->id_bufwait;
9040	for (; adp; adp = listadp) {
9041		listadp = TAILQ_NEXT(adp, ad_next);
9042		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
9043			return;
9044		TAILQ_REMOVE(listhead, adp, ad_next);
9045		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
9046	}
9047}
9048
9049/*
9050 * Called from within softdep_disk_write_complete above.  This routine
9051 * completes successfully written allocindirs.
9052 */
9053static void
9054handle_allocindir_partdone(aip)
9055	struct allocindir *aip;		/* the completed allocindir */
9056{
9057	struct indirdep *indirdep;
9058
9059	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
9060		return;
9061	indirdep = aip->ai_indirdep;
9062	LIST_REMOVE(aip, ai_next);
9063	if (indirdep->ir_state & UNDONE) {
9064		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
9065		return;
9066	}
9067	if (indirdep->ir_state & UFS1FMT)
9068		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
9069		    aip->ai_newblkno;
9070	else
9071		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
9072		    aip->ai_newblkno;
9073	/*
9074	 * Await the pointer write before freeing the allocindir.
9075	 */
9076	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
9077}
9078
9079/*
9080 * Release segments held on a jwork list.
9081 */
9082static void
9083handle_jwork(wkhd)
9084	struct workhead *wkhd;
9085{
9086	struct worklist *wk;
9087
9088	while ((wk = LIST_FIRST(wkhd)) != NULL) {
9089		WORKLIST_REMOVE(wk);
9090		switch (wk->wk_type) {
9091		case D_JSEGDEP:
9092			free_jsegdep(WK_JSEGDEP(wk));
9093			continue;
9094		default:
9095			panic("handle_jwork: Unknown type %s\n",
9096			    TYPENAME(wk->wk_type));
9097		}
9098	}
9099}
9100
9101/*
9102 * Handle the bufwait list on an inode when it is safe to release items
9103 * held there.  This normally happens after an inode block is written but
9104 * may be delayed and handled later if there are pending journal items that
9105 * are not yet safe to be released.
9106 */
9107static struct freefile *
9108handle_bufwait(inodedep, refhd)
9109	struct inodedep *inodedep;
9110	struct workhead *refhd;
9111{
9112	struct jaddref *jaddref;
9113	struct freefile *freefile;
9114	struct worklist *wk;
9115
9116	freefile = NULL;
9117	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
9118		WORKLIST_REMOVE(wk);
9119		switch (wk->wk_type) {
9120		case D_FREEFILE:
9121			/*
9122			 * We defer adding freefile to the worklist
9123			 * until all other additions have been made to
9124			 * ensure that it will be done after all the
9125			 * old blocks have been freed.
9126			 */
9127			if (freefile != NULL)
9128				panic("handle_bufwait: freefile");
9129			freefile = WK_FREEFILE(wk);
9130			continue;
9131
9132		case D_MKDIR:
9133			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
9134			continue;
9135
9136		case D_DIRADD:
9137			diradd_inode_written(WK_DIRADD(wk), inodedep);
9138			continue;
9139
9140		case D_FREEFRAG:
9141			wk->wk_state |= COMPLETE;
9142			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
9143				add_to_worklist(wk, 0);
9144			continue;
9145
9146		case D_DIRREM:
9147			wk->wk_state |= COMPLETE;
9148			add_to_worklist(wk, 0);
9149			continue;
9150
9151		case D_ALLOCDIRECT:
9152		case D_ALLOCINDIR:
9153			free_newblk(WK_NEWBLK(wk));
9154			continue;
9155
9156		case D_JNEWBLK:
9157			wk->wk_state |= COMPLETE;
9158			free_jnewblk(WK_JNEWBLK(wk));
9159			continue;
9160
9161		/*
9162		 * Save freed journal segments and add references on
9163		 * the supplied list which will delay their release
9164		 * until the cg bitmap is cleared on disk.
9165		 */
9166		case D_JSEGDEP:
9167			if (refhd == NULL)
9168				free_jsegdep(WK_JSEGDEP(wk));
9169			else
9170				WORKLIST_INSERT(refhd, wk);
9171			continue;
9172
9173		case D_JADDREF:
9174			jaddref = WK_JADDREF(wk);
9175			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
9176			    if_deps);
9177			/*
9178			 * Transfer any jaddrefs to the list to be freed with
9179			 * the bitmap if we're handling a removed file.
9180			 */
9181			if (refhd == NULL) {
9182				wk->wk_state |= COMPLETE;
9183				free_jaddref(jaddref);
9184			} else
9185				WORKLIST_INSERT(refhd, wk);
9186			continue;
9187
9188		default:
9189			panic("handle_bufwait: Unknown type %p(%s)",
9190			    wk, TYPENAME(wk->wk_type));
9191			/* NOTREACHED */
9192		}
9193	}
9194	return (freefile);
9195}
9196/*
9197 * Called from within softdep_disk_write_complete above to restore
9198 * in-memory inode block contents to their most up-to-date state. Note
9199 * that this routine is always called from interrupt level with further
9200 * splbio interrupts blocked.
9201 */
9202static int
9203handle_written_inodeblock(inodedep, bp)
9204	struct inodedep *inodedep;
9205	struct buf *bp;		/* buffer containing the inode block */
9206{
9207	struct freefile *freefile;
9208	struct allocdirect *adp, *nextadp;
9209	struct ufs1_dinode *dp1 = NULL;
9210	struct ufs2_dinode *dp2 = NULL;
9211	struct workhead wkhd;
9212	int hadchanges, fstype;
9213	ino_t freelink;
9214
9215	LIST_INIT(&wkhd);
9216	hadchanges = 0;
9217	freefile = NULL;
9218	if ((inodedep->id_state & IOSTARTED) == 0)
9219		panic("handle_written_inodeblock: not started");
9220	inodedep->id_state &= ~IOSTARTED;
9221	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
9222		fstype = UFS1;
9223		dp1 = (struct ufs1_dinode *)bp->b_data +
9224		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
9225		freelink = dp1->di_freelink;
9226	} else {
9227		fstype = UFS2;
9228		dp2 = (struct ufs2_dinode *)bp->b_data +
9229		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
9230		freelink = dp2->di_freelink;
9231	}
9232	/*
9233	 * If we wrote a valid freelink pointer during the last write
9234	 * record it here.
9235	 */
9236	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9237		struct inodedep *inon;
9238
9239		inon = TAILQ_NEXT(inodedep, id_unlinked);
9240		if ((inon == NULL && freelink == 0) ||
9241		    (inon && inon->id_ino == freelink)) {
9242			if (inon)
9243				inon->id_state |= UNLINKPREV;
9244			inodedep->id_state |= UNLINKNEXT;
9245		} else
9246			hadchanges = 1;
9247	}
9248	/* Leave this inodeblock dirty until it's in the list. */
9249	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED)
9250		hadchanges = 1;
9251	/*
9252	 * If we had to rollback the inode allocation because of
9253	 * bitmaps being incomplete, then simply restore it.
9254	 * Keep the block dirty so that it will not be reclaimed until
9255	 * all associated dependencies have been cleared and the
9256	 * corresponding updates written to disk.
9257	 */
9258	if (inodedep->id_savedino1 != NULL) {
9259		hadchanges = 1;
9260		if (fstype == UFS1)
9261			*dp1 = *inodedep->id_savedino1;
9262		else
9263			*dp2 = *inodedep->id_savedino2;
9264		free(inodedep->id_savedino1, M_SAVEDINO);
9265		inodedep->id_savedino1 = NULL;
9266		if ((bp->b_flags & B_DELWRI) == 0)
9267			stat_inode_bitmap++;
9268		bdirty(bp);
9269		/*
9270		 * If the inode is clear here and GOINGAWAY it will never
9271		 * be written.  Process the bufwait and clear any pending
9272		 * work which may include the freefile.
9273		 */
9274		if (inodedep->id_state & GOINGAWAY)
9275			goto bufwait;
9276		return (1);
9277	}
9278	inodedep->id_state |= COMPLETE;
9279	/*
9280	 * Roll forward anything that had to be rolled back before
9281	 * the inode could be updated.
9282	 */
9283	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
9284		nextadp = TAILQ_NEXT(adp, ad_next);
9285		if (adp->ad_state & ATTACHED)
9286			panic("handle_written_inodeblock: new entry");
9287		if (fstype == UFS1) {
9288			if (adp->ad_offset < NDADDR) {
9289				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
9290					panic("%s %s #%jd mismatch %d != %jd",
9291					    "handle_written_inodeblock:",
9292					    "direct pointer",
9293					    (intmax_t)adp->ad_offset,
9294					    dp1->di_db[adp->ad_offset],
9295					    (intmax_t)adp->ad_oldblkno);
9296				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
9297			} else {
9298				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
9299					panic("%s: %s #%jd allocated as %d",
9300					    "handle_written_inodeblock",
9301					    "indirect pointer",
9302					    (intmax_t)adp->ad_offset - NDADDR,
9303					    dp1->di_ib[adp->ad_offset - NDADDR]);
9304				dp1->di_ib[adp->ad_offset - NDADDR] =
9305				    adp->ad_newblkno;
9306			}
9307		} else {
9308			if (adp->ad_offset < NDADDR) {
9309				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
9310					panic("%s: %s #%jd %s %jd != %jd",
9311					    "handle_written_inodeblock",
9312					    "direct pointer",
9313					    (intmax_t)adp->ad_offset, "mismatch",
9314					    (intmax_t)dp2->di_db[adp->ad_offset],
9315					    (intmax_t)adp->ad_oldblkno);
9316				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
9317			} else {
9318				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
9319					panic("%s: %s #%jd allocated as %jd",
9320					    "handle_written_inodeblock",
9321					    "indirect pointer",
9322					    (intmax_t)adp->ad_offset - NDADDR,
9323					    (intmax_t)
9324					    dp2->di_ib[adp->ad_offset - NDADDR]);
9325				dp2->di_ib[adp->ad_offset - NDADDR] =
9326				    adp->ad_newblkno;
9327			}
9328		}
9329		adp->ad_state &= ~UNDONE;
9330		adp->ad_state |= ATTACHED;
9331		hadchanges = 1;
9332	}
9333	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
9334		nextadp = TAILQ_NEXT(adp, ad_next);
9335		if (adp->ad_state & ATTACHED)
9336			panic("handle_written_inodeblock: new entry");
9337		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
9338			panic("%s: direct pointers #%jd %s %jd != %jd",
9339			    "handle_written_inodeblock",
9340			    (intmax_t)adp->ad_offset, "mismatch",
9341			    (intmax_t)dp2->di_extb[adp->ad_offset],
9342			    (intmax_t)adp->ad_oldblkno);
9343		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
9344		adp->ad_state &= ~UNDONE;
9345		adp->ad_state |= ATTACHED;
9346		hadchanges = 1;
9347	}
9348	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
9349		stat_direct_blk_ptrs++;
9350	/*
9351	 * Reset the file size to its most up-to-date value.
9352	 */
9353	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
9354		panic("handle_written_inodeblock: bad size");
9355	if (inodedep->id_savednlink > LINK_MAX)
9356		panic("handle_written_inodeblock: Invalid link count "
9357		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
9358	if (fstype == UFS1) {
9359		if (dp1->di_nlink != inodedep->id_savednlink) {
9360			dp1->di_nlink = inodedep->id_savednlink;
9361			hadchanges = 1;
9362		}
9363		if (dp1->di_size != inodedep->id_savedsize) {
9364			dp1->di_size = inodedep->id_savedsize;
9365			hadchanges = 1;
9366		}
9367	} else {
9368		if (dp2->di_nlink != inodedep->id_savednlink) {
9369			dp2->di_nlink = inodedep->id_savednlink;
9370			hadchanges = 1;
9371		}
9372		if (dp2->di_size != inodedep->id_savedsize) {
9373			dp2->di_size = inodedep->id_savedsize;
9374			hadchanges = 1;
9375		}
9376		if (dp2->di_extsize != inodedep->id_savedextsize) {
9377			dp2->di_extsize = inodedep->id_savedextsize;
9378			hadchanges = 1;
9379		}
9380	}
9381	inodedep->id_savedsize = -1;
9382	inodedep->id_savedextsize = -1;
9383	inodedep->id_savednlink = -1;
9384	/*
9385	 * If there were any rollbacks in the inode block, then it must be
9386	 * marked dirty so that its will eventually get written back in
9387	 * its correct form.
9388	 */
9389	if (hadchanges)
9390		bdirty(bp);
9391bufwait:
9392	/*
9393	 * Process any allocdirects that completed during the update.
9394	 */
9395	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
9396		handle_allocdirect_partdone(adp, &wkhd);
9397	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
9398		handle_allocdirect_partdone(adp, &wkhd);
9399	/*
9400	 * Process deallocations that were held pending until the
9401	 * inode had been written to disk. Freeing of the inode
9402	 * is delayed until after all blocks have been freed to
9403	 * avoid creation of new <vfsid, inum, lbn> triples
9404	 * before the old ones have been deleted.  Completely
9405	 * unlinked inodes are not processed until the unlinked
9406	 * inode list is written or the last reference is removed.
9407	 */
9408	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
9409		freefile = handle_bufwait(inodedep, NULL);
9410		if (freefile && !LIST_EMPTY(&wkhd)) {
9411			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
9412			freefile = NULL;
9413		}
9414	}
9415	/*
9416	 * Move rolled forward dependency completions to the bufwait list
9417	 * now that those that were already written have been processed.
9418	 */
9419	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
9420		panic("handle_written_inodeblock: bufwait but no changes");
9421	jwork_move(&inodedep->id_bufwait, &wkhd);
9422
9423	if (freefile != NULL) {
9424		/*
9425		 * If the inode is goingaway it was never written.  Fake up
9426		 * the state here so free_inodedep() can succeed.
9427		 */
9428		if (inodedep->id_state & GOINGAWAY)
9429			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
9430		if (free_inodedep(inodedep) == 0)
9431			panic("handle_written_inodeblock: live inodedep %p",
9432			    inodedep);
9433		add_to_worklist(&freefile->fx_list, 0);
9434		return (0);
9435	}
9436
9437	/*
9438	 * If no outstanding dependencies, free it.
9439	 */
9440	if (free_inodedep(inodedep) ||
9441	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
9442	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
9443	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
9444	     LIST_FIRST(&inodedep->id_bufwait) == 0))
9445		return (0);
9446	return (hadchanges);
9447}
9448
9449static int
9450handle_written_indirdep(indirdep, bp, bpp)
9451	struct indirdep *indirdep;
9452	struct buf *bp;
9453	struct buf **bpp;
9454{
9455	struct allocindir *aip;
9456	int chgs;
9457
9458	if (indirdep->ir_state & GOINGAWAY)
9459		panic("disk_write_complete: indirdep gone");
9460	chgs = 0;
9461	/*
9462	 * If there were rollbacks revert them here.
9463	 */
9464	if (indirdep->ir_saveddata) {
9465		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
9466		free(indirdep->ir_saveddata, M_INDIRDEP);
9467		indirdep->ir_saveddata = 0;
9468		chgs = 1;
9469	}
9470	indirdep->ir_state &= ~UNDONE;
9471	indirdep->ir_state |= ATTACHED;
9472	/*
9473	 * Move allocindirs with written pointers to the completehd if
9474	 * the indirdep's pointer is not yet written.  Otherwise
9475	 * free them here.
9476	 */
9477	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
9478		LIST_REMOVE(aip, ai_next);
9479		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
9480			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
9481			    ai_next);
9482			continue;
9483		}
9484		free_newblk(&aip->ai_block);
9485	}
9486	/*
9487	 * Move allocindirs that have finished dependency processing from
9488	 * the done list to the write list after updating the pointers.
9489	 */
9490	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
9491		handle_allocindir_partdone(aip);
9492		if (aip == LIST_FIRST(&indirdep->ir_donehd))
9493			panic("disk_write_complete: not gone");
9494		chgs = 1;
9495	}
9496	/*
9497	 * If this indirdep has been detached from its newblk during
9498	 * I/O we need to keep this dep attached to the buffer so
9499	 * deallocate_dependencies can find it and properly resolve
9500	 * any outstanding dependencies.
9501	 */
9502	if ((indirdep->ir_state & (ONDEPLIST | DEPCOMPLETE)) == 0)
9503		chgs = 1;
9504	if ((bp->b_flags & B_DELWRI) == 0)
9505		stat_indir_blk_ptrs++;
9506	/*
9507	 * If there were no changes we can discard the savedbp and detach
9508	 * ourselves from the buf.  We are only carrying completed pointers
9509	 * in this case.
9510	 */
9511	if (chgs == 0) {
9512		struct buf *sbp;
9513
9514		sbp = indirdep->ir_savebp;
9515		sbp->b_flags |= B_INVAL | B_NOCACHE;
9516		indirdep->ir_savebp = NULL;
9517		if (*bpp != NULL)
9518			panic("handle_written_indirdep: bp already exists.");
9519		*bpp = sbp;
9520	} else
9521		bdirty(bp);
9522	/*
9523	 * If there are no fresh dependencies and none waiting on writes
9524	 * we can free the indirdep.
9525	 */
9526	if ((indirdep->ir_state & DEPCOMPLETE) && chgs == 0) {
9527		if (indirdep->ir_state & ONDEPLIST)
9528			LIST_REMOVE(indirdep, ir_next);
9529		free_indirdep(indirdep);
9530		return (0);
9531	}
9532
9533	return (chgs);
9534}
9535
9536/*
9537 * Process a diradd entry after its dependent inode has been written.
9538 * This routine must be called with splbio interrupts blocked.
9539 */
9540static void
9541diradd_inode_written(dap, inodedep)
9542	struct diradd *dap;
9543	struct inodedep *inodedep;
9544{
9545
9546	dap->da_state |= COMPLETE;
9547	complete_diradd(dap);
9548	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9549}
9550
9551/*
9552 * Returns true if the bmsafemap will have rollbacks when written.  Must
9553 * only be called with lk and the buf lock on the cg held.
9554 */
9555static int
9556bmsafemap_rollbacks(bmsafemap)
9557	struct bmsafemap *bmsafemap;
9558{
9559
9560	return (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
9561	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd));
9562}
9563
9564/*
9565 * Complete a write to a bmsafemap structure.  Roll forward any bitmap
9566 * changes if it's not a background write.  Set all written dependencies
9567 * to DEPCOMPLETE and free the structure if possible.
9568 */
9569static int
9570handle_written_bmsafemap(bmsafemap, bp)
9571	struct bmsafemap *bmsafemap;
9572	struct buf *bp;
9573{
9574	struct newblk *newblk;
9575	struct inodedep *inodedep;
9576	struct jaddref *jaddref, *jatmp;
9577	struct jnewblk *jnewblk, *jntmp;
9578	uint8_t *inosused;
9579	uint8_t *blksfree;
9580	struct cg *cgp;
9581	struct fs *fs;
9582	ino_t ino;
9583	long bno;
9584	int chgs;
9585	int i;
9586
9587	if ((bmsafemap->sm_state & IOSTARTED) == 0)
9588		panic("initiate_write_bmsafemap: Not started\n");
9589	chgs = 0;
9590	bmsafemap->sm_state &= ~IOSTARTED;
9591	/*
9592	 * Restore unwritten inode allocation pending jaddref writes.
9593	 */
9594	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
9595		cgp = (struct cg *)bp->b_data;
9596		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
9597		inosused = cg_inosused(cgp);
9598		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
9599		    ja_bmdeps, jatmp) {
9600			if ((jaddref->ja_state & UNDONE) == 0)
9601				continue;
9602			ino = jaddref->ja_ino % fs->fs_ipg;
9603			if (isset(inosused, ino))
9604				panic("handle_written_bmsafemap: "
9605				    "re-allocated inode");
9606			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
9607				if ((jaddref->ja_mode & IFMT) == IFDIR)
9608					cgp->cg_cs.cs_ndir++;
9609				cgp->cg_cs.cs_nifree--;
9610				setbit(inosused, ino);
9611				chgs = 1;
9612			}
9613			jaddref->ja_state &= ~UNDONE;
9614			jaddref->ja_state |= ATTACHED;
9615			free_jaddref(jaddref);
9616		}
9617	}
9618	/*
9619	 * Restore any block allocations which are pending journal writes.
9620	 */
9621	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
9622		cgp = (struct cg *)bp->b_data;
9623		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
9624		blksfree = cg_blksfree(cgp);
9625		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
9626		    jntmp) {
9627			if ((jnewblk->jn_state & UNDONE) == 0)
9628				continue;
9629			bno = dtogd(fs, jnewblk->jn_blkno);
9630			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
9631			    i++) {
9632				if (bp->b_xflags & BX_BKGRDMARKER)
9633					break;
9634				if ((jnewblk->jn_state & NEWBLOCK) == 0 &&
9635				    isclr(blksfree, bno + i))
9636					panic("handle_written_bmsafemap: "
9637					    "re-allocated fragment");
9638				clrbit(blksfree, bno + i);
9639				chgs = 1;
9640			}
9641			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
9642			jnewblk->jn_state |= ATTACHED;
9643			free_jnewblk(jnewblk);
9644		}
9645	}
9646	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
9647		newblk->nb_state |= DEPCOMPLETE;
9648		newblk->nb_state &= ~ONDEPLIST;
9649		newblk->nb_bmsafemap = NULL;
9650		LIST_REMOVE(newblk, nb_deps);
9651		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
9652			handle_allocdirect_partdone(
9653			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
9654		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
9655			handle_allocindir_partdone(
9656			    WK_ALLOCINDIR(&newblk->nb_list));
9657		else if (newblk->nb_list.wk_type != D_NEWBLK)
9658			panic("handle_written_bmsafemap: Unexpected type: %s",
9659			    TYPENAME(newblk->nb_list.wk_type));
9660	}
9661	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
9662		inodedep->id_state |= DEPCOMPLETE;
9663		inodedep->id_state &= ~ONDEPLIST;
9664		LIST_REMOVE(inodedep, id_deps);
9665		inodedep->id_bmsafemap = NULL;
9666	}
9667	if (LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
9668	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
9669	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
9670	    LIST_EMPTY(&bmsafemap->sm_inodedephd)) {
9671		if (chgs)
9672			bdirty(bp);
9673		LIST_REMOVE(bmsafemap, sm_hash);
9674		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
9675		return (0);
9676	}
9677	bdirty(bp);
9678	return (1);
9679}
9680
9681/*
9682 * Try to free a mkdir dependency.
9683 */
9684static void
9685complete_mkdir(mkdir)
9686	struct mkdir *mkdir;
9687{
9688	struct diradd *dap;
9689
9690	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
9691		return;
9692	LIST_REMOVE(mkdir, md_mkdirs);
9693	dap = mkdir->md_diradd;
9694	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9695	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
9696		dap->da_state |= DEPCOMPLETE;
9697		complete_diradd(dap);
9698	}
9699	WORKITEM_FREE(mkdir, D_MKDIR);
9700}
9701
9702/*
9703 * Handle the completion of a mkdir dependency.
9704 */
9705static void
9706handle_written_mkdir(mkdir, type)
9707	struct mkdir *mkdir;
9708	int type;
9709{
9710
9711	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
9712		panic("handle_written_mkdir: bad type");
9713	mkdir->md_state |= COMPLETE;
9714	complete_mkdir(mkdir);
9715}
9716
9717static void
9718free_pagedep(pagedep)
9719	struct pagedep *pagedep;
9720{
9721	int i;
9722
9723	if (pagedep->pd_state & (NEWBLOCK | ONWORKLIST))
9724		return;
9725	for (i = 0; i < DAHASHSZ; i++)
9726		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
9727			return;
9728	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
9729		return;
9730	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
9731		return;
9732	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
9733		return;
9734	LIST_REMOVE(pagedep, pd_hash);
9735	WORKITEM_FREE(pagedep, D_PAGEDEP);
9736}
9737
9738/*
9739 * Called from within softdep_disk_write_complete above.
9740 * A write operation was just completed. Removed inodes can
9741 * now be freed and associated block pointers may be committed.
9742 * Note that this routine is always called from interrupt level
9743 * with further splbio interrupts blocked.
9744 */
9745static int
9746handle_written_filepage(pagedep, bp)
9747	struct pagedep *pagedep;
9748	struct buf *bp;		/* buffer containing the written page */
9749{
9750	struct dirrem *dirrem;
9751	struct diradd *dap, *nextdap;
9752	struct direct *ep;
9753	int i, chgs;
9754
9755	if ((pagedep->pd_state & IOSTARTED) == 0)
9756		panic("handle_written_filepage: not started");
9757	pagedep->pd_state &= ~IOSTARTED;
9758	/*
9759	 * Process any directory removals that have been committed.
9760	 */
9761	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
9762		LIST_REMOVE(dirrem, dm_next);
9763		dirrem->dm_state |= COMPLETE;
9764		dirrem->dm_dirinum = pagedep->pd_ino;
9765		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9766		    ("handle_written_filepage: Journal entries not written."));
9767		add_to_worklist(&dirrem->dm_list, 0);
9768	}
9769	/*
9770	 * Free any directory additions that have been committed.
9771	 * If it is a newly allocated block, we have to wait until
9772	 * the on-disk directory inode claims the new block.
9773	 */
9774	if ((pagedep->pd_state & NEWBLOCK) == 0)
9775		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
9776			free_diradd(dap, NULL);
9777	/*
9778	 * Uncommitted directory entries must be restored.
9779	 */
9780	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
9781		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
9782		     dap = nextdap) {
9783			nextdap = LIST_NEXT(dap, da_pdlist);
9784			if (dap->da_state & ATTACHED)
9785				panic("handle_written_filepage: attached");
9786			ep = (struct direct *)
9787			    ((char *)bp->b_data + dap->da_offset);
9788			ep->d_ino = dap->da_newinum;
9789			dap->da_state &= ~UNDONE;
9790			dap->da_state |= ATTACHED;
9791			chgs = 1;
9792			/*
9793			 * If the inode referenced by the directory has
9794			 * been written out, then the dependency can be
9795			 * moved to the pending list.
9796			 */
9797			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
9798				LIST_REMOVE(dap, da_pdlist);
9799				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
9800				    da_pdlist);
9801			}
9802		}
9803	}
9804	/*
9805	 * If there were any rollbacks in the directory, then it must be
9806	 * marked dirty so that its will eventually get written back in
9807	 * its correct form.
9808	 */
9809	if (chgs) {
9810		if ((bp->b_flags & B_DELWRI) == 0)
9811			stat_dir_entry++;
9812		bdirty(bp);
9813		return (1);
9814	}
9815	/*
9816	 * If we are not waiting for a new directory block to be
9817	 * claimed by its inode, then the pagedep will be freed.
9818	 * Otherwise it will remain to track any new entries on
9819	 * the page in case they are fsync'ed.
9820	 */
9821	if ((pagedep->pd_state & NEWBLOCK) == 0 &&
9822	    LIST_EMPTY(&pagedep->pd_jmvrefhd)) {
9823		LIST_REMOVE(pagedep, pd_hash);
9824		WORKITEM_FREE(pagedep, D_PAGEDEP);
9825	}
9826	return (0);
9827}
9828
9829/*
9830 * Writing back in-core inode structures.
9831 *
9832 * The filesystem only accesses an inode's contents when it occupies an
9833 * "in-core" inode structure.  These "in-core" structures are separate from
9834 * the page frames used to cache inode blocks.  Only the latter are
9835 * transferred to/from the disk.  So, when the updated contents of the
9836 * "in-core" inode structure are copied to the corresponding in-memory inode
9837 * block, the dependencies are also transferred.  The following procedure is
9838 * called when copying a dirty "in-core" inode to a cached inode block.
9839 */
9840
9841/*
9842 * Called when an inode is loaded from disk. If the effective link count
9843 * differed from the actual link count when it was last flushed, then we
9844 * need to ensure that the correct effective link count is put back.
9845 */
9846void
9847softdep_load_inodeblock(ip)
9848	struct inode *ip;	/* the "in_core" copy of the inode */
9849{
9850	struct inodedep *inodedep;
9851
9852	/*
9853	 * Check for alternate nlink count.
9854	 */
9855	ip->i_effnlink = ip->i_nlink;
9856	ACQUIRE_LOCK(&lk);
9857	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
9858	    &inodedep) == 0) {
9859		FREE_LOCK(&lk);
9860		return;
9861	}
9862	ip->i_effnlink -= inodedep->id_nlinkdelta;
9863	FREE_LOCK(&lk);
9864}
9865
9866/*
9867 * This routine is called just before the "in-core" inode
9868 * information is to be copied to the in-memory inode block.
9869 * Recall that an inode block contains several inodes. If
9870 * the force flag is set, then the dependencies will be
9871 * cleared so that the update can always be made. Note that
9872 * the buffer is locked when this routine is called, so we
9873 * will never be in the middle of writing the inode block
9874 * to disk.
9875 */
9876void
9877softdep_update_inodeblock(ip, bp, waitfor)
9878	struct inode *ip;	/* the "in_core" copy of the inode */
9879	struct buf *bp;		/* the buffer containing the inode block */
9880	int waitfor;		/* nonzero => update must be allowed */
9881{
9882	struct inodedep *inodedep;
9883	struct inoref *inoref;
9884	struct worklist *wk;
9885	struct mount *mp;
9886	struct buf *ibp;
9887	struct fs *fs;
9888	int error;
9889
9890	mp = UFSTOVFS(ip->i_ump);
9891	fs = ip->i_fs;
9892	/*
9893	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
9894	 * does not have access to the in-core ip so must write directly into
9895	 * the inode block buffer when setting freelink.
9896	 */
9897	if (fs->fs_magic == FS_UFS1_MAGIC)
9898		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
9899		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
9900	else
9901		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
9902		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
9903	/*
9904	 * If the effective link count is not equal to the actual link
9905	 * count, then we must track the difference in an inodedep while
9906	 * the inode is (potentially) tossed out of the cache. Otherwise,
9907	 * if there is no existing inodedep, then there are no dependencies
9908	 * to track.
9909	 */
9910	ACQUIRE_LOCK(&lk);
9911again:
9912	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
9913		FREE_LOCK(&lk);
9914		if (ip->i_effnlink != ip->i_nlink)
9915			panic("softdep_update_inodeblock: bad link count");
9916		return;
9917	}
9918	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
9919		panic("softdep_update_inodeblock: bad delta");
9920	/*
9921	 * If we're flushing all dependencies we must also move any waiting
9922	 * for journal writes onto the bufwait list prior to I/O.
9923	 */
9924	if (waitfor) {
9925		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9926			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
9927			    == DEPCOMPLETE) {
9928				stat_jwait_inode++;
9929				jwait(&inoref->if_list);
9930				goto again;
9931			}
9932		}
9933	}
9934	/*
9935	 * Changes have been initiated. Anything depending on these
9936	 * changes cannot occur until this inode has been written.
9937	 */
9938	inodedep->id_state &= ~COMPLETE;
9939	if ((inodedep->id_state & ONWORKLIST) == 0)
9940		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
9941	/*
9942	 * Any new dependencies associated with the incore inode must
9943	 * now be moved to the list associated with the buffer holding
9944	 * the in-memory copy of the inode. Once merged process any
9945	 * allocdirects that are completed by the merger.
9946	 */
9947	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
9948	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
9949		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
9950		    NULL);
9951	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
9952	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
9953		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
9954		    NULL);
9955	/*
9956	 * Now that the inode has been pushed into the buffer, the
9957	 * operations dependent on the inode being written to disk
9958	 * can be moved to the id_bufwait so that they will be
9959	 * processed when the buffer I/O completes.
9960	 */
9961	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
9962		WORKLIST_REMOVE(wk);
9963		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
9964	}
9965	/*
9966	 * Newly allocated inodes cannot be written until the bitmap
9967	 * that allocates them have been written (indicated by
9968	 * DEPCOMPLETE being set in id_state). If we are doing a
9969	 * forced sync (e.g., an fsync on a file), we force the bitmap
9970	 * to be written so that the update can be done.
9971	 */
9972	if (waitfor == 0) {
9973		FREE_LOCK(&lk);
9974		return;
9975	}
9976retry:
9977	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
9978		FREE_LOCK(&lk);
9979		return;
9980	}
9981	ibp = inodedep->id_bmsafemap->sm_buf;
9982	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
9983	if (ibp == NULL) {
9984		/*
9985		 * If ibp came back as NULL, the dependency could have been
9986		 * freed while we slept.  Look it up again, and check to see
9987		 * that it has completed.
9988		 */
9989		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
9990			goto retry;
9991		FREE_LOCK(&lk);
9992		return;
9993	}
9994	FREE_LOCK(&lk);
9995	if ((error = bwrite(ibp)) != 0)
9996		softdep_error("softdep_update_inodeblock: bwrite", error);
9997}
9998
9999/*
10000 * Merge the a new inode dependency list (such as id_newinoupdt) into an
10001 * old inode dependency list (such as id_inoupdt). This routine must be
10002 * called with splbio interrupts blocked.
10003 */
10004static void
10005merge_inode_lists(newlisthead, oldlisthead)
10006	struct allocdirectlst *newlisthead;
10007	struct allocdirectlst *oldlisthead;
10008{
10009	struct allocdirect *listadp, *newadp;
10010
10011	newadp = TAILQ_FIRST(newlisthead);
10012	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
10013		if (listadp->ad_offset < newadp->ad_offset) {
10014			listadp = TAILQ_NEXT(listadp, ad_next);
10015			continue;
10016		}
10017		TAILQ_REMOVE(newlisthead, newadp, ad_next);
10018		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
10019		if (listadp->ad_offset == newadp->ad_offset) {
10020			allocdirect_merge(oldlisthead, newadp,
10021			    listadp);
10022			listadp = newadp;
10023		}
10024		newadp = TAILQ_FIRST(newlisthead);
10025	}
10026	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
10027		TAILQ_REMOVE(newlisthead, newadp, ad_next);
10028		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
10029	}
10030}
10031
10032/*
10033 * If we are doing an fsync, then we must ensure that any directory
10034 * entries for the inode have been written after the inode gets to disk.
10035 */
10036int
10037softdep_fsync(vp)
10038	struct vnode *vp;	/* the "in_core" copy of the inode */
10039{
10040	struct inodedep *inodedep;
10041	struct pagedep *pagedep;
10042	struct inoref *inoref;
10043	struct worklist *wk;
10044	struct diradd *dap;
10045	struct mount *mp;
10046	struct vnode *pvp;
10047	struct inode *ip;
10048	struct buf *bp;
10049	struct fs *fs;
10050	struct thread *td = curthread;
10051	int error, flushparent, pagedep_new_block;
10052	ino_t parentino;
10053	ufs_lbn_t lbn;
10054
10055	ip = VTOI(vp);
10056	fs = ip->i_fs;
10057	mp = vp->v_mount;
10058	ACQUIRE_LOCK(&lk);
10059restart:
10060	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
10061		FREE_LOCK(&lk);
10062		return (0);
10063	}
10064	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10065		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10066		    == DEPCOMPLETE) {
10067			stat_jwait_inode++;
10068			jwait(&inoref->if_list);
10069			goto restart;
10070		}
10071	}
10072	if (!LIST_EMPTY(&inodedep->id_inowait) ||
10073	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
10074	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
10075	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
10076	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
10077		panic("softdep_fsync: pending ops %p", inodedep);
10078	for (error = 0, flushparent = 0; ; ) {
10079		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
10080			break;
10081		if (wk->wk_type != D_DIRADD)
10082			panic("softdep_fsync: Unexpected type %s",
10083			    TYPENAME(wk->wk_type));
10084		dap = WK_DIRADD(wk);
10085		/*
10086		 * Flush our parent if this directory entry has a MKDIR_PARENT
10087		 * dependency or is contained in a newly allocated block.
10088		 */
10089		if (dap->da_state & DIRCHG)
10090			pagedep = dap->da_previous->dm_pagedep;
10091		else
10092			pagedep = dap->da_pagedep;
10093		parentino = pagedep->pd_ino;
10094		lbn = pagedep->pd_lbn;
10095		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
10096			panic("softdep_fsync: dirty");
10097		if ((dap->da_state & MKDIR_PARENT) ||
10098		    (pagedep->pd_state & NEWBLOCK))
10099			flushparent = 1;
10100		else
10101			flushparent = 0;
10102		/*
10103		 * If we are being fsync'ed as part of vgone'ing this vnode,
10104		 * then we will not be able to release and recover the
10105		 * vnode below, so we just have to give up on writing its
10106		 * directory entry out. It will eventually be written, just
10107		 * not now, but then the user was not asking to have it
10108		 * written, so we are not breaking any promises.
10109		 */
10110		if (vp->v_iflag & VI_DOOMED)
10111			break;
10112		/*
10113		 * We prevent deadlock by always fetching inodes from the
10114		 * root, moving down the directory tree. Thus, when fetching
10115		 * our parent directory, we first try to get the lock. If
10116		 * that fails, we must unlock ourselves before requesting
10117		 * the lock on our parent. See the comment in ufs_lookup
10118		 * for details on possible races.
10119		 */
10120		FREE_LOCK(&lk);
10121		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
10122		    FFSV_FORCEINSMQ)) {
10123			error = vfs_busy(mp, MBF_NOWAIT);
10124			if (error != 0) {
10125				vfs_ref(mp);
10126				VOP_UNLOCK(vp, 0);
10127				error = vfs_busy(mp, 0);
10128				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
10129				vfs_rel(mp);
10130				if (error != 0)
10131					return (ENOENT);
10132				if (vp->v_iflag & VI_DOOMED) {
10133					vfs_unbusy(mp);
10134					return (ENOENT);
10135				}
10136			}
10137			VOP_UNLOCK(vp, 0);
10138			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
10139			    &pvp, FFSV_FORCEINSMQ);
10140			vfs_unbusy(mp);
10141			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
10142			if (vp->v_iflag & VI_DOOMED) {
10143				if (error == 0)
10144					vput(pvp);
10145				error = ENOENT;
10146			}
10147			if (error != 0)
10148				return (error);
10149		}
10150		/*
10151		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
10152		 * that are contained in direct blocks will be resolved by
10153		 * doing a ffs_update. Pagedeps contained in indirect blocks
10154		 * may require a complete sync'ing of the directory. So, we
10155		 * try the cheap and fast ffs_update first, and if that fails,
10156		 * then we do the slower ffs_syncvnode of the directory.
10157		 */
10158		if (flushparent) {
10159			int locked;
10160
10161			if ((error = ffs_update(pvp, 1)) != 0) {
10162				vput(pvp);
10163				return (error);
10164			}
10165			ACQUIRE_LOCK(&lk);
10166			locked = 1;
10167			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
10168				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
10169					if (wk->wk_type != D_DIRADD)
10170						panic("softdep_fsync: Unexpected type %s",
10171						      TYPENAME(wk->wk_type));
10172					dap = WK_DIRADD(wk);
10173					if (dap->da_state & DIRCHG)
10174						pagedep = dap->da_previous->dm_pagedep;
10175					else
10176						pagedep = dap->da_pagedep;
10177					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
10178					FREE_LOCK(&lk);
10179					locked = 0;
10180					if (pagedep_new_block &&
10181					    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
10182						vput(pvp);
10183						return (error);
10184					}
10185				}
10186			}
10187			if (locked)
10188				FREE_LOCK(&lk);
10189		}
10190		/*
10191		 * Flush directory page containing the inode's name.
10192		 */
10193		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
10194		    &bp);
10195		if (error == 0)
10196			error = bwrite(bp);
10197		else
10198			brelse(bp);
10199		vput(pvp);
10200		if (error != 0)
10201			return (error);
10202		ACQUIRE_LOCK(&lk);
10203		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
10204			break;
10205	}
10206	FREE_LOCK(&lk);
10207	return (0);
10208}
10209
10210/*
10211 * Flush all the dirty bitmaps associated with the block device
10212 * before flushing the rest of the dirty blocks so as to reduce
10213 * the number of dependencies that will have to be rolled back.
10214 */
10215void
10216softdep_fsync_mountdev(vp)
10217	struct vnode *vp;
10218{
10219	struct buf *bp, *nbp;
10220	struct worklist *wk;
10221	struct bufobj *bo;
10222
10223	if (!vn_isdisk(vp, NULL))
10224		panic("softdep_fsync_mountdev: vnode not a disk");
10225	bo = &vp->v_bufobj;
10226restart:
10227	BO_LOCK(bo);
10228	ACQUIRE_LOCK(&lk);
10229	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
10230		/*
10231		 * If it is already scheduled, skip to the next buffer.
10232		 */
10233		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
10234			continue;
10235
10236		if ((bp->b_flags & B_DELWRI) == 0)
10237			panic("softdep_fsync_mountdev: not dirty");
10238		/*
10239		 * We are only interested in bitmaps with outstanding
10240		 * dependencies.
10241		 */
10242		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
10243		    wk->wk_type != D_BMSAFEMAP ||
10244		    (bp->b_vflags & BV_BKGRDINPROG)) {
10245			BUF_UNLOCK(bp);
10246			continue;
10247		}
10248		FREE_LOCK(&lk);
10249		BO_UNLOCK(bo);
10250		bremfree(bp);
10251		(void) bawrite(bp);
10252		goto restart;
10253	}
10254	FREE_LOCK(&lk);
10255	drain_output(vp);
10256	BO_UNLOCK(bo);
10257}
10258
10259/*
10260 * This routine is called when we are trying to synchronously flush a
10261 * file. This routine must eliminate any filesystem metadata dependencies
10262 * so that the syncing routine can succeed by pushing the dirty blocks
10263 * associated with the file. If any I/O errors occur, they are returned.
10264 */
10265int
10266softdep_sync_metadata(struct vnode *vp)
10267{
10268	struct pagedep *pagedep;
10269	struct allocindir *aip;
10270	struct newblk *newblk;
10271	struct buf *bp, *nbp;
10272	struct worklist *wk;
10273	struct bufobj *bo;
10274	int i, error, waitfor;
10275
10276	if (!DOINGSOFTDEP(vp))
10277		return (0);
10278	/*
10279	 * Ensure that any direct block dependencies have been cleared.
10280	 */
10281	ACQUIRE_LOCK(&lk);
10282	if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) {
10283		FREE_LOCK(&lk);
10284		return (error);
10285	}
10286	FREE_LOCK(&lk);
10287	/*
10288	 * For most files, the only metadata dependencies are the
10289	 * cylinder group maps that allocate their inode or blocks.
10290	 * The block allocation dependencies can be found by traversing
10291	 * the dependency lists for any buffers that remain on their
10292	 * dirty buffer list. The inode allocation dependency will
10293	 * be resolved when the inode is updated with MNT_WAIT.
10294	 * This work is done in two passes. The first pass grabs most
10295	 * of the buffers and begins asynchronously writing them. The
10296	 * only way to wait for these asynchronous writes is to sleep
10297	 * on the filesystem vnode which may stay busy for a long time
10298	 * if the filesystem is active. So, instead, we make a second
10299	 * pass over the dependencies blocking on each write. In the
10300	 * usual case we will be blocking against a write that we
10301	 * initiated, so when it is done the dependency will have been
10302	 * resolved. Thus the second pass is expected to end quickly.
10303	 */
10304	waitfor = MNT_NOWAIT;
10305	bo = &vp->v_bufobj;
10306
10307top:
10308	/*
10309	 * We must wait for any I/O in progress to finish so that
10310	 * all potential buffers on the dirty list will be visible.
10311	 */
10312	BO_LOCK(bo);
10313	drain_output(vp);
10314	while ((bp = TAILQ_FIRST(&bo->bo_dirty.bv_hd)) != NULL) {
10315		bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT);
10316		if (bp)
10317			break;
10318	}
10319	BO_UNLOCK(bo);
10320	if (bp == NULL)
10321		return (0);
10322loop:
10323	/* While syncing snapshots, we must allow recursive lookups */
10324	BUF_AREC(bp);
10325	ACQUIRE_LOCK(&lk);
10326	/*
10327	 * As we hold the buffer locked, none of its dependencies
10328	 * will disappear.
10329	 */
10330	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
10331		switch (wk->wk_type) {
10332
10333		case D_ALLOCDIRECT:
10334		case D_ALLOCINDIR:
10335			newblk = WK_NEWBLK(wk);
10336			if (newblk->nb_jnewblk != NULL) {
10337				stat_jwait_newblk++;
10338				jwait(&newblk->nb_jnewblk->jn_list);
10339				goto restart;
10340			}
10341			if (newblk->nb_state & DEPCOMPLETE)
10342				continue;
10343			nbp = newblk->nb_bmsafemap->sm_buf;
10344			nbp = getdirtybuf(nbp, &lk, waitfor);
10345			if (nbp == NULL)
10346				continue;
10347			FREE_LOCK(&lk);
10348			if (waitfor == MNT_NOWAIT) {
10349				bawrite(nbp);
10350			} else if ((error = bwrite(nbp)) != 0) {
10351				break;
10352			}
10353			ACQUIRE_LOCK(&lk);
10354			continue;
10355
10356		case D_INDIRDEP:
10357		restart:
10358
10359			LIST_FOREACH(aip,
10360			    &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
10361				newblk = (struct newblk *)aip;
10362				if (newblk->nb_jnewblk != NULL) {
10363					stat_jwait_newblk++;
10364					jwait(&newblk->nb_jnewblk->jn_list);
10365					goto restart;
10366				}
10367				if (newblk->nb_state & DEPCOMPLETE)
10368					continue;
10369				nbp = newblk->nb_bmsafemap->sm_buf;
10370				nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
10371				if (nbp == NULL)
10372					goto restart;
10373				FREE_LOCK(&lk);
10374				if ((error = bwrite(nbp)) != 0) {
10375					goto loop_end;
10376				}
10377				ACQUIRE_LOCK(&lk);
10378				goto restart;
10379			}
10380			continue;
10381
10382		case D_PAGEDEP:
10383			/*
10384			 * We are trying to sync a directory that may
10385			 * have dependencies on both its own metadata
10386			 * and/or dependencies on the inodes of any
10387			 * recently allocated files. We walk its diradd
10388			 * lists pushing out the associated inode.
10389			 */
10390			pagedep = WK_PAGEDEP(wk);
10391			for (i = 0; i < DAHASHSZ; i++) {
10392				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
10393					continue;
10394				if ((error =
10395				    flush_pagedep_deps(vp, wk->wk_mp,
10396						&pagedep->pd_diraddhd[i]))) {
10397					FREE_LOCK(&lk);
10398					goto loop_end;
10399				}
10400			}
10401			continue;
10402
10403		default:
10404			panic("softdep_sync_metadata: Unknown type %s",
10405			    TYPENAME(wk->wk_type));
10406			/* NOTREACHED */
10407		}
10408	loop_end:
10409		/* We reach here only in error and unlocked */
10410		if (error == 0)
10411			panic("softdep_sync_metadata: zero error");
10412		BUF_NOREC(bp);
10413		bawrite(bp);
10414		return (error);
10415	}
10416	FREE_LOCK(&lk);
10417	BO_LOCK(bo);
10418	while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
10419		nbp = getdirtybuf(nbp, BO_MTX(bo), MNT_WAIT);
10420		if (nbp)
10421			break;
10422	}
10423	BO_UNLOCK(bo);
10424	BUF_NOREC(bp);
10425	bawrite(bp);
10426	if (nbp != NULL) {
10427		bp = nbp;
10428		goto loop;
10429	}
10430	/*
10431	 * The brief unlock is to allow any pent up dependency
10432	 * processing to be done. Then proceed with the second pass.
10433	 */
10434	if (waitfor == MNT_NOWAIT) {
10435		waitfor = MNT_WAIT;
10436		goto top;
10437	}
10438
10439	/*
10440	 * If we have managed to get rid of all the dirty buffers,
10441	 * then we are done. For certain directories and block
10442	 * devices, we may need to do further work.
10443	 *
10444	 * We must wait for any I/O in progress to finish so that
10445	 * all potential buffers on the dirty list will be visible.
10446	 */
10447	BO_LOCK(bo);
10448	drain_output(vp);
10449	BO_UNLOCK(bo);
10450	return ffs_update(vp, 1);
10451	/* return (0); */
10452}
10453
10454/*
10455 * Flush the dependencies associated with an inodedep.
10456 * Called with splbio blocked.
10457 */
10458static int
10459flush_inodedep_deps(mp, ino)
10460	struct mount *mp;
10461	ino_t ino;
10462{
10463	struct inodedep *inodedep;
10464	struct inoref *inoref;
10465	int error, waitfor;
10466
10467	/*
10468	 * This work is done in two passes. The first pass grabs most
10469	 * of the buffers and begins asynchronously writing them. The
10470	 * only way to wait for these asynchronous writes is to sleep
10471	 * on the filesystem vnode which may stay busy for a long time
10472	 * if the filesystem is active. So, instead, we make a second
10473	 * pass over the dependencies blocking on each write. In the
10474	 * usual case we will be blocking against a write that we
10475	 * initiated, so when it is done the dependency will have been
10476	 * resolved. Thus the second pass is expected to end quickly.
10477	 * We give a brief window at the top of the loop to allow
10478	 * any pending I/O to complete.
10479	 */
10480	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
10481		if (error)
10482			return (error);
10483		FREE_LOCK(&lk);
10484		ACQUIRE_LOCK(&lk);
10485restart:
10486		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
10487			return (0);
10488		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10489			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10490			    == DEPCOMPLETE) {
10491				stat_jwait_inode++;
10492				jwait(&inoref->if_list);
10493				goto restart;
10494			}
10495		}
10496		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
10497		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
10498		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
10499		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
10500			continue;
10501		/*
10502		 * If pass2, we are done, otherwise do pass 2.
10503		 */
10504		if (waitfor == MNT_WAIT)
10505			break;
10506		waitfor = MNT_WAIT;
10507	}
10508	/*
10509	 * Try freeing inodedep in case all dependencies have been removed.
10510	 */
10511	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
10512		(void) free_inodedep(inodedep);
10513	return (0);
10514}
10515
10516/*
10517 * Flush an inode dependency list.
10518 * Called with splbio blocked.
10519 */
10520static int
10521flush_deplist(listhead, waitfor, errorp)
10522	struct allocdirectlst *listhead;
10523	int waitfor;
10524	int *errorp;
10525{
10526	struct allocdirect *adp;
10527	struct newblk *newblk;
10528	struct buf *bp;
10529
10530	mtx_assert(&lk, MA_OWNED);
10531	TAILQ_FOREACH(adp, listhead, ad_next) {
10532		newblk = (struct newblk *)adp;
10533		if (newblk->nb_jnewblk != NULL) {
10534			stat_jwait_newblk++;
10535			jwait(&newblk->nb_jnewblk->jn_list);
10536			return (1);
10537		}
10538		if (newblk->nb_state & DEPCOMPLETE)
10539			continue;
10540		bp = newblk->nb_bmsafemap->sm_buf;
10541		bp = getdirtybuf(bp, &lk, waitfor);
10542		if (bp == NULL) {
10543			if (waitfor == MNT_NOWAIT)
10544				continue;
10545			return (1);
10546		}
10547		FREE_LOCK(&lk);
10548		if (waitfor == MNT_NOWAIT) {
10549			bawrite(bp);
10550		} else if ((*errorp = bwrite(bp)) != 0) {
10551			ACQUIRE_LOCK(&lk);
10552			return (1);
10553		}
10554		ACQUIRE_LOCK(&lk);
10555		return (1);
10556	}
10557	return (0);
10558}
10559
10560/*
10561 * Flush dependencies associated with an allocdirect block.
10562 */
10563static int
10564flush_newblk_dep(vp, mp, lbn)
10565	struct vnode *vp;
10566	struct mount *mp;
10567	ufs_lbn_t lbn;
10568{
10569	struct newblk *newblk;
10570	struct bufobj *bo;
10571	struct inode *ip;
10572	struct buf *bp;
10573	ufs2_daddr_t blkno;
10574	int error;
10575
10576	error = 0;
10577	bo = &vp->v_bufobj;
10578	ip = VTOI(vp);
10579	blkno = DIP(ip, i_db[lbn]);
10580	if (blkno == 0)
10581		panic("flush_newblk_dep: Missing block");
10582	ACQUIRE_LOCK(&lk);
10583	/*
10584	 * Loop until all dependencies related to this block are satisfied.
10585	 * We must be careful to restart after each sleep in case a write
10586	 * completes some part of this process for us.
10587	 */
10588	for (;;) {
10589		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
10590			FREE_LOCK(&lk);
10591			break;
10592		}
10593		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
10594			panic("flush_newblk_deps: Bad newblk %p", newblk);
10595		/*
10596		 * Flush the journal.
10597		 */
10598		if (newblk->nb_jnewblk != NULL) {
10599			stat_jwait_newblk++;
10600			jwait(&newblk->nb_jnewblk->jn_list);
10601			continue;
10602		}
10603		/*
10604		 * Write the bitmap dependency.
10605		 */
10606		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
10607			bp = newblk->nb_bmsafemap->sm_buf;
10608			bp = getdirtybuf(bp, &lk, MNT_WAIT);
10609			if (bp == NULL)
10610				continue;
10611			FREE_LOCK(&lk);
10612			error = bwrite(bp);
10613			if (error)
10614				break;
10615			ACQUIRE_LOCK(&lk);
10616			continue;
10617		}
10618		/*
10619		 * Write the buffer.
10620		 */
10621		FREE_LOCK(&lk);
10622		BO_LOCK(bo);
10623		bp = gbincore(bo, lbn);
10624		if (bp != NULL) {
10625			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
10626			    LK_INTERLOCK, BO_MTX(bo));
10627			if (error == ENOLCK) {
10628				ACQUIRE_LOCK(&lk);
10629				continue; /* Slept, retry */
10630			}
10631			if (error != 0)
10632				break;	/* Failed */
10633			if (bp->b_flags & B_DELWRI) {
10634				bremfree(bp);
10635				error = bwrite(bp);
10636				if (error)
10637					break;
10638			} else
10639				BUF_UNLOCK(bp);
10640		} else
10641			BO_UNLOCK(bo);
10642		/*
10643		 * We have to wait for the direct pointers to
10644		 * point at the newdirblk before the dependency
10645		 * will go away.
10646		 */
10647		error = ffs_update(vp, MNT_WAIT);
10648		if (error)
10649			break;
10650		ACQUIRE_LOCK(&lk);
10651	}
10652	return (error);
10653}
10654
10655/*
10656 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
10657 * Called with splbio blocked.
10658 */
10659static int
10660flush_pagedep_deps(pvp, mp, diraddhdp)
10661	struct vnode *pvp;
10662	struct mount *mp;
10663	struct diraddhd *diraddhdp;
10664{
10665	struct inodedep *inodedep;
10666	struct inoref *inoref;
10667	struct ufsmount *ump;
10668	struct diradd *dap;
10669	struct vnode *vp;
10670	int error = 0;
10671	struct buf *bp;
10672	ino_t inum;
10673
10674	ump = VFSTOUFS(mp);
10675restart:
10676	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
10677		/*
10678		 * Flush ourselves if this directory entry
10679		 * has a MKDIR_PARENT dependency.
10680		 */
10681		if (dap->da_state & MKDIR_PARENT) {
10682			FREE_LOCK(&lk);
10683			if ((error = ffs_update(pvp, MNT_WAIT)) != 0)
10684				break;
10685			ACQUIRE_LOCK(&lk);
10686			/*
10687			 * If that cleared dependencies, go on to next.
10688			 */
10689			if (dap != LIST_FIRST(diraddhdp))
10690				continue;
10691			if (dap->da_state & MKDIR_PARENT)
10692				panic("flush_pagedep_deps: MKDIR_PARENT");
10693		}
10694		/*
10695		 * A newly allocated directory must have its "." and
10696		 * ".." entries written out before its name can be
10697		 * committed in its parent.
10698		 */
10699		inum = dap->da_newinum;
10700		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
10701			panic("flush_pagedep_deps: lost inode1");
10702		/*
10703		 * Wait for any pending journal adds to complete so we don't
10704		 * cause rollbacks while syncing.
10705		 */
10706		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10707			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10708			    == DEPCOMPLETE) {
10709				stat_jwait_inode++;
10710				jwait(&inoref->if_list);
10711				goto restart;
10712			}
10713		}
10714		if (dap->da_state & MKDIR_BODY) {
10715			FREE_LOCK(&lk);
10716			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
10717			    FFSV_FORCEINSMQ)))
10718				break;
10719			error = flush_newblk_dep(vp, mp, 0);
10720			/*
10721			 * If we still have the dependency we might need to
10722			 * update the vnode to sync the new link count to
10723			 * disk.
10724			 */
10725			if (error == 0 && dap == LIST_FIRST(diraddhdp))
10726				error = ffs_update(vp, MNT_WAIT);
10727			vput(vp);
10728			if (error != 0)
10729				break;
10730			ACQUIRE_LOCK(&lk);
10731			/*
10732			 * If that cleared dependencies, go on to next.
10733			 */
10734			if (dap != LIST_FIRST(diraddhdp))
10735				continue;
10736			if (dap->da_state & MKDIR_BODY) {
10737				inodedep_lookup(UFSTOVFS(ump), inum, 0,
10738				    &inodedep);
10739				panic("flush_pagedep_deps: MKDIR_BODY "
10740				    "inodedep %p dap %p vp %p",
10741				    inodedep, dap, vp);
10742			}
10743		}
10744		/*
10745		 * Flush the inode on which the directory entry depends.
10746		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
10747		 * the only remaining dependency is that the updated inode
10748		 * count must get pushed to disk. The inode has already
10749		 * been pushed into its inode buffer (via VOP_UPDATE) at
10750		 * the time of the reference count change. So we need only
10751		 * locate that buffer, ensure that there will be no rollback
10752		 * caused by a bitmap dependency, then write the inode buffer.
10753		 */
10754retry:
10755		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
10756			panic("flush_pagedep_deps: lost inode");
10757		/*
10758		 * If the inode still has bitmap dependencies,
10759		 * push them to disk.
10760		 */
10761		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
10762			bp = inodedep->id_bmsafemap->sm_buf;
10763			bp = getdirtybuf(bp, &lk, MNT_WAIT);
10764			if (bp == NULL)
10765				goto retry;
10766			FREE_LOCK(&lk);
10767			if ((error = bwrite(bp)) != 0)
10768				break;
10769			ACQUIRE_LOCK(&lk);
10770			if (dap != LIST_FIRST(diraddhdp))
10771				continue;
10772		}
10773		/*
10774		 * If the inode is still sitting in a buffer waiting
10775		 * to be written or waiting for the link count to be
10776		 * adjusted update it here to flush it to disk.
10777		 */
10778		if (dap == LIST_FIRST(diraddhdp)) {
10779			FREE_LOCK(&lk);
10780			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
10781			    FFSV_FORCEINSMQ)))
10782				break;
10783			error = ffs_update(vp, MNT_WAIT);
10784			vput(vp);
10785			if (error)
10786				break;
10787			ACQUIRE_LOCK(&lk);
10788		}
10789		/*
10790		 * If we have failed to get rid of all the dependencies
10791		 * then something is seriously wrong.
10792		 */
10793		if (dap == LIST_FIRST(diraddhdp)) {
10794			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
10795			panic("flush_pagedep_deps: failed to flush "
10796			    "inodedep %p ino %d dap %p", inodedep, inum, dap);
10797		}
10798	}
10799	if (error)
10800		ACQUIRE_LOCK(&lk);
10801	return (error);
10802}
10803
10804/*
10805 * A large burst of file addition or deletion activity can drive the
10806 * memory load excessively high. First attempt to slow things down
10807 * using the techniques below. If that fails, this routine requests
10808 * the offending operations to fall back to running synchronously
10809 * until the memory load returns to a reasonable level.
10810 */
10811int
10812softdep_slowdown(vp)
10813	struct vnode *vp;
10814{
10815	struct ufsmount *ump;
10816	int jlow;
10817	int max_softdeps_hard;
10818
10819	ACQUIRE_LOCK(&lk);
10820	jlow = 0;
10821	/*
10822	 * Check for journal space if needed.
10823	 */
10824	if (DOINGSUJ(vp)) {
10825		ump = VFSTOUFS(vp->v_mount);
10826		if (journal_space(ump, 0) == 0)
10827			jlow = 1;
10828	}
10829	max_softdeps_hard = max_softdeps * 11 / 10;
10830	if (num_dirrem < max_softdeps_hard / 2 &&
10831	    num_inodedep < max_softdeps_hard &&
10832	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
10833	    num_freeblkdep < max_softdeps_hard && jlow == 0) {
10834		FREE_LOCK(&lk);
10835  		return (0);
10836	}
10837	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
10838		softdep_speedup();
10839	stat_sync_limit_hit += 1;
10840	FREE_LOCK(&lk);
10841	return (1);
10842}
10843
10844/*
10845 * Called by the allocation routines when they are about to fail
10846 * in the hope that we can free up some disk space.
10847 *
10848 * First check to see if the work list has anything on it. If it has,
10849 * clean up entries until we successfully free some space. Because this
10850 * process holds inodes locked, we cannot handle any remove requests
10851 * that might block on a locked inode as that could lead to deadlock.
10852 * If the worklist yields no free space, encourage the syncer daemon
10853 * to help us. In no event will we try for longer than tickdelay seconds.
10854 */
10855int
10856softdep_request_cleanup(fs, vp)
10857	struct fs *fs;
10858	struct vnode *vp;
10859{
10860	struct ufsmount *ump;
10861	long starttime;
10862	ufs2_daddr_t needed;
10863	int error;
10864
10865	ump = VTOI(vp)->i_ump;
10866	mtx_assert(UFS_MTX(ump), MA_OWNED);
10867	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
10868	starttime = time_second + tickdelay;
10869	/*
10870	 * If we are being called because of a process doing a
10871	 * copy-on-write, then it is not safe to update the vnode
10872	 * as we may recurse into the copy-on-write routine.
10873	 */
10874	if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
10875		UFS_UNLOCK(ump);
10876		error = ffs_update(vp, 1);
10877		UFS_LOCK(ump);
10878		if (error != 0)
10879			return (0);
10880	}
10881	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
10882		if (time_second > starttime)
10883			return (0);
10884		UFS_UNLOCK(ump);
10885		ACQUIRE_LOCK(&lk);
10886		process_removes(vp);
10887		if (ump->softdep_on_worklist > 0 &&
10888		    process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) {
10889			stat_worklist_push += 1;
10890			FREE_LOCK(&lk);
10891			UFS_LOCK(ump);
10892			continue;
10893		}
10894		request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT);
10895		FREE_LOCK(&lk);
10896		UFS_LOCK(ump);
10897	}
10898	return (1);
10899}
10900
10901/*
10902 * If memory utilization has gotten too high, deliberately slow things
10903 * down and speed up the I/O processing.
10904 */
10905extern struct thread *syncertd;
10906static int
10907request_cleanup(mp, resource)
10908	struct mount *mp;
10909	int resource;
10910{
10911	struct thread *td = curthread;
10912	struct ufsmount *ump;
10913
10914	mtx_assert(&lk, MA_OWNED);
10915	/*
10916	 * We never hold up the filesystem syncer or buf daemon.
10917	 */
10918	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
10919		return (0);
10920	ump = VFSTOUFS(mp);
10921	/*
10922	 * First check to see if the work list has gotten backlogged.
10923	 * If it has, co-opt this process to help clean up two entries.
10924	 * Because this process may hold inodes locked, we cannot
10925	 * handle any remove requests that might block on a locked
10926	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
10927	 * to avoid recursively processing the worklist.
10928	 */
10929	if (ump->softdep_on_worklist > max_softdeps / 10) {
10930		td->td_pflags |= TDP_SOFTDEP;
10931		process_worklist_item(mp, LK_NOWAIT);
10932		process_worklist_item(mp, LK_NOWAIT);
10933		td->td_pflags &= ~TDP_SOFTDEP;
10934		stat_worklist_push += 2;
10935		return(1);
10936	}
10937	/*
10938	 * Next, we attempt to speed up the syncer process. If that
10939	 * is successful, then we allow the process to continue.
10940	 */
10941	if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT)
10942		return(0);
10943	/*
10944	 * If we are resource constrained on inode dependencies, try
10945	 * flushing some dirty inodes. Otherwise, we are constrained
10946	 * by file deletions, so try accelerating flushes of directories
10947	 * with removal dependencies. We would like to do the cleanup
10948	 * here, but we probably hold an inode locked at this point and
10949	 * that might deadlock against one that we try to clean. So,
10950	 * the best that we can do is request the syncer daemon to do
10951	 * the cleanup for us.
10952	 */
10953	switch (resource) {
10954
10955	case FLUSH_INODES:
10956		stat_ino_limit_push += 1;
10957		req_clear_inodedeps += 1;
10958		stat_countp = &stat_ino_limit_hit;
10959		break;
10960
10961	case FLUSH_REMOVE:
10962	case FLUSH_REMOVE_WAIT:
10963		stat_blk_limit_push += 1;
10964		req_clear_remove += 1;
10965		stat_countp = &stat_blk_limit_hit;
10966		break;
10967
10968	default:
10969		panic("request_cleanup: unknown type");
10970	}
10971	/*
10972	 * Hopefully the syncer daemon will catch up and awaken us.
10973	 * We wait at most tickdelay before proceeding in any case.
10974	 */
10975	proc_waiting += 1;
10976	if (callout_pending(&softdep_callout) == FALSE)
10977		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
10978		    pause_timer, 0);
10979
10980	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
10981	proc_waiting -= 1;
10982	return (1);
10983}
10984
10985/*
10986 * Awaken processes pausing in request_cleanup and clear proc_waiting
10987 * to indicate that there is no longer a timer running.
10988 */
10989static void
10990pause_timer(arg)
10991	void *arg;
10992{
10993
10994	/*
10995	 * The callout_ API has acquired mtx and will hold it around this
10996	 * function call.
10997	 */
10998	*stat_countp += 1;
10999	wakeup_one(&proc_waiting);
11000	if (proc_waiting > 0)
11001		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
11002		    pause_timer, 0);
11003}
11004
11005/*
11006 * Flush out a directory with at least one removal dependency in an effort to
11007 * reduce the number of dirrem, freefile, and freeblks dependency structures.
11008 */
11009static void
11010clear_remove(td)
11011	struct thread *td;
11012{
11013	struct pagedep_hashhead *pagedephd;
11014	struct pagedep *pagedep;
11015	static int next = 0;
11016	struct mount *mp;
11017	struct vnode *vp;
11018	struct bufobj *bo;
11019	int error, cnt;
11020	ino_t ino;
11021
11022	mtx_assert(&lk, MA_OWNED);
11023
11024	for (cnt = 0; cnt < pagedep_hash; cnt++) {
11025		pagedephd = &pagedep_hashtbl[next++];
11026		if (next >= pagedep_hash)
11027			next = 0;
11028		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
11029			if (LIST_EMPTY(&pagedep->pd_dirremhd))
11030				continue;
11031			mp = pagedep->pd_list.wk_mp;
11032			ino = pagedep->pd_ino;
11033			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
11034				continue;
11035			FREE_LOCK(&lk);
11036
11037			/*
11038			 * Let unmount clear deps
11039			 */
11040			error = vfs_busy(mp, MBF_NOWAIT);
11041			if (error != 0)
11042				goto finish_write;
11043			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
11044			     FFSV_FORCEINSMQ);
11045			vfs_unbusy(mp);
11046			if (error != 0) {
11047				softdep_error("clear_remove: vget", error);
11048				goto finish_write;
11049			}
11050			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
11051				softdep_error("clear_remove: fsync", error);
11052			bo = &vp->v_bufobj;
11053			BO_LOCK(bo);
11054			drain_output(vp);
11055			BO_UNLOCK(bo);
11056			vput(vp);
11057		finish_write:
11058			vn_finished_write(mp);
11059			ACQUIRE_LOCK(&lk);
11060			return;
11061		}
11062	}
11063}
11064
11065/*
11066 * Clear out a block of dirty inodes in an effort to reduce
11067 * the number of inodedep dependency structures.
11068 */
11069static void
11070clear_inodedeps(td)
11071	struct thread *td;
11072{
11073	struct inodedep_hashhead *inodedephd;
11074	struct inodedep *inodedep;
11075	static int next = 0;
11076	struct mount *mp;
11077	struct vnode *vp;
11078	struct fs *fs;
11079	int error, cnt;
11080	ino_t firstino, lastino, ino;
11081
11082	mtx_assert(&lk, MA_OWNED);
11083	/*
11084	 * Pick a random inode dependency to be cleared.
11085	 * We will then gather up all the inodes in its block
11086	 * that have dependencies and flush them out.
11087	 */
11088	for (cnt = 0; cnt < inodedep_hash; cnt++) {
11089		inodedephd = &inodedep_hashtbl[next++];
11090		if (next >= inodedep_hash)
11091			next = 0;
11092		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
11093			break;
11094	}
11095	if (inodedep == NULL)
11096		return;
11097	fs = inodedep->id_fs;
11098	mp = inodedep->id_list.wk_mp;
11099	/*
11100	 * Find the last inode in the block with dependencies.
11101	 */
11102	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
11103	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
11104		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
11105			break;
11106	/*
11107	 * Asynchronously push all but the last inode with dependencies.
11108	 * Synchronously push the last inode with dependencies to ensure
11109	 * that the inode block gets written to free up the inodedeps.
11110	 */
11111	for (ino = firstino; ino <= lastino; ino++) {
11112		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
11113			continue;
11114		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
11115			continue;
11116		FREE_LOCK(&lk);
11117		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
11118		if (error != 0) {
11119			vn_finished_write(mp);
11120			ACQUIRE_LOCK(&lk);
11121			return;
11122		}
11123		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
11124		    FFSV_FORCEINSMQ)) != 0) {
11125			softdep_error("clear_inodedeps: vget", error);
11126			vfs_unbusy(mp);
11127			vn_finished_write(mp);
11128			ACQUIRE_LOCK(&lk);
11129			return;
11130		}
11131		vfs_unbusy(mp);
11132		if (ino == lastino) {
11133			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
11134				softdep_error("clear_inodedeps: fsync1", error);
11135		} else {
11136			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
11137				softdep_error("clear_inodedeps: fsync2", error);
11138			BO_LOCK(&vp->v_bufobj);
11139			drain_output(vp);
11140			BO_UNLOCK(&vp->v_bufobj);
11141		}
11142		vput(vp);
11143		vn_finished_write(mp);
11144		ACQUIRE_LOCK(&lk);
11145	}
11146}
11147
11148/*
11149 * Function to determine if the buffer has outstanding dependencies
11150 * that will cause a roll-back if the buffer is written. If wantcount
11151 * is set, return number of dependencies, otherwise just yes or no.
11152 */
11153static int
11154softdep_count_dependencies(bp, wantcount)
11155	struct buf *bp;
11156	int wantcount;
11157{
11158	struct worklist *wk;
11159	struct bmsafemap *bmsafemap;
11160	struct inodedep *inodedep;
11161	struct indirdep *indirdep;
11162	struct freeblks *freeblks;
11163	struct allocindir *aip;
11164	struct pagedep *pagedep;
11165	struct dirrem *dirrem;
11166	struct newblk *newblk;
11167	struct mkdir *mkdir;
11168	struct diradd *dap;
11169	int i, retval;
11170
11171	retval = 0;
11172	ACQUIRE_LOCK(&lk);
11173	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11174		switch (wk->wk_type) {
11175
11176		case D_INODEDEP:
11177			inodedep = WK_INODEDEP(wk);
11178			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
11179				/* bitmap allocation dependency */
11180				retval += 1;
11181				if (!wantcount)
11182					goto out;
11183			}
11184			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
11185				/* direct block pointer dependency */
11186				retval += 1;
11187				if (!wantcount)
11188					goto out;
11189			}
11190			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
11191				/* direct block pointer dependency */
11192				retval += 1;
11193				if (!wantcount)
11194					goto out;
11195			}
11196			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
11197				/* Add reference dependency. */
11198				retval += 1;
11199				if (!wantcount)
11200					goto out;
11201			}
11202			continue;
11203
11204		case D_INDIRDEP:
11205			indirdep = WK_INDIRDEP(wk);
11206
11207			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
11208				/* indirect block pointer dependency */
11209				retval += 1;
11210				if (!wantcount)
11211					goto out;
11212			}
11213			continue;
11214
11215		case D_PAGEDEP:
11216			pagedep = WK_PAGEDEP(wk);
11217			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
11218				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
11219					/* Journal remove ref dependency. */
11220					retval += 1;
11221					if (!wantcount)
11222						goto out;
11223				}
11224			}
11225			for (i = 0; i < DAHASHSZ; i++) {
11226
11227				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
11228					/* directory entry dependency */
11229					retval += 1;
11230					if (!wantcount)
11231						goto out;
11232				}
11233			}
11234			continue;
11235
11236		case D_BMSAFEMAP:
11237			bmsafemap = WK_BMSAFEMAP(wk);
11238			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
11239				/* Add reference dependency. */
11240				retval += 1;
11241				if (!wantcount)
11242					goto out;
11243			}
11244			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
11245				/* Allocate block dependency. */
11246				retval += 1;
11247				if (!wantcount)
11248					goto out;
11249			}
11250			continue;
11251
11252		case D_FREEBLKS:
11253			freeblks = WK_FREEBLKS(wk);
11254			if (LIST_FIRST(&freeblks->fb_jfreeblkhd)) {
11255				/* Freeblk journal dependency. */
11256				retval += 1;
11257				if (!wantcount)
11258					goto out;
11259			}
11260			continue;
11261
11262		case D_ALLOCDIRECT:
11263		case D_ALLOCINDIR:
11264			newblk = WK_NEWBLK(wk);
11265			if (newblk->nb_jnewblk) {
11266				/* Journal allocate dependency. */
11267				retval += 1;
11268				if (!wantcount)
11269					goto out;
11270			}
11271			continue;
11272
11273		case D_MKDIR:
11274			mkdir = WK_MKDIR(wk);
11275			if (mkdir->md_jaddref) {
11276				/* Journal reference dependency. */
11277				retval += 1;
11278				if (!wantcount)
11279					goto out;
11280			}
11281			continue;
11282
11283		case D_FREEWORK:
11284		case D_FREEDEP:
11285		case D_JSEGDEP:
11286		case D_JSEG:
11287		case D_SBDEP:
11288			/* never a dependency on these blocks */
11289			continue;
11290
11291		default:
11292			panic("softdep_count_dependencies: Unexpected type %s",
11293			    TYPENAME(wk->wk_type));
11294			/* NOTREACHED */
11295		}
11296	}
11297out:
11298	FREE_LOCK(&lk);
11299	return retval;
11300}
11301
11302/*
11303 * Acquire exclusive access to a buffer.
11304 * Must be called with a locked mtx parameter.
11305 * Return acquired buffer or NULL on failure.
11306 */
11307static struct buf *
11308getdirtybuf(bp, mtx, waitfor)
11309	struct buf *bp;
11310	struct mtx *mtx;
11311	int waitfor;
11312{
11313	int error;
11314
11315	mtx_assert(mtx, MA_OWNED);
11316	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
11317		if (waitfor != MNT_WAIT)
11318			return (NULL);
11319		error = BUF_LOCK(bp,
11320		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
11321		/*
11322		 * Even if we sucessfully acquire bp here, we have dropped
11323		 * mtx, which may violates our guarantee.
11324		 */
11325		if (error == 0)
11326			BUF_UNLOCK(bp);
11327		else if (error != ENOLCK)
11328			panic("getdirtybuf: inconsistent lock: %d", error);
11329		mtx_lock(mtx);
11330		return (NULL);
11331	}
11332	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
11333		if (mtx == &lk && waitfor == MNT_WAIT) {
11334			mtx_unlock(mtx);
11335			BO_LOCK(bp->b_bufobj);
11336			BUF_UNLOCK(bp);
11337			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
11338				bp->b_vflags |= BV_BKGRDWAIT;
11339				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
11340				       PRIBIO | PDROP, "getbuf", 0);
11341			} else
11342				BO_UNLOCK(bp->b_bufobj);
11343			mtx_lock(mtx);
11344			return (NULL);
11345		}
11346		BUF_UNLOCK(bp);
11347		if (waitfor != MNT_WAIT)
11348			return (NULL);
11349		/*
11350		 * The mtx argument must be bp->b_vp's mutex in
11351		 * this case.
11352		 */
11353#ifdef	DEBUG_VFS_LOCKS
11354		if (bp->b_vp->v_type != VCHR)
11355			ASSERT_BO_LOCKED(bp->b_bufobj);
11356#endif
11357		bp->b_vflags |= BV_BKGRDWAIT;
11358		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
11359		return (NULL);
11360	}
11361	if ((bp->b_flags & B_DELWRI) == 0) {
11362		BUF_UNLOCK(bp);
11363		return (NULL);
11364	}
11365	bremfree(bp);
11366	return (bp);
11367}
11368
11369
11370/*
11371 * Check if it is safe to suspend the file system now.  On entry,
11372 * the vnode interlock for devvp should be held.  Return 0 with
11373 * the mount interlock held if the file system can be suspended now,
11374 * otherwise return EAGAIN with the mount interlock held.
11375 */
11376int
11377softdep_check_suspend(struct mount *mp,
11378		      struct vnode *devvp,
11379		      int softdep_deps,
11380		      int softdep_accdeps,
11381		      int secondary_writes,
11382		      int secondary_accwrites)
11383{
11384	struct bufobj *bo;
11385	struct ufsmount *ump;
11386	int error;
11387
11388	ump = VFSTOUFS(mp);
11389	bo = &devvp->v_bufobj;
11390	ASSERT_BO_LOCKED(bo);
11391
11392	for (;;) {
11393		if (!TRY_ACQUIRE_LOCK(&lk)) {
11394			BO_UNLOCK(bo);
11395			ACQUIRE_LOCK(&lk);
11396			FREE_LOCK(&lk);
11397			BO_LOCK(bo);
11398			continue;
11399		}
11400		MNT_ILOCK(mp);
11401		if (mp->mnt_secondary_writes != 0) {
11402			FREE_LOCK(&lk);
11403			BO_UNLOCK(bo);
11404			msleep(&mp->mnt_secondary_writes,
11405			       MNT_MTX(mp),
11406			       (PUSER - 1) | PDROP, "secwr", 0);
11407			BO_LOCK(bo);
11408			continue;
11409		}
11410		break;
11411	}
11412
11413	/*
11414	 * Reasons for needing more work before suspend:
11415	 * - Dirty buffers on devvp.
11416	 * - Softdep activity occurred after start of vnode sync loop
11417	 * - Secondary writes occurred after start of vnode sync loop
11418	 */
11419	error = 0;
11420	if (bo->bo_numoutput > 0 ||
11421	    bo->bo_dirty.bv_cnt > 0 ||
11422	    softdep_deps != 0 ||
11423	    ump->softdep_deps != 0 ||
11424	    softdep_accdeps != ump->softdep_accdeps ||
11425	    secondary_writes != 0 ||
11426	    mp->mnt_secondary_writes != 0 ||
11427	    secondary_accwrites != mp->mnt_secondary_accwrites)
11428		error = EAGAIN;
11429	FREE_LOCK(&lk);
11430	BO_UNLOCK(bo);
11431	return (error);
11432}
11433
11434
11435/*
11436 * Get the number of dependency structures for the file system, both
11437 * the current number and the total number allocated.  These will
11438 * later be used to detect that softdep processing has occurred.
11439 */
11440void
11441softdep_get_depcounts(struct mount *mp,
11442		      int *softdep_depsp,
11443		      int *softdep_accdepsp)
11444{
11445	struct ufsmount *ump;
11446
11447	ump = VFSTOUFS(mp);
11448	ACQUIRE_LOCK(&lk);
11449	*softdep_depsp = ump->softdep_deps;
11450	*softdep_accdepsp = ump->softdep_accdeps;
11451	FREE_LOCK(&lk);
11452}
11453
11454/*
11455 * Wait for pending output on a vnode to complete.
11456 * Must be called with vnode lock and interlock locked.
11457 *
11458 * XXX: Should just be a call to bufobj_wwait().
11459 */
11460static void
11461drain_output(vp)
11462	struct vnode *vp;
11463{
11464	struct bufobj *bo;
11465
11466	bo = &vp->v_bufobj;
11467	ASSERT_VOP_LOCKED(vp, "drain_output");
11468	ASSERT_BO_LOCKED(bo);
11469
11470	while (bo->bo_numoutput) {
11471		bo->bo_flag |= BO_WWAIT;
11472		msleep((caddr_t)&bo->bo_numoutput,
11473		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
11474	}
11475}
11476
11477/*
11478 * Called whenever a buffer that is being invalidated or reallocated
11479 * contains dependencies. This should only happen if an I/O error has
11480 * occurred. The routine is called with the buffer locked.
11481 */
11482static void
11483softdep_deallocate_dependencies(bp)
11484	struct buf *bp;
11485{
11486
11487	if ((bp->b_ioflags & BIO_ERROR) == 0)
11488		panic("softdep_deallocate_dependencies: dangling deps");
11489	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
11490	panic("softdep_deallocate_dependencies: unrecovered I/O error");
11491}
11492
11493/*
11494 * Function to handle asynchronous write errors in the filesystem.
11495 */
11496static void
11497softdep_error(func, error)
11498	char *func;
11499	int error;
11500{
11501
11502	/* XXX should do something better! */
11503	printf("%s: got error %d while accessing filesystem\n", func, error);
11504}
11505
11506#ifdef DDB
11507
11508static void
11509inodedep_print(struct inodedep *inodedep, int verbose)
11510{
11511	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
11512	    " saveino %p\n",
11513	    inodedep, inodedep->id_fs, inodedep->id_state,
11514	    (intmax_t)inodedep->id_ino,
11515	    (intmax_t)fsbtodb(inodedep->id_fs,
11516	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
11517	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
11518	    inodedep->id_savedino1);
11519
11520	if (verbose == 0)
11521		return;
11522
11523	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
11524	    "mkdiradd %p\n",
11525	    LIST_FIRST(&inodedep->id_pendinghd),
11526	    LIST_FIRST(&inodedep->id_bufwait),
11527	    LIST_FIRST(&inodedep->id_inowait),
11528	    TAILQ_FIRST(&inodedep->id_inoreflst),
11529	    inodedep->id_mkdiradd);
11530	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
11531	    TAILQ_FIRST(&inodedep->id_inoupdt),
11532	    TAILQ_FIRST(&inodedep->id_newinoupdt),
11533	    TAILQ_FIRST(&inodedep->id_extupdt),
11534	    TAILQ_FIRST(&inodedep->id_newextupdt));
11535}
11536
11537DB_SHOW_COMMAND(inodedep, db_show_inodedep)
11538{
11539
11540	if (have_addr == 0) {
11541		db_printf("Address required\n");
11542		return;
11543	}
11544	inodedep_print((struct inodedep*)addr, 1);
11545}
11546
11547DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
11548{
11549	struct inodedep_hashhead *inodedephd;
11550	struct inodedep *inodedep;
11551	struct fs *fs;
11552	int cnt;
11553
11554	fs = have_addr ? (struct fs *)addr : NULL;
11555	for (cnt = 0; cnt < inodedep_hash; cnt++) {
11556		inodedephd = &inodedep_hashtbl[cnt];
11557		LIST_FOREACH(inodedep, inodedephd, id_hash) {
11558			if (fs != NULL && fs != inodedep->id_fs)
11559				continue;
11560			inodedep_print(inodedep, 0);
11561		}
11562	}
11563}
11564
11565DB_SHOW_COMMAND(worklist, db_show_worklist)
11566{
11567	struct worklist *wk;
11568
11569	if (have_addr == 0) {
11570		db_printf("Address required\n");
11571		return;
11572	}
11573	wk = (struct worklist *)addr;
11574	printf("worklist: %p type %s state 0x%X\n",
11575	    wk, TYPENAME(wk->wk_type), wk->wk_state);
11576}
11577
11578DB_SHOW_COMMAND(workhead, db_show_workhead)
11579{
11580	struct workhead *wkhd;
11581	struct worklist *wk;
11582	int i;
11583
11584	if (have_addr == 0) {
11585		db_printf("Address required\n");
11586		return;
11587	}
11588	wkhd = (struct workhead *)addr;
11589	wk = LIST_FIRST(wkhd);
11590	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
11591		db_printf("worklist: %p type %s state 0x%X",
11592		    wk, TYPENAME(wk->wk_type), wk->wk_state);
11593	if (i == 100)
11594		db_printf("workhead overflow");
11595	printf("\n");
11596}
11597
11598
11599DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
11600{
11601	struct jaddref *jaddref;
11602	struct diradd *diradd;
11603	struct mkdir *mkdir;
11604
11605	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
11606		diradd = mkdir->md_diradd;
11607		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
11608		    mkdir, mkdir->md_state, diradd, diradd->da_state);
11609		if ((jaddref = mkdir->md_jaddref) != NULL)
11610			db_printf(" jaddref %p jaddref state 0x%X",
11611			    jaddref, jaddref->ja_state);
11612		db_printf("\n");
11613	}
11614}
11615
11616#endif /* DDB */
11617
11618#endif /* SOFTUPDATES */
11619