ffs_softdep.c revision 213363
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick.
3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4 * All rights reserved.
5 *
6 * The soft updates code is derived from the appendix of a University
7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8 * "Soft Updates: A Solution to the Metadata Update Problem in File
9 * Systems", CSE-TR-254-95, August 1995).
10 *
11 * Further information about soft updates can be obtained from:
12 *
13 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14 *	1614 Oxford Street		mckusick@mckusick.com
15 *	Berkeley, CA 94709-1608		+1-510-843-9542
16 *	USA
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 213363 2010-10-02 17:58:57Z alc $");
44
45#include "opt_ffs.h"
46#include "opt_ddb.h"
47
48/*
49 * For now we want the safety net that the DEBUG flag provides.
50 */
51#ifndef DEBUG
52#define DEBUG
53#endif
54
55#include <sys/param.h>
56#include <sys/kernel.h>
57#include <sys/systm.h>
58#include <sys/bio.h>
59#include <sys/buf.h>
60#include <sys/kdb.h>
61#include <sys/kthread.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mount.h>
65#include <sys/mutex.h>
66#include <sys/namei.h>
67#include <sys/proc.h>
68#include <sys/stat.h>
69#include <sys/sysctl.h>
70#include <sys/syslog.h>
71#include <sys/vnode.h>
72#include <sys/conf.h>
73#include <ufs/ufs/dir.h>
74#include <ufs/ufs/extattr.h>
75#include <ufs/ufs/quota.h>
76#include <ufs/ufs/inode.h>
77#include <ufs/ufs/ufsmount.h>
78#include <ufs/ffs/fs.h>
79#include <ufs/ffs/softdep.h>
80#include <ufs/ffs/ffs_extern.h>
81#include <ufs/ufs/ufs_extern.h>
82
83#include <vm/vm.h>
84
85#include <ddb/ddb.h>
86
87#ifndef SOFTUPDATES
88
89int
90softdep_flushfiles(oldmnt, flags, td)
91	struct mount *oldmnt;
92	int flags;
93	struct thread *td;
94{
95
96	panic("softdep_flushfiles called");
97}
98
99int
100softdep_mount(devvp, mp, fs, cred)
101	struct vnode *devvp;
102	struct mount *mp;
103	struct fs *fs;
104	struct ucred *cred;
105{
106
107	return (0);
108}
109
110void
111softdep_initialize()
112{
113
114	return;
115}
116
117void
118softdep_uninitialize()
119{
120
121	return;
122}
123
124void
125softdep_unmount(mp)
126	struct mount *mp;
127{
128
129}
130
131void
132softdep_setup_sbupdate(ump, fs, bp)
133	struct ufsmount *ump;
134	struct fs *fs;
135	struct buf *bp;
136{
137}
138
139void
140softdep_setup_inomapdep(bp, ip, newinum)
141	struct buf *bp;
142	struct inode *ip;
143	ino_t newinum;
144{
145
146	panic("softdep_setup_inomapdep called");
147}
148
149void
150softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
151	struct buf *bp;
152	struct mount *mp;
153	ufs2_daddr_t newblkno;
154	int frags;
155	int oldfrags;
156{
157
158	panic("softdep_setup_blkmapdep called");
159}
160
161void
162softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
163	struct inode *ip;
164	ufs_lbn_t lbn;
165	ufs2_daddr_t newblkno;
166	ufs2_daddr_t oldblkno;
167	long newsize;
168	long oldsize;
169	struct buf *bp;
170{
171
172	panic("softdep_setup_allocdirect called");
173}
174
175void
176softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
177	struct inode *ip;
178	ufs_lbn_t lbn;
179	ufs2_daddr_t newblkno;
180	ufs2_daddr_t oldblkno;
181	long newsize;
182	long oldsize;
183	struct buf *bp;
184{
185
186	panic("softdep_setup_allocext called");
187}
188
189void
190softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
191	struct inode *ip;
192	ufs_lbn_t lbn;
193	struct buf *bp;
194	int ptrno;
195	ufs2_daddr_t newblkno;
196	ufs2_daddr_t oldblkno;
197	struct buf *nbp;
198{
199
200	panic("softdep_setup_allocindir_page called");
201}
202
203void
204softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
205	struct buf *nbp;
206	struct inode *ip;
207	struct buf *bp;
208	int ptrno;
209	ufs2_daddr_t newblkno;
210{
211
212	panic("softdep_setup_allocindir_meta called");
213}
214
215void
216softdep_setup_freeblocks(ip, length, flags)
217	struct inode *ip;
218	off_t length;
219	int flags;
220{
221
222	panic("softdep_setup_freeblocks called");
223}
224
225void
226softdep_freefile(pvp, ino, mode)
227		struct vnode *pvp;
228		ino_t ino;
229		int mode;
230{
231
232	panic("softdep_freefile called");
233}
234
235int
236softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
237	struct buf *bp;
238	struct inode *dp;
239	off_t diroffset;
240	ino_t newinum;
241	struct buf *newdirbp;
242	int isnewblk;
243{
244
245	panic("softdep_setup_directory_add called");
246}
247
248void
249softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
250	struct buf *bp;
251	struct inode *dp;
252	caddr_t base;
253	caddr_t oldloc;
254	caddr_t newloc;
255	int entrysize;
256{
257
258	panic("softdep_change_directoryentry_offset called");
259}
260
261void
262softdep_setup_remove(bp, dp, ip, isrmdir)
263	struct buf *bp;
264	struct inode *dp;
265	struct inode *ip;
266	int isrmdir;
267{
268
269	panic("softdep_setup_remove called");
270}
271
272void
273softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
274	struct buf *bp;
275	struct inode *dp;
276	struct inode *ip;
277	ino_t newinum;
278	int isrmdir;
279{
280
281	panic("softdep_setup_directory_change called");
282}
283
284void *
285softdep_setup_trunc(vp, length, flags)
286	struct vnode *vp;
287	off_t length;
288	int flags;
289{
290
291	panic("%s called", __FUNCTION__);
292
293	return (NULL);
294}
295
296int
297softdep_complete_trunc(vp, cookie)
298	struct vnode *vp;
299	void *cookie;
300{
301
302	panic("%s called", __FUNCTION__);
303
304	return (0);
305}
306
307void
308softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
309	struct mount *mp;
310	struct buf *bp;
311	ufs2_daddr_t blkno;
312	int frags;
313	struct workhead *wkhd;
314{
315
316	panic("%s called", __FUNCTION__);
317}
318
319void
320softdep_setup_inofree(mp, bp, ino, wkhd)
321	struct mount *mp;
322	struct buf *bp;
323	ino_t ino;
324	struct workhead *wkhd;
325{
326
327	panic("%s called", __FUNCTION__);
328}
329
330void
331softdep_setup_unlink(dp, ip)
332	struct inode *dp;
333	struct inode *ip;
334{
335
336	panic("%s called", __FUNCTION__);
337}
338
339void
340softdep_setup_link(dp, ip)
341	struct inode *dp;
342	struct inode *ip;
343{
344
345	panic("%s called", __FUNCTION__);
346}
347
348void
349softdep_revert_link(dp, ip)
350	struct inode *dp;
351	struct inode *ip;
352{
353
354	panic("%s called", __FUNCTION__);
355}
356
357void
358softdep_setup_rmdir(dp, ip)
359	struct inode *dp;
360	struct inode *ip;
361{
362
363	panic("%s called", __FUNCTION__);
364}
365
366void
367softdep_revert_rmdir(dp, ip)
368	struct inode *dp;
369	struct inode *ip;
370{
371
372	panic("%s called", __FUNCTION__);
373}
374
375void
376softdep_setup_create(dp, ip)
377	struct inode *dp;
378	struct inode *ip;
379{
380
381	panic("%s called", __FUNCTION__);
382}
383
384void
385softdep_revert_create(dp, ip)
386	struct inode *dp;
387	struct inode *ip;
388{
389
390	panic("%s called", __FUNCTION__);
391}
392
393void
394softdep_setup_mkdir(dp, ip)
395	struct inode *dp;
396	struct inode *ip;
397{
398
399	panic("%s called", __FUNCTION__);
400}
401
402void
403softdep_revert_mkdir(dp, ip)
404	struct inode *dp;
405	struct inode *ip;
406{
407
408	panic("%s called", __FUNCTION__);
409}
410
411void
412softdep_setup_dotdot_link(dp, ip)
413	struct inode *dp;
414	struct inode *ip;
415{
416
417	panic("%s called", __FUNCTION__);
418}
419
420int
421softdep_prealloc(vp, waitok)
422	struct vnode *vp;
423	int waitok;
424{
425
426	panic("%s called", __FUNCTION__);
427
428	return (0);
429}
430
431int
432softdep_journal_lookup(mp, vpp)
433	struct mount *mp;
434	struct vnode **vpp;
435{
436
437	return (ENOENT);
438}
439
440void
441softdep_change_linkcnt(ip)
442	struct inode *ip;
443{
444
445	panic("softdep_change_linkcnt called");
446}
447
448void
449softdep_load_inodeblock(ip)
450	struct inode *ip;
451{
452
453	panic("softdep_load_inodeblock called");
454}
455
456void
457softdep_update_inodeblock(ip, bp, waitfor)
458	struct inode *ip;
459	struct buf *bp;
460	int waitfor;
461{
462
463	panic("softdep_update_inodeblock called");
464}
465
466int
467softdep_fsync(vp)
468	struct vnode *vp;	/* the "in_core" copy of the inode */
469{
470
471	return (0);
472}
473
474void
475softdep_fsync_mountdev(vp)
476	struct vnode *vp;
477{
478
479	return;
480}
481
482int
483softdep_flushworklist(oldmnt, countp, td)
484	struct mount *oldmnt;
485	int *countp;
486	struct thread *td;
487{
488
489	*countp = 0;
490	return (0);
491}
492
493int
494softdep_sync_metadata(struct vnode *vp)
495{
496
497	return (0);
498}
499
500int
501softdep_slowdown(vp)
502	struct vnode *vp;
503{
504
505	panic("softdep_slowdown called");
506}
507
508void
509softdep_releasefile(ip)
510	struct inode *ip;	/* inode with the zero effective link count */
511{
512
513	panic("softdep_releasefile called");
514}
515
516int
517softdep_request_cleanup(fs, vp)
518	struct fs *fs;
519	struct vnode *vp;
520{
521
522	return (0);
523}
524
525int
526softdep_check_suspend(struct mount *mp,
527		      struct vnode *devvp,
528		      int softdep_deps,
529		      int softdep_accdeps,
530		      int secondary_writes,
531		      int secondary_accwrites)
532{
533	struct bufobj *bo;
534	int error;
535
536	(void) softdep_deps,
537	(void) softdep_accdeps;
538
539	bo = &devvp->v_bufobj;
540	ASSERT_BO_LOCKED(bo);
541
542	MNT_ILOCK(mp);
543	while (mp->mnt_secondary_writes != 0) {
544		BO_UNLOCK(bo);
545		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
546		    (PUSER - 1) | PDROP, "secwr", 0);
547		BO_LOCK(bo);
548		MNT_ILOCK(mp);
549	}
550
551	/*
552	 * Reasons for needing more work before suspend:
553	 * - Dirty buffers on devvp.
554	 * - Secondary writes occurred after start of vnode sync loop
555	 */
556	error = 0;
557	if (bo->bo_numoutput > 0 ||
558	    bo->bo_dirty.bv_cnt > 0 ||
559	    secondary_writes != 0 ||
560	    mp->mnt_secondary_writes != 0 ||
561	    secondary_accwrites != mp->mnt_secondary_accwrites)
562		error = EAGAIN;
563	BO_UNLOCK(bo);
564	return (error);
565}
566
567void
568softdep_get_depcounts(struct mount *mp,
569		      int *softdepactivep,
570		      int *softdepactiveaccp)
571{
572	(void) mp;
573	*softdepactivep = 0;
574	*softdepactiveaccp = 0;
575}
576
577#else
578/*
579 * These definitions need to be adapted to the system to which
580 * this file is being ported.
581 */
582
583#define M_SOFTDEP_FLAGS	(M_WAITOK)
584
585#define	D_PAGEDEP	0
586#define	D_INODEDEP	1
587#define	D_BMSAFEMAP	2
588#define	D_NEWBLK	3
589#define	D_ALLOCDIRECT	4
590#define	D_INDIRDEP	5
591#define	D_ALLOCINDIR	6
592#define	D_FREEFRAG	7
593#define	D_FREEBLKS	8
594#define	D_FREEFILE	9
595#define	D_DIRADD	10
596#define	D_MKDIR		11
597#define	D_DIRREM	12
598#define	D_NEWDIRBLK	13
599#define	D_FREEWORK	14
600#define	D_FREEDEP	15
601#define	D_JADDREF	16
602#define	D_JREMREF	17
603#define	D_JMVREF	18
604#define	D_JNEWBLK	19
605#define	D_JFREEBLK	20
606#define	D_JFREEFRAG	21
607#define	D_JSEG		22
608#define	D_JSEGDEP	23
609#define	D_SBDEP		24
610#define	D_JTRUNC	25
611#define	D_LAST		D_JTRUNC
612
613unsigned long dep_current[D_LAST + 1];
614unsigned long dep_total[D_LAST + 1];
615
616
617SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, "soft updates stats");
618SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
619    "total dependencies allocated");
620SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
621    "current dependencies allocated");
622
623#define	SOFTDEP_TYPE(type, str, long)					\
624    static MALLOC_DEFINE(M_ ## type, #str, long);			\
625    SYSCTL_LONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
626	&dep_total[D_ ## type], 0, "");					\
627    SYSCTL_LONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
628	&dep_current[D_ ## type], 0, "");
629
630SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
631SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
632SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
633    "Block or frag allocated from cyl group map");
634SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
635SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
636SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
637SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
638SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
639SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
640SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
641SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
642SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
643SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
644SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
645SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
646SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
647SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
648SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
649SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
650SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
651SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
652SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
653SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
654SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
655SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
656SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
657
658static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
659static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
660
661/*
662 * translate from workitem type to memory type
663 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
664 */
665static struct malloc_type *memtype[] = {
666	M_PAGEDEP,
667	M_INODEDEP,
668	M_BMSAFEMAP,
669	M_NEWBLK,
670	M_ALLOCDIRECT,
671	M_INDIRDEP,
672	M_ALLOCINDIR,
673	M_FREEFRAG,
674	M_FREEBLKS,
675	M_FREEFILE,
676	M_DIRADD,
677	M_MKDIR,
678	M_DIRREM,
679	M_NEWDIRBLK,
680	M_FREEWORK,
681	M_FREEDEP,
682	M_JADDREF,
683	M_JREMREF,
684	M_JMVREF,
685	M_JNEWBLK,
686	M_JFREEBLK,
687	M_JFREEFRAG,
688	M_JSEG,
689	M_JSEGDEP,
690	M_SBDEP,
691	M_JTRUNC
692};
693
694#define DtoM(type) (memtype[type])
695
696/*
697 * Names of malloc types.
698 */
699#define TYPENAME(type)  \
700	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
701/*
702 * End system adaptation definitions.
703 */
704
705#define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
706#define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
707
708/*
709 * Forward declarations.
710 */
711struct inodedep_hashhead;
712struct newblk_hashhead;
713struct pagedep_hashhead;
714struct bmsafemap_hashhead;
715
716/*
717 * Internal function prototypes.
718 */
719static	void softdep_error(char *, int);
720static	void drain_output(struct vnode *);
721static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
722static	void clear_remove(struct thread *);
723static	void clear_inodedeps(struct thread *);
724static	void unlinked_inodedep(struct mount *, struct inodedep *);
725static	void clear_unlinked_inodedep(struct inodedep *);
726static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
727static	int flush_pagedep_deps(struct vnode *, struct mount *,
728	    struct diraddhd *);
729static	void free_pagedep(struct pagedep *);
730static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
731static	int flush_inodedep_deps(struct mount *, ino_t);
732static	int flush_deplist(struct allocdirectlst *, int, int *);
733static	int handle_written_filepage(struct pagedep *, struct buf *);
734static	int handle_written_sbdep(struct sbdep *, struct buf *);
735static	void initiate_write_sbdep(struct sbdep *);
736static  void diradd_inode_written(struct diradd *, struct inodedep *);
737static	int handle_written_indirdep(struct indirdep *, struct buf *,
738	    struct buf**);
739static	int handle_written_inodeblock(struct inodedep *, struct buf *);
740static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
741static	void handle_written_jaddref(struct jaddref *);
742static	void handle_written_jremref(struct jremref *);
743static	void handle_written_jseg(struct jseg *, struct buf *);
744static	void handle_written_jnewblk(struct jnewblk *);
745static	void handle_written_jfreeblk(struct jfreeblk *);
746static	void handle_written_jfreefrag(struct jfreefrag *);
747static	void complete_jseg(struct jseg *);
748static	void jseg_write(struct fs *, struct jblocks *, struct jseg *,
749	    uint8_t *);
750static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
751static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
752static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
753static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
754static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
755static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
756static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
757static	inline void inoref_write(struct inoref *, struct jseg *,
758	    struct jrefrec *);
759static	void handle_allocdirect_partdone(struct allocdirect *,
760	    struct workhead *);
761static	void cancel_newblk(struct newblk *, struct workhead *);
762static	void indirdep_complete(struct indirdep *);
763static	void handle_allocindir_partdone(struct allocindir *);
764static	void initiate_write_filepage(struct pagedep *, struct buf *);
765static	void initiate_write_indirdep(struct indirdep*, struct buf *);
766static	void handle_written_mkdir(struct mkdir *, int);
767static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
768static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
769static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
770static	void handle_workitem_freefile(struct freefile *);
771static	void handle_workitem_remove(struct dirrem *, struct vnode *);
772static	struct dirrem *newdirrem(struct buf *, struct inode *,
773	    struct inode *, int, struct dirrem **);
774static	void cancel_indirdep(struct indirdep *, struct buf *, struct inodedep *,
775	    struct freeblks *);
776static	void free_indirdep(struct indirdep *);
777static	void free_diradd(struct diradd *, struct workhead *);
778static	void merge_diradd(struct inodedep *, struct diradd *);
779static	void complete_diradd(struct diradd *);
780static	struct diradd *diradd_lookup(struct pagedep *, int);
781static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
782	    struct jremref *);
783static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
784	    struct jremref *);
785static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
786	    struct jremref *, struct jremref *);
787static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
788	    struct jremref *);
789static	void cancel_allocindir(struct allocindir *, struct inodedep *,
790	    struct freeblks *);
791static	void complete_mkdir(struct mkdir *);
792static	void free_newdirblk(struct newdirblk *);
793static	void free_jremref(struct jremref *);
794static	void free_jaddref(struct jaddref *);
795static	void free_jsegdep(struct jsegdep *);
796static	void free_jseg(struct jseg *);
797static	void free_jnewblk(struct jnewblk *);
798static	void free_jfreeblk(struct jfreeblk *);
799static	void free_jfreefrag(struct jfreefrag *);
800static	void free_freedep(struct freedep *);
801static	void journal_jremref(struct dirrem *, struct jremref *,
802	    struct inodedep *);
803static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
804static	int cancel_jaddref(struct jaddref *, struct inodedep *,
805	    struct workhead *);
806static	void cancel_jfreefrag(struct jfreefrag *);
807static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
808static	int deallocate_dependencies(struct buf *, struct inodedep *,
809	    struct freeblks *);
810static	void free_newblk(struct newblk *);
811static	void cancel_allocdirect(struct allocdirectlst *,
812	    struct allocdirect *, struct freeblks *, int);
813static	int check_inode_unwritten(struct inodedep *);
814static	int free_inodedep(struct inodedep *);
815static	void freework_freeblock(struct freework *);
816static	void handle_workitem_freeblocks(struct freeblks *, int);
817static	void handle_complete_freeblocks(struct freeblks *);
818static	void handle_workitem_indirblk(struct freework *);
819static	void handle_written_freework(struct freework *);
820static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
821static	void setup_allocindir_phase2(struct buf *, struct inode *,
822	    struct inodedep *, struct allocindir *, ufs_lbn_t);
823static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
824	    ufs2_daddr_t, ufs_lbn_t);
825static	void handle_workitem_freefrag(struct freefrag *);
826static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
827	    ufs_lbn_t);
828static	void allocdirect_merge(struct allocdirectlst *,
829	    struct allocdirect *, struct allocdirect *);
830static	struct freefrag *allocindir_merge(struct allocindir *,
831	    struct allocindir *);
832static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
833	    struct bmsafemap **);
834static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
835	    int cg);
836static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
837	    int, struct newblk **);
838static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
839static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
840	    struct inodedep **);
841static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
842static	int pagedep_lookup(struct mount *, ino_t, ufs_lbn_t, int,
843	    struct pagedep **);
844static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
845	    struct mount *mp, int, struct pagedep **);
846static	void pause_timer(void *);
847static	int request_cleanup(struct mount *, int);
848static	int process_worklist_item(struct mount *, int);
849static	void process_removes(struct vnode *);
850static	void jwork_move(struct workhead *, struct workhead *);
851static	void add_to_worklist(struct worklist *, int);
852static	void remove_from_worklist(struct worklist *);
853static	void softdep_flush(void);
854static	int softdep_speedup(void);
855static	void worklist_speedup(void);
856static	int journal_mount(struct mount *, struct fs *, struct ucred *);
857static	void journal_unmount(struct mount *);
858static	int journal_space(struct ufsmount *, int);
859static	void journal_suspend(struct ufsmount *);
860static	int journal_unsuspend(struct ufsmount *ump);
861static	void softdep_prelink(struct vnode *, struct vnode *);
862static	void add_to_journal(struct worklist *);
863static	void remove_from_journal(struct worklist *);
864static	void softdep_process_journal(struct mount *, int);
865static	struct jremref *newjremref(struct dirrem *, struct inode *,
866	    struct inode *ip, off_t, nlink_t);
867static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
868	    uint16_t);
869static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
870	    uint16_t);
871static inline struct jsegdep *inoref_jseg(struct inoref *);
872static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
873static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
874	    ufs2_daddr_t, int);
875static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
876	    ufs2_daddr_t, long, ufs_lbn_t);
877static	struct freework *newfreework(struct freeblks *, struct freework *,
878	    ufs_lbn_t, ufs2_daddr_t, int, int);
879static	void jwait(struct worklist *wk);
880static	struct inodedep *inodedep_lookup_ip(struct inode *);
881static	int bmsafemap_rollbacks(struct bmsafemap *);
882static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
883static	void handle_jwork(struct workhead *);
884static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
885	    struct mkdir **);
886static	struct jblocks *jblocks_create(void);
887static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
888static	void jblocks_free(struct jblocks *, struct mount *, int);
889static	void jblocks_destroy(struct jblocks *);
890static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
891
892/*
893 * Exported softdep operations.
894 */
895static	void softdep_disk_io_initiation(struct buf *);
896static	void softdep_disk_write_complete(struct buf *);
897static	void softdep_deallocate_dependencies(struct buf *);
898static	int softdep_count_dependencies(struct buf *bp, int);
899
900static struct mtx lk;
901MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
902
903#define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
904#define ACQUIRE_LOCK(lk)		mtx_lock(lk)
905#define FREE_LOCK(lk)			mtx_unlock(lk)
906
907#define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
908#define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
909
910/*
911 * Worklist queue management.
912 * These routines require that the lock be held.
913 */
914#ifndef /* NOT */ DEBUG
915#define WORKLIST_INSERT(head, item) do {	\
916	(item)->wk_state |= ONWORKLIST;		\
917	LIST_INSERT_HEAD(head, item, wk_list);	\
918} while (0)
919#define WORKLIST_REMOVE(item) do {		\
920	(item)->wk_state &= ~ONWORKLIST;	\
921	LIST_REMOVE(item, wk_list);		\
922} while (0)
923#define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
924#define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
925
926#else /* DEBUG */
927static	void worklist_insert(struct workhead *, struct worklist *, int);
928static	void worklist_remove(struct worklist *, int);
929
930#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
931#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
932#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
933#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
934
935static void
936worklist_insert(head, item, locked)
937	struct workhead *head;
938	struct worklist *item;
939	int locked;
940{
941
942	if (locked)
943		mtx_assert(&lk, MA_OWNED);
944	if (item->wk_state & ONWORKLIST)
945		panic("worklist_insert: %p %s(0x%X) already on list",
946		    item, TYPENAME(item->wk_type), item->wk_state);
947	item->wk_state |= ONWORKLIST;
948	LIST_INSERT_HEAD(head, item, wk_list);
949}
950
951static void
952worklist_remove(item, locked)
953	struct worklist *item;
954	int locked;
955{
956
957	if (locked)
958		mtx_assert(&lk, MA_OWNED);
959	if ((item->wk_state & ONWORKLIST) == 0)
960		panic("worklist_remove: %p %s(0x%X) not on list",
961		    item, TYPENAME(item->wk_type), item->wk_state);
962	item->wk_state &= ~ONWORKLIST;
963	LIST_REMOVE(item, wk_list);
964}
965#endif /* DEBUG */
966
967/*
968 * Merge two jsegdeps keeping only the oldest one as newer references
969 * can't be discarded until after older references.
970 */
971static inline struct jsegdep *
972jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
973{
974	struct jsegdep *swp;
975
976	if (two == NULL)
977		return (one);
978
979	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
980		swp = one;
981		one = two;
982		two = swp;
983	}
984	WORKLIST_REMOVE(&two->jd_list);
985	free_jsegdep(two);
986
987	return (one);
988}
989
990/*
991 * If two freedeps are compatible free one to reduce list size.
992 */
993static inline struct freedep *
994freedep_merge(struct freedep *one, struct freedep *two)
995{
996	if (two == NULL)
997		return (one);
998
999	if (one->fd_freework == two->fd_freework) {
1000		WORKLIST_REMOVE(&two->fd_list);
1001		free_freedep(two);
1002	}
1003	return (one);
1004}
1005
1006/*
1007 * Move journal work from one list to another.  Duplicate freedeps and
1008 * jsegdeps are coalesced to keep the lists as small as possible.
1009 */
1010static void
1011jwork_move(dst, src)
1012	struct workhead *dst;
1013	struct workhead *src;
1014{
1015	struct freedep *freedep;
1016	struct jsegdep *jsegdep;
1017	struct worklist *wkn;
1018	struct worklist *wk;
1019
1020	KASSERT(dst != src,
1021	    ("jwork_move: dst == src"));
1022	freedep = NULL;
1023	jsegdep = NULL;
1024	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1025		if (wk->wk_type == D_JSEGDEP)
1026			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1027		if (wk->wk_type == D_FREEDEP)
1028			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1029	}
1030
1031	mtx_assert(&lk, MA_OWNED);
1032	while ((wk = LIST_FIRST(src)) != NULL) {
1033		WORKLIST_REMOVE(wk);
1034		WORKLIST_INSERT(dst, wk);
1035		if (wk->wk_type == D_JSEGDEP) {
1036			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1037			continue;
1038		}
1039		if (wk->wk_type == D_FREEDEP)
1040			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1041	}
1042}
1043
1044/*
1045 * Routines for tracking and managing workitems.
1046 */
1047static	void workitem_free(struct worklist *, int);
1048static	void workitem_alloc(struct worklist *, int, struct mount *);
1049
1050#define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1051
1052static void
1053workitem_free(item, type)
1054	struct worklist *item;
1055	int type;
1056{
1057	struct ufsmount *ump;
1058	mtx_assert(&lk, MA_OWNED);
1059
1060#ifdef DEBUG
1061	if (item->wk_state & ONWORKLIST)
1062		panic("workitem_free: %s(0x%X) still on list",
1063		    TYPENAME(item->wk_type), item->wk_state);
1064	if (item->wk_type != type)
1065		panic("workitem_free: type mismatch %s != %s",
1066		    TYPENAME(item->wk_type), TYPENAME(type));
1067#endif
1068	ump = VFSTOUFS(item->wk_mp);
1069	if (--ump->softdep_deps == 0 && ump->softdep_req)
1070		wakeup(&ump->softdep_deps);
1071	dep_current[type]--;
1072	free(item, DtoM(type));
1073}
1074
1075static void
1076workitem_alloc(item, type, mp)
1077	struct worklist *item;
1078	int type;
1079	struct mount *mp;
1080{
1081	item->wk_type = type;
1082	item->wk_mp = mp;
1083	item->wk_state = 0;
1084	ACQUIRE_LOCK(&lk);
1085	dep_current[type]++;
1086	dep_total[type]++;
1087	VFSTOUFS(mp)->softdep_deps++;
1088	VFSTOUFS(mp)->softdep_accdeps++;
1089	FREE_LOCK(&lk);
1090}
1091
1092/*
1093 * Workitem queue management
1094 */
1095static int max_softdeps;	/* maximum number of structs before slowdown */
1096static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1097static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1098static int proc_waiting;	/* tracks whether we have a timeout posted */
1099static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1100static struct callout softdep_callout;
1101static int req_pending;
1102static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1103#define FLUSH_INODES		1
1104static int req_clear_remove;	/* syncer process flush some freeblks */
1105#define FLUSH_REMOVE		2
1106#define FLUSH_REMOVE_WAIT	3
1107static long num_freeblkdep;	/* number of freeblks workitems allocated */
1108
1109/*
1110 * runtime statistics
1111 */
1112static int stat_worklist_push;	/* number of worklist cleanups */
1113static int stat_blk_limit_push;	/* number of times block limit neared */
1114static int stat_ino_limit_push;	/* number of times inode limit neared */
1115static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1116static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1117static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1118static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1119static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1120static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1121static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1122static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1123static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1124static int stat_journal_min;	/* Times hit journal min threshold */
1125static int stat_journal_low;	/* Times hit journal low threshold */
1126static int stat_journal_wait;	/* Times blocked in jwait(). */
1127static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1128static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1129static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1130static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1131
1132SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1133    &max_softdeps, 0, "");
1134SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1135    &tickdelay, 0, "");
1136SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1137    &maxindirdeps, 0, "");
1138SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1139    &stat_worklist_push, 0,"");
1140SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1141    &stat_blk_limit_push, 0,"");
1142SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1143    &stat_ino_limit_push, 0,"");
1144SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1145    &stat_blk_limit_hit, 0, "");
1146SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1147    &stat_ino_limit_hit, 0, "");
1148SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1149    &stat_sync_limit_hit, 0, "");
1150SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1151    &stat_indir_blk_ptrs, 0, "");
1152SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1153    &stat_inode_bitmap, 0, "");
1154SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1155    &stat_direct_blk_ptrs, 0, "");
1156SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1157    &stat_dir_entry, 0, "");
1158SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1159    &stat_jaddref, 0, "");
1160SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1161    &stat_jnewblk, 0, "");
1162SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1163    &stat_journal_low, 0, "");
1164SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1165    &stat_journal_min, 0, "");
1166SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1167    &stat_journal_wait, 0, "");
1168SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1169    &stat_jwait_filepage, 0, "");
1170SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1171    &stat_jwait_freeblks, 0, "");
1172SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1173    &stat_jwait_inode, 0, "");
1174SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1175    &stat_jwait_newblk, 0, "");
1176
1177SYSCTL_DECL(_vfs_ffs);
1178
1179LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1180static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1181
1182static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1183SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1184	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1185
1186static struct proc *softdepproc;
1187static struct kproc_desc softdep_kp = {
1188	"softdepflush",
1189	softdep_flush,
1190	&softdepproc
1191};
1192SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1193    &softdep_kp);
1194
1195static void
1196softdep_flush(void)
1197{
1198	struct mount *nmp;
1199	struct mount *mp;
1200	struct ufsmount *ump;
1201	struct thread *td;
1202	int remaining;
1203	int progress;
1204	int vfslocked;
1205
1206	td = curthread;
1207	td->td_pflags |= TDP_NORUNNINGBUF;
1208
1209	for (;;) {
1210		kproc_suspend_check(softdepproc);
1211		vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
1212		ACQUIRE_LOCK(&lk);
1213		/*
1214		 * If requested, try removing inode or removal dependencies.
1215		 */
1216		if (req_clear_inodedeps) {
1217			clear_inodedeps(td);
1218			req_clear_inodedeps -= 1;
1219			wakeup_one(&proc_waiting);
1220		}
1221		if (req_clear_remove) {
1222			clear_remove(td);
1223			req_clear_remove -= 1;
1224			wakeup_one(&proc_waiting);
1225		}
1226		FREE_LOCK(&lk);
1227		VFS_UNLOCK_GIANT(vfslocked);
1228		remaining = progress = 0;
1229		mtx_lock(&mountlist_mtx);
1230		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1231			nmp = TAILQ_NEXT(mp, mnt_list);
1232			if ((mp->mnt_flag & MNT_SOFTDEP) == 0)
1233				continue;
1234			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1235				continue;
1236			vfslocked = VFS_LOCK_GIANT(mp);
1237			progress += softdep_process_worklist(mp, 0);
1238			ump = VFSTOUFS(mp);
1239			remaining += ump->softdep_on_worklist -
1240				ump->softdep_on_worklist_inprogress;
1241			VFS_UNLOCK_GIANT(vfslocked);
1242			mtx_lock(&mountlist_mtx);
1243			nmp = TAILQ_NEXT(mp, mnt_list);
1244			vfs_unbusy(mp);
1245		}
1246		mtx_unlock(&mountlist_mtx);
1247		if (remaining && progress)
1248			continue;
1249		ACQUIRE_LOCK(&lk);
1250		if (!req_pending)
1251			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1252		req_pending = 0;
1253		FREE_LOCK(&lk);
1254	}
1255}
1256
1257static void
1258worklist_speedup(void)
1259{
1260	mtx_assert(&lk, MA_OWNED);
1261	if (req_pending == 0) {
1262		req_pending = 1;
1263		wakeup(&req_pending);
1264	}
1265}
1266
1267static int
1268softdep_speedup(void)
1269{
1270
1271	worklist_speedup();
1272	bd_speedup();
1273	return speedup_syncer();
1274}
1275
1276/*
1277 * Add an item to the end of the work queue.
1278 * This routine requires that the lock be held.
1279 * This is the only routine that adds items to the list.
1280 * The following routine is the only one that removes items
1281 * and does so in order from first to last.
1282 */
1283static void
1284add_to_worklist(wk, nodelay)
1285	struct worklist *wk;
1286	int nodelay;
1287{
1288	struct ufsmount *ump;
1289
1290	mtx_assert(&lk, MA_OWNED);
1291	ump = VFSTOUFS(wk->wk_mp);
1292	if (wk->wk_state & ONWORKLIST)
1293		panic("add_to_worklist: %s(0x%X) already on list",
1294		    TYPENAME(wk->wk_type), wk->wk_state);
1295	wk->wk_state |= ONWORKLIST;
1296	if (LIST_EMPTY(&ump->softdep_workitem_pending))
1297		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1298	else
1299		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1300	ump->softdep_worklist_tail = wk;
1301	ump->softdep_on_worklist += 1;
1302	if (nodelay)
1303		worklist_speedup();
1304}
1305
1306/*
1307 * Remove the item to be processed. If we are removing the last
1308 * item on the list, we need to recalculate the tail pointer.
1309 */
1310static void
1311remove_from_worklist(wk)
1312	struct worklist *wk;
1313{
1314	struct ufsmount *ump;
1315	struct worklist *wkend;
1316
1317	ump = VFSTOUFS(wk->wk_mp);
1318	WORKLIST_REMOVE(wk);
1319	if (wk == ump->softdep_worklist_tail) {
1320		LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list)
1321			if (LIST_NEXT(wkend, wk_list) == NULL)
1322				break;
1323		ump->softdep_worklist_tail = wkend;
1324	}
1325	ump->softdep_on_worklist -= 1;
1326}
1327
1328/*
1329 * Process that runs once per second to handle items in the background queue.
1330 *
1331 * Note that we ensure that everything is done in the order in which they
1332 * appear in the queue. The code below depends on this property to ensure
1333 * that blocks of a file are freed before the inode itself is freed. This
1334 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1335 * until all the old ones have been purged from the dependency lists.
1336 */
1337int
1338softdep_process_worklist(mp, full)
1339	struct mount *mp;
1340	int full;
1341{
1342	struct thread *td = curthread;
1343	int cnt, matchcnt, loopcount;
1344	struct ufsmount *ump;
1345	long starttime;
1346
1347	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1348	/*
1349	 * Record the process identifier of our caller so that we can give
1350	 * this process preferential treatment in request_cleanup below.
1351	 */
1352	matchcnt = 0;
1353	ump = VFSTOUFS(mp);
1354	ACQUIRE_LOCK(&lk);
1355	loopcount = 1;
1356	starttime = time_second;
1357	softdep_process_journal(mp, full?MNT_WAIT:0);
1358	while (ump->softdep_on_worklist > 0) {
1359		if ((cnt = process_worklist_item(mp, LK_NOWAIT)) == -1)
1360			break;
1361		else
1362			matchcnt += cnt;
1363		/*
1364		 * If requested, try removing inode or removal dependencies.
1365		 */
1366		if (req_clear_inodedeps) {
1367			clear_inodedeps(td);
1368			req_clear_inodedeps -= 1;
1369			wakeup_one(&proc_waiting);
1370		}
1371		if (req_clear_remove) {
1372			clear_remove(td);
1373			req_clear_remove -= 1;
1374			wakeup_one(&proc_waiting);
1375		}
1376		/*
1377		 * We do not generally want to stop for buffer space, but if
1378		 * we are really being a buffer hog, we will stop and wait.
1379		 */
1380		if (loopcount++ % 128 == 0) {
1381			FREE_LOCK(&lk);
1382			uio_yield();
1383			bwillwrite();
1384			ACQUIRE_LOCK(&lk);
1385		}
1386		/*
1387		 * Never allow processing to run for more than one
1388		 * second. Otherwise the other mountpoints may get
1389		 * excessively backlogged.
1390		 */
1391		if (!full && starttime != time_second)
1392			break;
1393	}
1394	if (full == 0)
1395		journal_unsuspend(ump);
1396	FREE_LOCK(&lk);
1397	return (matchcnt);
1398}
1399
1400/*
1401 * Process all removes associated with a vnode if we are running out of
1402 * journal space.  Any other process which attempts to flush these will
1403 * be unable as we have the vnodes locked.
1404 */
1405static void
1406process_removes(vp)
1407	struct vnode *vp;
1408{
1409	struct inodedep *inodedep;
1410	struct dirrem *dirrem;
1411	struct mount *mp;
1412	ino_t inum;
1413
1414	mtx_assert(&lk, MA_OWNED);
1415
1416	mp = vp->v_mount;
1417	inum = VTOI(vp)->i_number;
1418	for (;;) {
1419		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1420			return;
1421		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext)
1422			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1423			    (COMPLETE | ONWORKLIST))
1424				break;
1425		if (dirrem == NULL)
1426			return;
1427		/*
1428		 * If another thread is trying to lock this vnode it will
1429		 * fail but we must wait for it to do so before we can
1430		 * proceed.
1431		 */
1432		if (dirrem->dm_state & INPROGRESS) {
1433			dirrem->dm_state |= IOWAITING;
1434			msleep(&dirrem->dm_list, &lk, PVM, "pwrwait", 0);
1435			continue;
1436		}
1437		remove_from_worklist(&dirrem->dm_list);
1438		FREE_LOCK(&lk);
1439		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1440			panic("process_removes: suspended filesystem");
1441		handle_workitem_remove(dirrem, vp);
1442		vn_finished_secondary_write(mp);
1443		ACQUIRE_LOCK(&lk);
1444	}
1445}
1446
1447/*
1448 * Process one item on the worklist.
1449 */
1450static int
1451process_worklist_item(mp, flags)
1452	struct mount *mp;
1453	int flags;
1454{
1455	struct worklist *wk;
1456	struct ufsmount *ump;
1457	struct vnode *vp;
1458	int matchcnt = 0;
1459
1460	mtx_assert(&lk, MA_OWNED);
1461	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1462	/*
1463	 * If we are being called because of a process doing a
1464	 * copy-on-write, then it is not safe to write as we may
1465	 * recurse into the copy-on-write routine.
1466	 */
1467	if (curthread->td_pflags & TDP_COWINPROGRESS)
1468		return (-1);
1469	/*
1470	 * Normally we just process each item on the worklist in order.
1471	 * However, if we are in a situation where we cannot lock any
1472	 * inodes, we have to skip over any dirrem requests whose
1473	 * vnodes are resident and locked.
1474	 */
1475	vp = NULL;
1476	ump = VFSTOUFS(mp);
1477	LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) {
1478		if (wk->wk_state & INPROGRESS)
1479			continue;
1480		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
1481			break;
1482		wk->wk_state |= INPROGRESS;
1483		ump->softdep_on_worklist_inprogress++;
1484		FREE_LOCK(&lk);
1485		ffs_vgetf(mp, WK_DIRREM(wk)->dm_oldinum,
1486		    LK_NOWAIT | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ);
1487		ACQUIRE_LOCK(&lk);
1488		if (wk->wk_state & IOWAITING) {
1489			wk->wk_state &= ~IOWAITING;
1490			wakeup(wk);
1491		}
1492		wk->wk_state &= ~INPROGRESS;
1493		ump->softdep_on_worklist_inprogress--;
1494		if (vp != NULL)
1495			break;
1496	}
1497	if (wk == 0)
1498		return (-1);
1499	remove_from_worklist(wk);
1500	FREE_LOCK(&lk);
1501	if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1502		panic("process_worklist_item: suspended filesystem");
1503	matchcnt++;
1504	switch (wk->wk_type) {
1505
1506	case D_DIRREM:
1507		/* removal of a directory entry */
1508		handle_workitem_remove(WK_DIRREM(wk), vp);
1509		if (vp)
1510			vput(vp);
1511		break;
1512
1513	case D_FREEBLKS:
1514		/* releasing blocks and/or fragments from a file */
1515		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
1516		break;
1517
1518	case D_FREEFRAG:
1519		/* releasing a fragment when replaced as a file grows */
1520		handle_workitem_freefrag(WK_FREEFRAG(wk));
1521		break;
1522
1523	case D_FREEFILE:
1524		/* releasing an inode when its link count drops to 0 */
1525		handle_workitem_freefile(WK_FREEFILE(wk));
1526		break;
1527
1528	case D_FREEWORK:
1529		/* Final block in an indirect was freed. */
1530		handle_workitem_indirblk(WK_FREEWORK(wk));
1531		break;
1532
1533	default:
1534		panic("%s_process_worklist: Unknown type %s",
1535		    "softdep", TYPENAME(wk->wk_type));
1536		/* NOTREACHED */
1537	}
1538	vn_finished_secondary_write(mp);
1539	ACQUIRE_LOCK(&lk);
1540	return (matchcnt);
1541}
1542
1543/*
1544 * Move dependencies from one buffer to another.
1545 */
1546int
1547softdep_move_dependencies(oldbp, newbp)
1548	struct buf *oldbp;
1549	struct buf *newbp;
1550{
1551	struct worklist *wk, *wktail;
1552	int dirty;
1553
1554	dirty = 0;
1555	wktail = NULL;
1556	ACQUIRE_LOCK(&lk);
1557	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1558		LIST_REMOVE(wk, wk_list);
1559		if (wk->wk_type == D_BMSAFEMAP &&
1560		    bmsafemap_rollbacks(WK_BMSAFEMAP(wk)))
1561			dirty = 1;
1562		if (wktail == 0)
1563			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1564		else
1565			LIST_INSERT_AFTER(wktail, wk, wk_list);
1566		wktail = wk;
1567	}
1568	FREE_LOCK(&lk);
1569
1570	return (dirty);
1571}
1572
1573/*
1574 * Purge the work list of all items associated with a particular mount point.
1575 */
1576int
1577softdep_flushworklist(oldmnt, countp, td)
1578	struct mount *oldmnt;
1579	int *countp;
1580	struct thread *td;
1581{
1582	struct vnode *devvp;
1583	int count, error = 0;
1584	struct ufsmount *ump;
1585
1586	/*
1587	 * Alternately flush the block device associated with the mount
1588	 * point and process any dependencies that the flushing
1589	 * creates. We continue until no more worklist dependencies
1590	 * are found.
1591	 */
1592	*countp = 0;
1593	ump = VFSTOUFS(oldmnt);
1594	devvp = ump->um_devvp;
1595	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1596		*countp += count;
1597		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1598		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1599		VOP_UNLOCK(devvp, 0);
1600		if (error)
1601			break;
1602	}
1603	return (error);
1604}
1605
1606int
1607softdep_waitidle(struct mount *mp)
1608{
1609	struct ufsmount *ump;
1610	int error;
1611	int i;
1612
1613	ump = VFSTOUFS(mp);
1614	ACQUIRE_LOCK(&lk);
1615	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1616		ump->softdep_req = 1;
1617		if (ump->softdep_on_worklist)
1618			panic("softdep_waitidle: work added after flush.");
1619		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1620	}
1621	ump->softdep_req = 0;
1622	FREE_LOCK(&lk);
1623	error = 0;
1624	if (i == 10) {
1625		error = EBUSY;
1626		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1627		    mp);
1628	}
1629
1630	return (error);
1631}
1632
1633/*
1634 * Flush all vnodes and worklist items associated with a specified mount point.
1635 */
1636int
1637softdep_flushfiles(oldmnt, flags, td)
1638	struct mount *oldmnt;
1639	int flags;
1640	struct thread *td;
1641{
1642	int error, depcount, loopcnt, retry_flush_count, retry;
1643
1644	loopcnt = 10;
1645	retry_flush_count = 3;
1646retry_flush:
1647	error = 0;
1648
1649	/*
1650	 * Alternately flush the vnodes associated with the mount
1651	 * point and process any dependencies that the flushing
1652	 * creates. In theory, this loop can happen at most twice,
1653	 * but we give it a few extra just to be sure.
1654	 */
1655	for (; loopcnt > 0; loopcnt--) {
1656		/*
1657		 * Do another flush in case any vnodes were brought in
1658		 * as part of the cleanup operations.
1659		 */
1660		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1661			break;
1662		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1663		    depcount == 0)
1664			break;
1665	}
1666	/*
1667	 * If we are unmounting then it is an error to fail. If we
1668	 * are simply trying to downgrade to read-only, then filesystem
1669	 * activity can keep us busy forever, so we just fail with EBUSY.
1670	 */
1671	if (loopcnt == 0) {
1672		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1673			panic("softdep_flushfiles: looping");
1674		error = EBUSY;
1675	}
1676	if (!error)
1677		error = softdep_waitidle(oldmnt);
1678	if (!error) {
1679		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1680			retry = 0;
1681			MNT_ILOCK(oldmnt);
1682			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1683			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1684			if (oldmnt->mnt_nvnodelistsize > 0) {
1685				if (--retry_flush_count > 0) {
1686					retry = 1;
1687					loopcnt = 3;
1688				} else
1689					error = EBUSY;
1690			}
1691			MNT_IUNLOCK(oldmnt);
1692			if (retry)
1693				goto retry_flush;
1694		}
1695	}
1696	return (error);
1697}
1698
1699/*
1700 * Structure hashing.
1701 *
1702 * There are three types of structures that can be looked up:
1703 *	1) pagedep structures identified by mount point, inode number,
1704 *	   and logical block.
1705 *	2) inodedep structures identified by mount point and inode number.
1706 *	3) newblk structures identified by mount point and
1707 *	   physical block number.
1708 *
1709 * The "pagedep" and "inodedep" dependency structures are hashed
1710 * separately from the file blocks and inodes to which they correspond.
1711 * This separation helps when the in-memory copy of an inode or
1712 * file block must be replaced. It also obviates the need to access
1713 * an inode or file page when simply updating (or de-allocating)
1714 * dependency structures. Lookup of newblk structures is needed to
1715 * find newly allocated blocks when trying to associate them with
1716 * their allocdirect or allocindir structure.
1717 *
1718 * The lookup routines optionally create and hash a new instance when
1719 * an existing entry is not found.
1720 */
1721#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1722#define NODELAY		0x0002	/* cannot do background work */
1723
1724/*
1725 * Structures and routines associated with pagedep caching.
1726 */
1727LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1728u_long	pagedep_hash;		/* size of hash table - 1 */
1729#define	PAGEDEP_HASH(mp, inum, lbn) \
1730	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1731	    pagedep_hash])
1732
1733static int
1734pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1735	struct pagedep_hashhead *pagedephd;
1736	ino_t ino;
1737	ufs_lbn_t lbn;
1738	struct mount *mp;
1739	int flags;
1740	struct pagedep **pagedeppp;
1741{
1742	struct pagedep *pagedep;
1743
1744	LIST_FOREACH(pagedep, pagedephd, pd_hash)
1745		if (ino == pagedep->pd_ino &&
1746		    lbn == pagedep->pd_lbn &&
1747		    mp == pagedep->pd_list.wk_mp)
1748			break;
1749	if (pagedep) {
1750		*pagedeppp = pagedep;
1751		if ((flags & DEPALLOC) != 0 &&
1752		    (pagedep->pd_state & ONWORKLIST) == 0)
1753			return (0);
1754		return (1);
1755	}
1756	*pagedeppp = NULL;
1757	return (0);
1758}
1759/*
1760 * Look up a pagedep. Return 1 if found, 0 if not found or found
1761 * when asked to allocate but not associated with any buffer.
1762 * If not found, allocate if DEPALLOC flag is passed.
1763 * Found or allocated entry is returned in pagedeppp.
1764 * This routine must be called with splbio interrupts blocked.
1765 */
1766static int
1767pagedep_lookup(mp, ino, lbn, flags, pagedeppp)
1768	struct mount *mp;
1769	ino_t ino;
1770	ufs_lbn_t lbn;
1771	int flags;
1772	struct pagedep **pagedeppp;
1773{
1774	struct pagedep *pagedep;
1775	struct pagedep_hashhead *pagedephd;
1776	int ret;
1777	int i;
1778
1779	mtx_assert(&lk, MA_OWNED);
1780	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
1781
1782	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
1783	if (*pagedeppp || (flags & DEPALLOC) == 0)
1784		return (ret);
1785	FREE_LOCK(&lk);
1786	pagedep = malloc(sizeof(struct pagedep),
1787	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
1788	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
1789	ACQUIRE_LOCK(&lk);
1790	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
1791	if (*pagedeppp) {
1792		WORKITEM_FREE(pagedep, D_PAGEDEP);
1793		return (ret);
1794	}
1795	pagedep->pd_ino = ino;
1796	pagedep->pd_lbn = lbn;
1797	LIST_INIT(&pagedep->pd_dirremhd);
1798	LIST_INIT(&pagedep->pd_pendinghd);
1799	for (i = 0; i < DAHASHSZ; i++)
1800		LIST_INIT(&pagedep->pd_diraddhd[i]);
1801	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
1802	*pagedeppp = pagedep;
1803	return (0);
1804}
1805
1806/*
1807 * Structures and routines associated with inodedep caching.
1808 */
1809LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1810static u_long	inodedep_hash;	/* size of hash table - 1 */
1811static long	num_inodedep;	/* number of inodedep allocated */
1812#define	INODEDEP_HASH(fs, inum) \
1813      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1814
1815static int
1816inodedep_find(inodedephd, fs, inum, inodedeppp)
1817	struct inodedep_hashhead *inodedephd;
1818	struct fs *fs;
1819	ino_t inum;
1820	struct inodedep **inodedeppp;
1821{
1822	struct inodedep *inodedep;
1823
1824	LIST_FOREACH(inodedep, inodedephd, id_hash)
1825		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1826			break;
1827	if (inodedep) {
1828		*inodedeppp = inodedep;
1829		return (1);
1830	}
1831	*inodedeppp = NULL;
1832
1833	return (0);
1834}
1835/*
1836 * Look up an inodedep. Return 1 if found, 0 if not found.
1837 * If not found, allocate if DEPALLOC flag is passed.
1838 * Found or allocated entry is returned in inodedeppp.
1839 * This routine must be called with splbio interrupts blocked.
1840 */
1841static int
1842inodedep_lookup(mp, inum, flags, inodedeppp)
1843	struct mount *mp;
1844	ino_t inum;
1845	int flags;
1846	struct inodedep **inodedeppp;
1847{
1848	struct inodedep *inodedep;
1849	struct inodedep_hashhead *inodedephd;
1850	struct fs *fs;
1851
1852	mtx_assert(&lk, MA_OWNED);
1853	fs = VFSTOUFS(mp)->um_fs;
1854	inodedephd = INODEDEP_HASH(fs, inum);
1855
1856	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
1857		return (1);
1858	if ((flags & DEPALLOC) == 0)
1859		return (0);
1860	/*
1861	 * If we are over our limit, try to improve the situation.
1862	 */
1863	if (num_inodedep > max_softdeps && (flags & NODELAY) == 0)
1864		request_cleanup(mp, FLUSH_INODES);
1865	FREE_LOCK(&lk);
1866	inodedep = malloc(sizeof(struct inodedep),
1867		M_INODEDEP, M_SOFTDEP_FLAGS);
1868	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
1869	ACQUIRE_LOCK(&lk);
1870	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
1871		WORKITEM_FREE(inodedep, D_INODEDEP);
1872		return (1);
1873	}
1874	num_inodedep += 1;
1875	inodedep->id_fs = fs;
1876	inodedep->id_ino = inum;
1877	inodedep->id_state = ALLCOMPLETE;
1878	inodedep->id_nlinkdelta = 0;
1879	inodedep->id_savedino1 = NULL;
1880	inodedep->id_savedsize = -1;
1881	inodedep->id_savedextsize = -1;
1882	inodedep->id_savednlink = -1;
1883	inodedep->id_bmsafemap = NULL;
1884	inodedep->id_mkdiradd = NULL;
1885	LIST_INIT(&inodedep->id_dirremhd);
1886	LIST_INIT(&inodedep->id_pendinghd);
1887	LIST_INIT(&inodedep->id_inowait);
1888	LIST_INIT(&inodedep->id_bufwait);
1889	TAILQ_INIT(&inodedep->id_inoreflst);
1890	TAILQ_INIT(&inodedep->id_inoupdt);
1891	TAILQ_INIT(&inodedep->id_newinoupdt);
1892	TAILQ_INIT(&inodedep->id_extupdt);
1893	TAILQ_INIT(&inodedep->id_newextupdt);
1894	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1895	*inodedeppp = inodedep;
1896	return (0);
1897}
1898
1899/*
1900 * Structures and routines associated with newblk caching.
1901 */
1902LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1903u_long	newblk_hash;		/* size of hash table - 1 */
1904#define	NEWBLK_HASH(fs, inum) \
1905	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1906
1907static int
1908newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
1909	struct newblk_hashhead *newblkhd;
1910	struct mount *mp;
1911	ufs2_daddr_t newblkno;
1912	int flags;
1913	struct newblk **newblkpp;
1914{
1915	struct newblk *newblk;
1916
1917	LIST_FOREACH(newblk, newblkhd, nb_hash) {
1918		if (newblkno != newblk->nb_newblkno)
1919			continue;
1920		if (mp != newblk->nb_list.wk_mp)
1921			continue;
1922		/*
1923		 * If we're creating a new dependency don't match those that
1924		 * have already been converted to allocdirects.  This is for
1925		 * a frag extend.
1926		 */
1927		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
1928			continue;
1929		break;
1930	}
1931	if (newblk) {
1932		*newblkpp = newblk;
1933		return (1);
1934	}
1935	*newblkpp = NULL;
1936	return (0);
1937}
1938
1939/*
1940 * Look up a newblk. Return 1 if found, 0 if not found.
1941 * If not found, allocate if DEPALLOC flag is passed.
1942 * Found or allocated entry is returned in newblkpp.
1943 */
1944static int
1945newblk_lookup(mp, newblkno, flags, newblkpp)
1946	struct mount *mp;
1947	ufs2_daddr_t newblkno;
1948	int flags;
1949	struct newblk **newblkpp;
1950{
1951	struct newblk *newblk;
1952	struct newblk_hashhead *newblkhd;
1953
1954	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
1955	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
1956		return (1);
1957	if ((flags & DEPALLOC) == 0)
1958		return (0);
1959	FREE_LOCK(&lk);
1960	newblk = malloc(sizeof(union allblk), M_NEWBLK,
1961	    M_SOFTDEP_FLAGS | M_ZERO);
1962	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
1963	ACQUIRE_LOCK(&lk);
1964	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
1965		WORKITEM_FREE(newblk, D_NEWBLK);
1966		return (1);
1967	}
1968	newblk->nb_freefrag = NULL;
1969	LIST_INIT(&newblk->nb_indirdeps);
1970	LIST_INIT(&newblk->nb_newdirblk);
1971	LIST_INIT(&newblk->nb_jwork);
1972	newblk->nb_state = ATTACHED;
1973	newblk->nb_newblkno = newblkno;
1974	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1975	*newblkpp = newblk;
1976	return (0);
1977}
1978
1979/*
1980 * Executed during filesystem system initialization before
1981 * mounting any filesystems.
1982 */
1983void
1984softdep_initialize()
1985{
1986
1987	LIST_INIT(&mkdirlisthd);
1988	max_softdeps = desiredvnodes * 4;
1989	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
1990	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1991	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
1992	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
1993
1994	/* initialise bioops hack */
1995	bioops.io_start = softdep_disk_io_initiation;
1996	bioops.io_complete = softdep_disk_write_complete;
1997	bioops.io_deallocate = softdep_deallocate_dependencies;
1998	bioops.io_countdeps = softdep_count_dependencies;
1999
2000	/* Initialize the callout with an mtx. */
2001	callout_init_mtx(&softdep_callout, &lk, 0);
2002}
2003
2004/*
2005 * Executed after all filesystems have been unmounted during
2006 * filesystem module unload.
2007 */
2008void
2009softdep_uninitialize()
2010{
2011
2012	callout_drain(&softdep_callout);
2013	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2014	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2015	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2016	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2017}
2018
2019/*
2020 * Called at mount time to notify the dependency code that a
2021 * filesystem wishes to use it.
2022 */
2023int
2024softdep_mount(devvp, mp, fs, cred)
2025	struct vnode *devvp;
2026	struct mount *mp;
2027	struct fs *fs;
2028	struct ucred *cred;
2029{
2030	struct csum_total cstotal;
2031	struct ufsmount *ump;
2032	struct cg *cgp;
2033	struct buf *bp;
2034	int error, cyl;
2035
2036	MNT_ILOCK(mp);
2037	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2038	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2039		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2040			MNTK_SOFTDEP;
2041		mp->mnt_noasync++;
2042	}
2043	MNT_IUNLOCK(mp);
2044	ump = VFSTOUFS(mp);
2045	LIST_INIT(&ump->softdep_workitem_pending);
2046	LIST_INIT(&ump->softdep_journal_pending);
2047	TAILQ_INIT(&ump->softdep_unlinked);
2048	ump->softdep_worklist_tail = NULL;
2049	ump->softdep_on_worklist = 0;
2050	ump->softdep_deps = 0;
2051	if ((fs->fs_flags & FS_SUJ) &&
2052	    (error = journal_mount(mp, fs, cred)) != 0) {
2053		printf("Failed to start journal: %d\n", error);
2054		return (error);
2055	}
2056	/*
2057	 * When doing soft updates, the counters in the
2058	 * superblock may have gotten out of sync. Recomputation
2059	 * can take a long time and can be deferred for background
2060	 * fsck.  However, the old behavior of scanning the cylinder
2061	 * groups and recalculating them at mount time is available
2062	 * by setting vfs.ffs.compute_summary_at_mount to one.
2063	 */
2064	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2065		return (0);
2066	bzero(&cstotal, sizeof cstotal);
2067	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2068		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2069		    fs->fs_cgsize, cred, &bp)) != 0) {
2070			brelse(bp);
2071			return (error);
2072		}
2073		cgp = (struct cg *)bp->b_data;
2074		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2075		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2076		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2077		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2078		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2079		brelse(bp);
2080	}
2081#ifdef DEBUG
2082	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2083		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2084#endif
2085	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2086	return (0);
2087}
2088
2089void
2090softdep_unmount(mp)
2091	struct mount *mp;
2092{
2093
2094	if (mp->mnt_kern_flag & MNTK_SUJ)
2095		journal_unmount(mp);
2096}
2097
2098struct jblocks {
2099	struct jseglst	jb_segs;	/* TAILQ of current segments. */
2100	struct jseg	*jb_writeseg;	/* Next write to complete. */
2101	struct jextent	*jb_extent;	/* Extent array. */
2102	uint64_t	jb_nextseq;	/* Next sequence number. */
2103	uint64_t	jb_oldestseq;	/* Oldest active sequence number. */
2104	int		jb_avail;	/* Available extents. */
2105	int		jb_used;	/* Last used extent. */
2106	int		jb_head;	/* Allocator head. */
2107	int		jb_off;		/* Allocator extent offset. */
2108	int		jb_blocks;	/* Total disk blocks covered. */
2109	int		jb_free;	/* Total disk blocks free. */
2110	int		jb_min;		/* Minimum free space. */
2111	int		jb_low;		/* Low on space. */
2112	int		jb_age;		/* Insertion time of oldest rec. */
2113	int		jb_suspended;	/* Did journal suspend writes? */
2114};
2115
2116struct jextent {
2117	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2118	int		je_blocks;	/* Disk block count. */
2119};
2120
2121static struct jblocks *
2122jblocks_create(void)
2123{
2124	struct jblocks *jblocks;
2125
2126	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2127	TAILQ_INIT(&jblocks->jb_segs);
2128	jblocks->jb_avail = 10;
2129	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2130	    M_JBLOCKS, M_WAITOK | M_ZERO);
2131
2132	return (jblocks);
2133}
2134
2135static ufs2_daddr_t
2136jblocks_alloc(jblocks, bytes, actual)
2137	struct jblocks *jblocks;
2138	int bytes;
2139	int *actual;
2140{
2141	ufs2_daddr_t daddr;
2142	struct jextent *jext;
2143	int freecnt;
2144	int blocks;
2145
2146	blocks = bytes / DEV_BSIZE;
2147	jext = &jblocks->jb_extent[jblocks->jb_head];
2148	freecnt = jext->je_blocks - jblocks->jb_off;
2149	if (freecnt == 0) {
2150		jblocks->jb_off = 0;
2151		if (++jblocks->jb_head > jblocks->jb_used)
2152			jblocks->jb_head = 0;
2153		jext = &jblocks->jb_extent[jblocks->jb_head];
2154		freecnt = jext->je_blocks;
2155	}
2156	if (freecnt > blocks)
2157		freecnt = blocks;
2158	*actual = freecnt * DEV_BSIZE;
2159	daddr = jext->je_daddr + jblocks->jb_off;
2160	jblocks->jb_off += freecnt;
2161	jblocks->jb_free -= freecnt;
2162
2163	return (daddr);
2164}
2165
2166static void
2167jblocks_free(jblocks, mp, bytes)
2168	struct jblocks *jblocks;
2169	struct mount *mp;
2170	int bytes;
2171{
2172
2173	jblocks->jb_free += bytes / DEV_BSIZE;
2174	if (jblocks->jb_suspended)
2175		worklist_speedup();
2176	wakeup(jblocks);
2177}
2178
2179static void
2180jblocks_destroy(jblocks)
2181	struct jblocks *jblocks;
2182{
2183
2184	if (jblocks->jb_extent)
2185		free(jblocks->jb_extent, M_JBLOCKS);
2186	free(jblocks, M_JBLOCKS);
2187}
2188
2189static void
2190jblocks_add(jblocks, daddr, blocks)
2191	struct jblocks *jblocks;
2192	ufs2_daddr_t daddr;
2193	int blocks;
2194{
2195	struct jextent *jext;
2196
2197	jblocks->jb_blocks += blocks;
2198	jblocks->jb_free += blocks;
2199	jext = &jblocks->jb_extent[jblocks->jb_used];
2200	/* Adding the first block. */
2201	if (jext->je_daddr == 0) {
2202		jext->je_daddr = daddr;
2203		jext->je_blocks = blocks;
2204		return;
2205	}
2206	/* Extending the last extent. */
2207	if (jext->je_daddr + jext->je_blocks == daddr) {
2208		jext->je_blocks += blocks;
2209		return;
2210	}
2211	/* Adding a new extent. */
2212	if (++jblocks->jb_used == jblocks->jb_avail) {
2213		jblocks->jb_avail *= 2;
2214		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2215		    M_JBLOCKS, M_WAITOK | M_ZERO);
2216		memcpy(jext, jblocks->jb_extent,
2217		    sizeof(struct jextent) * jblocks->jb_used);
2218		free(jblocks->jb_extent, M_JBLOCKS);
2219		jblocks->jb_extent = jext;
2220	}
2221	jext = &jblocks->jb_extent[jblocks->jb_used];
2222	jext->je_daddr = daddr;
2223	jext->je_blocks = blocks;
2224	return;
2225}
2226
2227int
2228softdep_journal_lookup(mp, vpp)
2229	struct mount *mp;
2230	struct vnode **vpp;
2231{
2232	struct componentname cnp;
2233	struct vnode *dvp;
2234	ino_t sujournal;
2235	int error;
2236
2237	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2238	if (error)
2239		return (error);
2240	bzero(&cnp, sizeof(cnp));
2241	cnp.cn_nameiop = LOOKUP;
2242	cnp.cn_flags = ISLASTCN;
2243	cnp.cn_thread = curthread;
2244	cnp.cn_cred = curthread->td_ucred;
2245	cnp.cn_pnbuf = SUJ_FILE;
2246	cnp.cn_nameptr = SUJ_FILE;
2247	cnp.cn_namelen = strlen(SUJ_FILE);
2248	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2249	vput(dvp);
2250	if (error != 0)
2251		return (error);
2252	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2253	return (error);
2254}
2255
2256/*
2257 * Open and verify the journal file.
2258 */
2259static int
2260journal_mount(mp, fs, cred)
2261	struct mount *mp;
2262	struct fs *fs;
2263	struct ucred *cred;
2264{
2265	struct jblocks *jblocks;
2266	struct vnode *vp;
2267	struct inode *ip;
2268	ufs2_daddr_t blkno;
2269	int bcount;
2270	int error;
2271	int i;
2272
2273	mp->mnt_kern_flag |= MNTK_SUJ;
2274	error = softdep_journal_lookup(mp, &vp);
2275	if (error != 0) {
2276		printf("Failed to find journal.  Use tunefs to create one\n");
2277		return (error);
2278	}
2279	ip = VTOI(vp);
2280	if (ip->i_size < SUJ_MIN) {
2281		error = ENOSPC;
2282		goto out;
2283	}
2284	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2285	jblocks = jblocks_create();
2286	for (i = 0; i < bcount; i++) {
2287		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2288		if (error)
2289			break;
2290		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2291	}
2292	if (error) {
2293		jblocks_destroy(jblocks);
2294		goto out;
2295	}
2296	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2297	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2298	/*
2299	 * Only validate the journal contents if the filesystem is clean,
2300	 * otherwise we write the logs but they'll never be used.  If the
2301	 * filesystem was still dirty when we mounted it the journal is
2302	 * invalid and a new journal can only be valid if it starts from a
2303	 * clean mount.
2304	 */
2305	if (fs->fs_clean) {
2306		DIP_SET(ip, i_modrev, fs->fs_mtime);
2307		ip->i_flags |= IN_MODIFIED;
2308		ffs_update(vp, 1);
2309	}
2310	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2311out:
2312	vput(vp);
2313	return (error);
2314}
2315
2316static void
2317journal_unmount(mp)
2318	struct mount *mp;
2319{
2320	struct ufsmount *ump;
2321
2322	ump = VFSTOUFS(mp);
2323	if (ump->softdep_jblocks)
2324		jblocks_destroy(ump->softdep_jblocks);
2325	ump->softdep_jblocks = NULL;
2326}
2327
2328/*
2329 * Called when a journal record is ready to be written.  Space is allocated
2330 * and the journal entry is created when the journal is flushed to stable
2331 * store.
2332 */
2333static void
2334add_to_journal(wk)
2335	struct worklist *wk;
2336{
2337	struct ufsmount *ump;
2338
2339	mtx_assert(&lk, MA_OWNED);
2340	ump = VFSTOUFS(wk->wk_mp);
2341	if (wk->wk_state & ONWORKLIST)
2342		panic("add_to_journal: %s(0x%X) already on list",
2343		    TYPENAME(wk->wk_type), wk->wk_state);
2344	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2345	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2346		ump->softdep_jblocks->jb_age = ticks;
2347		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2348	} else
2349		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2350	ump->softdep_journal_tail = wk;
2351	ump->softdep_on_journal += 1;
2352}
2353
2354/*
2355 * Remove an arbitrary item for the journal worklist maintain the tail
2356 * pointer.  This happens when a new operation obviates the need to
2357 * journal an old operation.
2358 */
2359static void
2360remove_from_journal(wk)
2361	struct worklist *wk;
2362{
2363	struct ufsmount *ump;
2364
2365	mtx_assert(&lk, MA_OWNED);
2366	ump = VFSTOUFS(wk->wk_mp);
2367#ifdef SUJ_DEBUG
2368	{
2369		struct worklist *wkn;
2370
2371		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2372			if (wkn == wk)
2373				break;
2374		if (wkn == NULL)
2375			panic("remove_from_journal: %p is not in journal", wk);
2376	}
2377#endif
2378	/*
2379	 * We emulate a TAILQ to save space in most structures which do not
2380	 * require TAILQ semantics.  Here we must update the tail position
2381	 * when removing the tail which is not the final entry. This works
2382	 * only if the worklist linkage are at the beginning of the structure.
2383	 */
2384	if (ump->softdep_journal_tail == wk)
2385		ump->softdep_journal_tail =
2386		    (struct worklist *)wk->wk_list.le_prev;
2387
2388	WORKLIST_REMOVE(wk);
2389	ump->softdep_on_journal -= 1;
2390}
2391
2392/*
2393 * Check for journal space as well as dependency limits so the prelink
2394 * code can throttle both journaled and non-journaled filesystems.
2395 * Threshold is 0 for low and 1 for min.
2396 */
2397static int
2398journal_space(ump, thresh)
2399	struct ufsmount *ump;
2400	int thresh;
2401{
2402	struct jblocks *jblocks;
2403	int avail;
2404
2405	jblocks = ump->softdep_jblocks;
2406	if (jblocks == NULL)
2407		return (1);
2408	/*
2409	 * We use a tighter restriction here to prevent request_cleanup()
2410	 * running in threads from running into locks we currently hold.
2411	 */
2412	if (num_inodedep > (max_softdeps / 10) * 9)
2413		return (0);
2414	if (thresh)
2415		thresh = jblocks->jb_min;
2416	else
2417		thresh = jblocks->jb_low;
2418	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2419	avail = jblocks->jb_free - avail;
2420
2421	return (avail > thresh);
2422}
2423
2424static void
2425journal_suspend(ump)
2426	struct ufsmount *ump;
2427{
2428	struct jblocks *jblocks;
2429	struct mount *mp;
2430
2431	mp = UFSTOVFS(ump);
2432	jblocks = ump->softdep_jblocks;
2433	MNT_ILOCK(mp);
2434	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2435		stat_journal_min++;
2436		mp->mnt_kern_flag |= MNTK_SUSPEND;
2437		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2438	}
2439	jblocks->jb_suspended = 1;
2440	MNT_IUNLOCK(mp);
2441}
2442
2443static int
2444journal_unsuspend(struct ufsmount *ump)
2445{
2446	struct jblocks *jblocks;
2447	struct mount *mp;
2448
2449	mp = UFSTOVFS(ump);
2450	jblocks = ump->softdep_jblocks;
2451
2452	if (jblocks != NULL && jblocks->jb_suspended &&
2453	    journal_space(ump, jblocks->jb_min)) {
2454		jblocks->jb_suspended = 0;
2455		FREE_LOCK(&lk);
2456		mp->mnt_susp_owner = curthread;
2457		vfs_write_resume(mp);
2458		ACQUIRE_LOCK(&lk);
2459		return (1);
2460	}
2461	return (0);
2462}
2463
2464/*
2465 * Called before any allocation function to be certain that there is
2466 * sufficient space in the journal prior to creating any new records.
2467 * Since in the case of block allocation we may have multiple locked
2468 * buffers at the time of the actual allocation we can not block
2469 * when the journal records are created.  Doing so would create a deadlock
2470 * if any of these buffers needed to be flushed to reclaim space.  Instead
2471 * we require a sufficiently large amount of available space such that
2472 * each thread in the system could have passed this allocation check and
2473 * still have sufficient free space.  With 20% of a minimum journal size
2474 * of 1MB we have 6553 records available.
2475 */
2476int
2477softdep_prealloc(vp, waitok)
2478	struct vnode *vp;
2479	int waitok;
2480{
2481	struct ufsmount *ump;
2482
2483	if (DOINGSUJ(vp) == 0)
2484		return (0);
2485	ump = VFSTOUFS(vp->v_mount);
2486	ACQUIRE_LOCK(&lk);
2487	if (journal_space(ump, 0)) {
2488		FREE_LOCK(&lk);
2489		return (0);
2490	}
2491	stat_journal_low++;
2492	FREE_LOCK(&lk);
2493	if (waitok == MNT_NOWAIT)
2494		return (ENOSPC);
2495	/*
2496	 * Attempt to sync this vnode once to flush any journal
2497	 * work attached to it.
2498	 */
2499	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2500		ffs_syncvnode(vp, waitok);
2501	ACQUIRE_LOCK(&lk);
2502	process_removes(vp);
2503	if (journal_space(ump, 0) == 0) {
2504		softdep_speedup();
2505		if (journal_space(ump, 1) == 0)
2506			journal_suspend(ump);
2507	}
2508	FREE_LOCK(&lk);
2509
2510	return (0);
2511}
2512
2513/*
2514 * Before adjusting a link count on a vnode verify that we have sufficient
2515 * journal space.  If not, process operations that depend on the currently
2516 * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2517 * and softdep flush threads can not acquire these locks to reclaim space.
2518 */
2519static void
2520softdep_prelink(dvp, vp)
2521	struct vnode *dvp;
2522	struct vnode *vp;
2523{
2524	struct ufsmount *ump;
2525
2526	ump = VFSTOUFS(dvp->v_mount);
2527	mtx_assert(&lk, MA_OWNED);
2528	if (journal_space(ump, 0))
2529		return;
2530	stat_journal_low++;
2531	FREE_LOCK(&lk);
2532	if (vp)
2533		ffs_syncvnode(vp, MNT_NOWAIT);
2534	ffs_syncvnode(dvp, MNT_WAIT);
2535	ACQUIRE_LOCK(&lk);
2536	/* Process vp before dvp as it may create .. removes. */
2537	if (vp)
2538		process_removes(vp);
2539	process_removes(dvp);
2540	softdep_speedup();
2541	process_worklist_item(UFSTOVFS(ump), LK_NOWAIT);
2542	process_worklist_item(UFSTOVFS(ump), LK_NOWAIT);
2543	if (journal_space(ump, 0) == 0) {
2544		softdep_speedup();
2545		if (journal_space(ump, 1) == 0)
2546			journal_suspend(ump);
2547	}
2548}
2549
2550static void
2551jseg_write(fs, jblocks, jseg, data)
2552	struct fs *fs;
2553	struct jblocks *jblocks;
2554	struct jseg *jseg;
2555	uint8_t *data;
2556{
2557	struct jsegrec *rec;
2558
2559	rec = (struct jsegrec *)data;
2560	rec->jsr_seq = jseg->js_seq;
2561	rec->jsr_oldest = jblocks->jb_oldestseq;
2562	rec->jsr_cnt = jseg->js_cnt;
2563	rec->jsr_blocks = jseg->js_size / DEV_BSIZE;
2564	rec->jsr_crc = 0;
2565	rec->jsr_time = fs->fs_mtime;
2566}
2567
2568static inline void
2569inoref_write(inoref, jseg, rec)
2570	struct inoref *inoref;
2571	struct jseg *jseg;
2572	struct jrefrec *rec;
2573{
2574
2575	inoref->if_jsegdep->jd_seg = jseg;
2576	rec->jr_ino = inoref->if_ino;
2577	rec->jr_parent = inoref->if_parent;
2578	rec->jr_nlink = inoref->if_nlink;
2579	rec->jr_mode = inoref->if_mode;
2580	rec->jr_diroff = inoref->if_diroff;
2581}
2582
2583static void
2584jaddref_write(jaddref, jseg, data)
2585	struct jaddref *jaddref;
2586	struct jseg *jseg;
2587	uint8_t *data;
2588{
2589	struct jrefrec *rec;
2590
2591	rec = (struct jrefrec *)data;
2592	rec->jr_op = JOP_ADDREF;
2593	inoref_write(&jaddref->ja_ref, jseg, rec);
2594}
2595
2596static void
2597jremref_write(jremref, jseg, data)
2598	struct jremref *jremref;
2599	struct jseg *jseg;
2600	uint8_t *data;
2601{
2602	struct jrefrec *rec;
2603
2604	rec = (struct jrefrec *)data;
2605	rec->jr_op = JOP_REMREF;
2606	inoref_write(&jremref->jr_ref, jseg, rec);
2607}
2608
2609static void
2610jmvref_write(jmvref, jseg, data)
2611	struct jmvref *jmvref;
2612	struct jseg *jseg;
2613	uint8_t *data;
2614{
2615	struct jmvrec *rec;
2616
2617	rec = (struct jmvrec *)data;
2618	rec->jm_op = JOP_MVREF;
2619	rec->jm_ino = jmvref->jm_ino;
2620	rec->jm_parent = jmvref->jm_parent;
2621	rec->jm_oldoff = jmvref->jm_oldoff;
2622	rec->jm_newoff = jmvref->jm_newoff;
2623}
2624
2625static void
2626jnewblk_write(jnewblk, jseg, data)
2627	struct jnewblk *jnewblk;
2628	struct jseg *jseg;
2629	uint8_t *data;
2630{
2631	struct jblkrec *rec;
2632
2633	jnewblk->jn_jsegdep->jd_seg = jseg;
2634	rec = (struct jblkrec *)data;
2635	rec->jb_op = JOP_NEWBLK;
2636	rec->jb_ino = jnewblk->jn_ino;
2637	rec->jb_blkno = jnewblk->jn_blkno;
2638	rec->jb_lbn = jnewblk->jn_lbn;
2639	rec->jb_frags = jnewblk->jn_frags;
2640	rec->jb_oldfrags = jnewblk->jn_oldfrags;
2641}
2642
2643static void
2644jfreeblk_write(jfreeblk, jseg, data)
2645	struct jfreeblk *jfreeblk;
2646	struct jseg *jseg;
2647	uint8_t *data;
2648{
2649	struct jblkrec *rec;
2650
2651	jfreeblk->jf_jsegdep->jd_seg = jseg;
2652	rec = (struct jblkrec *)data;
2653	rec->jb_op = JOP_FREEBLK;
2654	rec->jb_ino = jfreeblk->jf_ino;
2655	rec->jb_blkno = jfreeblk->jf_blkno;
2656	rec->jb_lbn = jfreeblk->jf_lbn;
2657	rec->jb_frags = jfreeblk->jf_frags;
2658	rec->jb_oldfrags = 0;
2659}
2660
2661static void
2662jfreefrag_write(jfreefrag, jseg, data)
2663	struct jfreefrag *jfreefrag;
2664	struct jseg *jseg;
2665	uint8_t *data;
2666{
2667	struct jblkrec *rec;
2668
2669	jfreefrag->fr_jsegdep->jd_seg = jseg;
2670	rec = (struct jblkrec *)data;
2671	rec->jb_op = JOP_FREEBLK;
2672	rec->jb_ino = jfreefrag->fr_ino;
2673	rec->jb_blkno = jfreefrag->fr_blkno;
2674	rec->jb_lbn = jfreefrag->fr_lbn;
2675	rec->jb_frags = jfreefrag->fr_frags;
2676	rec->jb_oldfrags = 0;
2677}
2678
2679static void
2680jtrunc_write(jtrunc, jseg, data)
2681	struct jtrunc *jtrunc;
2682	struct jseg *jseg;
2683	uint8_t *data;
2684{
2685	struct jtrncrec *rec;
2686
2687	rec = (struct jtrncrec *)data;
2688	rec->jt_op = JOP_TRUNC;
2689	rec->jt_ino = jtrunc->jt_ino;
2690	rec->jt_size = jtrunc->jt_size;
2691	rec->jt_extsize = jtrunc->jt_extsize;
2692}
2693
2694/*
2695 * Flush some journal records to disk.
2696 */
2697static void
2698softdep_process_journal(mp, flags)
2699	struct mount *mp;
2700	int flags;
2701{
2702	struct jblocks *jblocks;
2703	struct ufsmount *ump;
2704	struct worklist *wk;
2705	struct jseg *jseg;
2706	struct buf *bp;
2707	uint8_t *data;
2708	struct fs *fs;
2709	int segwritten;
2710	int jrecmin;	/* Minimum records per block. */
2711	int jrecmax;	/* Maximum records per block. */
2712	int size;
2713	int cnt;
2714	int off;
2715
2716	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0)
2717		return;
2718	ump = VFSTOUFS(mp);
2719	fs = ump->um_fs;
2720	jblocks = ump->softdep_jblocks;
2721	/*
2722	 * We write anywhere between a disk block and fs block.  The upper
2723	 * bound is picked to prevent buffer cache fragmentation and limit
2724	 * processing time per I/O.
2725	 */
2726	jrecmin = (DEV_BSIZE / JREC_SIZE) - 1; /* -1 for seg header */
2727	jrecmax = (fs->fs_bsize / DEV_BSIZE) * jrecmin;
2728	segwritten = 0;
2729	while ((cnt = ump->softdep_on_journal) != 0) {
2730		/*
2731		 * Create a new segment to hold as many as 'cnt' journal
2732		 * entries and add them to the segment.  Notice cnt is
2733		 * off by one to account for the space required by the
2734		 * jsegrec.  If we don't have a full block to log skip it
2735		 * unless we haven't written anything.
2736		 */
2737		cnt++;
2738		if (cnt < jrecmax && segwritten)
2739			break;
2740		/*
2741		 * Verify some free journal space.  softdep_prealloc() should
2742	 	 * guarantee that we don't run out so this is indicative of
2743		 * a problem with the flow control.  Try to recover
2744		 * gracefully in any event.
2745		 */
2746		while (jblocks->jb_free == 0) {
2747			if (flags != MNT_WAIT)
2748				break;
2749			printf("softdep: Out of journal space!\n");
2750			softdep_speedup();
2751			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
2752		}
2753		FREE_LOCK(&lk);
2754		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
2755		workitem_alloc(&jseg->js_list, D_JSEG, mp);
2756		LIST_INIT(&jseg->js_entries);
2757		jseg->js_state = ATTACHED;
2758		jseg->js_jblocks = jblocks;
2759		bp = geteblk(fs->fs_bsize, 0);
2760		ACQUIRE_LOCK(&lk);
2761		/*
2762		 * If there was a race while we were allocating the block
2763		 * and jseg the entry we care about was likely written.
2764		 * We bail out in both the WAIT and NOWAIT case and assume
2765		 * the caller will loop if the entry it cares about is
2766		 * not written.
2767		 */
2768		if (ump->softdep_on_journal == 0 || jblocks->jb_free == 0) {
2769			bp->b_flags |= B_INVAL | B_NOCACHE;
2770			WORKITEM_FREE(jseg, D_JSEG);
2771			FREE_LOCK(&lk);
2772			brelse(bp);
2773			ACQUIRE_LOCK(&lk);
2774			break;
2775		}
2776		/*
2777		 * Calculate the disk block size required for the available
2778		 * records rounded to the min size.
2779		 */
2780		cnt = ump->softdep_on_journal;
2781		if (cnt < jrecmax)
2782			size = howmany(cnt, jrecmin) * DEV_BSIZE;
2783		else
2784			size = fs->fs_bsize;
2785		/*
2786		 * Allocate a disk block for this journal data and account
2787		 * for truncation of the requested size if enough contiguous
2788		 * space was not available.
2789		 */
2790		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
2791		bp->b_lblkno = bp->b_blkno;
2792		bp->b_offset = bp->b_blkno * DEV_BSIZE;
2793		bp->b_bcount = size;
2794		bp->b_bufobj = &ump->um_devvp->v_bufobj;
2795		bp->b_flags &= ~B_INVAL;
2796		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
2797		/*
2798		 * Initialize our jseg with cnt records.  Assign the next
2799		 * sequence number to it and link it in-order.
2800		 */
2801		cnt = MIN(ump->softdep_on_journal,
2802		    (size / DEV_BSIZE) * jrecmin);
2803		jseg->js_buf = bp;
2804		jseg->js_cnt = cnt;
2805		jseg->js_refs = cnt + 1;	/* Self ref. */
2806		jseg->js_size = size;
2807		jseg->js_seq = jblocks->jb_nextseq++;
2808		if (TAILQ_EMPTY(&jblocks->jb_segs))
2809			jblocks->jb_oldestseq = jseg->js_seq;
2810		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
2811		if (jblocks->jb_writeseg == NULL)
2812			jblocks->jb_writeseg = jseg;
2813		/*
2814		 * Start filling in records from the pending list.
2815		 */
2816		data = bp->b_data;
2817		off = 0;
2818		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
2819		    != NULL) {
2820			/* Place a segment header on every device block. */
2821			if ((off % DEV_BSIZE) == 0) {
2822				jseg_write(fs, jblocks, jseg, data);
2823				off += JREC_SIZE;
2824				data = bp->b_data + off;
2825			}
2826			remove_from_journal(wk);
2827			wk->wk_state |= IOSTARTED;
2828			WORKLIST_INSERT(&jseg->js_entries, wk);
2829			switch (wk->wk_type) {
2830			case D_JADDREF:
2831				jaddref_write(WK_JADDREF(wk), jseg, data);
2832				break;
2833			case D_JREMREF:
2834				jremref_write(WK_JREMREF(wk), jseg, data);
2835				break;
2836			case D_JMVREF:
2837				jmvref_write(WK_JMVREF(wk), jseg, data);
2838				break;
2839			case D_JNEWBLK:
2840				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
2841				break;
2842			case D_JFREEBLK:
2843				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
2844				break;
2845			case D_JFREEFRAG:
2846				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
2847				break;
2848			case D_JTRUNC:
2849				jtrunc_write(WK_JTRUNC(wk), jseg, data);
2850				break;
2851			default:
2852				panic("process_journal: Unknown type %s",
2853				    TYPENAME(wk->wk_type));
2854				/* NOTREACHED */
2855			}
2856			if (--cnt == 0)
2857				break;
2858			off += JREC_SIZE;
2859			data = bp->b_data + off;
2860		}
2861		/*
2862		 * Write this one buffer and continue.
2863		 */
2864		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
2865		FREE_LOCK(&lk);
2866		BO_LOCK(bp->b_bufobj);
2867		bgetvp(ump->um_devvp, bp);
2868		BO_UNLOCK(bp->b_bufobj);
2869		if (flags == MNT_NOWAIT)
2870			bawrite(bp);
2871		else
2872			bwrite(bp);
2873		ACQUIRE_LOCK(&lk);
2874	}
2875	/*
2876	 * If we've suspended the filesystem because we ran out of journal
2877	 * space either try to sync it here to make some progress or
2878	 * unsuspend it if we already have.
2879	 */
2880	if (flags == 0 && jblocks->jb_suspended) {
2881		if (journal_unsuspend(ump))
2882			return;
2883		FREE_LOCK(&lk);
2884		VFS_SYNC(mp, MNT_NOWAIT);
2885		ffs_sbupdate(ump, MNT_WAIT, 0);
2886		ACQUIRE_LOCK(&lk);
2887	}
2888}
2889
2890/*
2891 * Complete a jseg, allowing all dependencies awaiting journal writes
2892 * to proceed.  Each journal dependency also attaches a jsegdep to dependent
2893 * structures so that the journal segment can be freed to reclaim space.
2894 */
2895static void
2896complete_jseg(jseg)
2897	struct jseg *jseg;
2898{
2899	struct worklist *wk;
2900	struct jmvref *jmvref;
2901	int waiting;
2902#ifdef INVARIANTS
2903	int i = 0;
2904#endif
2905
2906	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
2907		WORKLIST_REMOVE(wk);
2908		waiting = wk->wk_state & IOWAITING;
2909		wk->wk_state &= ~(IOSTARTED | IOWAITING);
2910		wk->wk_state |= COMPLETE;
2911		KASSERT(i++ < jseg->js_cnt,
2912		    ("handle_written_jseg: overflow %d >= %d",
2913		    i - 1, jseg->js_cnt));
2914		switch (wk->wk_type) {
2915		case D_JADDREF:
2916			handle_written_jaddref(WK_JADDREF(wk));
2917			break;
2918		case D_JREMREF:
2919			handle_written_jremref(WK_JREMREF(wk));
2920			break;
2921		case D_JMVREF:
2922			/* No jsegdep here. */
2923			free_jseg(jseg);
2924			jmvref = WK_JMVREF(wk);
2925			LIST_REMOVE(jmvref, jm_deps);
2926			free_pagedep(jmvref->jm_pagedep);
2927			WORKITEM_FREE(jmvref, D_JMVREF);
2928			break;
2929		case D_JNEWBLK:
2930			handle_written_jnewblk(WK_JNEWBLK(wk));
2931			break;
2932		case D_JFREEBLK:
2933			handle_written_jfreeblk(WK_JFREEBLK(wk));
2934			break;
2935		case D_JFREEFRAG:
2936			handle_written_jfreefrag(WK_JFREEFRAG(wk));
2937			break;
2938		case D_JTRUNC:
2939			WK_JTRUNC(wk)->jt_jsegdep->jd_seg = jseg;
2940			WORKITEM_FREE(wk, D_JTRUNC);
2941			break;
2942		default:
2943			panic("handle_written_jseg: Unknown type %s",
2944			    TYPENAME(wk->wk_type));
2945			/* NOTREACHED */
2946		}
2947		if (waiting)
2948			wakeup(wk);
2949	}
2950	/* Release the self reference so the structure may be freed. */
2951	free_jseg(jseg);
2952}
2953
2954/*
2955 * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Handle jseg
2956 * completions in order only.
2957 */
2958static void
2959handle_written_jseg(jseg, bp)
2960	struct jseg *jseg;
2961	struct buf *bp;
2962{
2963	struct jblocks *jblocks;
2964	struct jseg *jsegn;
2965
2966	if (jseg->js_refs == 0)
2967		panic("handle_written_jseg: No self-reference on %p", jseg);
2968	jseg->js_state |= DEPCOMPLETE;
2969	/*
2970	 * We'll never need this buffer again, set flags so it will be
2971	 * discarded.
2972	 */
2973	bp->b_flags |= B_INVAL | B_NOCACHE;
2974	jblocks = jseg->js_jblocks;
2975	/*
2976	 * Don't allow out of order completions.  If this isn't the first
2977	 * block wait for it to write before we're done.
2978	 */
2979	if (jseg != jblocks->jb_writeseg)
2980		return;
2981	/* Iterate through available jsegs processing their entries. */
2982	do {
2983		jsegn = TAILQ_NEXT(jseg, js_next);
2984		complete_jseg(jseg);
2985		jseg = jsegn;
2986	} while (jseg && jseg->js_state & DEPCOMPLETE);
2987	jblocks->jb_writeseg = jseg;
2988}
2989
2990static inline struct jsegdep *
2991inoref_jseg(inoref)
2992	struct inoref *inoref;
2993{
2994	struct jsegdep *jsegdep;
2995
2996	jsegdep = inoref->if_jsegdep;
2997	inoref->if_jsegdep = NULL;
2998
2999	return (jsegdep);
3000}
3001
3002/*
3003 * Called once a jremref has made it to stable store.  The jremref is marked
3004 * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3005 * for the jremref to complete will be awoken by free_jremref.
3006 */
3007static void
3008handle_written_jremref(jremref)
3009	struct jremref *jremref;
3010{
3011	struct inodedep *inodedep;
3012	struct jsegdep *jsegdep;
3013	struct dirrem *dirrem;
3014
3015	/* Grab the jsegdep. */
3016	jsegdep = inoref_jseg(&jremref->jr_ref);
3017	/*
3018	 * Remove us from the inoref list.
3019	 */
3020	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3021	    0, &inodedep) == 0)
3022		panic("handle_written_jremref: Lost inodedep");
3023	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3024	/*
3025	 * Complete the dirrem.
3026	 */
3027	dirrem = jremref->jr_dirrem;
3028	jremref->jr_dirrem = NULL;
3029	LIST_REMOVE(jremref, jr_deps);
3030	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3031	WORKLIST_INSERT(&dirrem->dm_jwork, &jsegdep->jd_list);
3032	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3033	    (dirrem->dm_state & COMPLETE) != 0)
3034		add_to_worklist(&dirrem->dm_list, 0);
3035	free_jremref(jremref);
3036}
3037
3038/*
3039 * Called once a jaddref has made it to stable store.  The dependency is
3040 * marked complete and any dependent structures are added to the inode
3041 * bufwait list to be completed as soon as it is written.  If a bitmap write
3042 * depends on this entry we move the inode into the inodedephd of the
3043 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3044 */
3045static void
3046handle_written_jaddref(jaddref)
3047	struct jaddref *jaddref;
3048{
3049	struct jsegdep *jsegdep;
3050	struct inodedep *inodedep;
3051	struct diradd *diradd;
3052	struct mkdir *mkdir;
3053
3054	/* Grab the jsegdep. */
3055	jsegdep = inoref_jseg(&jaddref->ja_ref);
3056	mkdir = NULL;
3057	diradd = NULL;
3058	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3059	    0, &inodedep) == 0)
3060		panic("handle_written_jaddref: Lost inodedep.");
3061	if (jaddref->ja_diradd == NULL)
3062		panic("handle_written_jaddref: No dependency");
3063	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3064		diradd = jaddref->ja_diradd;
3065		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3066	} else if (jaddref->ja_state & MKDIR_PARENT) {
3067		mkdir = jaddref->ja_mkdir;
3068		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3069	} else if (jaddref->ja_state & MKDIR_BODY)
3070		mkdir = jaddref->ja_mkdir;
3071	else
3072		panic("handle_written_jaddref: Unknown dependency %p",
3073		    jaddref->ja_diradd);
3074	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3075	/*
3076	 * Remove us from the inode list.
3077	 */
3078	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3079	/*
3080	 * The mkdir may be waiting on the jaddref to clear before freeing.
3081	 */
3082	if (mkdir) {
3083		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3084		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3085		    TYPENAME(mkdir->md_list.wk_type)));
3086		mkdir->md_jaddref = NULL;
3087		diradd = mkdir->md_diradd;
3088		mkdir->md_state |= DEPCOMPLETE;
3089		complete_mkdir(mkdir);
3090	}
3091	WORKLIST_INSERT(&diradd->da_jwork, &jsegdep->jd_list);
3092	if (jaddref->ja_state & NEWBLOCK) {
3093		inodedep->id_state |= ONDEPLIST;
3094		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3095		    inodedep, id_deps);
3096	}
3097	free_jaddref(jaddref);
3098}
3099
3100/*
3101 * Called once a jnewblk journal is written.  The allocdirect or allocindir
3102 * is placed in the bmsafemap to await notification of a written bitmap.
3103 */
3104static void
3105handle_written_jnewblk(jnewblk)
3106	struct jnewblk *jnewblk;
3107{
3108	struct bmsafemap *bmsafemap;
3109	struct jsegdep *jsegdep;
3110	struct newblk *newblk;
3111
3112	/* Grab the jsegdep. */
3113	jsegdep = jnewblk->jn_jsegdep;
3114	jnewblk->jn_jsegdep = NULL;
3115	/*
3116	 * Add the written block to the bmsafemap so it can be notified when
3117	 * the bitmap is on disk.
3118	 */
3119	newblk = jnewblk->jn_newblk;
3120	jnewblk->jn_newblk = NULL;
3121	if (newblk == NULL)
3122		panic("handle_written_jnewblk: No dependency for the segdep.");
3123
3124	newblk->nb_jnewblk = NULL;
3125	bmsafemap = newblk->nb_bmsafemap;
3126	WORKLIST_INSERT(&newblk->nb_jwork, &jsegdep->jd_list);
3127	newblk->nb_state |= ONDEPLIST;
3128	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
3129	free_jnewblk(jnewblk);
3130}
3131
3132/*
3133 * Cancel a jfreefrag that won't be needed, probably due to colliding with
3134 * an in-flight allocation that has not yet been committed.  Divorce us
3135 * from the freefrag and mark it DEPCOMPLETE so that it may be added
3136 * to the worklist.
3137 */
3138static void
3139cancel_jfreefrag(jfreefrag)
3140	struct jfreefrag *jfreefrag;
3141{
3142	struct freefrag *freefrag;
3143
3144	if (jfreefrag->fr_jsegdep) {
3145		free_jsegdep(jfreefrag->fr_jsegdep);
3146		jfreefrag->fr_jsegdep = NULL;
3147	}
3148	freefrag = jfreefrag->fr_freefrag;
3149	jfreefrag->fr_freefrag = NULL;
3150	freefrag->ff_jfreefrag = NULL;
3151	free_jfreefrag(jfreefrag);
3152	freefrag->ff_state |= DEPCOMPLETE;
3153}
3154
3155/*
3156 * Free a jfreefrag when the parent freefrag is rendered obsolete.
3157 */
3158static void
3159free_jfreefrag(jfreefrag)
3160	struct jfreefrag *jfreefrag;
3161{
3162
3163	if (jfreefrag->fr_state & IOSTARTED)
3164		WORKLIST_REMOVE(&jfreefrag->fr_list);
3165	else if (jfreefrag->fr_state & ONWORKLIST)
3166		remove_from_journal(&jfreefrag->fr_list);
3167	if (jfreefrag->fr_freefrag != NULL)
3168		panic("free_jfreefrag:  Still attached to a freefrag.");
3169	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3170}
3171
3172/*
3173 * Called when the journal write for a jfreefrag completes.  The parent
3174 * freefrag is added to the worklist if this completes its dependencies.
3175 */
3176static void
3177handle_written_jfreefrag(jfreefrag)
3178	struct jfreefrag *jfreefrag;
3179{
3180	struct jsegdep *jsegdep;
3181	struct freefrag *freefrag;
3182
3183	/* Grab the jsegdep. */
3184	jsegdep = jfreefrag->fr_jsegdep;
3185	jfreefrag->fr_jsegdep = NULL;
3186	freefrag = jfreefrag->fr_freefrag;
3187	if (freefrag == NULL)
3188		panic("handle_written_jfreefrag: No freefrag.");
3189	freefrag->ff_state |= DEPCOMPLETE;
3190	freefrag->ff_jfreefrag = NULL;
3191	WORKLIST_INSERT(&freefrag->ff_jwork, &jsegdep->jd_list);
3192	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3193		add_to_worklist(&freefrag->ff_list, 0);
3194	jfreefrag->fr_freefrag = NULL;
3195	free_jfreefrag(jfreefrag);
3196}
3197
3198/*
3199 * Called when the journal write for a jfreeblk completes.  The jfreeblk
3200 * is removed from the freeblks list of pending journal writes and the
3201 * jsegdep is moved to the freeblks jwork to be completed when all blocks
3202 * have been reclaimed.
3203 */
3204static void
3205handle_written_jfreeblk(jfreeblk)
3206	struct jfreeblk *jfreeblk;
3207{
3208	struct freeblks *freeblks;
3209	struct jsegdep *jsegdep;
3210
3211	/* Grab the jsegdep. */
3212	jsegdep = jfreeblk->jf_jsegdep;
3213	jfreeblk->jf_jsegdep = NULL;
3214	freeblks = jfreeblk->jf_freeblks;
3215	LIST_REMOVE(jfreeblk, jf_deps);
3216	WORKLIST_INSERT(&freeblks->fb_jwork, &jsegdep->jd_list);
3217	/*
3218	 * If the freeblks is all journaled, we can add it to the worklist.
3219	 */
3220	if (LIST_EMPTY(&freeblks->fb_jfreeblkhd) &&
3221	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) {
3222		/* Remove from the b_dep that is waiting on this write. */
3223		if (freeblks->fb_state & ONWORKLIST)
3224			WORKLIST_REMOVE(&freeblks->fb_list);
3225		add_to_worklist(&freeblks->fb_list, 1);
3226	}
3227
3228	free_jfreeblk(jfreeblk);
3229}
3230
3231static struct jsegdep *
3232newjsegdep(struct worklist *wk)
3233{
3234	struct jsegdep *jsegdep;
3235
3236	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3237	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3238	jsegdep->jd_seg = NULL;
3239
3240	return (jsegdep);
3241}
3242
3243static struct jmvref *
3244newjmvref(dp, ino, oldoff, newoff)
3245	struct inode *dp;
3246	ino_t ino;
3247	off_t oldoff;
3248	off_t newoff;
3249{
3250	struct jmvref *jmvref;
3251
3252	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3253	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3254	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3255	jmvref->jm_parent = dp->i_number;
3256	jmvref->jm_ino = ino;
3257	jmvref->jm_oldoff = oldoff;
3258	jmvref->jm_newoff = newoff;
3259
3260	return (jmvref);
3261}
3262
3263/*
3264 * Allocate a new jremref that tracks the removal of ip from dp with the
3265 * directory entry offset of diroff.  Mark the entry as ATTACHED and
3266 * DEPCOMPLETE as we have all the information required for the journal write
3267 * and the directory has already been removed from the buffer.  The caller
3268 * is responsible for linking the jremref into the pagedep and adding it
3269 * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3270 * a DOTDOT addition so handle_workitem_remove() can properly assign
3271 * the jsegdep when we're done.
3272 */
3273static struct jremref *
3274newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3275    off_t diroff, nlink_t nlink)
3276{
3277	struct jremref *jremref;
3278
3279	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3280	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3281	jremref->jr_state = ATTACHED;
3282	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3283	   nlink, ip->i_mode);
3284	jremref->jr_dirrem = dirrem;
3285
3286	return (jremref);
3287}
3288
3289static inline void
3290newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3291    nlink_t nlink, uint16_t mode)
3292{
3293
3294	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3295	inoref->if_diroff = diroff;
3296	inoref->if_ino = ino;
3297	inoref->if_parent = parent;
3298	inoref->if_nlink = nlink;
3299	inoref->if_mode = mode;
3300}
3301
3302/*
3303 * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3304 * directory offset may not be known until later.  The caller is responsible
3305 * adding the entry to the journal when this information is available.  nlink
3306 * should be the link count prior to the addition and mode is only required
3307 * to have the correct FMT.
3308 */
3309static struct jaddref *
3310newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3311    uint16_t mode)
3312{
3313	struct jaddref *jaddref;
3314
3315	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3316	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3317	jaddref->ja_state = ATTACHED;
3318	jaddref->ja_mkdir = NULL;
3319	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3320
3321	return (jaddref);
3322}
3323
3324/*
3325 * Create a new free dependency for a freework.  The caller is responsible
3326 * for adjusting the reference count when it has the lock held.  The freedep
3327 * will track an outstanding bitmap write that will ultimately clear the
3328 * freework to continue.
3329 */
3330static struct freedep *
3331newfreedep(struct freework *freework)
3332{
3333	struct freedep *freedep;
3334
3335	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3336	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3337	freedep->fd_freework = freework;
3338
3339	return (freedep);
3340}
3341
3342/*
3343 * Free a freedep structure once the buffer it is linked to is written.  If
3344 * this is the last reference to the freework schedule it for completion.
3345 */
3346static void
3347free_freedep(freedep)
3348	struct freedep *freedep;
3349{
3350
3351	if (--freedep->fd_freework->fw_ref == 0)
3352		add_to_worklist(&freedep->fd_freework->fw_list, 1);
3353	WORKITEM_FREE(freedep, D_FREEDEP);
3354}
3355
3356/*
3357 * Allocate a new freework structure that may be a level in an indirect
3358 * when parent is not NULL or a top level block when it is.  The top level
3359 * freework structures are allocated without lk held and before the freeblks
3360 * is visible outside of softdep_setup_freeblocks().
3361 */
3362static struct freework *
3363newfreework(freeblks, parent, lbn, nb, frags, journal)
3364	struct freeblks *freeblks;
3365	struct freework *parent;
3366	ufs_lbn_t lbn;
3367	ufs2_daddr_t nb;
3368	int frags;
3369	int journal;
3370{
3371	struct freework *freework;
3372
3373	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3374	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3375	freework->fw_freeblks = freeblks;
3376	freework->fw_parent = parent;
3377	freework->fw_lbn = lbn;
3378	freework->fw_blkno = nb;
3379	freework->fw_frags = frags;
3380	freework->fw_ref = 0;
3381	freework->fw_off = 0;
3382	LIST_INIT(&freework->fw_jwork);
3383
3384	if (parent == NULL) {
3385		WORKLIST_INSERT_UNLOCKED(&freeblks->fb_freeworkhd,
3386		    &freework->fw_list);
3387		freeblks->fb_ref++;
3388	}
3389	if (journal)
3390		newjfreeblk(freeblks, lbn, nb, frags);
3391
3392	return (freework);
3393}
3394
3395/*
3396 * Allocate a new jfreeblk to journal top level block pointer when truncating
3397 * a file.  The caller must add this to the worklist when lk is held.
3398 */
3399static struct jfreeblk *
3400newjfreeblk(freeblks, lbn, blkno, frags)
3401	struct freeblks *freeblks;
3402	ufs_lbn_t lbn;
3403	ufs2_daddr_t blkno;
3404	int frags;
3405{
3406	struct jfreeblk *jfreeblk;
3407
3408	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
3409	workitem_alloc(&jfreeblk->jf_list, D_JFREEBLK, freeblks->fb_list.wk_mp);
3410	jfreeblk->jf_jsegdep = newjsegdep(&jfreeblk->jf_list);
3411	jfreeblk->jf_state = ATTACHED | DEPCOMPLETE;
3412	jfreeblk->jf_ino = freeblks->fb_previousinum;
3413	jfreeblk->jf_lbn = lbn;
3414	jfreeblk->jf_blkno = blkno;
3415	jfreeblk->jf_frags = frags;
3416	jfreeblk->jf_freeblks = freeblks;
3417	LIST_INSERT_HEAD(&freeblks->fb_jfreeblkhd, jfreeblk, jf_deps);
3418
3419	return (jfreeblk);
3420}
3421
3422static void move_newblock_dep(struct jaddref *, struct inodedep *);
3423/*
3424 * If we're canceling a new bitmap we have to search for another ref
3425 * to move into the bmsafemap dep.  This might be better expressed
3426 * with another structure.
3427 */
3428static void
3429move_newblock_dep(jaddref, inodedep)
3430	struct jaddref *jaddref;
3431	struct inodedep *inodedep;
3432{
3433	struct inoref *inoref;
3434	struct jaddref *jaddrefn;
3435
3436	jaddrefn = NULL;
3437	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3438	    inoref = TAILQ_NEXT(inoref, if_deps)) {
3439		if ((jaddref->ja_state & NEWBLOCK) &&
3440		    inoref->if_list.wk_type == D_JADDREF) {
3441			jaddrefn = (struct jaddref *)inoref;
3442			break;
3443		}
3444	}
3445	if (jaddrefn == NULL)
3446		return;
3447	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
3448	jaddrefn->ja_state |= jaddref->ja_state &
3449	    (ATTACHED | UNDONE | NEWBLOCK);
3450	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
3451	jaddref->ja_state |= ATTACHED;
3452	LIST_REMOVE(jaddref, ja_bmdeps);
3453	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
3454	    ja_bmdeps);
3455}
3456
3457/*
3458 * Cancel a jaddref either before it has been written or while it is being
3459 * written.  This happens when a link is removed before the add reaches
3460 * the disk.  The jaddref dependency is kept linked into the bmsafemap
3461 * and inode to prevent the link count or bitmap from reaching the disk
3462 * until handle_workitem_remove() re-adjusts the counts and bitmaps as
3463 * required.
3464 *
3465 * Returns 1 if the canceled addref requires journaling of the remove and
3466 * 0 otherwise.
3467 */
3468static int
3469cancel_jaddref(jaddref, inodedep, wkhd)
3470	struct jaddref *jaddref;
3471	struct inodedep *inodedep;
3472	struct workhead *wkhd;
3473{
3474	struct inoref *inoref;
3475	struct jsegdep *jsegdep;
3476	int needsj;
3477
3478	KASSERT((jaddref->ja_state & COMPLETE) == 0,
3479	    ("cancel_jaddref: Canceling complete jaddref"));
3480	if (jaddref->ja_state & (IOSTARTED | COMPLETE))
3481		needsj = 1;
3482	else
3483		needsj = 0;
3484	if (inodedep == NULL)
3485		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3486		    0, &inodedep) == 0)
3487			panic("cancel_jaddref: Lost inodedep");
3488	/*
3489	 * We must adjust the nlink of any reference operation that follows
3490	 * us so that it is consistent with the in-memory reference.  This
3491	 * ensures that inode nlink rollbacks always have the correct link.
3492	 */
3493	if (needsj == 0)
3494		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3495		    inoref = TAILQ_NEXT(inoref, if_deps))
3496			inoref->if_nlink--;
3497	jsegdep = inoref_jseg(&jaddref->ja_ref);
3498	if (jaddref->ja_state & NEWBLOCK)
3499		move_newblock_dep(jaddref, inodedep);
3500	if (jaddref->ja_state & IOWAITING) {
3501		jaddref->ja_state &= ~IOWAITING;
3502		wakeup(&jaddref->ja_list);
3503	}
3504	jaddref->ja_mkdir = NULL;
3505	if (jaddref->ja_state & IOSTARTED) {
3506		jaddref->ja_state &= ~IOSTARTED;
3507		WORKLIST_REMOVE(&jaddref->ja_list);
3508		WORKLIST_INSERT(wkhd, &jsegdep->jd_list);
3509	} else {
3510		free_jsegdep(jsegdep);
3511		if (jaddref->ja_state & DEPCOMPLETE)
3512			remove_from_journal(&jaddref->ja_list);
3513	}
3514	/*
3515	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
3516	 * can arrange for them to be freed with the bitmap.  Otherwise we
3517	 * no longer need this addref attached to the inoreflst and it
3518	 * will incorrectly adjust nlink if we leave it.
3519	 */
3520	if ((jaddref->ja_state & NEWBLOCK) == 0) {
3521		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
3522		    if_deps);
3523		jaddref->ja_state |= COMPLETE;
3524		free_jaddref(jaddref);
3525		return (needsj);
3526	}
3527	jaddref->ja_state |= GOINGAWAY;
3528	/*
3529	 * Leave the head of the list for jsegdeps for fast merging.
3530	 */
3531	if (LIST_FIRST(wkhd) != NULL) {
3532		jaddref->ja_state |= ONWORKLIST;
3533		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
3534	} else
3535		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
3536
3537	return (needsj);
3538}
3539
3540/*
3541 * Attempt to free a jaddref structure when some work completes.  This
3542 * should only succeed once the entry is written and all dependencies have
3543 * been notified.
3544 */
3545static void
3546free_jaddref(jaddref)
3547	struct jaddref *jaddref;
3548{
3549
3550	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
3551		return;
3552	if (jaddref->ja_ref.if_jsegdep)
3553		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
3554		    jaddref, jaddref->ja_state);
3555	if (jaddref->ja_state & NEWBLOCK)
3556		LIST_REMOVE(jaddref, ja_bmdeps);
3557	if (jaddref->ja_state & (IOSTARTED | ONWORKLIST))
3558		panic("free_jaddref: Bad state %p(0x%X)",
3559		    jaddref, jaddref->ja_state);
3560	if (jaddref->ja_mkdir != NULL)
3561		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
3562	WORKITEM_FREE(jaddref, D_JADDREF);
3563}
3564
3565/*
3566 * Free a jremref structure once it has been written or discarded.
3567 */
3568static void
3569free_jremref(jremref)
3570	struct jremref *jremref;
3571{
3572
3573	if (jremref->jr_ref.if_jsegdep)
3574		free_jsegdep(jremref->jr_ref.if_jsegdep);
3575	if (jremref->jr_state & IOSTARTED)
3576		panic("free_jremref: IO still pending");
3577	WORKITEM_FREE(jremref, D_JREMREF);
3578}
3579
3580/*
3581 * Free a jnewblk structure.
3582 */
3583static void
3584free_jnewblk(jnewblk)
3585	struct jnewblk *jnewblk;
3586{
3587
3588	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
3589		return;
3590	LIST_REMOVE(jnewblk, jn_deps);
3591	if (jnewblk->jn_newblk != NULL)
3592		panic("free_jnewblk: Dependency still attached.");
3593	WORKITEM_FREE(jnewblk, D_JNEWBLK);
3594}
3595
3596/*
3597 * Cancel a jnewblk which has been superseded by a freeblk.  The jnewblk
3598 * is kept linked into the bmsafemap until the free completes, thus
3599 * preventing the modified state from ever reaching disk.  The free
3600 * routine must pass this structure via ffs_blkfree() to
3601 * softdep_setup_freeblks() so there is no race in releasing the space.
3602 */
3603static void
3604cancel_jnewblk(jnewblk, wkhd)
3605	struct jnewblk *jnewblk;
3606	struct workhead *wkhd;
3607{
3608	struct jsegdep *jsegdep;
3609
3610	jsegdep = jnewblk->jn_jsegdep;
3611	jnewblk->jn_jsegdep  = NULL;
3612	free_jsegdep(jsegdep);
3613	jnewblk->jn_newblk = NULL;
3614	jnewblk->jn_state |= GOINGAWAY;
3615	if (jnewblk->jn_state & IOSTARTED) {
3616		jnewblk->jn_state &= ~IOSTARTED;
3617		WORKLIST_REMOVE(&jnewblk->jn_list);
3618	} else
3619		remove_from_journal(&jnewblk->jn_list);
3620	/*
3621	 * Leave the head of the list for jsegdeps for fast merging.
3622	 */
3623	if (LIST_FIRST(wkhd) != NULL) {
3624		jnewblk->jn_state |= ONWORKLIST;
3625		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jnewblk->jn_list, wk_list);
3626	} else
3627		WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
3628	if (jnewblk->jn_state & IOWAITING) {
3629		jnewblk->jn_state &= ~IOWAITING;
3630		wakeup(&jnewblk->jn_list);
3631	}
3632}
3633
3634static void
3635free_jfreeblk(jfreeblk)
3636	struct jfreeblk *jfreeblk;
3637{
3638
3639	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3640}
3641
3642/*
3643 * Release one reference to a jseg and free it if the count reaches 0.  This
3644 * should eventually reclaim journal space as well.
3645 */
3646static void
3647free_jseg(jseg)
3648	struct jseg *jseg;
3649{
3650	struct jblocks *jblocks;
3651
3652	KASSERT(jseg->js_refs > 0,
3653	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
3654	if (--jseg->js_refs != 0)
3655		return;
3656	/*
3657	 * Free only those jsegs which have none allocated before them to
3658	 * preserve the journal space ordering.
3659	 */
3660	jblocks = jseg->js_jblocks;
3661	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
3662		jblocks->jb_oldestseq = jseg->js_seq;
3663		if (jseg->js_refs != 0)
3664			break;
3665		TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
3666		jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
3667		KASSERT(LIST_EMPTY(&jseg->js_entries),
3668		    ("free_jseg: Freed jseg has valid entries."));
3669		WORKITEM_FREE(jseg, D_JSEG);
3670	}
3671}
3672
3673/*
3674 * Release a jsegdep and decrement the jseg count.
3675 */
3676static void
3677free_jsegdep(jsegdep)
3678	struct jsegdep *jsegdep;
3679{
3680
3681	if (jsegdep->jd_seg)
3682		free_jseg(jsegdep->jd_seg);
3683	WORKITEM_FREE(jsegdep, D_JSEGDEP);
3684}
3685
3686/*
3687 * Wait for a journal item to make it to disk.  Initiate journal processing
3688 * if required.
3689 */
3690static void
3691jwait(wk)
3692	struct worklist *wk;
3693{
3694
3695	stat_journal_wait++;
3696	/*
3697	 * If IO has not started we process the journal.  We can't mark the
3698	 * worklist item as IOWAITING because we drop the lock while
3699	 * processing the journal and the worklist entry may be freed after
3700	 * this point.  The caller may call back in and re-issue the request.
3701	 */
3702	if ((wk->wk_state & IOSTARTED) == 0) {
3703		softdep_process_journal(wk->wk_mp, MNT_WAIT);
3704		return;
3705	}
3706	wk->wk_state |= IOWAITING;
3707	msleep(wk, &lk, PRIBIO, "jwait", 0);
3708}
3709
3710/*
3711 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
3712 * appropriate.  This is a convenience function to reduce duplicate code
3713 * for the setup and revert functions below.
3714 */
3715static struct inodedep *
3716inodedep_lookup_ip(ip)
3717	struct inode *ip;
3718{
3719	struct inodedep *inodedep;
3720
3721	KASSERT(ip->i_nlink >= ip->i_effnlink,
3722	    ("inodedep_lookup_ip: bad delta"));
3723	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
3724	    DEPALLOC, &inodedep);
3725	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3726
3727	return (inodedep);
3728}
3729
3730/*
3731 * Create a journal entry that describes a truncate that we're about to
3732 * perform.  The inode allocations and frees between here and the completion
3733 * of the operation are done asynchronously and without journaling.  At
3734 * the end of the operation the vnode is sync'd and the journal space
3735 * is released.  Recovery will discover the partially completed truncate
3736 * and complete it.
3737 */
3738void *
3739softdep_setup_trunc(vp, length, flags)
3740	struct vnode *vp;
3741	off_t length;
3742	int flags;
3743{
3744	struct jsegdep *jsegdep;
3745	struct jtrunc *jtrunc;
3746	struct ufsmount *ump;
3747	struct inode *ip;
3748
3749	softdep_prealloc(vp, MNT_WAIT);
3750	ip = VTOI(vp);
3751	ump = VFSTOUFS(vp->v_mount);
3752	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
3753	workitem_alloc(&jtrunc->jt_list, D_JTRUNC, vp->v_mount);
3754	jsegdep = jtrunc->jt_jsegdep = newjsegdep(&jtrunc->jt_list);
3755	jtrunc->jt_ino = ip->i_number;
3756	jtrunc->jt_extsize = 0;
3757	jtrunc->jt_size = length;
3758	if ((flags & IO_EXT) == 0 && ump->um_fstype == UFS2)
3759		jtrunc->jt_extsize = ip->i_din2->di_extsize;
3760	if ((flags & IO_NORMAL) == 0)
3761		jtrunc->jt_size = DIP(ip, i_size);
3762	ACQUIRE_LOCK(&lk);
3763	add_to_journal(&jtrunc->jt_list);
3764	while (jsegdep->jd_seg == NULL) {
3765		stat_jwait_freeblks++;
3766		jwait(&jtrunc->jt_list);
3767	}
3768	FREE_LOCK(&lk);
3769
3770	return (jsegdep);
3771}
3772
3773/*
3774 * After synchronous truncation is complete we free sync the vnode and
3775 * release the jsegdep so the journal space can be freed.
3776 */
3777int
3778softdep_complete_trunc(vp, cookie)
3779	struct vnode *vp;
3780	void *cookie;
3781{
3782	int error;
3783
3784	error = ffs_syncvnode(vp, MNT_WAIT);
3785	ACQUIRE_LOCK(&lk);
3786	free_jsegdep((struct jsegdep *)cookie);
3787	FREE_LOCK(&lk);
3788
3789	return (error);
3790}
3791
3792/*
3793 * Called prior to creating a new inode and linking it to a directory.  The
3794 * jaddref structure must already be allocated by softdep_setup_inomapdep
3795 * and it is discovered here so we can initialize the mode and update
3796 * nlinkdelta.
3797 */
3798void
3799softdep_setup_create(dp, ip)
3800	struct inode *dp;
3801	struct inode *ip;
3802{
3803	struct inodedep *inodedep;
3804	struct jaddref *jaddref;
3805	struct vnode *dvp;
3806
3807	KASSERT(ip->i_nlink == 1,
3808	    ("softdep_setup_create: Invalid link count."));
3809	dvp = ITOV(dp);
3810	ACQUIRE_LOCK(&lk);
3811	inodedep = inodedep_lookup_ip(ip);
3812	if (DOINGSUJ(dvp)) {
3813		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3814		    inoreflst);
3815		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
3816		    ("softdep_setup_create: No addref structure present."));
3817		jaddref->ja_mode = ip->i_mode;
3818	}
3819	softdep_prelink(dvp, NULL);
3820	FREE_LOCK(&lk);
3821}
3822
3823/*
3824 * Create a jaddref structure to track the addition of a DOTDOT link when
3825 * we are reparenting an inode as part of a rename.  This jaddref will be
3826 * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
3827 * non-journaling softdep.
3828 */
3829void
3830softdep_setup_dotdot_link(dp, ip)
3831	struct inode *dp;
3832	struct inode *ip;
3833{
3834	struct inodedep *inodedep;
3835	struct jaddref *jaddref;
3836	struct vnode *dvp;
3837	struct vnode *vp;
3838
3839	dvp = ITOV(dp);
3840	vp = ITOV(ip);
3841	jaddref = NULL;
3842	/*
3843	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
3844	 * is used as a normal link would be.
3845	 */
3846	if (DOINGSUJ(dvp))
3847		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
3848		    dp->i_effnlink - 1, dp->i_mode);
3849	ACQUIRE_LOCK(&lk);
3850	inodedep = inodedep_lookup_ip(dp);
3851	if (jaddref)
3852		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
3853		    if_deps);
3854	softdep_prelink(dvp, ITOV(ip));
3855	FREE_LOCK(&lk);
3856}
3857
3858/*
3859 * Create a jaddref structure to track a new link to an inode.  The directory
3860 * offset is not known until softdep_setup_directory_add or
3861 * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
3862 * softdep.
3863 */
3864void
3865softdep_setup_link(dp, ip)
3866	struct inode *dp;
3867	struct inode *ip;
3868{
3869	struct inodedep *inodedep;
3870	struct jaddref *jaddref;
3871	struct vnode *dvp;
3872
3873	dvp = ITOV(dp);
3874	jaddref = NULL;
3875	if (DOINGSUJ(dvp))
3876		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
3877		    ip->i_mode);
3878	ACQUIRE_LOCK(&lk);
3879	inodedep = inodedep_lookup_ip(ip);
3880	if (jaddref)
3881		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
3882		    if_deps);
3883	softdep_prelink(dvp, ITOV(ip));
3884	FREE_LOCK(&lk);
3885}
3886
3887/*
3888 * Called to create the jaddref structures to track . and .. references as
3889 * well as lookup and further initialize the incomplete jaddref created
3890 * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
3891 * nlinkdelta for non-journaling softdep.
3892 */
3893void
3894softdep_setup_mkdir(dp, ip)
3895	struct inode *dp;
3896	struct inode *ip;
3897{
3898	struct inodedep *inodedep;
3899	struct jaddref *dotdotaddref;
3900	struct jaddref *dotaddref;
3901	struct jaddref *jaddref;
3902	struct vnode *dvp;
3903
3904	dvp = ITOV(dp);
3905	dotaddref = dotdotaddref = NULL;
3906	if (DOINGSUJ(dvp)) {
3907		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
3908		    ip->i_mode);
3909		dotaddref->ja_state |= MKDIR_BODY;
3910		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
3911		    dp->i_effnlink - 1, dp->i_mode);
3912		dotdotaddref->ja_state |= MKDIR_PARENT;
3913	}
3914	ACQUIRE_LOCK(&lk);
3915	inodedep = inodedep_lookup_ip(ip);
3916	if (DOINGSUJ(dvp)) {
3917		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3918		    inoreflst);
3919		KASSERT(jaddref != NULL,
3920		    ("softdep_setup_mkdir: No addref structure present."));
3921		KASSERT(jaddref->ja_parent == dp->i_number,
3922		    ("softdep_setup_mkdir: bad parent %d",
3923		    jaddref->ja_parent));
3924		jaddref->ja_mode = ip->i_mode;
3925		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
3926		    if_deps);
3927	}
3928	inodedep = inodedep_lookup_ip(dp);
3929	if (DOINGSUJ(dvp))
3930		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
3931		    &dotdotaddref->ja_ref, if_deps);
3932	softdep_prelink(ITOV(dp), NULL);
3933	FREE_LOCK(&lk);
3934}
3935
3936/*
3937 * Called to track nlinkdelta of the inode and parent directories prior to
3938 * unlinking a directory.
3939 */
3940void
3941softdep_setup_rmdir(dp, ip)
3942	struct inode *dp;
3943	struct inode *ip;
3944{
3945	struct vnode *dvp;
3946
3947	dvp = ITOV(dp);
3948	ACQUIRE_LOCK(&lk);
3949	(void) inodedep_lookup_ip(ip);
3950	(void) inodedep_lookup_ip(dp);
3951	softdep_prelink(dvp, ITOV(ip));
3952	FREE_LOCK(&lk);
3953}
3954
3955/*
3956 * Called to track nlinkdelta of the inode and parent directories prior to
3957 * unlink.
3958 */
3959void
3960softdep_setup_unlink(dp, ip)
3961	struct inode *dp;
3962	struct inode *ip;
3963{
3964	struct vnode *dvp;
3965
3966	dvp = ITOV(dp);
3967	ACQUIRE_LOCK(&lk);
3968	(void) inodedep_lookup_ip(ip);
3969	(void) inodedep_lookup_ip(dp);
3970	softdep_prelink(dvp, ITOV(ip));
3971	FREE_LOCK(&lk);
3972}
3973
3974/*
3975 * Called to release the journal structures created by a failed non-directory
3976 * creation.  Adjusts nlinkdelta for non-journaling softdep.
3977 */
3978void
3979softdep_revert_create(dp, ip)
3980	struct inode *dp;
3981	struct inode *ip;
3982{
3983	struct inodedep *inodedep;
3984	struct jaddref *jaddref;
3985	struct vnode *dvp;
3986
3987	dvp = ITOV(dp);
3988	ACQUIRE_LOCK(&lk);
3989	inodedep = inodedep_lookup_ip(ip);
3990	if (DOINGSUJ(dvp)) {
3991		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3992		    inoreflst);
3993		KASSERT(jaddref->ja_parent == dp->i_number,
3994		    ("softdep_revert_create: addref parent mismatch"));
3995		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
3996	}
3997	FREE_LOCK(&lk);
3998}
3999
4000/*
4001 * Called to release the journal structures created by a failed dotdot link
4002 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4003 */
4004void
4005softdep_revert_dotdot_link(dp, ip)
4006	struct inode *dp;
4007	struct inode *ip;
4008{
4009	struct inodedep *inodedep;
4010	struct jaddref *jaddref;
4011	struct vnode *dvp;
4012
4013	dvp = ITOV(dp);
4014	ACQUIRE_LOCK(&lk);
4015	inodedep = inodedep_lookup_ip(dp);
4016	if (DOINGSUJ(dvp)) {
4017		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4018		    inoreflst);
4019		KASSERT(jaddref->ja_parent == ip->i_number,
4020		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4021		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4022	}
4023	FREE_LOCK(&lk);
4024}
4025
4026/*
4027 * Called to release the journal structures created by a failed link
4028 * addition.  Adjusts nlinkdelta for non-journaling softdep.
4029 */
4030void
4031softdep_revert_link(dp, ip)
4032	struct inode *dp;
4033	struct inode *ip;
4034{
4035	struct inodedep *inodedep;
4036	struct jaddref *jaddref;
4037	struct vnode *dvp;
4038
4039	dvp = ITOV(dp);
4040	ACQUIRE_LOCK(&lk);
4041	inodedep = inodedep_lookup_ip(ip);
4042	if (DOINGSUJ(dvp)) {
4043		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4044		    inoreflst);
4045		KASSERT(jaddref->ja_parent == dp->i_number,
4046		    ("softdep_revert_link: addref parent mismatch"));
4047		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4048	}
4049	FREE_LOCK(&lk);
4050}
4051
4052/*
4053 * Called to release the journal structures created by a failed mkdir
4054 * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4055 */
4056void
4057softdep_revert_mkdir(dp, ip)
4058	struct inode *dp;
4059	struct inode *ip;
4060{
4061	struct inodedep *inodedep;
4062	struct jaddref *jaddref;
4063	struct vnode *dvp;
4064
4065	dvp = ITOV(dp);
4066
4067	ACQUIRE_LOCK(&lk);
4068	inodedep = inodedep_lookup_ip(dp);
4069	if (DOINGSUJ(dvp)) {
4070		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4071		    inoreflst);
4072		KASSERT(jaddref->ja_parent == ip->i_number,
4073		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4074		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4075	}
4076	inodedep = inodedep_lookup_ip(ip);
4077	if (DOINGSUJ(dvp)) {
4078		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4079		    inoreflst);
4080		KASSERT(jaddref->ja_parent == dp->i_number,
4081		    ("softdep_revert_mkdir: addref parent mismatch"));
4082		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4083		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4084		    inoreflst);
4085		KASSERT(jaddref->ja_parent == ip->i_number,
4086		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4087		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4088	}
4089	FREE_LOCK(&lk);
4090}
4091
4092/*
4093 * Called to correct nlinkdelta after a failed rmdir.
4094 */
4095void
4096softdep_revert_rmdir(dp, ip)
4097	struct inode *dp;
4098	struct inode *ip;
4099{
4100
4101	ACQUIRE_LOCK(&lk);
4102	(void) inodedep_lookup_ip(ip);
4103	(void) inodedep_lookup_ip(dp);
4104	FREE_LOCK(&lk);
4105}
4106
4107/*
4108 * Protecting the freemaps (or bitmaps).
4109 *
4110 * To eliminate the need to execute fsck before mounting a filesystem
4111 * after a power failure, one must (conservatively) guarantee that the
4112 * on-disk copy of the bitmaps never indicate that a live inode or block is
4113 * free.  So, when a block or inode is allocated, the bitmap should be
4114 * updated (on disk) before any new pointers.  When a block or inode is
4115 * freed, the bitmap should not be updated until all pointers have been
4116 * reset.  The latter dependency is handled by the delayed de-allocation
4117 * approach described below for block and inode de-allocation.  The former
4118 * dependency is handled by calling the following procedure when a block or
4119 * inode is allocated. When an inode is allocated an "inodedep" is created
4120 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4121 * Each "inodedep" is also inserted into the hash indexing structure so
4122 * that any additional link additions can be made dependent on the inode
4123 * allocation.
4124 *
4125 * The ufs filesystem maintains a number of free block counts (e.g., per
4126 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4127 * in addition to the bitmaps.  These counts are used to improve efficiency
4128 * during allocation and therefore must be consistent with the bitmaps.
4129 * There is no convenient way to guarantee post-crash consistency of these
4130 * counts with simple update ordering, for two main reasons: (1) The counts
4131 * and bitmaps for a single cylinder group block are not in the same disk
4132 * sector.  If a disk write is interrupted (e.g., by power failure), one may
4133 * be written and the other not.  (2) Some of the counts are located in the
4134 * superblock rather than the cylinder group block. So, we focus our soft
4135 * updates implementation on protecting the bitmaps. When mounting a
4136 * filesystem, we recompute the auxiliary counts from the bitmaps.
4137 */
4138
4139/*
4140 * Called just after updating the cylinder group block to allocate an inode.
4141 */
4142void
4143softdep_setup_inomapdep(bp, ip, newinum)
4144	struct buf *bp;		/* buffer for cylgroup block with inode map */
4145	struct inode *ip;	/* inode related to allocation */
4146	ino_t newinum;		/* new inode number being allocated */
4147{
4148	struct inodedep *inodedep;
4149	struct bmsafemap *bmsafemap;
4150	struct jaddref *jaddref;
4151	struct mount *mp;
4152	struct fs *fs;
4153
4154	mp = UFSTOVFS(ip->i_ump);
4155	fs = ip->i_ump->um_fs;
4156	jaddref = NULL;
4157
4158	/*
4159	 * Allocate the journal reference add structure so that the bitmap
4160	 * can be dependent on it.
4161	 */
4162	if (mp->mnt_kern_flag & MNTK_SUJ) {
4163		jaddref = newjaddref(ip, newinum, 0, 0, 0);
4164		jaddref->ja_state |= NEWBLOCK;
4165	}
4166
4167	/*
4168	 * Create a dependency for the newly allocated inode.
4169	 * Panic if it already exists as something is seriously wrong.
4170	 * Otherwise add it to the dependency list for the buffer holding
4171	 * the cylinder group map from which it was allocated.
4172	 */
4173	ACQUIRE_LOCK(&lk);
4174	if ((inodedep_lookup(mp, newinum, DEPALLOC|NODELAY, &inodedep)))
4175		panic("softdep_setup_inomapdep: dependency %p for new"
4176		    "inode already exists", inodedep);
4177	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum));
4178	if (jaddref) {
4179		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4180		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4181		    if_deps);
4182	} else {
4183		inodedep->id_state |= ONDEPLIST;
4184		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4185	}
4186	inodedep->id_bmsafemap = bmsafemap;
4187	inodedep->id_state &= ~DEPCOMPLETE;
4188	FREE_LOCK(&lk);
4189}
4190
4191/*
4192 * Called just after updating the cylinder group block to
4193 * allocate block or fragment.
4194 */
4195void
4196softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4197	struct buf *bp;		/* buffer for cylgroup block with block map */
4198	struct mount *mp;	/* filesystem doing allocation */
4199	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4200	int frags;		/* Number of fragments. */
4201	int oldfrags;		/* Previous number of fragments for extend. */
4202{
4203	struct newblk *newblk;
4204	struct bmsafemap *bmsafemap;
4205	struct jnewblk *jnewblk;
4206	struct fs *fs;
4207
4208	fs = VFSTOUFS(mp)->um_fs;
4209	jnewblk = NULL;
4210	/*
4211	 * Create a dependency for the newly allocated block.
4212	 * Add it to the dependency list for the buffer holding
4213	 * the cylinder group map from which it was allocated.
4214	 */
4215	if (mp->mnt_kern_flag & MNTK_SUJ) {
4216		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4217		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4218		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4219		jnewblk->jn_state = ATTACHED;
4220		jnewblk->jn_blkno = newblkno;
4221		jnewblk->jn_frags = frags;
4222		jnewblk->jn_oldfrags = oldfrags;
4223#ifdef SUJ_DEBUG
4224		{
4225			struct cg *cgp;
4226			uint8_t *blksfree;
4227			long bno;
4228			int i;
4229
4230			cgp = (struct cg *)bp->b_data;
4231			blksfree = cg_blksfree(cgp);
4232			bno = dtogd(fs, jnewblk->jn_blkno);
4233			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4234			    i++) {
4235				if (isset(blksfree, bno + i))
4236					panic("softdep_setup_blkmapdep: "
4237					    "free fragment %d from %d-%d "
4238					    "state 0x%X dep %p", i,
4239					    jnewblk->jn_oldfrags,
4240					    jnewblk->jn_frags,
4241					    jnewblk->jn_state,
4242					    jnewblk->jn_newblk);
4243			}
4244		}
4245#endif
4246	}
4247	ACQUIRE_LOCK(&lk);
4248	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4249		panic("softdep_setup_blkmapdep: found block");
4250	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4251	    dtog(fs, newblkno));
4252	if (jnewblk) {
4253		jnewblk->jn_newblk = newblk;
4254		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4255	} else {
4256		newblk->nb_state |= ONDEPLIST;
4257		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4258	}
4259	newblk->nb_bmsafemap = bmsafemap;
4260	newblk->nb_jnewblk = jnewblk;
4261	FREE_LOCK(&lk);
4262}
4263
4264#define	BMSAFEMAP_HASH(fs, cg) \
4265      (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4266
4267static int
4268bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4269	struct bmsafemap_hashhead *bmsafemaphd;
4270	struct mount *mp;
4271	int cg;
4272	struct bmsafemap **bmsafemapp;
4273{
4274	struct bmsafemap *bmsafemap;
4275
4276	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4277		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4278			break;
4279	if (bmsafemap) {
4280		*bmsafemapp = bmsafemap;
4281		return (1);
4282	}
4283	*bmsafemapp = NULL;
4284
4285	return (0);
4286}
4287
4288/*
4289 * Find the bmsafemap associated with a cylinder group buffer.
4290 * If none exists, create one. The buffer must be locked when
4291 * this routine is called and this routine must be called with
4292 * splbio interrupts blocked.
4293 */
4294static struct bmsafemap *
4295bmsafemap_lookup(mp, bp, cg)
4296	struct mount *mp;
4297	struct buf *bp;
4298	int cg;
4299{
4300	struct bmsafemap_hashhead *bmsafemaphd;
4301	struct bmsafemap *bmsafemap, *collision;
4302	struct worklist *wk;
4303	struct fs *fs;
4304
4305	mtx_assert(&lk, MA_OWNED);
4306	if (bp)
4307		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4308			if (wk->wk_type == D_BMSAFEMAP)
4309				return (WK_BMSAFEMAP(wk));
4310	fs = VFSTOUFS(mp)->um_fs;
4311	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4312	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1)
4313		return (bmsafemap);
4314	FREE_LOCK(&lk);
4315	bmsafemap = malloc(sizeof(struct bmsafemap),
4316		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4317	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4318	bmsafemap->sm_buf = bp;
4319	LIST_INIT(&bmsafemap->sm_inodedephd);
4320	LIST_INIT(&bmsafemap->sm_inodedepwr);
4321	LIST_INIT(&bmsafemap->sm_newblkhd);
4322	LIST_INIT(&bmsafemap->sm_newblkwr);
4323	LIST_INIT(&bmsafemap->sm_jaddrefhd);
4324	LIST_INIT(&bmsafemap->sm_jnewblkhd);
4325	ACQUIRE_LOCK(&lk);
4326	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
4327		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4328		return (collision);
4329	}
4330	bmsafemap->sm_cg = cg;
4331	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
4332	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
4333	return (bmsafemap);
4334}
4335
4336/*
4337 * Direct block allocation dependencies.
4338 *
4339 * When a new block is allocated, the corresponding disk locations must be
4340 * initialized (with zeros or new data) before the on-disk inode points to
4341 * them.  Also, the freemap from which the block was allocated must be
4342 * updated (on disk) before the inode's pointer. These two dependencies are
4343 * independent of each other and are needed for all file blocks and indirect
4344 * blocks that are pointed to directly by the inode.  Just before the
4345 * "in-core" version of the inode is updated with a newly allocated block
4346 * number, a procedure (below) is called to setup allocation dependency
4347 * structures.  These structures are removed when the corresponding
4348 * dependencies are satisfied or when the block allocation becomes obsolete
4349 * (i.e., the file is deleted, the block is de-allocated, or the block is a
4350 * fragment that gets upgraded).  All of these cases are handled in
4351 * procedures described later.
4352 *
4353 * When a file extension causes a fragment to be upgraded, either to a larger
4354 * fragment or to a full block, the on-disk location may change (if the
4355 * previous fragment could not simply be extended). In this case, the old
4356 * fragment must be de-allocated, but not until after the inode's pointer has
4357 * been updated. In most cases, this is handled by later procedures, which
4358 * will construct a "freefrag" structure to be added to the workitem queue
4359 * when the inode update is complete (or obsolete).  The main exception to
4360 * this is when an allocation occurs while a pending allocation dependency
4361 * (for the same block pointer) remains.  This case is handled in the main
4362 * allocation dependency setup procedure by immediately freeing the
4363 * unreferenced fragments.
4364 */
4365void
4366softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4367	struct inode *ip;	/* inode to which block is being added */
4368	ufs_lbn_t off;		/* block pointer within inode */
4369	ufs2_daddr_t newblkno;	/* disk block number being added */
4370	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
4371	long newsize;		/* size of new block */
4372	long oldsize;		/* size of new block */
4373	struct buf *bp;		/* bp for allocated block */
4374{
4375	struct allocdirect *adp, *oldadp;
4376	struct allocdirectlst *adphead;
4377	struct freefrag *freefrag;
4378	struct inodedep *inodedep;
4379	struct pagedep *pagedep;
4380	struct jnewblk *jnewblk;
4381	struct newblk *newblk;
4382	struct mount *mp;
4383	ufs_lbn_t lbn;
4384
4385	lbn = bp->b_lblkno;
4386	mp = UFSTOVFS(ip->i_ump);
4387	if (oldblkno && oldblkno != newblkno)
4388		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4389	else
4390		freefrag = NULL;
4391
4392	ACQUIRE_LOCK(&lk);
4393	if (off >= NDADDR) {
4394		if (lbn > 0)
4395			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
4396			    lbn, off);
4397		/* allocating an indirect block */
4398		if (oldblkno != 0)
4399			panic("softdep_setup_allocdirect: non-zero indir");
4400	} else {
4401		if (off != lbn)
4402			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
4403			    lbn, off);
4404		/*
4405		 * Allocating a direct block.
4406		 *
4407		 * If we are allocating a directory block, then we must
4408		 * allocate an associated pagedep to track additions and
4409		 * deletions.
4410		 */
4411		if ((ip->i_mode & IFMT) == IFDIR &&
4412		    pagedep_lookup(mp, ip->i_number, off, DEPALLOC,
4413		    &pagedep) == 0)
4414			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
4415	}
4416	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4417		panic("softdep_setup_allocdirect: lost block");
4418	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4419	    ("softdep_setup_allocdirect: newblk already initialized"));
4420	/*
4421	 * Convert the newblk to an allocdirect.
4422	 */
4423	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4424	adp = (struct allocdirect *)newblk;
4425	newblk->nb_freefrag = freefrag;
4426	adp->ad_offset = off;
4427	adp->ad_oldblkno = oldblkno;
4428	adp->ad_newsize = newsize;
4429	adp->ad_oldsize = oldsize;
4430
4431	/*
4432	 * Finish initializing the journal.
4433	 */
4434	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4435		jnewblk->jn_ino = ip->i_number;
4436		jnewblk->jn_lbn = lbn;
4437		add_to_journal(&jnewblk->jn_list);
4438	}
4439	if (freefrag && freefrag->ff_jfreefrag != NULL)
4440		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4441	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4442	adp->ad_inodedep = inodedep;
4443
4444	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4445	/*
4446	 * The list of allocdirects must be kept in sorted and ascending
4447	 * order so that the rollback routines can quickly determine the
4448	 * first uncommitted block (the size of the file stored on disk
4449	 * ends at the end of the lowest committed fragment, or if there
4450	 * are no fragments, at the end of the highest committed block).
4451	 * Since files generally grow, the typical case is that the new
4452	 * block is to be added at the end of the list. We speed this
4453	 * special case by checking against the last allocdirect in the
4454	 * list before laboriously traversing the list looking for the
4455	 * insertion point.
4456	 */
4457	adphead = &inodedep->id_newinoupdt;
4458	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4459	if (oldadp == NULL || oldadp->ad_offset <= off) {
4460		/* insert at end of list */
4461		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4462		if (oldadp != NULL && oldadp->ad_offset == off)
4463			allocdirect_merge(adphead, adp, oldadp);
4464		FREE_LOCK(&lk);
4465		return;
4466	}
4467	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4468		if (oldadp->ad_offset >= off)
4469			break;
4470	}
4471	if (oldadp == NULL)
4472		panic("softdep_setup_allocdirect: lost entry");
4473	/* insert in middle of list */
4474	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
4475	if (oldadp->ad_offset == off)
4476		allocdirect_merge(adphead, adp, oldadp);
4477
4478	FREE_LOCK(&lk);
4479}
4480
4481/*
4482 * Replace an old allocdirect dependency with a newer one.
4483 * This routine must be called with splbio interrupts blocked.
4484 */
4485static void
4486allocdirect_merge(adphead, newadp, oldadp)
4487	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
4488	struct allocdirect *newadp;	/* allocdirect being added */
4489	struct allocdirect *oldadp;	/* existing allocdirect being checked */
4490{
4491	struct worklist *wk;
4492	struct freefrag *freefrag;
4493	struct newdirblk *newdirblk;
4494
4495	freefrag = NULL;
4496	mtx_assert(&lk, MA_OWNED);
4497	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
4498	    newadp->ad_oldsize != oldadp->ad_newsize ||
4499	    newadp->ad_offset >= NDADDR)
4500		panic("%s %jd != new %jd || old size %ld != new %ld",
4501		    "allocdirect_merge: old blkno",
4502		    (intmax_t)newadp->ad_oldblkno,
4503		    (intmax_t)oldadp->ad_newblkno,
4504		    newadp->ad_oldsize, oldadp->ad_newsize);
4505	newadp->ad_oldblkno = oldadp->ad_oldblkno;
4506	newadp->ad_oldsize = oldadp->ad_oldsize;
4507	/*
4508	 * If the old dependency had a fragment to free or had never
4509	 * previously had a block allocated, then the new dependency
4510	 * can immediately post its freefrag and adopt the old freefrag.
4511	 * This action is done by swapping the freefrag dependencies.
4512	 * The new dependency gains the old one's freefrag, and the
4513	 * old one gets the new one and then immediately puts it on
4514	 * the worklist when it is freed by free_newblk. It is
4515	 * not possible to do this swap when the old dependency had a
4516	 * non-zero size but no previous fragment to free. This condition
4517	 * arises when the new block is an extension of the old block.
4518	 * Here, the first part of the fragment allocated to the new
4519	 * dependency is part of the block currently claimed on disk by
4520	 * the old dependency, so cannot legitimately be freed until the
4521	 * conditions for the new dependency are fulfilled.
4522	 */
4523	freefrag = newadp->ad_freefrag;
4524	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
4525		newadp->ad_freefrag = oldadp->ad_freefrag;
4526		oldadp->ad_freefrag = freefrag;
4527	}
4528	/*
4529	 * If we are tracking a new directory-block allocation,
4530	 * move it from the old allocdirect to the new allocdirect.
4531	 */
4532	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
4533		newdirblk = WK_NEWDIRBLK(wk);
4534		WORKLIST_REMOVE(&newdirblk->db_list);
4535		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
4536			panic("allocdirect_merge: extra newdirblk");
4537		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
4538	}
4539	TAILQ_REMOVE(adphead, oldadp, ad_next);
4540	/*
4541	 * We need to move any journal dependencies over to the freefrag
4542	 * that releases this block if it exists.  Otherwise we are
4543	 * extending an existing block and we'll wait until that is
4544	 * complete to release the journal space and extend the
4545	 * new journal to cover this old space as well.
4546	 */
4547	if (freefrag == NULL) {
4548		struct jnewblk *jnewblk;
4549		struct jnewblk *njnewblk;
4550
4551		if (oldadp->ad_newblkno != newadp->ad_newblkno)
4552			panic("allocdirect_merge: %jd != %jd",
4553			    oldadp->ad_newblkno, newadp->ad_newblkno);
4554		jnewblk = oldadp->ad_block.nb_jnewblk;
4555		cancel_newblk(&oldadp->ad_block, &newadp->ad_block.nb_jwork);
4556		/*
4557		 * We have an unwritten jnewblk, we need to merge the
4558		 * frag bits with our own.  The newer adp's journal can not
4559		 * be written prior to the old one so no need to check for
4560		 * it here.
4561		 */
4562		if (jnewblk) {
4563			njnewblk = newadp->ad_block.nb_jnewblk;
4564			if (njnewblk == NULL)
4565				panic("allocdirect_merge: No jnewblk");
4566			if (jnewblk->jn_state & UNDONE) {
4567				njnewblk->jn_state |= UNDONE | NEWBLOCK;
4568				njnewblk->jn_state &= ~ATTACHED;
4569				jnewblk->jn_state &= ~UNDONE;
4570			}
4571			njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
4572			WORKLIST_REMOVE(&jnewblk->jn_list);
4573			jnewblk->jn_state |= ATTACHED | COMPLETE;
4574			free_jnewblk(jnewblk);
4575		}
4576	} else {
4577		/*
4578		 * We can skip journaling for this freefrag and just complete
4579		 * any pending journal work for the allocdirect that is being
4580		 * removed after the freefrag completes.
4581		 */
4582		if (freefrag->ff_jfreefrag)
4583			cancel_jfreefrag(freefrag->ff_jfreefrag);
4584		cancel_newblk(&oldadp->ad_block, &freefrag->ff_jwork);
4585	}
4586	free_newblk(&oldadp->ad_block);
4587}
4588
4589/*
4590 * Allocate a jfreefrag structure to journal a single block free.
4591 */
4592static struct jfreefrag *
4593newjfreefrag(freefrag, ip, blkno, size, lbn)
4594	struct freefrag *freefrag;
4595	struct inode *ip;
4596	ufs2_daddr_t blkno;
4597	long size;
4598	ufs_lbn_t lbn;
4599{
4600	struct jfreefrag *jfreefrag;
4601	struct fs *fs;
4602
4603	fs = ip->i_fs;
4604	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
4605	    M_SOFTDEP_FLAGS);
4606	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
4607	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
4608	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
4609	jfreefrag->fr_ino = ip->i_number;
4610	jfreefrag->fr_lbn = lbn;
4611	jfreefrag->fr_blkno = blkno;
4612	jfreefrag->fr_frags = numfrags(fs, size);
4613	jfreefrag->fr_freefrag = freefrag;
4614
4615	return (jfreefrag);
4616}
4617
4618/*
4619 * Allocate a new freefrag structure.
4620 */
4621static struct freefrag *
4622newfreefrag(ip, blkno, size, lbn)
4623	struct inode *ip;
4624	ufs2_daddr_t blkno;
4625	long size;
4626	ufs_lbn_t lbn;
4627{
4628	struct freefrag *freefrag;
4629	struct fs *fs;
4630
4631	fs = ip->i_fs;
4632	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
4633		panic("newfreefrag: frag size");
4634	freefrag = malloc(sizeof(struct freefrag),
4635	    M_FREEFRAG, M_SOFTDEP_FLAGS);
4636	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
4637	freefrag->ff_state = ATTACHED;
4638	LIST_INIT(&freefrag->ff_jwork);
4639	freefrag->ff_inum = ip->i_number;
4640	freefrag->ff_blkno = blkno;
4641	freefrag->ff_fragsize = size;
4642
4643	if (fs->fs_flags & FS_SUJ) {
4644		freefrag->ff_jfreefrag =
4645		    newjfreefrag(freefrag, ip, blkno, size, lbn);
4646	} else {
4647		freefrag->ff_state |= DEPCOMPLETE;
4648		freefrag->ff_jfreefrag = NULL;
4649	}
4650
4651	return (freefrag);
4652}
4653
4654/*
4655 * This workitem de-allocates fragments that were replaced during
4656 * file block allocation.
4657 */
4658static void
4659handle_workitem_freefrag(freefrag)
4660	struct freefrag *freefrag;
4661{
4662	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
4663	struct workhead wkhd;
4664
4665	/*
4666	 * It would be illegal to add new completion items to the
4667	 * freefrag after it was schedule to be done so it must be
4668	 * safe to modify the list head here.
4669	 */
4670	LIST_INIT(&wkhd);
4671	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
4672	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
4673	    freefrag->ff_fragsize, freefrag->ff_inum, &wkhd);
4674	ACQUIRE_LOCK(&lk);
4675	WORKITEM_FREE(freefrag, D_FREEFRAG);
4676	FREE_LOCK(&lk);
4677}
4678
4679/*
4680 * Set up a dependency structure for an external attributes data block.
4681 * This routine follows much of the structure of softdep_setup_allocdirect.
4682 * See the description of softdep_setup_allocdirect above for details.
4683 */
4684void
4685softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4686	struct inode *ip;
4687	ufs_lbn_t off;
4688	ufs2_daddr_t newblkno;
4689	ufs2_daddr_t oldblkno;
4690	long newsize;
4691	long oldsize;
4692	struct buf *bp;
4693{
4694	struct allocdirect *adp, *oldadp;
4695	struct allocdirectlst *adphead;
4696	struct freefrag *freefrag;
4697	struct inodedep *inodedep;
4698	struct jnewblk *jnewblk;
4699	struct newblk *newblk;
4700	struct mount *mp;
4701	ufs_lbn_t lbn;
4702
4703	if (off >= NXADDR)
4704		panic("softdep_setup_allocext: lbn %lld > NXADDR",
4705		    (long long)off);
4706
4707	lbn = bp->b_lblkno;
4708	mp = UFSTOVFS(ip->i_ump);
4709	if (oldblkno && oldblkno != newblkno)
4710		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4711	else
4712		freefrag = NULL;
4713
4714	ACQUIRE_LOCK(&lk);
4715	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4716		panic("softdep_setup_allocext: lost block");
4717	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4718	    ("softdep_setup_allocext: newblk already initialized"));
4719	/*
4720	 * Convert the newblk to an allocdirect.
4721	 */
4722	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4723	adp = (struct allocdirect *)newblk;
4724	newblk->nb_freefrag = freefrag;
4725	adp->ad_offset = off;
4726	adp->ad_oldblkno = oldblkno;
4727	adp->ad_newsize = newsize;
4728	adp->ad_oldsize = oldsize;
4729	adp->ad_state |=  EXTDATA;
4730
4731	/*
4732	 * Finish initializing the journal.
4733	 */
4734	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4735		jnewblk->jn_ino = ip->i_number;
4736		jnewblk->jn_lbn = lbn;
4737		add_to_journal(&jnewblk->jn_list);
4738	}
4739	if (freefrag && freefrag->ff_jfreefrag != NULL)
4740		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4741	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4742	adp->ad_inodedep = inodedep;
4743
4744	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4745	/*
4746	 * The list of allocdirects must be kept in sorted and ascending
4747	 * order so that the rollback routines can quickly determine the
4748	 * first uncommitted block (the size of the file stored on disk
4749	 * ends at the end of the lowest committed fragment, or if there
4750	 * are no fragments, at the end of the highest committed block).
4751	 * Since files generally grow, the typical case is that the new
4752	 * block is to be added at the end of the list. We speed this
4753	 * special case by checking against the last allocdirect in the
4754	 * list before laboriously traversing the list looking for the
4755	 * insertion point.
4756	 */
4757	adphead = &inodedep->id_newextupdt;
4758	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4759	if (oldadp == NULL || oldadp->ad_offset <= off) {
4760		/* insert at end of list */
4761		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4762		if (oldadp != NULL && oldadp->ad_offset == off)
4763			allocdirect_merge(adphead, adp, oldadp);
4764		FREE_LOCK(&lk);
4765		return;
4766	}
4767	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4768		if (oldadp->ad_offset >= off)
4769			break;
4770	}
4771	if (oldadp == NULL)
4772		panic("softdep_setup_allocext: lost entry");
4773	/* insert in middle of list */
4774	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
4775	if (oldadp->ad_offset == off)
4776		allocdirect_merge(adphead, adp, oldadp);
4777	FREE_LOCK(&lk);
4778}
4779
4780/*
4781 * Indirect block allocation dependencies.
4782 *
4783 * The same dependencies that exist for a direct block also exist when
4784 * a new block is allocated and pointed to by an entry in a block of
4785 * indirect pointers. The undo/redo states described above are also
4786 * used here. Because an indirect block contains many pointers that
4787 * may have dependencies, a second copy of the entire in-memory indirect
4788 * block is kept. The buffer cache copy is always completely up-to-date.
4789 * The second copy, which is used only as a source for disk writes,
4790 * contains only the safe pointers (i.e., those that have no remaining
4791 * update dependencies). The second copy is freed when all pointers
4792 * are safe. The cache is not allowed to replace indirect blocks with
4793 * pending update dependencies. If a buffer containing an indirect
4794 * block with dependencies is written, these routines will mark it
4795 * dirty again. It can only be successfully written once all the
4796 * dependencies are removed. The ffs_fsync routine in conjunction with
4797 * softdep_sync_metadata work together to get all the dependencies
4798 * removed so that a file can be successfully written to disk. Three
4799 * procedures are used when setting up indirect block pointer
4800 * dependencies. The division is necessary because of the organization
4801 * of the "balloc" routine and because of the distinction between file
4802 * pages and file metadata blocks.
4803 */
4804
4805/*
4806 * Allocate a new allocindir structure.
4807 */
4808static struct allocindir *
4809newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
4810	struct inode *ip;	/* inode for file being extended */
4811	int ptrno;		/* offset of pointer in indirect block */
4812	ufs2_daddr_t newblkno;	/* disk block number being added */
4813	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
4814	ufs_lbn_t lbn;
4815{
4816	struct newblk *newblk;
4817	struct allocindir *aip;
4818	struct freefrag *freefrag;
4819	struct jnewblk *jnewblk;
4820
4821	if (oldblkno)
4822		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
4823	else
4824		freefrag = NULL;
4825	ACQUIRE_LOCK(&lk);
4826	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
4827		panic("new_allocindir: lost block");
4828	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4829	    ("newallocindir: newblk already initialized"));
4830	newblk->nb_list.wk_type = D_ALLOCINDIR;
4831	newblk->nb_freefrag = freefrag;
4832	aip = (struct allocindir *)newblk;
4833	aip->ai_offset = ptrno;
4834	aip->ai_oldblkno = oldblkno;
4835	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4836		jnewblk->jn_ino = ip->i_number;
4837		jnewblk->jn_lbn = lbn;
4838		add_to_journal(&jnewblk->jn_list);
4839	}
4840	if (freefrag && freefrag->ff_jfreefrag != NULL)
4841		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4842	return (aip);
4843}
4844
4845/*
4846 * Called just before setting an indirect block pointer
4847 * to a newly allocated file page.
4848 */
4849void
4850softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
4851	struct inode *ip;	/* inode for file being extended */
4852	ufs_lbn_t lbn;		/* allocated block number within file */
4853	struct buf *bp;		/* buffer with indirect blk referencing page */
4854	int ptrno;		/* offset of pointer in indirect block */
4855	ufs2_daddr_t newblkno;	/* disk block number being added */
4856	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
4857	struct buf *nbp;	/* buffer holding allocated page */
4858{
4859	struct inodedep *inodedep;
4860	struct allocindir *aip;
4861	struct pagedep *pagedep;
4862	struct mount *mp;
4863
4864	if (lbn != nbp->b_lblkno)
4865		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
4866		    lbn, bp->b_lblkno);
4867	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
4868	mp = UFSTOVFS(ip->i_ump);
4869	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
4870	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
4871	/*
4872	 * If we are allocating a directory page, then we must
4873	 * allocate an associated pagedep to track additions and
4874	 * deletions.
4875	 */
4876	if ((ip->i_mode & IFMT) == IFDIR &&
4877	    pagedep_lookup(mp, ip->i_number, lbn, DEPALLOC, &pagedep) == 0)
4878		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
4879	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
4880	setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
4881	FREE_LOCK(&lk);
4882}
4883
4884/*
4885 * Called just before setting an indirect block pointer to a
4886 * newly allocated indirect block.
4887 */
4888void
4889softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
4890	struct buf *nbp;	/* newly allocated indirect block */
4891	struct inode *ip;	/* inode for file being extended */
4892	struct buf *bp;		/* indirect block referencing allocated block */
4893	int ptrno;		/* offset of pointer in indirect block */
4894	ufs2_daddr_t newblkno;	/* disk block number being added */
4895{
4896	struct inodedep *inodedep;
4897	struct allocindir *aip;
4898	ufs_lbn_t lbn;
4899
4900	lbn = nbp->b_lblkno;
4901	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
4902	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
4903	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
4904	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
4905	setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
4906	FREE_LOCK(&lk);
4907}
4908
4909static void
4910indirdep_complete(indirdep)
4911	struct indirdep *indirdep;
4912{
4913	struct allocindir *aip;
4914
4915	LIST_REMOVE(indirdep, ir_next);
4916	indirdep->ir_state &= ~ONDEPLIST;
4917
4918	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
4919		LIST_REMOVE(aip, ai_next);
4920		free_newblk(&aip->ai_block);
4921	}
4922	/*
4923	 * If this indirdep is not attached to a buf it was simply waiting
4924	 * on completion to clear completehd.  free_indirdep() asserts
4925	 * that nothing is dangling.
4926	 */
4927	if ((indirdep->ir_state & ONWORKLIST) == 0)
4928		free_indirdep(indirdep);
4929}
4930
4931/*
4932 * Called to finish the allocation of the "aip" allocated
4933 * by one of the two routines above.
4934 */
4935static void
4936setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
4937	struct buf *bp;		/* in-memory copy of the indirect block */
4938	struct inode *ip;	/* inode for file being extended */
4939	struct inodedep *inodedep; /* Inodedep for ip */
4940	struct allocindir *aip;	/* allocindir allocated by the above routines */
4941	ufs_lbn_t lbn;		/* Logical block number for this block. */
4942{
4943	struct worklist *wk;
4944	struct fs *fs;
4945	struct newblk *newblk;
4946	struct indirdep *indirdep, *newindirdep;
4947	struct allocindir *oldaip;
4948	struct freefrag *freefrag;
4949	struct mount *mp;
4950	ufs2_daddr_t blkno;
4951
4952	mp = UFSTOVFS(ip->i_ump);
4953	fs = ip->i_fs;
4954	mtx_assert(&lk, MA_OWNED);
4955	if (bp->b_lblkno >= 0)
4956		panic("setup_allocindir_phase2: not indir blk");
4957	for (freefrag = NULL, indirdep = NULL, newindirdep = NULL; ; ) {
4958		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4959			if (wk->wk_type != D_INDIRDEP)
4960				continue;
4961			indirdep = WK_INDIRDEP(wk);
4962			break;
4963		}
4964		if (indirdep == NULL && newindirdep) {
4965			indirdep = newindirdep;
4966			newindirdep = NULL;
4967			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
4968			if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0,
4969			    &newblk)) {
4970				indirdep->ir_state |= ONDEPLIST;
4971				LIST_INSERT_HEAD(&newblk->nb_indirdeps,
4972				    indirdep, ir_next);
4973			} else
4974				indirdep->ir_state |= DEPCOMPLETE;
4975		}
4976		if (indirdep) {
4977			aip->ai_indirdep = indirdep;
4978			/*
4979			 * Check to see if there is an existing dependency
4980			 * for this block. If there is, merge the old
4981			 * dependency into the new one.  This happens
4982			 * as a result of reallocblk only.
4983			 */
4984			if (aip->ai_oldblkno == 0)
4985				oldaip = NULL;
4986			else
4987
4988				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd,
4989				    ai_next)
4990					if (oldaip->ai_offset == aip->ai_offset)
4991						break;
4992			if (oldaip != NULL)
4993				freefrag = allocindir_merge(aip, oldaip);
4994			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
4995			KASSERT(aip->ai_offset >= 0 &&
4996			    aip->ai_offset < NINDIR(ip->i_ump->um_fs),
4997			    ("setup_allocindir_phase2: Bad offset %d",
4998			    aip->ai_offset));
4999			KASSERT(indirdep->ir_savebp != NULL,
5000			    ("setup_allocindir_phase2 NULL ir_savebp"));
5001			if (ip->i_ump->um_fstype == UFS1)
5002				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
5003				    [aip->ai_offset] = aip->ai_oldblkno;
5004			else
5005				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
5006				    [aip->ai_offset] = aip->ai_oldblkno;
5007			FREE_LOCK(&lk);
5008			if (freefrag != NULL)
5009				handle_workitem_freefrag(freefrag);
5010		} else
5011			FREE_LOCK(&lk);
5012		if (newindirdep) {
5013			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
5014			brelse(newindirdep->ir_savebp);
5015			ACQUIRE_LOCK(&lk);
5016			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
5017			if (indirdep)
5018				break;
5019			FREE_LOCK(&lk);
5020		}
5021		if (indirdep) {
5022			ACQUIRE_LOCK(&lk);
5023			break;
5024		}
5025		newindirdep = malloc(sizeof(struct indirdep),
5026			M_INDIRDEP, M_SOFTDEP_FLAGS);
5027		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5028		newindirdep->ir_state = ATTACHED;
5029		if (ip->i_ump->um_fstype == UFS1)
5030			newindirdep->ir_state |= UFS1FMT;
5031		newindirdep->ir_saveddata = NULL;
5032		LIST_INIT(&newindirdep->ir_deplisthd);
5033		LIST_INIT(&newindirdep->ir_donehd);
5034		LIST_INIT(&newindirdep->ir_writehd);
5035		LIST_INIT(&newindirdep->ir_completehd);
5036		LIST_INIT(&newindirdep->ir_jwork);
5037		if (bp->b_blkno == bp->b_lblkno) {
5038			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5039			    NULL, NULL);
5040			bp->b_blkno = blkno;
5041		}
5042		newindirdep->ir_savebp =
5043		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5044		BUF_KERNPROC(newindirdep->ir_savebp);
5045		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5046		ACQUIRE_LOCK(&lk);
5047	}
5048}
5049
5050/*
5051 * Merge two allocindirs which refer to the same block.  Move newblock
5052 * dependencies and setup the freefrags appropriately.
5053 */
5054static struct freefrag *
5055allocindir_merge(aip, oldaip)
5056	struct allocindir *aip;
5057	struct allocindir *oldaip;
5058{
5059	struct newdirblk *newdirblk;
5060	struct freefrag *freefrag;
5061	struct worklist *wk;
5062
5063	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5064		panic("allocindir_merge: blkno");
5065	aip->ai_oldblkno = oldaip->ai_oldblkno;
5066	freefrag = aip->ai_freefrag;
5067	aip->ai_freefrag = oldaip->ai_freefrag;
5068	oldaip->ai_freefrag = NULL;
5069	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5070	/*
5071	 * If we are tracking a new directory-block allocation,
5072	 * move it from the old allocindir to the new allocindir.
5073	 */
5074	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5075		newdirblk = WK_NEWDIRBLK(wk);
5076		WORKLIST_REMOVE(&newdirblk->db_list);
5077		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5078			panic("allocindir_merge: extra newdirblk");
5079		WORKLIST_INSERT(&aip->ai_newdirblk, &newdirblk->db_list);
5080	}
5081	/*
5082	 * We can skip journaling for this freefrag and just complete
5083	 * any pending journal work for the allocindir that is being
5084	 * removed after the freefrag completes.
5085	 */
5086	if (freefrag->ff_jfreefrag)
5087		cancel_jfreefrag(freefrag->ff_jfreefrag);
5088	LIST_REMOVE(oldaip, ai_next);
5089	cancel_newblk(&oldaip->ai_block, &freefrag->ff_jwork);
5090	free_newblk(&oldaip->ai_block);
5091
5092	return (freefrag);
5093}
5094
5095/*
5096 * Block de-allocation dependencies.
5097 *
5098 * When blocks are de-allocated, the on-disk pointers must be nullified before
5099 * the blocks are made available for use by other files.  (The true
5100 * requirement is that old pointers must be nullified before new on-disk
5101 * pointers are set.  We chose this slightly more stringent requirement to
5102 * reduce complexity.) Our implementation handles this dependency by updating
5103 * the inode (or indirect block) appropriately but delaying the actual block
5104 * de-allocation (i.e., freemap and free space count manipulation) until
5105 * after the updated versions reach stable storage.  After the disk is
5106 * updated, the blocks can be safely de-allocated whenever it is convenient.
5107 * This implementation handles only the common case of reducing a file's
5108 * length to zero. Other cases are handled by the conventional synchronous
5109 * write approach.
5110 *
5111 * The ffs implementation with which we worked double-checks
5112 * the state of the block pointers and file size as it reduces
5113 * a file's length.  Some of this code is replicated here in our
5114 * soft updates implementation.  The freeblks->fb_chkcnt field is
5115 * used to transfer a part of this information to the procedure
5116 * that eventually de-allocates the blocks.
5117 *
5118 * This routine should be called from the routine that shortens
5119 * a file's length, before the inode's size or block pointers
5120 * are modified. It will save the block pointer information for
5121 * later release and zero the inode so that the calling routine
5122 * can release it.
5123 */
5124void
5125softdep_setup_freeblocks(ip, length, flags)
5126	struct inode *ip;	/* The inode whose length is to be reduced */
5127	off_t length;		/* The new length for the file */
5128	int flags;		/* IO_EXT and/or IO_NORMAL */
5129{
5130	struct ufs1_dinode *dp1;
5131	struct ufs2_dinode *dp2;
5132	struct freeblks *freeblks;
5133	struct inodedep *inodedep;
5134	struct allocdirect *adp;
5135	struct jfreeblk *jfreeblk;
5136	struct bufobj *bo;
5137	struct vnode *vp;
5138	struct buf *bp;
5139	struct fs *fs;
5140	ufs2_daddr_t extblocks, datablocks;
5141	struct mount *mp;
5142	int i, delay, error;
5143	ufs2_daddr_t blkno;
5144	ufs_lbn_t tmpval;
5145	ufs_lbn_t lbn;
5146	long oldextsize;
5147	long oldsize;
5148	int frags;
5149	int needj;
5150
5151	fs = ip->i_fs;
5152	mp = UFSTOVFS(ip->i_ump);
5153	if (length != 0)
5154		panic("softdep_setup_freeblocks: non-zero length");
5155	freeblks = malloc(sizeof(struct freeblks),
5156		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5157	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5158	LIST_INIT(&freeblks->fb_jfreeblkhd);
5159	LIST_INIT(&freeblks->fb_jwork);
5160	freeblks->fb_state = ATTACHED;
5161	freeblks->fb_uid = ip->i_uid;
5162	freeblks->fb_previousinum = ip->i_number;
5163	freeblks->fb_devvp = ip->i_devvp;
5164	freeblks->fb_chkcnt = 0;
5165	ACQUIRE_LOCK(&lk);
5166	/*
5167	 * If we're truncating a removed file that will never be written
5168	 * we don't need to journal the block frees.  The canceled journals
5169	 * for the allocations will suffice.
5170	 */
5171	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5172	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED ||
5173	    (fs->fs_flags & FS_SUJ) == 0)
5174		needj = 0;
5175	else
5176		needj = 1;
5177	num_freeblkdep++;
5178	FREE_LOCK(&lk);
5179	extblocks = 0;
5180	if (fs->fs_magic == FS_UFS2_MAGIC)
5181		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
5182	datablocks = DIP(ip, i_blocks) - extblocks;
5183	if ((flags & IO_NORMAL) != 0) {
5184		oldsize = ip->i_size;
5185		ip->i_size = 0;
5186		DIP_SET(ip, i_size, 0);
5187		freeblks->fb_chkcnt = datablocks;
5188		for (i = 0; i < NDADDR; i++) {
5189			blkno = DIP(ip, i_db[i]);
5190			DIP_SET(ip, i_db[i], 0);
5191			if (blkno == 0)
5192				continue;
5193			frags = sblksize(fs, oldsize, i);
5194			frags = numfrags(fs, frags);
5195			newfreework(freeblks, NULL, i, blkno, frags, needj);
5196		}
5197		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
5198		    i++, tmpval *= NINDIR(fs)) {
5199			blkno = DIP(ip, i_ib[i]);
5200			DIP_SET(ip, i_ib[i], 0);
5201			if (blkno)
5202				newfreework(freeblks, NULL, -lbn - i, blkno,
5203				    fs->fs_frag, needj);
5204			lbn += tmpval;
5205		}
5206		UFS_LOCK(ip->i_ump);
5207		fs->fs_pendingblocks += datablocks;
5208		UFS_UNLOCK(ip->i_ump);
5209	}
5210	if ((flags & IO_EXT) != 0) {
5211		oldextsize = ip->i_din2->di_extsize;
5212		ip->i_din2->di_extsize = 0;
5213		freeblks->fb_chkcnt += extblocks;
5214		for (i = 0; i < NXADDR; i++) {
5215			blkno = ip->i_din2->di_extb[i];
5216			ip->i_din2->di_extb[i] = 0;
5217			if (blkno == 0)
5218				continue;
5219			frags = sblksize(fs, oldextsize, i);
5220			frags = numfrags(fs, frags);
5221			newfreework(freeblks, NULL, -1 - i, blkno, frags,
5222			    needj);
5223		}
5224	}
5225	if (LIST_EMPTY(&freeblks->fb_jfreeblkhd))
5226		needj = 0;
5227	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
5228	/*
5229	 * Push the zero'ed inode to to its disk buffer so that we are free
5230	 * to delete its dependencies below. Once the dependencies are gone
5231	 * the buffer can be safely released.
5232	 */
5233	if ((error = bread(ip->i_devvp,
5234	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
5235	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
5236		brelse(bp);
5237		softdep_error("softdep_setup_freeblocks", error);
5238	}
5239	if (ip->i_ump->um_fstype == UFS1) {
5240		dp1 = ((struct ufs1_dinode *)bp->b_data +
5241		    ino_to_fsbo(fs, ip->i_number));
5242		ip->i_din1->di_freelink = dp1->di_freelink;
5243		*dp1 = *ip->i_din1;
5244	} else {
5245		dp2 = ((struct ufs2_dinode *)bp->b_data +
5246		    ino_to_fsbo(fs, ip->i_number));
5247		ip->i_din2->di_freelink = dp2->di_freelink;
5248		*dp2 = *ip->i_din2;
5249	}
5250	/*
5251	 * Find and eliminate any inode dependencies.
5252	 */
5253	ACQUIRE_LOCK(&lk);
5254	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5255	if ((inodedep->id_state & IOSTARTED) != 0)
5256		panic("softdep_setup_freeblocks: inode busy");
5257	/*
5258	 * Add the freeblks structure to the list of operations that
5259	 * must await the zero'ed inode being written to disk. If we
5260	 * still have a bitmap dependency (delay == 0), then the inode
5261	 * has never been written to disk, so we can process the
5262	 * freeblks below once we have deleted the dependencies.
5263	 */
5264	delay = (inodedep->id_state & DEPCOMPLETE);
5265	if (delay)
5266		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
5267	else if (needj)
5268		freeblks->fb_state |= DEPCOMPLETE | COMPLETE;
5269	/*
5270	 * Because the file length has been truncated to zero, any
5271	 * pending block allocation dependency structures associated
5272	 * with this inode are obsolete and can simply be de-allocated.
5273	 * We must first merge the two dependency lists to get rid of
5274	 * any duplicate freefrag structures, then purge the merged list.
5275	 * If we still have a bitmap dependency, then the inode has never
5276	 * been written to disk, so we can free any fragments without delay.
5277	 */
5278	if (flags & IO_NORMAL) {
5279		merge_inode_lists(&inodedep->id_newinoupdt,
5280		    &inodedep->id_inoupdt);
5281		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
5282			cancel_allocdirect(&inodedep->id_inoupdt, adp,
5283			    freeblks, delay);
5284	}
5285	if (flags & IO_EXT) {
5286		merge_inode_lists(&inodedep->id_newextupdt,
5287		    &inodedep->id_extupdt);
5288		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
5289			cancel_allocdirect(&inodedep->id_extupdt, adp,
5290			    freeblks, delay);
5291	}
5292	LIST_FOREACH(jfreeblk, &freeblks->fb_jfreeblkhd, jf_deps)
5293		add_to_journal(&jfreeblk->jf_list);
5294
5295	FREE_LOCK(&lk);
5296	bdwrite(bp);
5297	/*
5298	 * We must wait for any I/O in progress to finish so that
5299	 * all potential buffers on the dirty list will be visible.
5300	 * Once they are all there, walk the list and get rid of
5301	 * any dependencies.
5302	 */
5303	vp = ITOV(ip);
5304	bo = &vp->v_bufobj;
5305	BO_LOCK(bo);
5306	drain_output(vp);
5307restart:
5308	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
5309		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
5310		    ((flags & IO_NORMAL) == 0 &&
5311		      (bp->b_xflags & BX_ALTDATA) == 0))
5312			continue;
5313		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
5314			goto restart;
5315		BO_UNLOCK(bo);
5316		ACQUIRE_LOCK(&lk);
5317		(void) inodedep_lookup(mp, ip->i_number, 0, &inodedep);
5318		if (deallocate_dependencies(bp, inodedep, freeblks))
5319			bp->b_flags |= B_INVAL | B_NOCACHE;
5320		FREE_LOCK(&lk);
5321		brelse(bp);
5322		BO_LOCK(bo);
5323		goto restart;
5324	}
5325	BO_UNLOCK(bo);
5326	ACQUIRE_LOCK(&lk);
5327	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
5328		(void) free_inodedep(inodedep);
5329
5330	if (delay) {
5331		freeblks->fb_state |= DEPCOMPLETE;
5332		/*
5333		 * If the inode with zeroed block pointers is now on disk
5334		 * we can start freeing blocks. Add freeblks to the worklist
5335		 * instead of calling  handle_workitem_freeblocks directly as
5336		 * it is more likely that additional IO is needed to complete
5337		 * the request here than in the !delay case.
5338		 */
5339		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
5340			add_to_worklist(&freeblks->fb_list, 1);
5341	}
5342
5343	FREE_LOCK(&lk);
5344	/*
5345	 * If the inode has never been written to disk (delay == 0) and
5346	 * we're not waiting on any journal writes, then we can process the
5347	 * freeblks now that we have deleted the dependencies.
5348	 */
5349	if (!delay && !needj)
5350		handle_workitem_freeblocks(freeblks, 0);
5351}
5352
5353/*
5354 * Reclaim any dependency structures from a buffer that is about to
5355 * be reallocated to a new vnode. The buffer must be locked, thus,
5356 * no I/O completion operations can occur while we are manipulating
5357 * its associated dependencies. The mutex is held so that other I/O's
5358 * associated with related dependencies do not occur.  Returns 1 if
5359 * all dependencies were cleared, 0 otherwise.
5360 */
5361static int
5362deallocate_dependencies(bp, inodedep, freeblks)
5363	struct buf *bp;
5364	struct inodedep *inodedep;
5365	struct freeblks *freeblks;
5366{
5367	struct worklist *wk;
5368	struct indirdep *indirdep;
5369	struct newdirblk *newdirblk;
5370	struct allocindir *aip;
5371	struct pagedep *pagedep;
5372	struct jremref *jremref;
5373	struct jmvref *jmvref;
5374	struct dirrem *dirrem;
5375	int i;
5376
5377	mtx_assert(&lk, MA_OWNED);
5378	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
5379		switch (wk->wk_type) {
5380
5381		case D_INDIRDEP:
5382			indirdep = WK_INDIRDEP(wk);
5383			if (bp->b_lblkno >= 0 ||
5384			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
5385				panic("deallocate_dependencies: not indir");
5386			cancel_indirdep(indirdep, bp, inodedep, freeblks);
5387			continue;
5388
5389		case D_PAGEDEP:
5390			pagedep = WK_PAGEDEP(wk);
5391			/*
5392			 * There should be no directory add dependencies present
5393			 * as the directory could not be truncated until all
5394			 * children were removed.
5395			 */
5396			KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
5397			    ("deallocate_dependencies: pendinghd != NULL"));
5398			for (i = 0; i < DAHASHSZ; i++)
5399				KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
5400				    ("deallocate_dependencies: diraddhd != NULL"));
5401			/*
5402			 * Copy any directory remove dependencies to the list
5403			 * to be processed after the zero'ed inode is written.
5404			 * If the inode has already been written, then they
5405			 * can be dumped directly onto the work list.
5406			 */
5407			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
5408				/*
5409				 * If there are any dirrems we wait for
5410				 * the journal write to complete and
5411				 * then restart the buf scan as the lock
5412				 * has been dropped.
5413				 */
5414				while ((jremref =
5415				    LIST_FIRST(&dirrem->dm_jremrefhd))
5416				    != NULL) {
5417					stat_jwait_filepage++;
5418					jwait(&jremref->jr_list);
5419					return (0);
5420				}
5421				LIST_REMOVE(dirrem, dm_next);
5422				dirrem->dm_dirinum = pagedep->pd_ino;
5423				if (inodedep == NULL ||
5424				    (inodedep->id_state & ALLCOMPLETE) ==
5425				     ALLCOMPLETE) {
5426					dirrem->dm_state |= COMPLETE;
5427					add_to_worklist(&dirrem->dm_list, 0);
5428				} else
5429					WORKLIST_INSERT(&inodedep->id_bufwait,
5430					    &dirrem->dm_list);
5431			}
5432			if ((pagedep->pd_state & NEWBLOCK) != 0) {
5433				newdirblk = pagedep->pd_newdirblk;
5434				WORKLIST_REMOVE(&newdirblk->db_list);
5435				free_newdirblk(newdirblk);
5436			}
5437			while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd))
5438			    != NULL) {
5439				stat_jwait_filepage++;
5440				jwait(&jmvref->jm_list);
5441				return (0);
5442			}
5443			WORKLIST_REMOVE(&pagedep->pd_list);
5444			LIST_REMOVE(pagedep, pd_hash);
5445			WORKITEM_FREE(pagedep, D_PAGEDEP);
5446			continue;
5447
5448		case D_ALLOCINDIR:
5449			aip = WK_ALLOCINDIR(wk);
5450			cancel_allocindir(aip, inodedep, freeblks);
5451			continue;
5452
5453		case D_ALLOCDIRECT:
5454		case D_INODEDEP:
5455			panic("deallocate_dependencies: Unexpected type %s",
5456			    TYPENAME(wk->wk_type));
5457			/* NOTREACHED */
5458
5459		default:
5460			panic("deallocate_dependencies: Unknown type %s",
5461			    TYPENAME(wk->wk_type));
5462			/* NOTREACHED */
5463		}
5464	}
5465
5466	return (1);
5467}
5468
5469/*
5470 * An allocdirect is being canceled due to a truncate.  We must make sure
5471 * the journal entry is released in concert with the blkfree that releases
5472 * the storage.  Completed journal entries must not be released until the
5473 * space is no longer pointed to by the inode or in the bitmap.
5474 */
5475static void
5476cancel_allocdirect(adphead, adp, freeblks, delay)
5477	struct allocdirectlst *adphead;
5478	struct allocdirect *adp;
5479	struct freeblks *freeblks;
5480	int delay;
5481{
5482	struct freework *freework;
5483	struct newblk *newblk;
5484	struct worklist *wk;
5485	ufs_lbn_t lbn;
5486
5487	TAILQ_REMOVE(adphead, adp, ad_next);
5488	newblk = (struct newblk *)adp;
5489	/*
5490	 * If the journal hasn't been written the jnewblk must be passed
5491	 * to the call to ffs_freeblk that reclaims the space.  We accomplish
5492	 * this by linking the journal dependency into the freework to be
5493	 * freed when freework_freeblock() is called.  If the journal has
5494	 * been written we can simply reclaim the journal space when the
5495	 * freeblks work is complete.
5496	 */
5497	if (newblk->nb_jnewblk == NULL) {
5498		cancel_newblk(newblk, &freeblks->fb_jwork);
5499		goto found;
5500	}
5501	lbn = newblk->nb_jnewblk->jn_lbn;
5502	/*
5503	 * Find the correct freework structure so it releases the canceled
5504	 * journal when the bitmap is cleared.  This preserves rollback
5505	 * until the allocation is reverted.
5506	 */
5507	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
5508		freework = WK_FREEWORK(wk);
5509		if (freework->fw_lbn != lbn)
5510			continue;
5511		cancel_newblk(newblk, &freework->fw_jwork);
5512		goto found;
5513	}
5514	panic("cancel_allocdirect: Freework not found for lbn %jd\n", lbn);
5515found:
5516	if (delay)
5517		WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
5518		    &newblk->nb_list);
5519	else
5520		free_newblk(newblk);
5521	return;
5522}
5523
5524
5525static void
5526cancel_newblk(newblk, wkhd)
5527	struct newblk *newblk;
5528	struct workhead *wkhd;
5529{
5530	struct indirdep *indirdep;
5531	struct allocindir *aip;
5532
5533	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) {
5534		indirdep->ir_state &= ~ONDEPLIST;
5535		LIST_REMOVE(indirdep, ir_next);
5536		/*
5537		 * If an indirdep is not on the buf worklist we need to
5538		 * free it here as deallocate_dependencies() will never
5539		 * find it.  These pointers were never visible on disk and
5540		 * can be discarded immediately.
5541		 */
5542		while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5543			LIST_REMOVE(aip, ai_next);
5544			cancel_newblk(&aip->ai_block, wkhd);
5545			free_newblk(&aip->ai_block);
5546		}
5547		/*
5548		 * If this indirdep is not attached to a buf it was simply
5549		 * waiting on completion to clear completehd.  free_indirdep()
5550		 * asserts that nothing is dangling.
5551		 */
5552		if ((indirdep->ir_state & ONWORKLIST) == 0)
5553			free_indirdep(indirdep);
5554	}
5555	if (newblk->nb_state & ONDEPLIST) {
5556		newblk->nb_state &= ~ONDEPLIST;
5557		LIST_REMOVE(newblk, nb_deps);
5558	}
5559	if (newblk->nb_state & ONWORKLIST)
5560		WORKLIST_REMOVE(&newblk->nb_list);
5561	/*
5562	 * If the journal entry hasn't been written we hold onto the dep
5563	 * until it is safe to free along with the other journal work.
5564	 */
5565	if (newblk->nb_jnewblk != NULL) {
5566		cancel_jnewblk(newblk->nb_jnewblk, wkhd);
5567		newblk->nb_jnewblk = NULL;
5568	}
5569	if (!LIST_EMPTY(&newblk->nb_jwork))
5570		jwork_move(wkhd, &newblk->nb_jwork);
5571}
5572
5573/*
5574 * Free a newblk. Generate a new freefrag work request if appropriate.
5575 * This must be called after the inode pointer and any direct block pointers
5576 * are valid or fully removed via truncate or frag extension.
5577 */
5578static void
5579free_newblk(newblk)
5580	struct newblk *newblk;
5581{
5582	struct indirdep *indirdep;
5583	struct newdirblk *newdirblk;
5584	struct freefrag *freefrag;
5585	struct worklist *wk;
5586
5587	mtx_assert(&lk, MA_OWNED);
5588	if (newblk->nb_state & ONDEPLIST)
5589		LIST_REMOVE(newblk, nb_deps);
5590	if (newblk->nb_state & ONWORKLIST)
5591		WORKLIST_REMOVE(&newblk->nb_list);
5592	LIST_REMOVE(newblk, nb_hash);
5593	if ((freefrag = newblk->nb_freefrag) != NULL) {
5594		freefrag->ff_state |= COMPLETE;
5595		if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
5596			add_to_worklist(&freefrag->ff_list, 0);
5597	}
5598	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) {
5599		newdirblk = WK_NEWDIRBLK(wk);
5600		WORKLIST_REMOVE(&newdirblk->db_list);
5601		if (!LIST_EMPTY(&newblk->nb_newdirblk))
5602			panic("free_newblk: extra newdirblk");
5603		free_newdirblk(newdirblk);
5604	}
5605	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) {
5606		indirdep->ir_state |= DEPCOMPLETE;
5607		indirdep_complete(indirdep);
5608	}
5609	KASSERT(newblk->nb_jnewblk == NULL,
5610	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
5611	handle_jwork(&newblk->nb_jwork);
5612	newblk->nb_list.wk_type = D_NEWBLK;
5613	WORKITEM_FREE(newblk, D_NEWBLK);
5614}
5615
5616/*
5617 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
5618 * This routine must be called with splbio interrupts blocked.
5619 */
5620static void
5621free_newdirblk(newdirblk)
5622	struct newdirblk *newdirblk;
5623{
5624	struct pagedep *pagedep;
5625	struct diradd *dap;
5626	struct worklist *wk;
5627	int i;
5628
5629	mtx_assert(&lk, MA_OWNED);
5630	/*
5631	 * If the pagedep is still linked onto the directory buffer
5632	 * dependency chain, then some of the entries on the
5633	 * pd_pendinghd list may not be committed to disk yet. In
5634	 * this case, we will simply clear the NEWBLOCK flag and
5635	 * let the pd_pendinghd list be processed when the pagedep
5636	 * is next written. If the pagedep is no longer on the buffer
5637	 * dependency chain, then all the entries on the pd_pending
5638	 * list are committed to disk and we can free them here.
5639	 */
5640	pagedep = newdirblk->db_pagedep;
5641	pagedep->pd_state &= ~NEWBLOCK;
5642	if ((pagedep->pd_state & ONWORKLIST) == 0)
5643		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
5644			free_diradd(dap, NULL);
5645	/*
5646	 * If no dependencies remain, the pagedep will be freed.
5647	 */
5648	for (i = 0; i < DAHASHSZ; i++)
5649		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
5650			break;
5651	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0 &&
5652	    LIST_EMPTY(&pagedep->pd_jmvrefhd)) {
5653		KASSERT(LIST_FIRST(&pagedep->pd_dirremhd) == NULL,
5654		    ("free_newdirblk: Freeing non-free pagedep %p", pagedep));
5655		LIST_REMOVE(pagedep, pd_hash);
5656		WORKITEM_FREE(pagedep, D_PAGEDEP);
5657	}
5658	/* Should only ever be one item in the list. */
5659	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
5660		WORKLIST_REMOVE(wk);
5661		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
5662	}
5663	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
5664}
5665
5666/*
5667 * Prepare an inode to be freed. The actual free operation is not
5668 * done until the zero'ed inode has been written to disk.
5669 */
5670void
5671softdep_freefile(pvp, ino, mode)
5672	struct vnode *pvp;
5673	ino_t ino;
5674	int mode;
5675{
5676	struct inode *ip = VTOI(pvp);
5677	struct inodedep *inodedep;
5678	struct freefile *freefile;
5679
5680	/*
5681	 * This sets up the inode de-allocation dependency.
5682	 */
5683	freefile = malloc(sizeof(struct freefile),
5684		M_FREEFILE, M_SOFTDEP_FLAGS);
5685	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
5686	freefile->fx_mode = mode;
5687	freefile->fx_oldinum = ino;
5688	freefile->fx_devvp = ip->i_devvp;
5689	LIST_INIT(&freefile->fx_jwork);
5690	UFS_LOCK(ip->i_ump);
5691	ip->i_fs->fs_pendinginodes += 1;
5692	UFS_UNLOCK(ip->i_ump);
5693
5694	/*
5695	 * If the inodedep does not exist, then the zero'ed inode has
5696	 * been written to disk. If the allocated inode has never been
5697	 * written to disk, then the on-disk inode is zero'ed. In either
5698	 * case we can free the file immediately.  If the journal was
5699	 * canceled before being written the inode will never make it to
5700	 * disk and we must send the canceled journal entrys to
5701	 * ffs_freefile() to be cleared in conjunction with the bitmap.
5702	 * Any blocks waiting on the inode to write can be safely freed
5703	 * here as it will never been written.
5704	 */
5705	ACQUIRE_LOCK(&lk);
5706	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
5707	/*
5708	 * Remove this inode from the unlinked list and set
5709	 * GOINGAWAY as appropriate to indicate that this inode
5710	 * will never be written.
5711	 */
5712	if (inodedep && inodedep->id_state & UNLINKED) {
5713		/*
5714		 * Save the journal work to be freed with the bitmap
5715		 * before we clear UNLINKED.  Otherwise it can be lost
5716		 * if the inode block is written.
5717		 */
5718		handle_bufwait(inodedep, &freefile->fx_jwork);
5719		clear_unlinked_inodedep(inodedep);
5720		/* Re-acquire inodedep as we've dropped lk. */
5721		inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
5722		if (inodedep && (inodedep->id_state & DEPCOMPLETE) == 0)
5723			inodedep->id_state |= GOINGAWAY;
5724	}
5725	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
5726		FREE_LOCK(&lk);
5727		handle_workitem_freefile(freefile);
5728		return;
5729	}
5730	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
5731	FREE_LOCK(&lk);
5732	if (ip->i_number == ino)
5733		ip->i_flag |= IN_MODIFIED;
5734}
5735
5736/*
5737 * Check to see if an inode has never been written to disk. If
5738 * so free the inodedep and return success, otherwise return failure.
5739 * This routine must be called with splbio interrupts blocked.
5740 *
5741 * If we still have a bitmap dependency, then the inode has never
5742 * been written to disk. Drop the dependency as it is no longer
5743 * necessary since the inode is being deallocated. We set the
5744 * ALLCOMPLETE flags since the bitmap now properly shows that the
5745 * inode is not allocated. Even if the inode is actively being
5746 * written, it has been rolled back to its zero'ed state, so we
5747 * are ensured that a zero inode is what is on the disk. For short
5748 * lived files, this change will usually result in removing all the
5749 * dependencies from the inode so that it can be freed immediately.
5750 */
5751static int
5752check_inode_unwritten(inodedep)
5753	struct inodedep *inodedep;
5754{
5755
5756	mtx_assert(&lk, MA_OWNED);
5757
5758	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
5759	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
5760	    !LIST_EMPTY(&inodedep->id_bufwait) ||
5761	    !LIST_EMPTY(&inodedep->id_inowait) ||
5762	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5763	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
5764	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5765	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5766	    inodedep->id_mkdiradd != NULL ||
5767	    inodedep->id_nlinkdelta != 0)
5768		return (0);
5769	/*
5770	 * Another process might be in initiate_write_inodeblock_ufs[12]
5771	 * trying to allocate memory without holding "Softdep Lock".
5772	 */
5773	if ((inodedep->id_state & IOSTARTED) != 0 &&
5774	    inodedep->id_savedino1 == NULL)
5775		return (0);
5776
5777	if (inodedep->id_state & ONDEPLIST)
5778		LIST_REMOVE(inodedep, id_deps);
5779	inodedep->id_state &= ~ONDEPLIST;
5780	inodedep->id_state |= ALLCOMPLETE;
5781	inodedep->id_bmsafemap = NULL;
5782	if (inodedep->id_state & ONWORKLIST)
5783		WORKLIST_REMOVE(&inodedep->id_list);
5784	if (inodedep->id_savedino1 != NULL) {
5785		free(inodedep->id_savedino1, M_SAVEDINO);
5786		inodedep->id_savedino1 = NULL;
5787	}
5788	if (free_inodedep(inodedep) == 0)
5789		panic("check_inode_unwritten: busy inode");
5790	return (1);
5791}
5792
5793/*
5794 * Try to free an inodedep structure. Return 1 if it could be freed.
5795 */
5796static int
5797free_inodedep(inodedep)
5798	struct inodedep *inodedep;
5799{
5800
5801	mtx_assert(&lk, MA_OWNED);
5802	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
5803	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
5804	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
5805	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
5806	    !LIST_EMPTY(&inodedep->id_bufwait) ||
5807	    !LIST_EMPTY(&inodedep->id_inowait) ||
5808	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
5809	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5810	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
5811	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5812	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5813	    inodedep->id_mkdiradd != NULL ||
5814	    inodedep->id_nlinkdelta != 0 ||
5815	    inodedep->id_savedino1 != NULL)
5816		return (0);
5817	if (inodedep->id_state & ONDEPLIST)
5818		LIST_REMOVE(inodedep, id_deps);
5819	LIST_REMOVE(inodedep, id_hash);
5820	WORKITEM_FREE(inodedep, D_INODEDEP);
5821	num_inodedep -= 1;
5822	return (1);
5823}
5824
5825/*
5826 * Free the block referenced by a freework structure.  The parent freeblks
5827 * structure is released and completed when the final cg bitmap reaches
5828 * the disk.  This routine may be freeing a jnewblk which never made it to
5829 * disk in which case we do not have to wait as the operation is undone
5830 * in memory immediately.
5831 */
5832static void
5833freework_freeblock(freework)
5834	struct freework *freework;
5835{
5836	struct freeblks *freeblks;
5837	struct ufsmount *ump;
5838	struct workhead wkhd;
5839	struct fs *fs;
5840	int complete;
5841	int pending;
5842	int bsize;
5843	int needj;
5844
5845	freeblks = freework->fw_freeblks;
5846	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
5847	fs = ump->um_fs;
5848	needj = freeblks->fb_list.wk_mp->mnt_kern_flag & MNTK_SUJ;
5849	complete = 0;
5850	LIST_INIT(&wkhd);
5851	/*
5852	 * If we are canceling an existing jnewblk pass it to the free
5853	 * routine, otherwise pass the freeblk which will ultimately
5854	 * release the freeblks.  If we're not journaling, we can just
5855	 * free the freeblks immediately.
5856	 */
5857	if (!LIST_EMPTY(&freework->fw_jwork)) {
5858		LIST_SWAP(&wkhd, &freework->fw_jwork, worklist, wk_list);
5859		complete = 1;
5860	} else if (needj)
5861		WORKLIST_INSERT_UNLOCKED(&wkhd, &freework->fw_list);
5862	bsize = lfragtosize(fs, freework->fw_frags);
5863	pending = btodb(bsize);
5864	ACQUIRE_LOCK(&lk);
5865	freeblks->fb_chkcnt -= pending;
5866	FREE_LOCK(&lk);
5867	/*
5868	 * extattr blocks don't show up in pending blocks.  XXX why?
5869	 */
5870	if (freework->fw_lbn >= 0 || freework->fw_lbn <= -NDADDR) {
5871		UFS_LOCK(ump);
5872		fs->fs_pendingblocks -= pending;
5873		UFS_UNLOCK(ump);
5874	}
5875	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno,
5876	    bsize, freeblks->fb_previousinum, &wkhd);
5877	if (complete == 0 && needj)
5878		return;
5879	/*
5880	 * The jnewblk will be discarded and the bits in the map never
5881	 * made it to disk.  We can immediately free the freeblk.
5882	 */
5883	ACQUIRE_LOCK(&lk);
5884	handle_written_freework(freework);
5885	FREE_LOCK(&lk);
5886}
5887
5888/*
5889 * Start, continue, or finish the process of freeing an indirect block tree.
5890 * The free operation may be paused at any point with fw_off containing the
5891 * offset to restart from.  This enables us to implement some flow control
5892 * for large truncates which may fan out and generate a huge number of
5893 * dependencies.
5894 */
5895static void
5896handle_workitem_indirblk(freework)
5897	struct freework *freework;
5898{
5899	struct freeblks *freeblks;
5900	struct ufsmount *ump;
5901	struct fs *fs;
5902
5903
5904	freeblks = freework->fw_freeblks;
5905	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
5906	fs = ump->um_fs;
5907	if (freework->fw_off == NINDIR(fs))
5908		freework_freeblock(freework);
5909	else
5910		indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
5911		    freework->fw_lbn);
5912}
5913
5914/*
5915 * Called when a freework structure attached to a cg buf is written.  The
5916 * ref on either the parent or the freeblks structure is released and
5917 * either may be added to the worklist if it is the final ref.
5918 */
5919static void
5920handle_written_freework(freework)
5921	struct freework *freework;
5922{
5923	struct freeblks *freeblks;
5924	struct freework *parent;
5925
5926	freeblks = freework->fw_freeblks;
5927	parent = freework->fw_parent;
5928	if (parent) {
5929		if (--parent->fw_ref != 0)
5930			parent = NULL;
5931		freeblks = NULL;
5932	} else if (--freeblks->fb_ref != 0)
5933		freeblks = NULL;
5934	WORKITEM_FREE(freework, D_FREEWORK);
5935	/*
5936	 * Don't delay these block frees or it takes an intolerable amount
5937	 * of time to process truncates and free their journal entries.
5938	 */
5939	if (freeblks)
5940		add_to_worklist(&freeblks->fb_list, 1);
5941	if (parent)
5942		add_to_worklist(&parent->fw_list, 1);
5943}
5944
5945/*
5946 * This workitem routine performs the block de-allocation.
5947 * The workitem is added to the pending list after the updated
5948 * inode block has been written to disk.  As mentioned above,
5949 * checks regarding the number of blocks de-allocated (compared
5950 * to the number of blocks allocated for the file) are also
5951 * performed in this function.
5952 */
5953static void
5954handle_workitem_freeblocks(freeblks, flags)
5955	struct freeblks *freeblks;
5956	int flags;
5957{
5958	struct freework *freework;
5959	struct worklist *wk;
5960
5961	KASSERT(LIST_EMPTY(&freeblks->fb_jfreeblkhd),
5962	    ("handle_workitem_freeblocks: Journal entries not written."));
5963	if (LIST_EMPTY(&freeblks->fb_freeworkhd)) {
5964		handle_complete_freeblocks(freeblks);
5965		return;
5966	}
5967	freeblks->fb_ref++;
5968	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
5969		KASSERT(wk->wk_type == D_FREEWORK,
5970		    ("handle_workitem_freeblocks: Unknown type %s",
5971		    TYPENAME(wk->wk_type)));
5972		WORKLIST_REMOVE_UNLOCKED(wk);
5973		freework = WK_FREEWORK(wk);
5974		if (freework->fw_lbn <= -NDADDR)
5975			handle_workitem_indirblk(freework);
5976		else
5977			freework_freeblock(freework);
5978	}
5979	ACQUIRE_LOCK(&lk);
5980	if (--freeblks->fb_ref != 0)
5981		freeblks = NULL;
5982	FREE_LOCK(&lk);
5983	if (freeblks)
5984		handle_complete_freeblocks(freeblks);
5985}
5986
5987/*
5988 * Once all of the freework workitems are complete we can retire the
5989 * freeblocks dependency and any journal work awaiting completion.  This
5990 * can not be called until all other dependencies are stable on disk.
5991 */
5992static void
5993handle_complete_freeblocks(freeblks)
5994	struct freeblks *freeblks;
5995{
5996	struct inode *ip;
5997	struct vnode *vp;
5998	struct fs *fs;
5999	struct ufsmount *ump;
6000	int flags;
6001
6002	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
6003	fs = ump->um_fs;
6004	flags = LK_NOWAIT;
6005
6006	/*
6007	 * If we still have not finished background cleanup, then check
6008	 * to see if the block count needs to be adjusted.
6009	 */
6010	if (freeblks->fb_chkcnt != 0 && (fs->fs_flags & FS_UNCLEAN) != 0 &&
6011	    ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_previousinum,
6012	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ) == 0) {
6013		ip = VTOI(vp);
6014		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + freeblks->fb_chkcnt);
6015		ip->i_flag |= IN_CHANGE;
6016		vput(vp);
6017	}
6018
6019#ifdef INVARIANTS
6020	if (freeblks->fb_chkcnt != 0 &&
6021	    ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
6022		printf("handle_workitem_freeblocks: block count\n");
6023#endif /* INVARIANTS */
6024
6025	ACQUIRE_LOCK(&lk);
6026	/*
6027	 * All of the freeblock deps must be complete prior to this call
6028	 * so it's now safe to complete earlier outstanding journal entries.
6029	 */
6030	handle_jwork(&freeblks->fb_jwork);
6031	WORKITEM_FREE(freeblks, D_FREEBLKS);
6032	num_freeblkdep--;
6033	FREE_LOCK(&lk);
6034}
6035
6036/*
6037 * Release blocks associated with the inode ip and stored in the indirect
6038 * block dbn. If level is greater than SINGLE, the block is an indirect block
6039 * and recursive calls to indirtrunc must be used to cleanse other indirect
6040 * blocks.
6041 */
6042static void
6043indir_trunc(freework, dbn, lbn)
6044	struct freework *freework;
6045	ufs2_daddr_t dbn;
6046	ufs_lbn_t lbn;
6047{
6048	struct freework *nfreework;
6049	struct workhead wkhd;
6050	struct jnewblk *jnewblk;
6051	struct freeblks *freeblks;
6052	struct buf *bp;
6053	struct fs *fs;
6054	struct worklist *wkn;
6055	struct worklist *wk;
6056	struct indirdep *indirdep;
6057	struct ufsmount *ump;
6058	ufs1_daddr_t *bap1 = 0;
6059	ufs2_daddr_t nb, nnb, *bap2 = 0;
6060	ufs_lbn_t lbnadd;
6061	int i, nblocks, ufs1fmt;
6062	int fs_pendingblocks;
6063	int freedeps;
6064	int needj;
6065	int level;
6066	int cnt;
6067
6068	LIST_INIT(&wkhd);
6069	level = lbn_level(lbn);
6070	if (level == -1)
6071		panic("indir_trunc: Invalid lbn %jd\n", lbn);
6072	freeblks = freework->fw_freeblks;
6073	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
6074	fs = ump->um_fs;
6075	fs_pendingblocks = 0;
6076	freedeps = 0;
6077	needj = UFSTOVFS(ump)->mnt_kern_flag & MNTK_SUJ;
6078	lbnadd = 1;
6079	for (i = level; i > 0; i--)
6080		lbnadd *= NINDIR(fs);
6081	/*
6082	 * Get buffer of block pointers to be freed. This routine is not
6083	 * called until the zero'ed inode has been written, so it is safe
6084	 * to free blocks as they are encountered. Because the inode has
6085	 * been zero'ed, calls to bmap on these blocks will fail. So, we
6086	 * have to use the on-disk address and the block device for the
6087	 * filesystem to look them up. If the file was deleted before its
6088	 * indirect blocks were all written to disk, the routine that set
6089	 * us up (deallocate_dependencies) will have arranged to leave
6090	 * a complete copy of the indirect block in memory for our use.
6091	 * Otherwise we have to read the blocks in from the disk.
6092	 */
6093#ifdef notyet
6094	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
6095	    GB_NOCREAT);
6096#else
6097	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
6098#endif
6099	ACQUIRE_LOCK(&lk);
6100	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
6101		if (wk->wk_type != D_INDIRDEP ||
6102		    (wk->wk_state & GOINGAWAY) == 0)
6103			panic("indir_trunc: lost indirdep %p", wk);
6104		indirdep = WK_INDIRDEP(wk);
6105		LIST_SWAP(&wkhd, &indirdep->ir_jwork, worklist, wk_list);
6106		free_indirdep(indirdep);
6107		if (!LIST_EMPTY(&bp->b_dep))
6108			panic("indir_trunc: dangling dep %p",
6109			    LIST_FIRST(&bp->b_dep));
6110		ump->um_numindirdeps -= 1;
6111		FREE_LOCK(&lk);
6112	} else {
6113#ifdef notyet
6114		if (bp)
6115			brelse(bp);
6116#endif
6117		FREE_LOCK(&lk);
6118		if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
6119		    NOCRED, &bp) != 0) {
6120			brelse(bp);
6121			return;
6122		}
6123	}
6124	/*
6125	 * Recursively free indirect blocks.
6126	 */
6127	if (ump->um_fstype == UFS1) {
6128		ufs1fmt = 1;
6129		bap1 = (ufs1_daddr_t *)bp->b_data;
6130	} else {
6131		ufs1fmt = 0;
6132		bap2 = (ufs2_daddr_t *)bp->b_data;
6133	}
6134	/*
6135	 * Reclaim indirect blocks which never made it to disk.
6136	 */
6137	cnt = 0;
6138	LIST_FOREACH_SAFE(wk, &wkhd, wk_list, wkn) {
6139		struct workhead freewk;
6140		if (wk->wk_type != D_JNEWBLK)
6141			continue;
6142		WORKLIST_REMOVE_UNLOCKED(wk);
6143		LIST_INIT(&freewk);
6144		WORKLIST_INSERT_UNLOCKED(&freewk, wk);
6145		jnewblk = WK_JNEWBLK(wk);
6146		if (jnewblk->jn_lbn > 0)
6147			i = (jnewblk->jn_lbn - -lbn) / lbnadd;
6148		else
6149			i = (jnewblk->jn_lbn - (lbn + 1)) / lbnadd;
6150		KASSERT(i >= 0 && i < NINDIR(fs),
6151		    ("indir_trunc: Index out of range %d parent %jd lbn %jd",
6152		    i, lbn, jnewblk->jn_lbn));
6153		/* Clear the pointer so it isn't found below. */
6154		if (ufs1fmt) {
6155			nb = bap1[i];
6156			bap1[i] = 0;
6157		} else {
6158			nb = bap2[i];
6159			bap2[i] = 0;
6160		}
6161		KASSERT(nb == jnewblk->jn_blkno,
6162		    ("indir_trunc: Block mismatch %jd != %jd",
6163		    nb, jnewblk->jn_blkno));
6164		ffs_blkfree(ump, fs, freeblks->fb_devvp, jnewblk->jn_blkno,
6165		    fs->fs_bsize, freeblks->fb_previousinum, &freewk);
6166		cnt++;
6167	}
6168	ACQUIRE_LOCK(&lk);
6169	if (needj)
6170		freework->fw_ref += NINDIR(fs) + 1;
6171	/* Any remaining journal work can be completed with freeblks. */
6172	jwork_move(&freeblks->fb_jwork, &wkhd);
6173	FREE_LOCK(&lk);
6174	nblocks = btodb(fs->fs_bsize);
6175	if (ufs1fmt)
6176		nb = bap1[0];
6177	else
6178		nb = bap2[0];
6179	nfreework = freework;
6180	/*
6181	 * Reclaim on disk blocks.
6182	 */
6183	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
6184		if (i != NINDIR(fs) - 1) {
6185			if (ufs1fmt)
6186				nnb = bap1[i+1];
6187			else
6188				nnb = bap2[i+1];
6189		} else
6190			nnb = 0;
6191		if (nb == 0)
6192			continue;
6193		cnt++;
6194		if (level != 0) {
6195			ufs_lbn_t nlbn;
6196
6197			nlbn = (lbn + 1) - (i * lbnadd);
6198			if (needj != 0) {
6199				nfreework = newfreework(freeblks, freework,
6200				    nlbn, nb, fs->fs_frag, 0);
6201				freedeps++;
6202			}
6203			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
6204		} else {
6205			struct freedep *freedep;
6206
6207			/*
6208			 * Attempt to aggregate freedep dependencies for
6209			 * all blocks being released to the same CG.
6210			 */
6211			LIST_INIT(&wkhd);
6212			if (needj != 0 &&
6213			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
6214				freedep = newfreedep(freework);
6215				WORKLIST_INSERT_UNLOCKED(&wkhd,
6216				    &freedep->fd_list);
6217				freedeps++;
6218			}
6219			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
6220			    fs->fs_bsize, freeblks->fb_previousinum, &wkhd);
6221		}
6222	}
6223	if (level == 0)
6224		fs_pendingblocks = (nblocks * cnt);
6225	/*
6226	 * If we're not journaling we can free the indirect now.  Otherwise
6227	 * setup the ref counts and offset so this indirect can be completed
6228	 * when its children are free.
6229	 */
6230	if (needj == 0) {
6231		fs_pendingblocks += nblocks;
6232		dbn = dbtofsb(fs, dbn);
6233		ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
6234		    freeblks->fb_previousinum, NULL);
6235		ACQUIRE_LOCK(&lk);
6236		freeblks->fb_chkcnt -= fs_pendingblocks;
6237		if (freework->fw_blkno == dbn)
6238			handle_written_freework(freework);
6239		FREE_LOCK(&lk);
6240		freework = NULL;
6241	} else {
6242		ACQUIRE_LOCK(&lk);
6243		freework->fw_off = i;
6244		freework->fw_ref += freedeps;
6245		freework->fw_ref -= NINDIR(fs) + 1;
6246		if (freework->fw_ref != 0)
6247			freework = NULL;
6248		freeblks->fb_chkcnt -= fs_pendingblocks;
6249		FREE_LOCK(&lk);
6250	}
6251	if (fs_pendingblocks) {
6252		UFS_LOCK(ump);
6253		fs->fs_pendingblocks -= fs_pendingblocks;
6254		UFS_UNLOCK(ump);
6255	}
6256	bp->b_flags |= B_INVAL | B_NOCACHE;
6257	brelse(bp);
6258	if (freework)
6259		handle_workitem_indirblk(freework);
6260	return;
6261}
6262
6263/*
6264 * Cancel an allocindir when it is removed via truncation.
6265 */
6266static void
6267cancel_allocindir(aip, inodedep, freeblks)
6268	struct allocindir *aip;
6269	struct inodedep *inodedep;
6270	struct freeblks *freeblks;
6271{
6272	struct newblk *newblk;
6273
6274	/*
6275	 * If the journal hasn't been written the jnewblk must be passed
6276	 * to the call to ffs_freeblk that reclaims the space.  We accomplish
6277	 * this by linking the journal dependency into the indirdep to be
6278	 * freed when indir_trunc() is called.  If the journal has already
6279	 * been written we can simply reclaim the journal space when the
6280	 * freeblks work is complete.
6281	 */
6282	LIST_REMOVE(aip, ai_next);
6283	newblk = (struct newblk *)aip;
6284	if (newblk->nb_jnewblk == NULL)
6285		cancel_newblk(newblk, &freeblks->fb_jwork);
6286	else
6287		cancel_newblk(newblk, &aip->ai_indirdep->ir_jwork);
6288	if (inodedep && inodedep->id_state & DEPCOMPLETE)
6289		WORKLIST_INSERT(&inodedep->id_bufwait, &newblk->nb_list);
6290	else
6291		free_newblk(newblk);
6292}
6293
6294/*
6295 * Create the mkdir dependencies for . and .. in a new directory.  Link them
6296 * in to a newdirblk so any subsequent additions are tracked properly.  The
6297 * caller is responsible for adding the mkdir1 dependency to the journal
6298 * and updating id_mkdiradd.  This function returns with lk held.
6299 */
6300static struct mkdir *
6301setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
6302	struct diradd *dap;
6303	ino_t newinum;
6304	ino_t dinum;
6305	struct buf *newdirbp;
6306	struct mkdir **mkdirp;
6307{
6308	struct newblk *newblk;
6309	struct pagedep *pagedep;
6310	struct inodedep *inodedep;
6311	struct newdirblk *newdirblk = 0;
6312	struct mkdir *mkdir1, *mkdir2;
6313	struct worklist *wk;
6314	struct jaddref *jaddref;
6315	struct mount *mp;
6316
6317	mp = dap->da_list.wk_mp;
6318	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
6319	    M_SOFTDEP_FLAGS);
6320	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
6321	LIST_INIT(&newdirblk->db_mkdir);
6322	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
6323	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
6324	mkdir1->md_state = ATTACHED | MKDIR_BODY;
6325	mkdir1->md_diradd = dap;
6326	mkdir1->md_jaddref = NULL;
6327	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
6328	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
6329	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
6330	mkdir2->md_diradd = dap;
6331	mkdir2->md_jaddref = NULL;
6332	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0) {
6333		mkdir1->md_state |= DEPCOMPLETE;
6334		mkdir2->md_state |= DEPCOMPLETE;
6335	}
6336	/*
6337	 * Dependency on "." and ".." being written to disk.
6338	 */
6339	mkdir1->md_buf = newdirbp;
6340	ACQUIRE_LOCK(&lk);
6341	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
6342	/*
6343	 * We must link the pagedep, allocdirect, and newdirblk for
6344	 * the initial file page so the pointer to the new directory
6345	 * is not written until the directory contents are live and
6346	 * any subsequent additions are not marked live until the
6347	 * block is reachable via the inode.
6348	 */
6349	if (pagedep_lookup(mp, newinum, 0, 0, &pagedep) == 0)
6350		panic("setup_newdir: lost pagedep");
6351	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
6352		if (wk->wk_type == D_ALLOCDIRECT)
6353			break;
6354	if (wk == NULL)
6355		panic("setup_newdir: lost allocdirect");
6356	newblk = WK_NEWBLK(wk);
6357	pagedep->pd_state |= NEWBLOCK;
6358	pagedep->pd_newdirblk = newdirblk;
6359	newdirblk->db_pagedep = pagedep;
6360	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
6361	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
6362	/*
6363	 * Look up the inodedep for the parent directory so that we
6364	 * can link mkdir2 into the pending dotdot jaddref or
6365	 * the inode write if there is none.  If the inode is
6366	 * ALLCOMPLETE and no jaddref is present all dependencies have
6367	 * been satisfied and mkdir2 can be freed.
6368	 */
6369	inodedep_lookup(mp, dinum, 0, &inodedep);
6370	if (mp->mnt_kern_flag & MNTK_SUJ) {
6371		if (inodedep == NULL)
6372			panic("setup_newdir: Lost parent.");
6373		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
6374		    inoreflst);
6375		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
6376		    (jaddref->ja_state & MKDIR_PARENT),
6377		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
6378		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
6379		mkdir2->md_jaddref = jaddref;
6380		jaddref->ja_mkdir = mkdir2;
6381	} else if (inodedep == NULL ||
6382	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
6383		dap->da_state &= ~MKDIR_PARENT;
6384		WORKITEM_FREE(mkdir2, D_MKDIR);
6385	} else {
6386		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
6387		WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
6388	}
6389	*mkdirp = mkdir2;
6390
6391	return (mkdir1);
6392}
6393
6394/*
6395 * Directory entry addition dependencies.
6396 *
6397 * When adding a new directory entry, the inode (with its incremented link
6398 * count) must be written to disk before the directory entry's pointer to it.
6399 * Also, if the inode is newly allocated, the corresponding freemap must be
6400 * updated (on disk) before the directory entry's pointer. These requirements
6401 * are met via undo/redo on the directory entry's pointer, which consists
6402 * simply of the inode number.
6403 *
6404 * As directory entries are added and deleted, the free space within a
6405 * directory block can become fragmented.  The ufs filesystem will compact
6406 * a fragmented directory block to make space for a new entry. When this
6407 * occurs, the offsets of previously added entries change. Any "diradd"
6408 * dependency structures corresponding to these entries must be updated with
6409 * the new offsets.
6410 */
6411
6412/*
6413 * This routine is called after the in-memory inode's link
6414 * count has been incremented, but before the directory entry's
6415 * pointer to the inode has been set.
6416 */
6417int
6418softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
6419	struct buf *bp;		/* buffer containing directory block */
6420	struct inode *dp;	/* inode for directory */
6421	off_t diroffset;	/* offset of new entry in directory */
6422	ino_t newinum;		/* inode referenced by new directory entry */
6423	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
6424	int isnewblk;		/* entry is in a newly allocated block */
6425{
6426	int offset;		/* offset of new entry within directory block */
6427	ufs_lbn_t lbn;		/* block in directory containing new entry */
6428	struct fs *fs;
6429	struct diradd *dap;
6430	struct newblk *newblk;
6431	struct pagedep *pagedep;
6432	struct inodedep *inodedep;
6433	struct newdirblk *newdirblk = 0;
6434	struct mkdir *mkdir1, *mkdir2;
6435	struct jaddref *jaddref;
6436	struct mount *mp;
6437	int isindir;
6438
6439	/*
6440	 * Whiteouts have no dependencies.
6441	 */
6442	if (newinum == WINO) {
6443		if (newdirbp != NULL)
6444			bdwrite(newdirbp);
6445		return (0);
6446	}
6447	jaddref = NULL;
6448	mkdir1 = mkdir2 = NULL;
6449	mp = UFSTOVFS(dp->i_ump);
6450	fs = dp->i_fs;
6451	lbn = lblkno(fs, diroffset);
6452	offset = blkoff(fs, diroffset);
6453	dap = malloc(sizeof(struct diradd), M_DIRADD,
6454		M_SOFTDEP_FLAGS|M_ZERO);
6455	workitem_alloc(&dap->da_list, D_DIRADD, mp);
6456	dap->da_offset = offset;
6457	dap->da_newinum = newinum;
6458	dap->da_state = ATTACHED;
6459	LIST_INIT(&dap->da_jwork);
6460	isindir = bp->b_lblkno >= NDADDR;
6461	if (isnewblk &&
6462	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
6463		newdirblk = malloc(sizeof(struct newdirblk),
6464		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
6465		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
6466		LIST_INIT(&newdirblk->db_mkdir);
6467	}
6468	/*
6469	 * If we're creating a new directory setup the dependencies and set
6470	 * the dap state to wait for them.  Otherwise it's COMPLETE and
6471	 * we can move on.
6472	 */
6473	if (newdirbp == NULL) {
6474		dap->da_state |= DEPCOMPLETE;
6475		ACQUIRE_LOCK(&lk);
6476	} else {
6477		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
6478		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
6479		    &mkdir2);
6480	}
6481	/*
6482	 * Link into parent directory pagedep to await its being written.
6483	 */
6484	if (pagedep_lookup(mp, dp->i_number, lbn, DEPALLOC, &pagedep) == 0)
6485		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
6486#ifdef DEBUG
6487	if (diradd_lookup(pagedep, offset) != NULL)
6488		panic("softdep_setup_directory_add: %p already at off %d\n",
6489		    diradd_lookup(pagedep, offset), offset);
6490#endif
6491	dap->da_pagedep = pagedep;
6492	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
6493	    da_pdlist);
6494	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
6495	/*
6496	 * If we're journaling, link the diradd into the jaddref so it
6497	 * may be completed after the journal entry is written.  Otherwise,
6498	 * link the diradd into its inodedep.  If the inode is not yet
6499	 * written place it on the bufwait list, otherwise do the post-inode
6500	 * write processing to put it on the id_pendinghd list.
6501	 */
6502	if (mp->mnt_kern_flag & MNTK_SUJ) {
6503		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
6504		    inoreflst);
6505		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
6506		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
6507		jaddref->ja_diroff = diroffset;
6508		jaddref->ja_diradd = dap;
6509		add_to_journal(&jaddref->ja_list);
6510	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
6511		diradd_inode_written(dap, inodedep);
6512	else
6513		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
6514	/*
6515	 * Add the journal entries for . and .. links now that the primary
6516	 * link is written.
6517	 */
6518	if (mkdir1 != NULL && mp->mnt_kern_flag & MNTK_SUJ) {
6519		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
6520		    inoreflst, if_deps);
6521		KASSERT(jaddref != NULL &&
6522		    jaddref->ja_ino == jaddref->ja_parent &&
6523		    (jaddref->ja_state & MKDIR_BODY),
6524		    ("softdep_setup_directory_add: bad dot jaddref %p",
6525		    jaddref));
6526		mkdir1->md_jaddref = jaddref;
6527		jaddref->ja_mkdir = mkdir1;
6528		/*
6529		 * It is important that the dotdot journal entry
6530		 * is added prior to the dot entry since dot writes
6531		 * both the dot and dotdot links.  These both must
6532		 * be added after the primary link for the journal
6533		 * to remain consistent.
6534		 */
6535		add_to_journal(&mkdir2->md_jaddref->ja_list);
6536		add_to_journal(&jaddref->ja_list);
6537	}
6538	/*
6539	 * If we are adding a new directory remember this diradd so that if
6540	 * we rename it we can keep the dot and dotdot dependencies.  If
6541	 * we are adding a new name for an inode that has a mkdiradd we
6542	 * must be in rename and we have to move the dot and dotdot
6543	 * dependencies to this new name.  The old name is being orphaned
6544	 * soon.
6545	 */
6546	if (mkdir1 != NULL) {
6547		if (inodedep->id_mkdiradd != NULL)
6548			panic("softdep_setup_directory_add: Existing mkdir");
6549		inodedep->id_mkdiradd = dap;
6550	} else if (inodedep->id_mkdiradd)
6551		merge_diradd(inodedep, dap);
6552	if (newdirblk) {
6553		/*
6554		 * There is nothing to do if we are already tracking
6555		 * this block.
6556		 */
6557		if ((pagedep->pd_state & NEWBLOCK) != 0) {
6558			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
6559			FREE_LOCK(&lk);
6560			return (0);
6561		}
6562		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
6563		    == 0)
6564			panic("softdep_setup_directory_add: lost entry");
6565		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
6566		pagedep->pd_state |= NEWBLOCK;
6567		pagedep->pd_newdirblk = newdirblk;
6568		newdirblk->db_pagedep = pagedep;
6569		FREE_LOCK(&lk);
6570		/*
6571		 * If we extended into an indirect signal direnter to sync.
6572		 */
6573		if (isindir)
6574			return (1);
6575		return (0);
6576	}
6577	FREE_LOCK(&lk);
6578	return (0);
6579}
6580
6581/*
6582 * This procedure is called to change the offset of a directory
6583 * entry when compacting a directory block which must be owned
6584 * exclusively by the caller. Note that the actual entry movement
6585 * must be done in this procedure to ensure that no I/O completions
6586 * occur while the move is in progress.
6587 */
6588void
6589softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
6590	struct buf *bp;		/* Buffer holding directory block. */
6591	struct inode *dp;	/* inode for directory */
6592	caddr_t base;		/* address of dp->i_offset */
6593	caddr_t oldloc;		/* address of old directory location */
6594	caddr_t newloc;		/* address of new directory location */
6595	int entrysize;		/* size of directory entry */
6596{
6597	int offset, oldoffset, newoffset;
6598	struct pagedep *pagedep;
6599	struct jmvref *jmvref;
6600	struct diradd *dap;
6601	struct direct *de;
6602	struct mount *mp;
6603	ufs_lbn_t lbn;
6604	int flags;
6605
6606	mp = UFSTOVFS(dp->i_ump);
6607	de = (struct direct *)oldloc;
6608	jmvref = NULL;
6609	flags = 0;
6610	/*
6611	 * Moves are always journaled as it would be too complex to
6612	 * determine if any affected adds or removes are present in the
6613	 * journal.
6614	 */
6615	if (mp->mnt_kern_flag & MNTK_SUJ)  {
6616		flags = DEPALLOC;
6617		jmvref = newjmvref(dp, de->d_ino,
6618		    dp->i_offset + (oldloc - base),
6619		    dp->i_offset + (newloc - base));
6620	}
6621	lbn = lblkno(dp->i_fs, dp->i_offset);
6622	offset = blkoff(dp->i_fs, dp->i_offset);
6623	oldoffset = offset + (oldloc - base);
6624	newoffset = offset + (newloc - base);
6625	ACQUIRE_LOCK(&lk);
6626	if (pagedep_lookup(mp, dp->i_number, lbn, flags, &pagedep) == 0) {
6627		if (pagedep)
6628			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
6629		goto done;
6630	}
6631	dap = diradd_lookup(pagedep, oldoffset);
6632	if (dap) {
6633		dap->da_offset = newoffset;
6634		newoffset = DIRADDHASH(newoffset);
6635		oldoffset = DIRADDHASH(oldoffset);
6636		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
6637		    newoffset != oldoffset) {
6638			LIST_REMOVE(dap, da_pdlist);
6639			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
6640			    dap, da_pdlist);
6641		}
6642	}
6643done:
6644	if (jmvref) {
6645		jmvref->jm_pagedep = pagedep;
6646		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
6647		add_to_journal(&jmvref->jm_list);
6648	}
6649	bcopy(oldloc, newloc, entrysize);
6650	FREE_LOCK(&lk);
6651}
6652
6653/*
6654 * Move the mkdir dependencies and journal work from one diradd to another
6655 * when renaming a directory.  The new name must depend on the mkdir deps
6656 * completing as the old name did.  Directories can only have one valid link
6657 * at a time so one must be canonical.
6658 */
6659static void
6660merge_diradd(inodedep, newdap)
6661	struct inodedep *inodedep;
6662	struct diradd *newdap;
6663{
6664	struct diradd *olddap;
6665	struct mkdir *mkdir, *nextmd;
6666	short state;
6667
6668	olddap = inodedep->id_mkdiradd;
6669	inodedep->id_mkdiradd = newdap;
6670	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6671		newdap->da_state &= ~DEPCOMPLETE;
6672		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
6673			nextmd = LIST_NEXT(mkdir, md_mkdirs);
6674			if (mkdir->md_diradd != olddap)
6675				continue;
6676			mkdir->md_diradd = newdap;
6677			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
6678			newdap->da_state |= state;
6679			olddap->da_state &= ~state;
6680			if ((olddap->da_state &
6681			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
6682				break;
6683		}
6684		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
6685			panic("merge_diradd: unfound ref");
6686	}
6687	/*
6688	 * Any mkdir related journal items are not safe to be freed until
6689	 * the new name is stable.
6690	 */
6691	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
6692	olddap->da_state |= DEPCOMPLETE;
6693	complete_diradd(olddap);
6694}
6695
6696/*
6697 * Move the diradd to the pending list when all diradd dependencies are
6698 * complete.
6699 */
6700static void
6701complete_diradd(dap)
6702	struct diradd *dap;
6703{
6704	struct pagedep *pagedep;
6705
6706	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
6707		if (dap->da_state & DIRCHG)
6708			pagedep = dap->da_previous->dm_pagedep;
6709		else
6710			pagedep = dap->da_pagedep;
6711		LIST_REMOVE(dap, da_pdlist);
6712		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
6713	}
6714}
6715
6716/*
6717 * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
6718 * add entries and conditonally journal the remove.
6719 */
6720static void
6721cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
6722	struct diradd *dap;
6723	struct dirrem *dirrem;
6724	struct jremref *jremref;
6725	struct jremref *dotremref;
6726	struct jremref *dotdotremref;
6727{
6728	struct inodedep *inodedep;
6729	struct jaddref *jaddref;
6730	struct inoref *inoref;
6731	struct mkdir *mkdir;
6732
6733	/*
6734	 * If no remove references were allocated we're on a non-journaled
6735	 * filesystem and can skip the cancel step.
6736	 */
6737	if (jremref == NULL) {
6738		free_diradd(dap, NULL);
6739		return;
6740	}
6741	/*
6742	 * Cancel the primary name an free it if it does not require
6743	 * journaling.
6744	 */
6745	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
6746	    0, &inodedep) != 0) {
6747		/* Abort the addref that reference this diradd.  */
6748		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
6749			if (inoref->if_list.wk_type != D_JADDREF)
6750				continue;
6751			jaddref = (struct jaddref *)inoref;
6752			if (jaddref->ja_diradd != dap)
6753				continue;
6754			if (cancel_jaddref(jaddref, inodedep,
6755			    &dirrem->dm_jwork) == 0) {
6756				free_jremref(jremref);
6757				jremref = NULL;
6758			}
6759			break;
6760		}
6761	}
6762	/*
6763	 * Cancel subordinate names and free them if they do not require
6764	 * journaling.
6765	 */
6766	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6767		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
6768			if (mkdir->md_diradd != dap)
6769				continue;
6770			if ((jaddref = mkdir->md_jaddref) == NULL)
6771				continue;
6772			mkdir->md_jaddref = NULL;
6773			if (mkdir->md_state & MKDIR_PARENT) {
6774				if (cancel_jaddref(jaddref, NULL,
6775				    &dirrem->dm_jwork) == 0) {
6776					free_jremref(dotdotremref);
6777					dotdotremref = NULL;
6778				}
6779			} else {
6780				if (cancel_jaddref(jaddref, inodedep,
6781				    &dirrem->dm_jwork) == 0) {
6782					free_jremref(dotremref);
6783					dotremref = NULL;
6784				}
6785			}
6786		}
6787	}
6788
6789	if (jremref)
6790		journal_jremref(dirrem, jremref, inodedep);
6791	if (dotremref)
6792		journal_jremref(dirrem, dotremref, inodedep);
6793	if (dotdotremref)
6794		journal_jremref(dirrem, dotdotremref, NULL);
6795	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
6796	free_diradd(dap, &dirrem->dm_jwork);
6797}
6798
6799/*
6800 * Free a diradd dependency structure. This routine must be called
6801 * with splbio interrupts blocked.
6802 */
6803static void
6804free_diradd(dap, wkhd)
6805	struct diradd *dap;
6806	struct workhead *wkhd;
6807{
6808	struct dirrem *dirrem;
6809	struct pagedep *pagedep;
6810	struct inodedep *inodedep;
6811	struct mkdir *mkdir, *nextmd;
6812
6813	mtx_assert(&lk, MA_OWNED);
6814	LIST_REMOVE(dap, da_pdlist);
6815	if (dap->da_state & ONWORKLIST)
6816		WORKLIST_REMOVE(&dap->da_list);
6817	if ((dap->da_state & DIRCHG) == 0) {
6818		pagedep = dap->da_pagedep;
6819	} else {
6820		dirrem = dap->da_previous;
6821		pagedep = dirrem->dm_pagedep;
6822		dirrem->dm_dirinum = pagedep->pd_ino;
6823		dirrem->dm_state |= COMPLETE;
6824		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
6825			add_to_worklist(&dirrem->dm_list, 0);
6826	}
6827	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
6828	    0, &inodedep) != 0)
6829		if (inodedep->id_mkdiradd == dap)
6830			inodedep->id_mkdiradd = NULL;
6831	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6832		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
6833			nextmd = LIST_NEXT(mkdir, md_mkdirs);
6834			if (mkdir->md_diradd != dap)
6835				continue;
6836			dap->da_state &=
6837			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
6838			LIST_REMOVE(mkdir, md_mkdirs);
6839			if (mkdir->md_state & ONWORKLIST)
6840				WORKLIST_REMOVE(&mkdir->md_list);
6841			if (mkdir->md_jaddref != NULL)
6842				panic("free_diradd: Unexpected jaddref");
6843			WORKITEM_FREE(mkdir, D_MKDIR);
6844			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
6845				break;
6846		}
6847		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
6848			panic("free_diradd: unfound ref");
6849	}
6850	if (inodedep)
6851		free_inodedep(inodedep);
6852	/*
6853	 * Free any journal segments waiting for the directory write.
6854	 */
6855	handle_jwork(&dap->da_jwork);
6856	WORKITEM_FREE(dap, D_DIRADD);
6857}
6858
6859/*
6860 * Directory entry removal dependencies.
6861 *
6862 * When removing a directory entry, the entry's inode pointer must be
6863 * zero'ed on disk before the corresponding inode's link count is decremented
6864 * (possibly freeing the inode for re-use). This dependency is handled by
6865 * updating the directory entry but delaying the inode count reduction until
6866 * after the directory block has been written to disk. After this point, the
6867 * inode count can be decremented whenever it is convenient.
6868 */
6869
6870/*
6871 * This routine should be called immediately after removing
6872 * a directory entry.  The inode's link count should not be
6873 * decremented by the calling procedure -- the soft updates
6874 * code will do this task when it is safe.
6875 */
6876void
6877softdep_setup_remove(bp, dp, ip, isrmdir)
6878	struct buf *bp;		/* buffer containing directory block */
6879	struct inode *dp;	/* inode for the directory being modified */
6880	struct inode *ip;	/* inode for directory entry being removed */
6881	int isrmdir;		/* indicates if doing RMDIR */
6882{
6883	struct dirrem *dirrem, *prevdirrem;
6884	struct inodedep *inodedep;
6885	int direct;
6886
6887	/*
6888	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
6889	 * newdirrem() to setup the full directory remove which requires
6890	 * isrmdir > 1.
6891	 */
6892	dirrem = newdirrem(bp, dp, ip, isrmdir?2:0, &prevdirrem);
6893	/*
6894	 * Add the dirrem to the inodedep's pending remove list for quick
6895	 * discovery later.
6896	 */
6897	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
6898	    &inodedep) == 0)
6899		panic("softdep_setup_remove: Lost inodedep.");
6900	dirrem->dm_state |= ONDEPLIST;
6901	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
6902
6903	/*
6904	 * If the COMPLETE flag is clear, then there were no active
6905	 * entries and we want to roll back to a zeroed entry until
6906	 * the new inode is committed to disk. If the COMPLETE flag is
6907	 * set then we have deleted an entry that never made it to
6908	 * disk. If the entry we deleted resulted from a name change,
6909	 * then the old name still resides on disk. We cannot delete
6910	 * its inode (returned to us in prevdirrem) until the zeroed
6911	 * directory entry gets to disk. The new inode has never been
6912	 * referenced on the disk, so can be deleted immediately.
6913	 */
6914	if ((dirrem->dm_state & COMPLETE) == 0) {
6915		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
6916		    dm_next);
6917		FREE_LOCK(&lk);
6918	} else {
6919		if (prevdirrem != NULL)
6920			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
6921			    prevdirrem, dm_next);
6922		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
6923		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
6924		FREE_LOCK(&lk);
6925		if (direct)
6926			handle_workitem_remove(dirrem, NULL);
6927	}
6928}
6929
6930/*
6931 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
6932 * pd_pendinghd list of a pagedep.
6933 */
6934static struct diradd *
6935diradd_lookup(pagedep, offset)
6936	struct pagedep *pagedep;
6937	int offset;
6938{
6939	struct diradd *dap;
6940
6941	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
6942		if (dap->da_offset == offset)
6943			return (dap);
6944	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6945		if (dap->da_offset == offset)
6946			return (dap);
6947	return (NULL);
6948}
6949
6950/*
6951 * Search for a .. diradd dependency in a directory that is being removed.
6952 * If the directory was renamed to a new parent we have a diradd rather
6953 * than a mkdir for the .. entry.  We need to cancel it now before
6954 * it is found in truncate().
6955 */
6956static struct jremref *
6957cancel_diradd_dotdot(ip, dirrem, jremref)
6958	struct inode *ip;
6959	struct dirrem *dirrem;
6960	struct jremref *jremref;
6961{
6962	struct pagedep *pagedep;
6963	struct diradd *dap;
6964	struct worklist *wk;
6965
6966	if (pagedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 0,
6967	    &pagedep) == 0)
6968		return (jremref);
6969	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
6970	if (dap == NULL)
6971		return (jremref);
6972	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
6973	/*
6974	 * Mark any journal work as belonging to the parent so it is freed
6975	 * with the .. reference.
6976	 */
6977	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
6978		wk->wk_state |= MKDIR_PARENT;
6979	return (NULL);
6980}
6981
6982/*
6983 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
6984 * replace it with a dirrem/diradd pair as a result of re-parenting a
6985 * directory.  This ensures that we don't simultaneously have a mkdir and
6986 * a diradd for the same .. entry.
6987 */
6988static struct jremref *
6989cancel_mkdir_dotdot(ip, dirrem, jremref)
6990	struct inode *ip;
6991	struct dirrem *dirrem;
6992	struct jremref *jremref;
6993{
6994	struct inodedep *inodedep;
6995	struct jaddref *jaddref;
6996	struct mkdir *mkdir;
6997	struct diradd *dap;
6998
6999	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
7000	    &inodedep) == 0)
7001		panic("cancel_mkdir_dotdot: Lost inodedep");
7002	dap = inodedep->id_mkdiradd;
7003	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
7004		return (jremref);
7005	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
7006	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
7007		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
7008			break;
7009	if (mkdir == NULL)
7010		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
7011	if ((jaddref = mkdir->md_jaddref) != NULL) {
7012		mkdir->md_jaddref = NULL;
7013		jaddref->ja_state &= ~MKDIR_PARENT;
7014		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
7015		    &inodedep) == 0)
7016			panic("cancel_mkdir_dotdot: Lost parent inodedep");
7017		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
7018			journal_jremref(dirrem, jremref, inodedep);
7019			jremref = NULL;
7020		}
7021	}
7022	if (mkdir->md_state & ONWORKLIST)
7023		WORKLIST_REMOVE(&mkdir->md_list);
7024	mkdir->md_state |= ALLCOMPLETE;
7025	complete_mkdir(mkdir);
7026	return (jremref);
7027}
7028
7029static void
7030journal_jremref(dirrem, jremref, inodedep)
7031	struct dirrem *dirrem;
7032	struct jremref *jremref;
7033	struct inodedep *inodedep;
7034{
7035
7036	if (inodedep == NULL)
7037		if (inodedep_lookup(jremref->jr_list.wk_mp,
7038		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
7039			panic("journal_jremref: Lost inodedep");
7040	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
7041	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
7042	add_to_journal(&jremref->jr_list);
7043}
7044
7045static void
7046dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
7047	struct dirrem *dirrem;
7048	struct jremref *jremref;
7049	struct jremref *dotremref;
7050	struct jremref *dotdotremref;
7051{
7052	struct inodedep *inodedep;
7053
7054
7055	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
7056	    &inodedep) == 0)
7057		panic("dirrem_journal: Lost inodedep");
7058	journal_jremref(dirrem, jremref, inodedep);
7059	if (dotremref)
7060		journal_jremref(dirrem, dotremref, inodedep);
7061	if (dotdotremref)
7062		journal_jremref(dirrem, dotdotremref, NULL);
7063}
7064
7065/*
7066 * Allocate a new dirrem if appropriate and return it along with
7067 * its associated pagedep. Called without a lock, returns with lock.
7068 */
7069static long num_dirrem;		/* number of dirrem allocated */
7070static struct dirrem *
7071newdirrem(bp, dp, ip, isrmdir, prevdirremp)
7072	struct buf *bp;		/* buffer containing directory block */
7073	struct inode *dp;	/* inode for the directory being modified */
7074	struct inode *ip;	/* inode for directory entry being removed */
7075	int isrmdir;		/* indicates if doing RMDIR */
7076	struct dirrem **prevdirremp; /* previously referenced inode, if any */
7077{
7078	int offset;
7079	ufs_lbn_t lbn;
7080	struct diradd *dap;
7081	struct dirrem *dirrem;
7082	struct pagedep *pagedep;
7083	struct jremref *jremref;
7084	struct jremref *dotremref;
7085	struct jremref *dotdotremref;
7086	struct vnode *dvp;
7087
7088	/*
7089	 * Whiteouts have no deletion dependencies.
7090	 */
7091	if (ip == NULL)
7092		panic("newdirrem: whiteout");
7093	dvp = ITOV(dp);
7094	/*
7095	 * If we are over our limit, try to improve the situation.
7096	 * Limiting the number of dirrem structures will also limit
7097	 * the number of freefile and freeblks structures.
7098	 */
7099	ACQUIRE_LOCK(&lk);
7100	if (!(ip->i_flags & SF_SNAPSHOT) && num_dirrem > max_softdeps / 2)
7101		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE);
7102	num_dirrem += 1;
7103	FREE_LOCK(&lk);
7104	dirrem = malloc(sizeof(struct dirrem),
7105		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
7106	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
7107	LIST_INIT(&dirrem->dm_jremrefhd);
7108	LIST_INIT(&dirrem->dm_jwork);
7109	dirrem->dm_state = isrmdir ? RMDIR : 0;
7110	dirrem->dm_oldinum = ip->i_number;
7111	*prevdirremp = NULL;
7112	/*
7113	 * Allocate remove reference structures to track journal write
7114	 * dependencies.  We will always have one for the link and
7115	 * when doing directories we will always have one more for dot.
7116	 * When renaming a directory we skip the dotdot link change so
7117	 * this is not needed.
7118	 */
7119	jremref = dotremref = dotdotremref = NULL;
7120	if (DOINGSUJ(dvp)) {
7121		if (isrmdir) {
7122			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
7123			    ip->i_effnlink + 2);
7124			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
7125			    ip->i_effnlink + 1);
7126		} else
7127			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
7128			    ip->i_effnlink + 1);
7129		if (isrmdir > 1) {
7130			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
7131			    dp->i_effnlink + 1);
7132			dotdotremref->jr_state |= MKDIR_PARENT;
7133		}
7134	}
7135	ACQUIRE_LOCK(&lk);
7136	lbn = lblkno(dp->i_fs, dp->i_offset);
7137	offset = blkoff(dp->i_fs, dp->i_offset);
7138	if (pagedep_lookup(UFSTOVFS(dp->i_ump), dp->i_number, lbn, DEPALLOC,
7139	    &pagedep) == 0)
7140		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
7141	dirrem->dm_pagedep = pagedep;
7142	/*
7143	 * If we're renaming a .. link to a new directory, cancel any
7144	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
7145	 * the jremref is preserved for any potential diradd in this
7146	 * location.  This can not coincide with a rmdir.
7147	 */
7148	if (dp->i_offset == DOTDOT_OFFSET) {
7149		if (isrmdir)
7150			panic("newdirrem: .. directory change during remove?");
7151		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
7152	}
7153	/*
7154	 * If we're removing a directory search for the .. dependency now and
7155	 * cancel it.  Any pending journal work will be added to the dirrem
7156	 * to be completed when the workitem remove completes.
7157	 */
7158	if (isrmdir > 1)
7159		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
7160	/*
7161	 * Check for a diradd dependency for the same directory entry.
7162	 * If present, then both dependencies become obsolete and can
7163	 * be de-allocated.
7164	 */
7165	dap = diradd_lookup(pagedep, offset);
7166	if (dap == NULL) {
7167		/*
7168		 * Link the jremref structures into the dirrem so they are
7169		 * written prior to the pagedep.
7170		 */
7171		if (jremref)
7172			dirrem_journal(dirrem, jremref, dotremref,
7173			    dotdotremref);
7174		return (dirrem);
7175	}
7176	/*
7177	 * Must be ATTACHED at this point.
7178	 */
7179	if ((dap->da_state & ATTACHED) == 0)
7180		panic("newdirrem: not ATTACHED");
7181	if (dap->da_newinum != ip->i_number)
7182		panic("newdirrem: inum %d should be %d",
7183		    ip->i_number, dap->da_newinum);
7184	/*
7185	 * If we are deleting a changed name that never made it to disk,
7186	 * then return the dirrem describing the previous inode (which
7187	 * represents the inode currently referenced from this entry on disk).
7188	 */
7189	if ((dap->da_state & DIRCHG) != 0) {
7190		*prevdirremp = dap->da_previous;
7191		dap->da_state &= ~DIRCHG;
7192		dap->da_pagedep = pagedep;
7193	}
7194	/*
7195	 * We are deleting an entry that never made it to disk.
7196	 * Mark it COMPLETE so we can delete its inode immediately.
7197	 */
7198	dirrem->dm_state |= COMPLETE;
7199	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
7200#ifdef SUJ_DEBUG
7201	if (isrmdir == 0) {
7202		struct worklist *wk;
7203
7204		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
7205			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
7206				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
7207	}
7208#endif
7209
7210	return (dirrem);
7211}
7212
7213/*
7214 * Directory entry change dependencies.
7215 *
7216 * Changing an existing directory entry requires that an add operation
7217 * be completed first followed by a deletion. The semantics for the addition
7218 * are identical to the description of adding a new entry above except
7219 * that the rollback is to the old inode number rather than zero. Once
7220 * the addition dependency is completed, the removal is done as described
7221 * in the removal routine above.
7222 */
7223
7224/*
7225 * This routine should be called immediately after changing
7226 * a directory entry.  The inode's link count should not be
7227 * decremented by the calling procedure -- the soft updates
7228 * code will perform this task when it is safe.
7229 */
7230void
7231softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
7232	struct buf *bp;		/* buffer containing directory block */
7233	struct inode *dp;	/* inode for the directory being modified */
7234	struct inode *ip;	/* inode for directory entry being removed */
7235	ino_t newinum;		/* new inode number for changed entry */
7236	int isrmdir;		/* indicates if doing RMDIR */
7237{
7238	int offset;
7239	struct diradd *dap = NULL;
7240	struct dirrem *dirrem, *prevdirrem;
7241	struct pagedep *pagedep;
7242	struct inodedep *inodedep;
7243	struct jaddref *jaddref;
7244	struct mount *mp;
7245
7246	offset = blkoff(dp->i_fs, dp->i_offset);
7247	mp = UFSTOVFS(dp->i_ump);
7248
7249	/*
7250	 * Whiteouts do not need diradd dependencies.
7251	 */
7252	if (newinum != WINO) {
7253		dap = malloc(sizeof(struct diradd),
7254		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
7255		workitem_alloc(&dap->da_list, D_DIRADD, mp);
7256		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
7257		dap->da_offset = offset;
7258		dap->da_newinum = newinum;
7259		LIST_INIT(&dap->da_jwork);
7260	}
7261
7262	/*
7263	 * Allocate a new dirrem and ACQUIRE_LOCK.
7264	 */
7265	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
7266	pagedep = dirrem->dm_pagedep;
7267	/*
7268	 * The possible values for isrmdir:
7269	 *	0 - non-directory file rename
7270	 *	1 - directory rename within same directory
7271	 *   inum - directory rename to new directory of given inode number
7272	 * When renaming to a new directory, we are both deleting and
7273	 * creating a new directory entry, so the link count on the new
7274	 * directory should not change. Thus we do not need the followup
7275	 * dirrem which is usually done in handle_workitem_remove. We set
7276	 * the DIRCHG flag to tell handle_workitem_remove to skip the
7277	 * followup dirrem.
7278	 */
7279	if (isrmdir > 1)
7280		dirrem->dm_state |= DIRCHG;
7281
7282	/*
7283	 * Whiteouts have no additional dependencies,
7284	 * so just put the dirrem on the correct list.
7285	 */
7286	if (newinum == WINO) {
7287		if ((dirrem->dm_state & COMPLETE) == 0) {
7288			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
7289			    dm_next);
7290		} else {
7291			dirrem->dm_dirinum = pagedep->pd_ino;
7292			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
7293				add_to_worklist(&dirrem->dm_list, 0);
7294		}
7295		FREE_LOCK(&lk);
7296		return;
7297	}
7298	/*
7299	 * Add the dirrem to the inodedep's pending remove list for quick
7300	 * discovery later.  A valid nlinkdelta ensures that this lookup
7301	 * will not fail.
7302	 */
7303	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
7304		panic("softdep_setup_directory_change: Lost inodedep.");
7305	dirrem->dm_state |= ONDEPLIST;
7306	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
7307
7308	/*
7309	 * If the COMPLETE flag is clear, then there were no active
7310	 * entries and we want to roll back to the previous inode until
7311	 * the new inode is committed to disk. If the COMPLETE flag is
7312	 * set, then we have deleted an entry that never made it to disk.
7313	 * If the entry we deleted resulted from a name change, then the old
7314	 * inode reference still resides on disk. Any rollback that we do
7315	 * needs to be to that old inode (returned to us in prevdirrem). If
7316	 * the entry we deleted resulted from a create, then there is
7317	 * no entry on the disk, so we want to roll back to zero rather
7318	 * than the uncommitted inode. In either of the COMPLETE cases we
7319	 * want to immediately free the unwritten and unreferenced inode.
7320	 */
7321	if ((dirrem->dm_state & COMPLETE) == 0) {
7322		dap->da_previous = dirrem;
7323	} else {
7324		if (prevdirrem != NULL) {
7325			dap->da_previous = prevdirrem;
7326		} else {
7327			dap->da_state &= ~DIRCHG;
7328			dap->da_pagedep = pagedep;
7329		}
7330		dirrem->dm_dirinum = pagedep->pd_ino;
7331		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
7332			add_to_worklist(&dirrem->dm_list, 0);
7333	}
7334	/*
7335	 * Lookup the jaddref for this journal entry.  We must finish
7336	 * initializing it and make the diradd write dependent on it.
7337	 * If we're not journaling Put it on the id_bufwait list if the inode
7338	 * is not yet written. If it is written, do the post-inode write
7339	 * processing to put it on the id_pendinghd list.
7340	 */
7341	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
7342	if (mp->mnt_kern_flag & MNTK_SUJ) {
7343		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
7344		    inoreflst);
7345		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
7346		    ("softdep_setup_directory_change: bad jaddref %p",
7347		    jaddref));
7348		jaddref->ja_diroff = dp->i_offset;
7349		jaddref->ja_diradd = dap;
7350		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
7351		    dap, da_pdlist);
7352		add_to_journal(&jaddref->ja_list);
7353	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
7354		dap->da_state |= COMPLETE;
7355		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
7356		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
7357	} else {
7358		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
7359		    dap, da_pdlist);
7360		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
7361	}
7362	/*
7363	 * If we're making a new name for a directory that has not been
7364	 * committed when need to move the dot and dotdot references to
7365	 * this new name.
7366	 */
7367	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
7368		merge_diradd(inodedep, dap);
7369	FREE_LOCK(&lk);
7370}
7371
7372/*
7373 * Called whenever the link count on an inode is changed.
7374 * It creates an inode dependency so that the new reference(s)
7375 * to the inode cannot be committed to disk until the updated
7376 * inode has been written.
7377 */
7378void
7379softdep_change_linkcnt(ip)
7380	struct inode *ip;	/* the inode with the increased link count */
7381{
7382	struct inodedep *inodedep;
7383
7384	ACQUIRE_LOCK(&lk);
7385	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
7386	if (ip->i_nlink < ip->i_effnlink)
7387		panic("softdep_change_linkcnt: bad delta");
7388	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7389	FREE_LOCK(&lk);
7390}
7391
7392/*
7393 * Attach a sbdep dependency to the superblock buf so that we can keep
7394 * track of the head of the linked list of referenced but unlinked inodes.
7395 */
7396void
7397softdep_setup_sbupdate(ump, fs, bp)
7398	struct ufsmount *ump;
7399	struct fs *fs;
7400	struct buf *bp;
7401{
7402	struct sbdep *sbdep;
7403	struct worklist *wk;
7404
7405	if ((fs->fs_flags & FS_SUJ) == 0)
7406		return;
7407	LIST_FOREACH(wk, &bp->b_dep, wk_list)
7408		if (wk->wk_type == D_SBDEP)
7409			break;
7410	if (wk != NULL)
7411		return;
7412	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
7413	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
7414	sbdep->sb_fs = fs;
7415	sbdep->sb_ump = ump;
7416	ACQUIRE_LOCK(&lk);
7417	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
7418	FREE_LOCK(&lk);
7419}
7420
7421/*
7422 * Return the first unlinked inodedep which is ready to be the head of the
7423 * list.  The inodedep and all those after it must have valid next pointers.
7424 */
7425static struct inodedep *
7426first_unlinked_inodedep(ump)
7427	struct ufsmount *ump;
7428{
7429	struct inodedep *inodedep;
7430	struct inodedep *idp;
7431
7432	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
7433	    inodedep; inodedep = idp) {
7434		if ((inodedep->id_state & UNLINKNEXT) == 0)
7435			return (NULL);
7436		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7437		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
7438			break;
7439		if ((inodedep->id_state & UNLINKPREV) == 0)
7440			panic("first_unlinked_inodedep: prev != next");
7441	}
7442	if (inodedep == NULL)
7443		return (NULL);
7444
7445	return (inodedep);
7446}
7447
7448/*
7449 * Set the sujfree unlinked head pointer prior to writing a superblock.
7450 */
7451static void
7452initiate_write_sbdep(sbdep)
7453	struct sbdep *sbdep;
7454{
7455	struct inodedep *inodedep;
7456	struct fs *bpfs;
7457	struct fs *fs;
7458
7459	bpfs = sbdep->sb_fs;
7460	fs = sbdep->sb_ump->um_fs;
7461	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
7462	if (inodedep) {
7463		fs->fs_sujfree = inodedep->id_ino;
7464		inodedep->id_state |= UNLINKPREV;
7465	} else
7466		fs->fs_sujfree = 0;
7467	bpfs->fs_sujfree = fs->fs_sujfree;
7468}
7469
7470/*
7471 * After a superblock is written determine whether it must be written again
7472 * due to a changing unlinked list head.
7473 */
7474static int
7475handle_written_sbdep(sbdep, bp)
7476	struct sbdep *sbdep;
7477	struct buf *bp;
7478{
7479	struct inodedep *inodedep;
7480	struct mount *mp;
7481	struct fs *fs;
7482
7483	fs = sbdep->sb_fs;
7484	mp = UFSTOVFS(sbdep->sb_ump);
7485	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
7486	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
7487	    (inodedep == NULL && fs->fs_sujfree != 0)) {
7488		bdirty(bp);
7489		return (1);
7490	}
7491	WORKITEM_FREE(sbdep, D_SBDEP);
7492	if (fs->fs_sujfree == 0)
7493		return (0);
7494	if (inodedep_lookup(mp, fs->fs_sujfree, 0, &inodedep) == 0)
7495		panic("handle_written_sbdep: lost inodedep");
7496	/*
7497	 * Now that we have a record of this inode in stable store allow it
7498	 * to be written to free up pending work.  Inodes may see a lot of
7499	 * write activity after they are unlinked which we must not hold up.
7500	 */
7501	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
7502		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
7503			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
7504			    inodedep, inodedep->id_state);
7505		if (inodedep->id_state & UNLINKONLIST)
7506			break;
7507		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
7508	}
7509
7510	return (0);
7511}
7512
7513/*
7514 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
7515 */
7516static void
7517unlinked_inodedep(mp, inodedep)
7518	struct mount *mp;
7519	struct inodedep *inodedep;
7520{
7521	struct ufsmount *ump;
7522
7523	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0)
7524		return;
7525	ump = VFSTOUFS(mp);
7526	ump->um_fs->fs_fmod = 1;
7527	inodedep->id_state |= UNLINKED;
7528	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
7529}
7530
7531/*
7532 * Remove an inodedep from the unlinked inodedep list.  This may require
7533 * disk writes if the inode has made it that far.
7534 */
7535static void
7536clear_unlinked_inodedep(inodedep)
7537	struct inodedep *inodedep;
7538{
7539	struct ufsmount *ump;
7540	struct inodedep *idp;
7541	struct inodedep *idn;
7542	struct fs *fs;
7543	struct buf *bp;
7544	ino_t ino;
7545	ino_t nino;
7546	ino_t pino;
7547	int error;
7548
7549	ump = VFSTOUFS(inodedep->id_list.wk_mp);
7550	fs = ump->um_fs;
7551	ino = inodedep->id_ino;
7552	error = 0;
7553	for (;;) {
7554		/*
7555		 * If nothing has yet been written simply remove us from
7556		 * the in memory list and return.  This is the most common
7557		 * case where handle_workitem_remove() loses the final
7558		 * reference.
7559		 */
7560		if ((inodedep->id_state & UNLINKLINKS) == 0)
7561			break;
7562		/*
7563		 * If we have a NEXT pointer and no PREV pointer we can simply
7564		 * clear NEXT's PREV and remove ourselves from the list.  Be
7565		 * careful not to clear PREV if the superblock points at
7566		 * next as well.
7567		 */
7568		idn = TAILQ_NEXT(inodedep, id_unlinked);
7569		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
7570			if (idn && fs->fs_sujfree != idn->id_ino)
7571				idn->id_state &= ~UNLINKPREV;
7572			break;
7573		}
7574		/*
7575		 * Here we have an inodedep which is actually linked into
7576		 * the list.  We must remove it by forcing a write to the
7577		 * link before us, whether it be the superblock or an inode.
7578		 * Unfortunately the list may change while we're waiting
7579		 * on the buf lock for either resource so we must loop until
7580		 * we lock the right one.  If both the superblock and an
7581		 * inode point to this inode we must clear the inode first
7582		 * followed by the superblock.
7583		 */
7584		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7585		pino = 0;
7586		if (idp && (idp->id_state & UNLINKNEXT))
7587			pino = idp->id_ino;
7588		FREE_LOCK(&lk);
7589		if (pino == 0)
7590			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
7591			    (int)fs->fs_sbsize, 0, 0, 0);
7592		else
7593			error = bread(ump->um_devvp,
7594			    fsbtodb(fs, ino_to_fsba(fs, pino)),
7595			    (int)fs->fs_bsize, NOCRED, &bp);
7596		ACQUIRE_LOCK(&lk);
7597		if (error)
7598			break;
7599		/* If the list has changed restart the loop. */
7600		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7601		nino = 0;
7602		if (idp && (idp->id_state & UNLINKNEXT))
7603			nino = idp->id_ino;
7604		if (nino != pino ||
7605		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
7606			FREE_LOCK(&lk);
7607			brelse(bp);
7608			ACQUIRE_LOCK(&lk);
7609			continue;
7610		}
7611		/*
7612		 * Remove us from the in memory list.  After this we cannot
7613		 * access the inodedep.
7614		 */
7615		idn = TAILQ_NEXT(inodedep, id_unlinked);
7616		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
7617		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
7618		/*
7619		 * Determine the next inode number.
7620		 */
7621		nino = 0;
7622		if (idn) {
7623			/*
7624			 * If next isn't on the list we can just clear prev's
7625			 * state and schedule it to be fixed later.  No need
7626			 * to synchronously write if we're not in the real
7627			 * list.
7628			 */
7629			if ((idn->id_state & UNLINKPREV) == 0 && pino != 0) {
7630				idp->id_state &= ~UNLINKNEXT;
7631				if ((idp->id_state & ONWORKLIST) == 0)
7632					WORKLIST_INSERT(&bp->b_dep,
7633					    &idp->id_list);
7634				FREE_LOCK(&lk);
7635				bawrite(bp);
7636				ACQUIRE_LOCK(&lk);
7637				return;
7638			}
7639			nino = idn->id_ino;
7640		}
7641		FREE_LOCK(&lk);
7642		/*
7643		 * The predecessor's next pointer is manually updated here
7644		 * so that the NEXT flag is never cleared for an element
7645		 * that is in the list.
7646		 */
7647		if (pino == 0) {
7648			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
7649			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
7650			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
7651			    bp);
7652		} else if (fs->fs_magic == FS_UFS1_MAGIC)
7653			((struct ufs1_dinode *)bp->b_data +
7654			    ino_to_fsbo(fs, pino))->di_freelink = nino;
7655		else
7656			((struct ufs2_dinode *)bp->b_data +
7657			    ino_to_fsbo(fs, pino))->di_freelink = nino;
7658		/*
7659		 * If the bwrite fails we have no recourse to recover.  The
7660		 * filesystem is corrupted already.
7661		 */
7662		bwrite(bp);
7663		ACQUIRE_LOCK(&lk);
7664		/*
7665		 * If the superblock pointer still needs to be cleared force
7666		 * a write here.
7667		 */
7668		if (fs->fs_sujfree == ino) {
7669			FREE_LOCK(&lk);
7670			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
7671			    (int)fs->fs_sbsize, 0, 0, 0);
7672			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
7673			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
7674			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
7675			    bp);
7676			bwrite(bp);
7677			ACQUIRE_LOCK(&lk);
7678		}
7679		if (fs->fs_sujfree != ino)
7680			return;
7681		panic("clear_unlinked_inodedep: Failed to clear free head");
7682	}
7683	if (inodedep->id_ino == fs->fs_sujfree)
7684		panic("clear_unlinked_inodedep: Freeing head of free list");
7685	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
7686	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
7687	return;
7688}
7689
7690/*
7691 * This workitem decrements the inode's link count.
7692 * If the link count reaches zero, the file is removed.
7693 */
7694static void
7695handle_workitem_remove(dirrem, xp)
7696	struct dirrem *dirrem;
7697	struct vnode *xp;
7698{
7699	struct inodedep *inodedep;
7700	struct workhead dotdotwk;
7701	struct worklist *wk;
7702	struct ufsmount *ump;
7703	struct mount *mp;
7704	struct vnode *vp;
7705	struct inode *ip;
7706	ino_t oldinum;
7707	int error;
7708
7709	if (dirrem->dm_state & ONWORKLIST)
7710		panic("handle_workitem_remove: dirrem %p still on worklist",
7711		    dirrem);
7712	oldinum = dirrem->dm_oldinum;
7713	mp = dirrem->dm_list.wk_mp;
7714	ump = VFSTOUFS(mp);
7715	if ((vp = xp) == NULL &&
7716	    (error = ffs_vgetf(mp, oldinum, LK_EXCLUSIVE, &vp,
7717	    FFSV_FORCEINSMQ)) != 0) {
7718		softdep_error("handle_workitem_remove: vget", error);
7719		return;
7720	}
7721	ip = VTOI(vp);
7722	ACQUIRE_LOCK(&lk);
7723	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
7724		panic("handle_workitem_remove: lost inodedep");
7725	if (dirrem->dm_state & ONDEPLIST)
7726		LIST_REMOVE(dirrem, dm_inonext);
7727	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
7728	    ("handle_workitem_remove:  Journal entries not written."));
7729
7730	/*
7731	 * Move all dependencies waiting on the remove to complete
7732	 * from the dirrem to the inode inowait list to be completed
7733	 * after the inode has been updated and written to disk.  Any
7734	 * marked MKDIR_PARENT are saved to be completed when the .. ref
7735	 * is removed.
7736	 */
7737	LIST_INIT(&dotdotwk);
7738	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
7739		WORKLIST_REMOVE(wk);
7740		if (wk->wk_state & MKDIR_PARENT) {
7741			wk->wk_state &= ~MKDIR_PARENT;
7742			WORKLIST_INSERT(&dotdotwk, wk);
7743			continue;
7744		}
7745		WORKLIST_INSERT(&inodedep->id_inowait, wk);
7746	}
7747	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
7748	/*
7749	 * Normal file deletion.
7750	 */
7751	if ((dirrem->dm_state & RMDIR) == 0) {
7752		ip->i_nlink--;
7753		DIP_SET(ip, i_nlink, ip->i_nlink);
7754		ip->i_flag |= IN_CHANGE;
7755		if (ip->i_nlink < ip->i_effnlink)
7756			panic("handle_workitem_remove: bad file delta");
7757		if (ip->i_nlink == 0)
7758			unlinked_inodedep(mp, inodedep);
7759		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7760		num_dirrem -= 1;
7761		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
7762		    ("handle_workitem_remove: worklist not empty. %s",
7763		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
7764		WORKITEM_FREE(dirrem, D_DIRREM);
7765		FREE_LOCK(&lk);
7766		goto out;
7767	}
7768	/*
7769	 * Directory deletion. Decrement reference count for both the
7770	 * just deleted parent directory entry and the reference for ".".
7771	 * Arrange to have the reference count on the parent decremented
7772	 * to account for the loss of "..".
7773	 */
7774	ip->i_nlink -= 2;
7775	DIP_SET(ip, i_nlink, ip->i_nlink);
7776	ip->i_flag |= IN_CHANGE;
7777	if (ip->i_nlink < ip->i_effnlink)
7778		panic("handle_workitem_remove: bad dir delta");
7779	if (ip->i_nlink == 0)
7780		unlinked_inodedep(mp, inodedep);
7781	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7782	/*
7783	 * Rename a directory to a new parent. Since, we are both deleting
7784	 * and creating a new directory entry, the link count on the new
7785	 * directory should not change. Thus we skip the followup dirrem.
7786	 */
7787	if (dirrem->dm_state & DIRCHG) {
7788		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
7789		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
7790		num_dirrem -= 1;
7791		WORKITEM_FREE(dirrem, D_DIRREM);
7792		FREE_LOCK(&lk);
7793		goto out;
7794	}
7795	dirrem->dm_state = ONDEPLIST;
7796	dirrem->dm_oldinum = dirrem->dm_dirinum;
7797	/*
7798	 * Place the dirrem on the parent's diremhd list.
7799	 */
7800	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
7801		panic("handle_workitem_remove: lost dir inodedep");
7802	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
7803	/*
7804	 * If the allocated inode has never been written to disk, then
7805	 * the on-disk inode is zero'ed and we can remove the file
7806	 * immediately.  When journaling if the inode has been marked
7807	 * unlinked and not DEPCOMPLETE we know it can never be written.
7808	 */
7809	inodedep_lookup(mp, oldinum, 0, &inodedep);
7810	if (inodedep == NULL ||
7811	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
7812	    check_inode_unwritten(inodedep)) {
7813		if (xp != NULL)
7814			add_to_worklist(&dirrem->dm_list, 0);
7815		FREE_LOCK(&lk);
7816		if (xp == NULL) {
7817			vput(vp);
7818			handle_workitem_remove(dirrem, NULL);
7819		}
7820		return;
7821	}
7822	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
7823	FREE_LOCK(&lk);
7824	ip->i_flag |= IN_CHANGE;
7825out:
7826	ffs_update(vp, 0);
7827	if (xp == NULL)
7828		vput(vp);
7829}
7830
7831/*
7832 * Inode de-allocation dependencies.
7833 *
7834 * When an inode's link count is reduced to zero, it can be de-allocated. We
7835 * found it convenient to postpone de-allocation until after the inode is
7836 * written to disk with its new link count (zero).  At this point, all of the
7837 * on-disk inode's block pointers are nullified and, with careful dependency
7838 * list ordering, all dependencies related to the inode will be satisfied and
7839 * the corresponding dependency structures de-allocated.  So, if/when the
7840 * inode is reused, there will be no mixing of old dependencies with new
7841 * ones.  This artificial dependency is set up by the block de-allocation
7842 * procedure above (softdep_setup_freeblocks) and completed by the
7843 * following procedure.
7844 */
7845static void
7846handle_workitem_freefile(freefile)
7847	struct freefile *freefile;
7848{
7849	struct workhead wkhd;
7850	struct fs *fs;
7851	struct inodedep *idp;
7852	struct ufsmount *ump;
7853	int error;
7854
7855	ump = VFSTOUFS(freefile->fx_list.wk_mp);
7856	fs = ump->um_fs;
7857#ifdef DEBUG
7858	ACQUIRE_LOCK(&lk);
7859	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
7860	FREE_LOCK(&lk);
7861	if (error)
7862		panic("handle_workitem_freefile: inodedep %p survived", idp);
7863#endif
7864	UFS_LOCK(ump);
7865	fs->fs_pendinginodes -= 1;
7866	UFS_UNLOCK(ump);
7867	LIST_INIT(&wkhd);
7868	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
7869	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
7870	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
7871		softdep_error("handle_workitem_freefile", error);
7872	ACQUIRE_LOCK(&lk);
7873	WORKITEM_FREE(freefile, D_FREEFILE);
7874	FREE_LOCK(&lk);
7875}
7876
7877
7878/*
7879 * Helper function which unlinks marker element from work list and returns
7880 * the next element on the list.
7881 */
7882static __inline struct worklist *
7883markernext(struct worklist *marker)
7884{
7885	struct worklist *next;
7886
7887	next = LIST_NEXT(marker, wk_list);
7888	LIST_REMOVE(marker, wk_list);
7889	return next;
7890}
7891
7892/*
7893 * Disk writes.
7894 *
7895 * The dependency structures constructed above are most actively used when file
7896 * system blocks are written to disk.  No constraints are placed on when a
7897 * block can be written, but unsatisfied update dependencies are made safe by
7898 * modifying (or replacing) the source memory for the duration of the disk
7899 * write.  When the disk write completes, the memory block is again brought
7900 * up-to-date.
7901 *
7902 * In-core inode structure reclamation.
7903 *
7904 * Because there are a finite number of "in-core" inode structures, they are
7905 * reused regularly.  By transferring all inode-related dependencies to the
7906 * in-memory inode block and indexing them separately (via "inodedep"s), we
7907 * can allow "in-core" inode structures to be reused at any time and avoid
7908 * any increase in contention.
7909 *
7910 * Called just before entering the device driver to initiate a new disk I/O.
7911 * The buffer must be locked, thus, no I/O completion operations can occur
7912 * while we are manipulating its associated dependencies.
7913 */
7914static void
7915softdep_disk_io_initiation(bp)
7916	struct buf *bp;		/* structure describing disk write to occur */
7917{
7918	struct worklist *wk;
7919	struct worklist marker;
7920	struct inodedep *inodedep;
7921	struct freeblks *freeblks;
7922	struct jfreeblk *jfreeblk;
7923	struct newblk *newblk;
7924
7925	/*
7926	 * We only care about write operations. There should never
7927	 * be dependencies for reads.
7928	 */
7929	if (bp->b_iocmd != BIO_WRITE)
7930		panic("softdep_disk_io_initiation: not write");
7931
7932	if (bp->b_vflags & BV_BKGRDINPROG)
7933		panic("softdep_disk_io_initiation: Writing buffer with "
7934		    "background write in progress: %p", bp);
7935
7936	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
7937	PHOLD(curproc);			/* Don't swap out kernel stack */
7938
7939	ACQUIRE_LOCK(&lk);
7940	/*
7941	 * Do any necessary pre-I/O processing.
7942	 */
7943	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
7944	     wk = markernext(&marker)) {
7945		LIST_INSERT_AFTER(wk, &marker, wk_list);
7946		switch (wk->wk_type) {
7947
7948		case D_PAGEDEP:
7949			initiate_write_filepage(WK_PAGEDEP(wk), bp);
7950			continue;
7951
7952		case D_INODEDEP:
7953			inodedep = WK_INODEDEP(wk);
7954			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
7955				initiate_write_inodeblock_ufs1(inodedep, bp);
7956			else
7957				initiate_write_inodeblock_ufs2(inodedep, bp);
7958			continue;
7959
7960		case D_INDIRDEP:
7961			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
7962			continue;
7963
7964		case D_BMSAFEMAP:
7965			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
7966			continue;
7967
7968		case D_JSEG:
7969			WK_JSEG(wk)->js_buf = NULL;
7970			continue;
7971
7972		case D_FREEBLKS:
7973			freeblks = WK_FREEBLKS(wk);
7974			jfreeblk = LIST_FIRST(&freeblks->fb_jfreeblkhd);
7975			/*
7976			 * We have to wait for the jfreeblks to be journaled
7977			 * before we can write an inodeblock with updated
7978			 * pointers.  Be careful to arrange the marker so
7979			 * we revisit the jfreeblk if it's not removed by
7980			 * the first jwait().
7981			 */
7982			if (jfreeblk != NULL) {
7983				LIST_REMOVE(&marker, wk_list);
7984				LIST_INSERT_BEFORE(wk, &marker, wk_list);
7985				jwait(&jfreeblk->jf_list);
7986			}
7987			continue;
7988		case D_ALLOCDIRECT:
7989		case D_ALLOCINDIR:
7990			/*
7991			 * We have to wait for the jnewblk to be journaled
7992			 * before we can write to a block otherwise the
7993			 * contents may be confused with an earlier file
7994			 * at recovery time.  Handle the marker as described
7995			 * above.
7996			 */
7997			newblk = WK_NEWBLK(wk);
7998			if (newblk->nb_jnewblk != NULL) {
7999				LIST_REMOVE(&marker, wk_list);
8000				LIST_INSERT_BEFORE(wk, &marker, wk_list);
8001				jwait(&newblk->nb_jnewblk->jn_list);
8002			}
8003			continue;
8004
8005		case D_SBDEP:
8006			initiate_write_sbdep(WK_SBDEP(wk));
8007			continue;
8008
8009		case D_MKDIR:
8010		case D_FREEWORK:
8011		case D_FREEDEP:
8012		case D_JSEGDEP:
8013			continue;
8014
8015		default:
8016			panic("handle_disk_io_initiation: Unexpected type %s",
8017			    TYPENAME(wk->wk_type));
8018			/* NOTREACHED */
8019		}
8020	}
8021	FREE_LOCK(&lk);
8022	PRELE(curproc);			/* Allow swapout of kernel stack */
8023}
8024
8025/*
8026 * Called from within the procedure above to deal with unsatisfied
8027 * allocation dependencies in a directory. The buffer must be locked,
8028 * thus, no I/O completion operations can occur while we are
8029 * manipulating its associated dependencies.
8030 */
8031static void
8032initiate_write_filepage(pagedep, bp)
8033	struct pagedep *pagedep;
8034	struct buf *bp;
8035{
8036	struct jremref *jremref;
8037	struct jmvref *jmvref;
8038	struct dirrem *dirrem;
8039	struct diradd *dap;
8040	struct direct *ep;
8041	int i;
8042
8043	if (pagedep->pd_state & IOSTARTED) {
8044		/*
8045		 * This can only happen if there is a driver that does not
8046		 * understand chaining. Here biodone will reissue the call
8047		 * to strategy for the incomplete buffers.
8048		 */
8049		printf("initiate_write_filepage: already started\n");
8050		return;
8051	}
8052	pagedep->pd_state |= IOSTARTED;
8053	/*
8054	 * Wait for all journal remove dependencies to hit the disk.
8055	 * We can not allow any potentially conflicting directory adds
8056	 * to be visible before removes and rollback is too difficult.
8057	 * lk may be dropped and re-acquired, however we hold the buf
8058	 * locked so the dependency can not go away.
8059	 */
8060	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
8061		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
8062			stat_jwait_filepage++;
8063			jwait(&jremref->jr_list);
8064		}
8065	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
8066		stat_jwait_filepage++;
8067		jwait(&jmvref->jm_list);
8068	}
8069	for (i = 0; i < DAHASHSZ; i++) {
8070		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
8071			ep = (struct direct *)
8072			    ((char *)bp->b_data + dap->da_offset);
8073			if (ep->d_ino != dap->da_newinum)
8074				panic("%s: dir inum %d != new %d",
8075				    "initiate_write_filepage",
8076				    ep->d_ino, dap->da_newinum);
8077			if (dap->da_state & DIRCHG)
8078				ep->d_ino = dap->da_previous->dm_oldinum;
8079			else
8080				ep->d_ino = 0;
8081			dap->da_state &= ~ATTACHED;
8082			dap->da_state |= UNDONE;
8083		}
8084	}
8085}
8086
8087/*
8088 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
8089 * Note that any bug fixes made to this routine must be done in the
8090 * version found below.
8091 *
8092 * Called from within the procedure above to deal with unsatisfied
8093 * allocation dependencies in an inodeblock. The buffer must be
8094 * locked, thus, no I/O completion operations can occur while we
8095 * are manipulating its associated dependencies.
8096 */
8097static void
8098initiate_write_inodeblock_ufs1(inodedep, bp)
8099	struct inodedep *inodedep;
8100	struct buf *bp;			/* The inode block */
8101{
8102	struct allocdirect *adp, *lastadp;
8103	struct ufs1_dinode *dp;
8104	struct ufs1_dinode *sip;
8105	struct inoref *inoref;
8106	struct fs *fs;
8107	ufs_lbn_t i;
8108#ifdef INVARIANTS
8109	ufs_lbn_t prevlbn = 0;
8110#endif
8111	int deplist;
8112
8113	if (inodedep->id_state & IOSTARTED)
8114		panic("initiate_write_inodeblock_ufs1: already started");
8115	inodedep->id_state |= IOSTARTED;
8116	fs = inodedep->id_fs;
8117	dp = (struct ufs1_dinode *)bp->b_data +
8118	    ino_to_fsbo(fs, inodedep->id_ino);
8119
8120	/*
8121	 * If we're on the unlinked list but have not yet written our
8122	 * next pointer initialize it here.
8123	 */
8124	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
8125		struct inodedep *inon;
8126
8127		inon = TAILQ_NEXT(inodedep, id_unlinked);
8128		dp->di_freelink = inon ? inon->id_ino : 0;
8129	}
8130	/*
8131	 * If the bitmap is not yet written, then the allocated
8132	 * inode cannot be written to disk.
8133	 */
8134	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
8135		if (inodedep->id_savedino1 != NULL)
8136			panic("initiate_write_inodeblock_ufs1: I/O underway");
8137		FREE_LOCK(&lk);
8138		sip = malloc(sizeof(struct ufs1_dinode),
8139		    M_SAVEDINO, M_SOFTDEP_FLAGS);
8140		ACQUIRE_LOCK(&lk);
8141		inodedep->id_savedino1 = sip;
8142		*inodedep->id_savedino1 = *dp;
8143		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
8144		dp->di_gen = inodedep->id_savedino1->di_gen;
8145		dp->di_freelink = inodedep->id_savedino1->di_freelink;
8146		return;
8147	}
8148	/*
8149	 * If no dependencies, then there is nothing to roll back.
8150	 */
8151	inodedep->id_savedsize = dp->di_size;
8152	inodedep->id_savedextsize = 0;
8153	inodedep->id_savednlink = dp->di_nlink;
8154	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
8155	    TAILQ_EMPTY(&inodedep->id_inoreflst))
8156		return;
8157	/*
8158	 * Revert the link count to that of the first unwritten journal entry.
8159	 */
8160	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
8161	if (inoref)
8162		dp->di_nlink = inoref->if_nlink;
8163	/*
8164	 * Set the dependencies to busy.
8165	 */
8166	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8167	     adp = TAILQ_NEXT(adp, ad_next)) {
8168#ifdef INVARIANTS
8169		if (deplist != 0 && prevlbn >= adp->ad_offset)
8170			panic("softdep_write_inodeblock: lbn order");
8171		prevlbn = adp->ad_offset;
8172		if (adp->ad_offset < NDADDR &&
8173		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
8174			panic("%s: direct pointer #%jd mismatch %d != %jd",
8175			    "softdep_write_inodeblock",
8176			    (intmax_t)adp->ad_offset,
8177			    dp->di_db[adp->ad_offset],
8178			    (intmax_t)adp->ad_newblkno);
8179		if (adp->ad_offset >= NDADDR &&
8180		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
8181			panic("%s: indirect pointer #%jd mismatch %d != %jd",
8182			    "softdep_write_inodeblock",
8183			    (intmax_t)adp->ad_offset - NDADDR,
8184			    dp->di_ib[adp->ad_offset - NDADDR],
8185			    (intmax_t)adp->ad_newblkno);
8186		deplist |= 1 << adp->ad_offset;
8187		if ((adp->ad_state & ATTACHED) == 0)
8188			panic("softdep_write_inodeblock: Unknown state 0x%x",
8189			    adp->ad_state);
8190#endif /* INVARIANTS */
8191		adp->ad_state &= ~ATTACHED;
8192		adp->ad_state |= UNDONE;
8193	}
8194	/*
8195	 * The on-disk inode cannot claim to be any larger than the last
8196	 * fragment that has been written. Otherwise, the on-disk inode
8197	 * might have fragments that were not the last block in the file
8198	 * which would corrupt the filesystem.
8199	 */
8200	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8201	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8202		if (adp->ad_offset >= NDADDR)
8203			break;
8204		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
8205		/* keep going until hitting a rollback to a frag */
8206		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8207			continue;
8208		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8209		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
8210#ifdef INVARIANTS
8211			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
8212				panic("softdep_write_inodeblock: lost dep1");
8213#endif /* INVARIANTS */
8214			dp->di_db[i] = 0;
8215		}
8216		for (i = 0; i < NIADDR; i++) {
8217#ifdef INVARIANTS
8218			if (dp->di_ib[i] != 0 &&
8219			    (deplist & ((1 << NDADDR) << i)) == 0)
8220				panic("softdep_write_inodeblock: lost dep2");
8221#endif /* INVARIANTS */
8222			dp->di_ib[i] = 0;
8223		}
8224		return;
8225	}
8226	/*
8227	 * If we have zero'ed out the last allocated block of the file,
8228	 * roll back the size to the last currently allocated block.
8229	 * We know that this last allocated block is a full-sized as
8230	 * we already checked for fragments in the loop above.
8231	 */
8232	if (lastadp != NULL &&
8233	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8234		for (i = lastadp->ad_offset; i >= 0; i--)
8235			if (dp->di_db[i] != 0)
8236				break;
8237		dp->di_size = (i + 1) * fs->fs_bsize;
8238	}
8239	/*
8240	 * The only dependencies are for indirect blocks.
8241	 *
8242	 * The file size for indirect block additions is not guaranteed.
8243	 * Such a guarantee would be non-trivial to achieve. The conventional
8244	 * synchronous write implementation also does not make this guarantee.
8245	 * Fsck should catch and fix discrepancies. Arguably, the file size
8246	 * can be over-estimated without destroying integrity when the file
8247	 * moves into the indirect blocks (i.e., is large). If we want to
8248	 * postpone fsck, we are stuck with this argument.
8249	 */
8250	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
8251		dp->di_ib[adp->ad_offset - NDADDR] = 0;
8252}
8253
8254/*
8255 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
8256 * Note that any bug fixes made to this routine must be done in the
8257 * version found above.
8258 *
8259 * Called from within the procedure above to deal with unsatisfied
8260 * allocation dependencies in an inodeblock. The buffer must be
8261 * locked, thus, no I/O completion operations can occur while we
8262 * are manipulating its associated dependencies.
8263 */
8264static void
8265initiate_write_inodeblock_ufs2(inodedep, bp)
8266	struct inodedep *inodedep;
8267	struct buf *bp;			/* The inode block */
8268{
8269	struct allocdirect *adp, *lastadp;
8270	struct ufs2_dinode *dp;
8271	struct ufs2_dinode *sip;
8272	struct inoref *inoref;
8273	struct fs *fs;
8274	ufs_lbn_t i;
8275#ifdef INVARIANTS
8276	ufs_lbn_t prevlbn = 0;
8277#endif
8278	int deplist;
8279
8280	if (inodedep->id_state & IOSTARTED)
8281		panic("initiate_write_inodeblock_ufs2: already started");
8282	inodedep->id_state |= IOSTARTED;
8283	fs = inodedep->id_fs;
8284	dp = (struct ufs2_dinode *)bp->b_data +
8285	    ino_to_fsbo(fs, inodedep->id_ino);
8286
8287	/*
8288	 * If we're on the unlinked list but have not yet written our
8289	 * next pointer initialize it here.
8290	 */
8291	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
8292		struct inodedep *inon;
8293
8294		inon = TAILQ_NEXT(inodedep, id_unlinked);
8295		dp->di_freelink = inon ? inon->id_ino : 0;
8296	}
8297	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) ==
8298	    (UNLINKED | UNLINKNEXT)) {
8299		struct inodedep *inon;
8300		ino_t freelink;
8301
8302		inon = TAILQ_NEXT(inodedep, id_unlinked);
8303		freelink = inon ? inon->id_ino : 0;
8304		if (freelink != dp->di_freelink)
8305			panic("ino %p(0x%X) %d, %d != %d",
8306			    inodedep, inodedep->id_state, inodedep->id_ino,
8307			    freelink, dp->di_freelink);
8308	}
8309	/*
8310	 * If the bitmap is not yet written, then the allocated
8311	 * inode cannot be written to disk.
8312	 */
8313	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
8314		if (inodedep->id_savedino2 != NULL)
8315			panic("initiate_write_inodeblock_ufs2: I/O underway");
8316		FREE_LOCK(&lk);
8317		sip = malloc(sizeof(struct ufs2_dinode),
8318		    M_SAVEDINO, M_SOFTDEP_FLAGS);
8319		ACQUIRE_LOCK(&lk);
8320		inodedep->id_savedino2 = sip;
8321		*inodedep->id_savedino2 = *dp;
8322		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
8323		dp->di_gen = inodedep->id_savedino2->di_gen;
8324		dp->di_freelink = inodedep->id_savedino2->di_freelink;
8325		return;
8326	}
8327	/*
8328	 * If no dependencies, then there is nothing to roll back.
8329	 */
8330	inodedep->id_savedsize = dp->di_size;
8331	inodedep->id_savedextsize = dp->di_extsize;
8332	inodedep->id_savednlink = dp->di_nlink;
8333	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
8334	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
8335	    TAILQ_EMPTY(&inodedep->id_inoreflst))
8336		return;
8337	/*
8338	 * Revert the link count to that of the first unwritten journal entry.
8339	 */
8340	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
8341	if (inoref)
8342		dp->di_nlink = inoref->if_nlink;
8343
8344	/*
8345	 * Set the ext data dependencies to busy.
8346	 */
8347	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
8348	     adp = TAILQ_NEXT(adp, ad_next)) {
8349#ifdef INVARIANTS
8350		if (deplist != 0 && prevlbn >= adp->ad_offset)
8351			panic("softdep_write_inodeblock: lbn order");
8352		prevlbn = adp->ad_offset;
8353		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
8354			panic("%s: direct pointer #%jd mismatch %jd != %jd",
8355			    "softdep_write_inodeblock",
8356			    (intmax_t)adp->ad_offset,
8357			    (intmax_t)dp->di_extb[adp->ad_offset],
8358			    (intmax_t)adp->ad_newblkno);
8359		deplist |= 1 << adp->ad_offset;
8360		if ((adp->ad_state & ATTACHED) == 0)
8361			panic("softdep_write_inodeblock: Unknown state 0x%x",
8362			    adp->ad_state);
8363#endif /* INVARIANTS */
8364		adp->ad_state &= ~ATTACHED;
8365		adp->ad_state |= UNDONE;
8366	}
8367	/*
8368	 * The on-disk inode cannot claim to be any larger than the last
8369	 * fragment that has been written. Otherwise, the on-disk inode
8370	 * might have fragments that were not the last block in the ext
8371	 * data which would corrupt the filesystem.
8372	 */
8373	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
8374	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8375		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
8376		/* keep going until hitting a rollback to a frag */
8377		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8378			continue;
8379		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8380		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
8381#ifdef INVARIANTS
8382			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
8383				panic("softdep_write_inodeblock: lost dep1");
8384#endif /* INVARIANTS */
8385			dp->di_extb[i] = 0;
8386		}
8387		lastadp = NULL;
8388		break;
8389	}
8390	/*
8391	 * If we have zero'ed out the last allocated block of the ext
8392	 * data, roll back the size to the last currently allocated block.
8393	 * We know that this last allocated block is a full-sized as
8394	 * we already checked for fragments in the loop above.
8395	 */
8396	if (lastadp != NULL &&
8397	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8398		for (i = lastadp->ad_offset; i >= 0; i--)
8399			if (dp->di_extb[i] != 0)
8400				break;
8401		dp->di_extsize = (i + 1) * fs->fs_bsize;
8402	}
8403	/*
8404	 * Set the file data dependencies to busy.
8405	 */
8406	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8407	     adp = TAILQ_NEXT(adp, ad_next)) {
8408#ifdef INVARIANTS
8409		if (deplist != 0 && prevlbn >= adp->ad_offset)
8410			panic("softdep_write_inodeblock: lbn order");
8411		prevlbn = adp->ad_offset;
8412		if (adp->ad_offset < NDADDR &&
8413		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
8414			panic("%s: direct pointer #%jd mismatch %jd != %jd",
8415			    "softdep_write_inodeblock",
8416			    (intmax_t)adp->ad_offset,
8417			    (intmax_t)dp->di_db[adp->ad_offset],
8418			    (intmax_t)adp->ad_newblkno);
8419		if (adp->ad_offset >= NDADDR &&
8420		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
8421			panic("%s indirect pointer #%jd mismatch %jd != %jd",
8422			    "softdep_write_inodeblock:",
8423			    (intmax_t)adp->ad_offset - NDADDR,
8424			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
8425			    (intmax_t)adp->ad_newblkno);
8426		deplist |= 1 << adp->ad_offset;
8427		if ((adp->ad_state & ATTACHED) == 0)
8428			panic("softdep_write_inodeblock: Unknown state 0x%x",
8429			    adp->ad_state);
8430#endif /* INVARIANTS */
8431		adp->ad_state &= ~ATTACHED;
8432		adp->ad_state |= UNDONE;
8433	}
8434	/*
8435	 * The on-disk inode cannot claim to be any larger than the last
8436	 * fragment that has been written. Otherwise, the on-disk inode
8437	 * might have fragments that were not the last block in the file
8438	 * which would corrupt the filesystem.
8439	 */
8440	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8441	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8442		if (adp->ad_offset >= NDADDR)
8443			break;
8444		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
8445		/* keep going until hitting a rollback to a frag */
8446		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8447			continue;
8448		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8449		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
8450#ifdef INVARIANTS
8451			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
8452				panic("softdep_write_inodeblock: lost dep2");
8453#endif /* INVARIANTS */
8454			dp->di_db[i] = 0;
8455		}
8456		for (i = 0; i < NIADDR; i++) {
8457#ifdef INVARIANTS
8458			if (dp->di_ib[i] != 0 &&
8459			    (deplist & ((1 << NDADDR) << i)) == 0)
8460				panic("softdep_write_inodeblock: lost dep3");
8461#endif /* INVARIANTS */
8462			dp->di_ib[i] = 0;
8463		}
8464		return;
8465	}
8466	/*
8467	 * If we have zero'ed out the last allocated block of the file,
8468	 * roll back the size to the last currently allocated block.
8469	 * We know that this last allocated block is a full-sized as
8470	 * we already checked for fragments in the loop above.
8471	 */
8472	if (lastadp != NULL &&
8473	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8474		for (i = lastadp->ad_offset; i >= 0; i--)
8475			if (dp->di_db[i] != 0)
8476				break;
8477		dp->di_size = (i + 1) * fs->fs_bsize;
8478	}
8479	/*
8480	 * The only dependencies are for indirect blocks.
8481	 *
8482	 * The file size for indirect block additions is not guaranteed.
8483	 * Such a guarantee would be non-trivial to achieve. The conventional
8484	 * synchronous write implementation also does not make this guarantee.
8485	 * Fsck should catch and fix discrepancies. Arguably, the file size
8486	 * can be over-estimated without destroying integrity when the file
8487	 * moves into the indirect blocks (i.e., is large). If we want to
8488	 * postpone fsck, we are stuck with this argument.
8489	 */
8490	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
8491		dp->di_ib[adp->ad_offset - NDADDR] = 0;
8492}
8493
8494/*
8495 * Cancel an indirdep as a result of truncation.  Release all of the
8496 * children allocindirs and place their journal work on the appropriate
8497 * list.
8498 */
8499static void
8500cancel_indirdep(indirdep, bp, inodedep, freeblks)
8501	struct indirdep *indirdep;
8502	struct buf *bp;
8503	struct inodedep *inodedep;
8504	struct freeblks *freeblks;
8505{
8506	struct allocindir *aip;
8507
8508	/*
8509	 * None of the indirect pointers will ever be visible,
8510	 * so they can simply be tossed. GOINGAWAY ensures
8511	 * that allocated pointers will be saved in the buffer
8512	 * cache until they are freed. Note that they will
8513	 * only be able to be found by their physical address
8514	 * since the inode mapping the logical address will
8515	 * be gone. The save buffer used for the safe copy
8516	 * was allocated in setup_allocindir_phase2 using
8517	 * the physical address so it could be used for this
8518	 * purpose. Hence we swap the safe copy with the real
8519	 * copy, allowing the safe copy to be freed and holding
8520	 * on to the real copy for later use in indir_trunc.
8521	 */
8522	if (indirdep->ir_state & GOINGAWAY)
8523		panic("cancel_indirdep: already gone");
8524	if (indirdep->ir_state & ONDEPLIST) {
8525		indirdep->ir_state &= ~ONDEPLIST;
8526		LIST_REMOVE(indirdep, ir_next);
8527	}
8528	indirdep->ir_state |= GOINGAWAY;
8529	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
8530	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
8531		cancel_allocindir(aip, inodedep, freeblks);
8532	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
8533		cancel_allocindir(aip, inodedep, freeblks);
8534	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
8535		cancel_allocindir(aip, inodedep, freeblks);
8536	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
8537		cancel_allocindir(aip, inodedep, freeblks);
8538	bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
8539	WORKLIST_REMOVE(&indirdep->ir_list);
8540	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
8541	indirdep->ir_savebp = NULL;
8542}
8543
8544/*
8545 * Free an indirdep once it no longer has new pointers to track.
8546 */
8547static void
8548free_indirdep(indirdep)
8549	struct indirdep *indirdep;
8550{
8551
8552	KASSERT(LIST_EMPTY(&indirdep->ir_jwork),
8553	    ("free_indirdep: Journal work not empty."));
8554	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
8555	    ("free_indirdep: Complete head not empty."));
8556	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
8557	    ("free_indirdep: write head not empty."));
8558	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
8559	    ("free_indirdep: done head not empty."));
8560	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
8561	    ("free_indirdep: deplist head not empty."));
8562	KASSERT(indirdep->ir_savebp == NULL,
8563	    ("free_indirdep: %p ir_savebp != NULL", indirdep));
8564	KASSERT((indirdep->ir_state & ONDEPLIST) == 0,
8565	    ("free_indirdep: %p still on deplist.", indirdep));
8566	if (indirdep->ir_state & ONWORKLIST)
8567		WORKLIST_REMOVE(&indirdep->ir_list);
8568	WORKITEM_FREE(indirdep, D_INDIRDEP);
8569}
8570
8571/*
8572 * Called before a write to an indirdep.  This routine is responsible for
8573 * rolling back pointers to a safe state which includes only those
8574 * allocindirs which have been completed.
8575 */
8576static void
8577initiate_write_indirdep(indirdep, bp)
8578	struct indirdep *indirdep;
8579	struct buf *bp;
8580{
8581
8582	if (indirdep->ir_state & GOINGAWAY)
8583		panic("disk_io_initiation: indirdep gone");
8584
8585	/*
8586	 * If there are no remaining dependencies, this will be writing
8587	 * the real pointers.
8588	 */
8589	if (LIST_EMPTY(&indirdep->ir_deplisthd))
8590		return;
8591	/*
8592	 * Replace up-to-date version with safe version.
8593	 */
8594	FREE_LOCK(&lk);
8595	indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
8596	    M_SOFTDEP_FLAGS);
8597	ACQUIRE_LOCK(&lk);
8598	indirdep->ir_state &= ~ATTACHED;
8599	indirdep->ir_state |= UNDONE;
8600	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
8601	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
8602	    bp->b_bcount);
8603}
8604
8605/*
8606 * Called when an inode has been cleared in a cg bitmap.  This finally
8607 * eliminates any canceled jaddrefs
8608 */
8609void
8610softdep_setup_inofree(mp, bp, ino, wkhd)
8611	struct mount *mp;
8612	struct buf *bp;
8613	ino_t ino;
8614	struct workhead *wkhd;
8615{
8616	struct worklist *wk, *wkn;
8617	struct inodedep *inodedep;
8618	uint8_t *inosused;
8619	struct cg *cgp;
8620	struct fs *fs;
8621
8622	ACQUIRE_LOCK(&lk);
8623	fs = VFSTOUFS(mp)->um_fs;
8624	cgp = (struct cg *)bp->b_data;
8625	inosused = cg_inosused(cgp);
8626	if (isset(inosused, ino % fs->fs_ipg))
8627		panic("softdep_setup_inofree: inode %d not freed.", ino);
8628	if (inodedep_lookup(mp, ino, 0, &inodedep))
8629		panic("softdep_setup_inofree: ino %d has existing inodedep %p",
8630		    ino, inodedep);
8631	if (wkhd) {
8632		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
8633			if (wk->wk_type != D_JADDREF)
8634				continue;
8635			WORKLIST_REMOVE(wk);
8636			/*
8637			 * We can free immediately even if the jaddref
8638			 * isn't attached in a background write as now
8639			 * the bitmaps are reconciled.
8640		 	 */
8641			wk->wk_state |= COMPLETE | ATTACHED;
8642			free_jaddref(WK_JADDREF(wk));
8643		}
8644		jwork_move(&bp->b_dep, wkhd);
8645	}
8646	FREE_LOCK(&lk);
8647}
8648
8649
8650/*
8651 * Called via ffs_blkfree() after a set of frags has been cleared from a cg
8652 * map.  Any dependencies waiting for the write to clear are added to the
8653 * buf's list and any jnewblks that are being canceled are discarded
8654 * immediately.
8655 */
8656void
8657softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
8658	struct mount *mp;
8659	struct buf *bp;
8660	ufs2_daddr_t blkno;
8661	int frags;
8662	struct workhead *wkhd;
8663{
8664	struct jnewblk *jnewblk;
8665	struct worklist *wk, *wkn;
8666#ifdef SUJ_DEBUG
8667	struct bmsafemap *bmsafemap;
8668	struct fs *fs;
8669	uint8_t *blksfree;
8670	struct cg *cgp;
8671	ufs2_daddr_t jstart;
8672	ufs2_daddr_t jend;
8673	ufs2_daddr_t end;
8674	long bno;
8675	int i;
8676#endif
8677
8678	ACQUIRE_LOCK(&lk);
8679	/*
8680	 * Detach any jnewblks which have been canceled.  They must linger
8681	 * until the bitmap is cleared again by ffs_blkfree() to prevent
8682	 * an unjournaled allocation from hitting the disk.
8683	 */
8684	if (wkhd) {
8685		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
8686			if (wk->wk_type != D_JNEWBLK)
8687				continue;
8688			jnewblk = WK_JNEWBLK(wk);
8689			KASSERT(jnewblk->jn_state & GOINGAWAY,
8690			    ("softdep_setup_blkfree: jnewblk not canceled."));
8691			WORKLIST_REMOVE(wk);
8692#ifdef SUJ_DEBUG
8693			/*
8694			 * Assert that this block is free in the bitmap
8695			 * before we discard the jnewblk.
8696			 */
8697			fs = VFSTOUFS(mp)->um_fs;
8698			cgp = (struct cg *)bp->b_data;
8699			blksfree = cg_blksfree(cgp);
8700			bno = dtogd(fs, jnewblk->jn_blkno);
8701			for (i = jnewblk->jn_oldfrags;
8702			    i < jnewblk->jn_frags; i++) {
8703				if (isset(blksfree, bno + i))
8704					continue;
8705				panic("softdep_setup_blkfree: not free");
8706			}
8707#endif
8708			/*
8709			 * Even if it's not attached we can free immediately
8710			 * as the new bitmap is correct.
8711			 */
8712			wk->wk_state |= COMPLETE | ATTACHED;
8713			free_jnewblk(jnewblk);
8714		}
8715		/*
8716		 * The buf must be locked by the caller otherwise these could
8717		 * be added while it's being written and the write would
8718		 * complete them before they made it to disk.
8719		 */
8720		jwork_move(&bp->b_dep, wkhd);
8721	}
8722
8723#ifdef SUJ_DEBUG
8724	/*
8725	 * Assert that we are not freeing a block which has an outstanding
8726	 * allocation dependency.
8727	 */
8728	fs = VFSTOUFS(mp)->um_fs;
8729	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
8730	end = blkno + frags;
8731	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
8732		/*
8733		 * Don't match against blocks that will be freed when the
8734		 * background write is done.
8735		 */
8736		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
8737		    (COMPLETE | DEPCOMPLETE))
8738			continue;
8739		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
8740		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
8741		if ((blkno >= jstart && blkno < jend) ||
8742		    (end > jstart && end <= jend)) {
8743			printf("state 0x%X %jd - %d %d dep %p\n",
8744			    jnewblk->jn_state, jnewblk->jn_blkno,
8745			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
8746			    jnewblk->jn_newblk);
8747			panic("softdep_setup_blkfree: "
8748			    "%jd-%jd(%d) overlaps with %jd-%jd",
8749			    blkno, end, frags, jstart, jend);
8750		}
8751	}
8752#endif
8753	FREE_LOCK(&lk);
8754}
8755
8756static void
8757initiate_write_bmsafemap(bmsafemap, bp)
8758	struct bmsafemap *bmsafemap;
8759	struct buf *bp;			/* The cg block. */
8760{
8761	struct jaddref *jaddref;
8762	struct jnewblk *jnewblk;
8763	uint8_t *inosused;
8764	uint8_t *blksfree;
8765	struct cg *cgp;
8766	struct fs *fs;
8767	int cleared;
8768	ino_t ino;
8769	long bno;
8770	int i;
8771
8772	if (bmsafemap->sm_state & IOSTARTED)
8773		panic("initiate_write_bmsafemap: Already started\n");
8774	bmsafemap->sm_state |= IOSTARTED;
8775	/*
8776	 * Clear any inode allocations which are pending journal writes.
8777	 */
8778	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
8779		cgp = (struct cg *)bp->b_data;
8780		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
8781		inosused = cg_inosused(cgp);
8782		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
8783			ino = jaddref->ja_ino % fs->fs_ipg;
8784			/*
8785			 * If this is a background copy the inode may not
8786			 * be marked used yet.
8787			 */
8788			if (isset(inosused, ino)) {
8789				if ((jaddref->ja_mode & IFMT) == IFDIR)
8790					cgp->cg_cs.cs_ndir--;
8791				cgp->cg_cs.cs_nifree++;
8792				clrbit(inosused, ino);
8793				jaddref->ja_state &= ~ATTACHED;
8794				jaddref->ja_state |= UNDONE;
8795				stat_jaddref++;
8796			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
8797				panic("initiate_write_bmsafemap: inode %d "
8798				    "marked free", jaddref->ja_ino);
8799		}
8800	}
8801	/*
8802	 * Clear any block allocations which are pending journal writes.
8803	 */
8804	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
8805		cgp = (struct cg *)bp->b_data;
8806		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
8807		blksfree = cg_blksfree(cgp);
8808		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
8809			bno = dtogd(fs, jnewblk->jn_blkno);
8810			cleared = 0;
8811			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
8812			    i++) {
8813				if (isclr(blksfree, bno + i)) {
8814					cleared = 1;
8815					setbit(blksfree, bno + i);
8816				}
8817			}
8818			/*
8819			 * We may not clear the block if it's a background
8820			 * copy.  In that case there is no reason to detach
8821			 * it.
8822			 */
8823			if (cleared) {
8824				stat_jnewblk++;
8825				jnewblk->jn_state &= ~ATTACHED;
8826				jnewblk->jn_state |= UNDONE;
8827			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
8828				panic("initiate_write_bmsafemap: block %jd "
8829				    "marked free", jnewblk->jn_blkno);
8830		}
8831	}
8832	/*
8833	 * Move allocation lists to the written lists so they can be
8834	 * cleared once the block write is complete.
8835	 */
8836	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
8837	    inodedep, id_deps);
8838	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
8839	    newblk, nb_deps);
8840}
8841
8842/*
8843 * This routine is called during the completion interrupt
8844 * service routine for a disk write (from the procedure called
8845 * by the device driver to inform the filesystem caches of
8846 * a request completion).  It should be called early in this
8847 * procedure, before the block is made available to other
8848 * processes or other routines are called.
8849 *
8850 */
8851static void
8852softdep_disk_write_complete(bp)
8853	struct buf *bp;		/* describes the completed disk write */
8854{
8855	struct worklist *wk;
8856	struct worklist *owk;
8857	struct workhead reattach;
8858	struct buf *sbp;
8859
8860	/*
8861	 * If an error occurred while doing the write, then the data
8862	 * has not hit the disk and the dependencies cannot be unrolled.
8863	 */
8864	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
8865		return;
8866	LIST_INIT(&reattach);
8867	/*
8868	 * This lock must not be released anywhere in this code segment.
8869	 */
8870	sbp = NULL;
8871	owk = NULL;
8872	ACQUIRE_LOCK(&lk);
8873	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
8874		WORKLIST_REMOVE(wk);
8875		if (wk == owk)
8876			panic("duplicate worklist: %p\n", wk);
8877		owk = wk;
8878		switch (wk->wk_type) {
8879
8880		case D_PAGEDEP:
8881			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
8882				WORKLIST_INSERT(&reattach, wk);
8883			continue;
8884
8885		case D_INODEDEP:
8886			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
8887				WORKLIST_INSERT(&reattach, wk);
8888			continue;
8889
8890		case D_BMSAFEMAP:
8891			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
8892				WORKLIST_INSERT(&reattach, wk);
8893			continue;
8894
8895		case D_MKDIR:
8896			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
8897			continue;
8898
8899		case D_ALLOCDIRECT:
8900			wk->wk_state |= COMPLETE;
8901			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
8902			continue;
8903
8904		case D_ALLOCINDIR:
8905			wk->wk_state |= COMPLETE;
8906			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
8907			continue;
8908
8909		case D_INDIRDEP:
8910			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
8911				WORKLIST_INSERT(&reattach, wk);
8912			continue;
8913
8914		case D_FREEBLKS:
8915			wk->wk_state |= COMPLETE;
8916			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
8917				add_to_worklist(wk, 1);
8918			continue;
8919
8920		case D_FREEWORK:
8921			handle_written_freework(WK_FREEWORK(wk));
8922			break;
8923
8924		case D_FREEDEP:
8925			free_freedep(WK_FREEDEP(wk));
8926			continue;
8927
8928		case D_JSEGDEP:
8929			free_jsegdep(WK_JSEGDEP(wk));
8930			continue;
8931
8932		case D_JSEG:
8933			handle_written_jseg(WK_JSEG(wk), bp);
8934			continue;
8935
8936		case D_SBDEP:
8937			if (handle_written_sbdep(WK_SBDEP(wk), bp))
8938				WORKLIST_INSERT(&reattach, wk);
8939			continue;
8940
8941		default:
8942			panic("handle_disk_write_complete: Unknown type %s",
8943			    TYPENAME(wk->wk_type));
8944			/* NOTREACHED */
8945		}
8946	}
8947	/*
8948	 * Reattach any requests that must be redone.
8949	 */
8950	while ((wk = LIST_FIRST(&reattach)) != NULL) {
8951		WORKLIST_REMOVE(wk);
8952		WORKLIST_INSERT(&bp->b_dep, wk);
8953	}
8954	FREE_LOCK(&lk);
8955	if (sbp)
8956		brelse(sbp);
8957}
8958
8959/*
8960 * Called from within softdep_disk_write_complete above. Note that
8961 * this routine is always called from interrupt level with further
8962 * splbio interrupts blocked.
8963 */
8964static void
8965handle_allocdirect_partdone(adp, wkhd)
8966	struct allocdirect *adp;	/* the completed allocdirect */
8967	struct workhead *wkhd;		/* Work to do when inode is writtne. */
8968{
8969	struct allocdirectlst *listhead;
8970	struct allocdirect *listadp;
8971	struct inodedep *inodedep;
8972	long bsize;
8973
8974	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
8975		return;
8976	/*
8977	 * The on-disk inode cannot claim to be any larger than the last
8978	 * fragment that has been written. Otherwise, the on-disk inode
8979	 * might have fragments that were not the last block in the file
8980	 * which would corrupt the filesystem. Thus, we cannot free any
8981	 * allocdirects after one whose ad_oldblkno claims a fragment as
8982	 * these blocks must be rolled back to zero before writing the inode.
8983	 * We check the currently active set of allocdirects in id_inoupdt
8984	 * or id_extupdt as appropriate.
8985	 */
8986	inodedep = adp->ad_inodedep;
8987	bsize = inodedep->id_fs->fs_bsize;
8988	if (adp->ad_state & EXTDATA)
8989		listhead = &inodedep->id_extupdt;
8990	else
8991		listhead = &inodedep->id_inoupdt;
8992	TAILQ_FOREACH(listadp, listhead, ad_next) {
8993		/* found our block */
8994		if (listadp == adp)
8995			break;
8996		/* continue if ad_oldlbn is not a fragment */
8997		if (listadp->ad_oldsize == 0 ||
8998		    listadp->ad_oldsize == bsize)
8999			continue;
9000		/* hit a fragment */
9001		return;
9002	}
9003	/*
9004	 * If we have reached the end of the current list without
9005	 * finding the just finished dependency, then it must be
9006	 * on the future dependency list. Future dependencies cannot
9007	 * be freed until they are moved to the current list.
9008	 */
9009	if (listadp == NULL) {
9010#ifdef DEBUG
9011		if (adp->ad_state & EXTDATA)
9012			listhead = &inodedep->id_newextupdt;
9013		else
9014			listhead = &inodedep->id_newinoupdt;
9015		TAILQ_FOREACH(listadp, listhead, ad_next)
9016			/* found our block */
9017			if (listadp == adp)
9018				break;
9019		if (listadp == NULL)
9020			panic("handle_allocdirect_partdone: lost dep");
9021#endif /* DEBUG */
9022		return;
9023	}
9024	/*
9025	 * If we have found the just finished dependency, then queue
9026	 * it along with anything that follows it that is complete.
9027	 * Since the pointer has not yet been written in the inode
9028	 * as the dependency prevents it, place the allocdirect on the
9029	 * bufwait list where it will be freed once the pointer is
9030	 * valid.
9031	 */
9032	if (wkhd == NULL)
9033		wkhd = &inodedep->id_bufwait;
9034	for (; adp; adp = listadp) {
9035		listadp = TAILQ_NEXT(adp, ad_next);
9036		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
9037			return;
9038		TAILQ_REMOVE(listhead, adp, ad_next);
9039		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
9040	}
9041}
9042
9043/*
9044 * Called from within softdep_disk_write_complete above.  This routine
9045 * completes successfully written allocindirs.
9046 */
9047static void
9048handle_allocindir_partdone(aip)
9049	struct allocindir *aip;		/* the completed allocindir */
9050{
9051	struct indirdep *indirdep;
9052
9053	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
9054		return;
9055	indirdep = aip->ai_indirdep;
9056	LIST_REMOVE(aip, ai_next);
9057	if (indirdep->ir_state & UNDONE) {
9058		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
9059		return;
9060	}
9061	if (indirdep->ir_state & UFS1FMT)
9062		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
9063		    aip->ai_newblkno;
9064	else
9065		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
9066		    aip->ai_newblkno;
9067	/*
9068	 * Await the pointer write before freeing the allocindir.
9069	 */
9070	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
9071}
9072
9073/*
9074 * Release segments held on a jwork list.
9075 */
9076static void
9077handle_jwork(wkhd)
9078	struct workhead *wkhd;
9079{
9080	struct worklist *wk;
9081
9082	while ((wk = LIST_FIRST(wkhd)) != NULL) {
9083		WORKLIST_REMOVE(wk);
9084		switch (wk->wk_type) {
9085		case D_JSEGDEP:
9086			free_jsegdep(WK_JSEGDEP(wk));
9087			continue;
9088		default:
9089			panic("handle_jwork: Unknown type %s\n",
9090			    TYPENAME(wk->wk_type));
9091		}
9092	}
9093}
9094
9095/*
9096 * Handle the bufwait list on an inode when it is safe to release items
9097 * held there.  This normally happens after an inode block is written but
9098 * may be delayed and handled later if there are pending journal items that
9099 * are not yet safe to be released.
9100 */
9101static struct freefile *
9102handle_bufwait(inodedep, refhd)
9103	struct inodedep *inodedep;
9104	struct workhead *refhd;
9105{
9106	struct jaddref *jaddref;
9107	struct freefile *freefile;
9108	struct worklist *wk;
9109
9110	freefile = NULL;
9111	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
9112		WORKLIST_REMOVE(wk);
9113		switch (wk->wk_type) {
9114		case D_FREEFILE:
9115			/*
9116			 * We defer adding freefile to the worklist
9117			 * until all other additions have been made to
9118			 * ensure that it will be done after all the
9119			 * old blocks have been freed.
9120			 */
9121			if (freefile != NULL)
9122				panic("handle_bufwait: freefile");
9123			freefile = WK_FREEFILE(wk);
9124			continue;
9125
9126		case D_MKDIR:
9127			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
9128			continue;
9129
9130		case D_DIRADD:
9131			diradd_inode_written(WK_DIRADD(wk), inodedep);
9132			continue;
9133
9134		case D_FREEFRAG:
9135			wk->wk_state |= COMPLETE;
9136			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
9137				add_to_worklist(wk, 0);
9138			continue;
9139
9140		case D_DIRREM:
9141			wk->wk_state |= COMPLETE;
9142			add_to_worklist(wk, 0);
9143			continue;
9144
9145		case D_ALLOCDIRECT:
9146		case D_ALLOCINDIR:
9147			free_newblk(WK_NEWBLK(wk));
9148			continue;
9149
9150		case D_JNEWBLK:
9151			wk->wk_state |= COMPLETE;
9152			free_jnewblk(WK_JNEWBLK(wk));
9153			continue;
9154
9155		/*
9156		 * Save freed journal segments and add references on
9157		 * the supplied list which will delay their release
9158		 * until the cg bitmap is cleared on disk.
9159		 */
9160		case D_JSEGDEP:
9161			if (refhd == NULL)
9162				free_jsegdep(WK_JSEGDEP(wk));
9163			else
9164				WORKLIST_INSERT(refhd, wk);
9165			continue;
9166
9167		case D_JADDREF:
9168			jaddref = WK_JADDREF(wk);
9169			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
9170			    if_deps);
9171			/*
9172			 * Transfer any jaddrefs to the list to be freed with
9173			 * the bitmap if we're handling a removed file.
9174			 */
9175			if (refhd == NULL) {
9176				wk->wk_state |= COMPLETE;
9177				free_jaddref(jaddref);
9178			} else
9179				WORKLIST_INSERT(refhd, wk);
9180			continue;
9181
9182		default:
9183			panic("handle_bufwait: Unknown type %p(%s)",
9184			    wk, TYPENAME(wk->wk_type));
9185			/* NOTREACHED */
9186		}
9187	}
9188	return (freefile);
9189}
9190/*
9191 * Called from within softdep_disk_write_complete above to restore
9192 * in-memory inode block contents to their most up-to-date state. Note
9193 * that this routine is always called from interrupt level with further
9194 * splbio interrupts blocked.
9195 */
9196static int
9197handle_written_inodeblock(inodedep, bp)
9198	struct inodedep *inodedep;
9199	struct buf *bp;		/* buffer containing the inode block */
9200{
9201	struct freefile *freefile;
9202	struct allocdirect *adp, *nextadp;
9203	struct ufs1_dinode *dp1 = NULL;
9204	struct ufs2_dinode *dp2 = NULL;
9205	struct workhead wkhd;
9206	int hadchanges, fstype;
9207	ino_t freelink;
9208
9209	LIST_INIT(&wkhd);
9210	hadchanges = 0;
9211	freefile = NULL;
9212	if ((inodedep->id_state & IOSTARTED) == 0)
9213		panic("handle_written_inodeblock: not started");
9214	inodedep->id_state &= ~IOSTARTED;
9215	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
9216		fstype = UFS1;
9217		dp1 = (struct ufs1_dinode *)bp->b_data +
9218		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
9219		freelink = dp1->di_freelink;
9220	} else {
9221		fstype = UFS2;
9222		dp2 = (struct ufs2_dinode *)bp->b_data +
9223		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
9224		freelink = dp2->di_freelink;
9225	}
9226	/*
9227	 * If we wrote a valid freelink pointer during the last write
9228	 * record it here.
9229	 */
9230	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9231		struct inodedep *inon;
9232
9233		inon = TAILQ_NEXT(inodedep, id_unlinked);
9234		if ((inon == NULL && freelink == 0) ||
9235		    (inon && inon->id_ino == freelink)) {
9236			if (inon)
9237				inon->id_state |= UNLINKPREV;
9238			inodedep->id_state |= UNLINKNEXT;
9239		} else
9240			hadchanges = 1;
9241	}
9242	/* Leave this inodeblock dirty until it's in the list. */
9243	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED)
9244		hadchanges = 1;
9245	/*
9246	 * If we had to rollback the inode allocation because of
9247	 * bitmaps being incomplete, then simply restore it.
9248	 * Keep the block dirty so that it will not be reclaimed until
9249	 * all associated dependencies have been cleared and the
9250	 * corresponding updates written to disk.
9251	 */
9252	if (inodedep->id_savedino1 != NULL) {
9253		hadchanges = 1;
9254		if (fstype == UFS1)
9255			*dp1 = *inodedep->id_savedino1;
9256		else
9257			*dp2 = *inodedep->id_savedino2;
9258		free(inodedep->id_savedino1, M_SAVEDINO);
9259		inodedep->id_savedino1 = NULL;
9260		if ((bp->b_flags & B_DELWRI) == 0)
9261			stat_inode_bitmap++;
9262		bdirty(bp);
9263		/*
9264		 * If the inode is clear here and GOINGAWAY it will never
9265		 * be written.  Process the bufwait and clear any pending
9266		 * work which may include the freefile.
9267		 */
9268		if (inodedep->id_state & GOINGAWAY)
9269			goto bufwait;
9270		return (1);
9271	}
9272	inodedep->id_state |= COMPLETE;
9273	/*
9274	 * Roll forward anything that had to be rolled back before
9275	 * the inode could be updated.
9276	 */
9277	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
9278		nextadp = TAILQ_NEXT(adp, ad_next);
9279		if (adp->ad_state & ATTACHED)
9280			panic("handle_written_inodeblock: new entry");
9281		if (fstype == UFS1) {
9282			if (adp->ad_offset < NDADDR) {
9283				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
9284					panic("%s %s #%jd mismatch %d != %jd",
9285					    "handle_written_inodeblock:",
9286					    "direct pointer",
9287					    (intmax_t)adp->ad_offset,
9288					    dp1->di_db[adp->ad_offset],
9289					    (intmax_t)adp->ad_oldblkno);
9290				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
9291			} else {
9292				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
9293					panic("%s: %s #%jd allocated as %d",
9294					    "handle_written_inodeblock",
9295					    "indirect pointer",
9296					    (intmax_t)adp->ad_offset - NDADDR,
9297					    dp1->di_ib[adp->ad_offset - NDADDR]);
9298				dp1->di_ib[adp->ad_offset - NDADDR] =
9299				    adp->ad_newblkno;
9300			}
9301		} else {
9302			if (adp->ad_offset < NDADDR) {
9303				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
9304					panic("%s: %s #%jd %s %jd != %jd",
9305					    "handle_written_inodeblock",
9306					    "direct pointer",
9307					    (intmax_t)adp->ad_offset, "mismatch",
9308					    (intmax_t)dp2->di_db[adp->ad_offset],
9309					    (intmax_t)adp->ad_oldblkno);
9310				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
9311			} else {
9312				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
9313					panic("%s: %s #%jd allocated as %jd",
9314					    "handle_written_inodeblock",
9315					    "indirect pointer",
9316					    (intmax_t)adp->ad_offset - NDADDR,
9317					    (intmax_t)
9318					    dp2->di_ib[adp->ad_offset - NDADDR]);
9319				dp2->di_ib[adp->ad_offset - NDADDR] =
9320				    adp->ad_newblkno;
9321			}
9322		}
9323		adp->ad_state &= ~UNDONE;
9324		adp->ad_state |= ATTACHED;
9325		hadchanges = 1;
9326	}
9327	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
9328		nextadp = TAILQ_NEXT(adp, ad_next);
9329		if (adp->ad_state & ATTACHED)
9330			panic("handle_written_inodeblock: new entry");
9331		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
9332			panic("%s: direct pointers #%jd %s %jd != %jd",
9333			    "handle_written_inodeblock",
9334			    (intmax_t)adp->ad_offset, "mismatch",
9335			    (intmax_t)dp2->di_extb[adp->ad_offset],
9336			    (intmax_t)adp->ad_oldblkno);
9337		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
9338		adp->ad_state &= ~UNDONE;
9339		adp->ad_state |= ATTACHED;
9340		hadchanges = 1;
9341	}
9342	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
9343		stat_direct_blk_ptrs++;
9344	/*
9345	 * Reset the file size to its most up-to-date value.
9346	 */
9347	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
9348		panic("handle_written_inodeblock: bad size");
9349	if (inodedep->id_savednlink > LINK_MAX)
9350		panic("handle_written_inodeblock: Invalid link count "
9351		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
9352	if (fstype == UFS1) {
9353		if (dp1->di_nlink != inodedep->id_savednlink) {
9354			dp1->di_nlink = inodedep->id_savednlink;
9355			hadchanges = 1;
9356		}
9357		if (dp1->di_size != inodedep->id_savedsize) {
9358			dp1->di_size = inodedep->id_savedsize;
9359			hadchanges = 1;
9360		}
9361	} else {
9362		if (dp2->di_nlink != inodedep->id_savednlink) {
9363			dp2->di_nlink = inodedep->id_savednlink;
9364			hadchanges = 1;
9365		}
9366		if (dp2->di_size != inodedep->id_savedsize) {
9367			dp2->di_size = inodedep->id_savedsize;
9368			hadchanges = 1;
9369		}
9370		if (dp2->di_extsize != inodedep->id_savedextsize) {
9371			dp2->di_extsize = inodedep->id_savedextsize;
9372			hadchanges = 1;
9373		}
9374	}
9375	inodedep->id_savedsize = -1;
9376	inodedep->id_savedextsize = -1;
9377	inodedep->id_savednlink = -1;
9378	/*
9379	 * If there were any rollbacks in the inode block, then it must be
9380	 * marked dirty so that its will eventually get written back in
9381	 * its correct form.
9382	 */
9383	if (hadchanges)
9384		bdirty(bp);
9385bufwait:
9386	/*
9387	 * Process any allocdirects that completed during the update.
9388	 */
9389	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
9390		handle_allocdirect_partdone(adp, &wkhd);
9391	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
9392		handle_allocdirect_partdone(adp, &wkhd);
9393	/*
9394	 * Process deallocations that were held pending until the
9395	 * inode had been written to disk. Freeing of the inode
9396	 * is delayed until after all blocks have been freed to
9397	 * avoid creation of new <vfsid, inum, lbn> triples
9398	 * before the old ones have been deleted.  Completely
9399	 * unlinked inodes are not processed until the unlinked
9400	 * inode list is written or the last reference is removed.
9401	 */
9402	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
9403		freefile = handle_bufwait(inodedep, NULL);
9404		if (freefile && !LIST_EMPTY(&wkhd)) {
9405			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
9406			freefile = NULL;
9407		}
9408	}
9409	/*
9410	 * Move rolled forward dependency completions to the bufwait list
9411	 * now that those that were already written have been processed.
9412	 */
9413	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
9414		panic("handle_written_inodeblock: bufwait but no changes");
9415	jwork_move(&inodedep->id_bufwait, &wkhd);
9416
9417	if (freefile != NULL) {
9418		/*
9419		 * If the inode is goingaway it was never written.  Fake up
9420		 * the state here so free_inodedep() can succeed.
9421		 */
9422		if (inodedep->id_state & GOINGAWAY)
9423			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
9424		if (free_inodedep(inodedep) == 0)
9425			panic("handle_written_inodeblock: live inodedep %p",
9426			    inodedep);
9427		add_to_worklist(&freefile->fx_list, 0);
9428		return (0);
9429	}
9430
9431	/*
9432	 * If no outstanding dependencies, free it.
9433	 */
9434	if (free_inodedep(inodedep) ||
9435	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
9436	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
9437	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
9438	     LIST_FIRST(&inodedep->id_bufwait) == 0))
9439		return (0);
9440	return (hadchanges);
9441}
9442
9443static int
9444handle_written_indirdep(indirdep, bp, bpp)
9445	struct indirdep *indirdep;
9446	struct buf *bp;
9447	struct buf **bpp;
9448{
9449	struct allocindir *aip;
9450	int chgs;
9451
9452	if (indirdep->ir_state & GOINGAWAY)
9453		panic("disk_write_complete: indirdep gone");
9454	chgs = 0;
9455	/*
9456	 * If there were rollbacks revert them here.
9457	 */
9458	if (indirdep->ir_saveddata) {
9459		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
9460		free(indirdep->ir_saveddata, M_INDIRDEP);
9461		indirdep->ir_saveddata = 0;
9462		chgs = 1;
9463	}
9464	indirdep->ir_state &= ~UNDONE;
9465	indirdep->ir_state |= ATTACHED;
9466	/*
9467	 * Move allocindirs with written pointers to the completehd if
9468	 * the indirdep's pointer is not yet written.  Otherwise
9469	 * free them here.
9470	 */
9471	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
9472		LIST_REMOVE(aip, ai_next);
9473		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
9474			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
9475			    ai_next);
9476			continue;
9477		}
9478		free_newblk(&aip->ai_block);
9479	}
9480	/*
9481	 * Move allocindirs that have finished dependency processing from
9482	 * the done list to the write list after updating the pointers.
9483	 */
9484	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
9485		handle_allocindir_partdone(aip);
9486		if (aip == LIST_FIRST(&indirdep->ir_donehd))
9487			panic("disk_write_complete: not gone");
9488		chgs = 1;
9489	}
9490	/*
9491	 * If this indirdep has been detached from its newblk during
9492	 * I/O we need to keep this dep attached to the buffer so
9493	 * deallocate_dependencies can find it and properly resolve
9494	 * any outstanding dependencies.
9495	 */
9496	if ((indirdep->ir_state & (ONDEPLIST | DEPCOMPLETE)) == 0)
9497		chgs = 1;
9498	if ((bp->b_flags & B_DELWRI) == 0)
9499		stat_indir_blk_ptrs++;
9500	/*
9501	 * If there were no changes we can discard the savedbp and detach
9502	 * ourselves from the buf.  We are only carrying completed pointers
9503	 * in this case.
9504	 */
9505	if (chgs == 0) {
9506		struct buf *sbp;
9507
9508		sbp = indirdep->ir_savebp;
9509		sbp->b_flags |= B_INVAL | B_NOCACHE;
9510		indirdep->ir_savebp = NULL;
9511		if (*bpp != NULL)
9512			panic("handle_written_indirdep: bp already exists.");
9513		*bpp = sbp;
9514	} else
9515		bdirty(bp);
9516	/*
9517	 * If there are no fresh dependencies and none waiting on writes
9518	 * we can free the indirdep.
9519	 */
9520	if ((indirdep->ir_state & DEPCOMPLETE) && chgs == 0) {
9521		if (indirdep->ir_state & ONDEPLIST)
9522			LIST_REMOVE(indirdep, ir_next);
9523		free_indirdep(indirdep);
9524		return (0);
9525	}
9526
9527	return (chgs);
9528}
9529
9530/*
9531 * Process a diradd entry after its dependent inode has been written.
9532 * This routine must be called with splbio interrupts blocked.
9533 */
9534static void
9535diradd_inode_written(dap, inodedep)
9536	struct diradd *dap;
9537	struct inodedep *inodedep;
9538{
9539
9540	dap->da_state |= COMPLETE;
9541	complete_diradd(dap);
9542	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9543}
9544
9545/*
9546 * Returns true if the bmsafemap will have rollbacks when written.  Must
9547 * only be called with lk and the buf lock on the cg held.
9548 */
9549static int
9550bmsafemap_rollbacks(bmsafemap)
9551	struct bmsafemap *bmsafemap;
9552{
9553
9554	return (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
9555	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd));
9556}
9557
9558/*
9559 * Complete a write to a bmsafemap structure.  Roll forward any bitmap
9560 * changes if it's not a background write.  Set all written dependencies
9561 * to DEPCOMPLETE and free the structure if possible.
9562 */
9563static int
9564handle_written_bmsafemap(bmsafemap, bp)
9565	struct bmsafemap *bmsafemap;
9566	struct buf *bp;
9567{
9568	struct newblk *newblk;
9569	struct inodedep *inodedep;
9570	struct jaddref *jaddref, *jatmp;
9571	struct jnewblk *jnewblk, *jntmp;
9572	uint8_t *inosused;
9573	uint8_t *blksfree;
9574	struct cg *cgp;
9575	struct fs *fs;
9576	ino_t ino;
9577	long bno;
9578	int chgs;
9579	int i;
9580
9581	if ((bmsafemap->sm_state & IOSTARTED) == 0)
9582		panic("initiate_write_bmsafemap: Not started\n");
9583	chgs = 0;
9584	bmsafemap->sm_state &= ~IOSTARTED;
9585	/*
9586	 * Restore unwritten inode allocation pending jaddref writes.
9587	 */
9588	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
9589		cgp = (struct cg *)bp->b_data;
9590		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
9591		inosused = cg_inosused(cgp);
9592		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
9593		    ja_bmdeps, jatmp) {
9594			if ((jaddref->ja_state & UNDONE) == 0)
9595				continue;
9596			ino = jaddref->ja_ino % fs->fs_ipg;
9597			if (isset(inosused, ino))
9598				panic("handle_written_bmsafemap: "
9599				    "re-allocated inode");
9600			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
9601				if ((jaddref->ja_mode & IFMT) == IFDIR)
9602					cgp->cg_cs.cs_ndir++;
9603				cgp->cg_cs.cs_nifree--;
9604				setbit(inosused, ino);
9605				chgs = 1;
9606			}
9607			jaddref->ja_state &= ~UNDONE;
9608			jaddref->ja_state |= ATTACHED;
9609			free_jaddref(jaddref);
9610		}
9611	}
9612	/*
9613	 * Restore any block allocations which are pending journal writes.
9614	 */
9615	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
9616		cgp = (struct cg *)bp->b_data;
9617		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
9618		blksfree = cg_blksfree(cgp);
9619		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
9620		    jntmp) {
9621			if ((jnewblk->jn_state & UNDONE) == 0)
9622				continue;
9623			bno = dtogd(fs, jnewblk->jn_blkno);
9624			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
9625			    i++) {
9626				if (bp->b_xflags & BX_BKGRDMARKER)
9627					break;
9628				if ((jnewblk->jn_state & NEWBLOCK) == 0 &&
9629				    isclr(blksfree, bno + i))
9630					panic("handle_written_bmsafemap: "
9631					    "re-allocated fragment");
9632				clrbit(blksfree, bno + i);
9633				chgs = 1;
9634			}
9635			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
9636			jnewblk->jn_state |= ATTACHED;
9637			free_jnewblk(jnewblk);
9638		}
9639	}
9640	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
9641		newblk->nb_state |= DEPCOMPLETE;
9642		newblk->nb_state &= ~ONDEPLIST;
9643		newblk->nb_bmsafemap = NULL;
9644		LIST_REMOVE(newblk, nb_deps);
9645		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
9646			handle_allocdirect_partdone(
9647			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
9648		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
9649			handle_allocindir_partdone(
9650			    WK_ALLOCINDIR(&newblk->nb_list));
9651		else if (newblk->nb_list.wk_type != D_NEWBLK)
9652			panic("handle_written_bmsafemap: Unexpected type: %s",
9653			    TYPENAME(newblk->nb_list.wk_type));
9654	}
9655	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
9656		inodedep->id_state |= DEPCOMPLETE;
9657		inodedep->id_state &= ~ONDEPLIST;
9658		LIST_REMOVE(inodedep, id_deps);
9659		inodedep->id_bmsafemap = NULL;
9660	}
9661	if (LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
9662	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
9663	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
9664	    LIST_EMPTY(&bmsafemap->sm_inodedephd)) {
9665		if (chgs)
9666			bdirty(bp);
9667		LIST_REMOVE(bmsafemap, sm_hash);
9668		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
9669		return (0);
9670	}
9671	bdirty(bp);
9672	return (1);
9673}
9674
9675/*
9676 * Try to free a mkdir dependency.
9677 */
9678static void
9679complete_mkdir(mkdir)
9680	struct mkdir *mkdir;
9681{
9682	struct diradd *dap;
9683
9684	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
9685		return;
9686	LIST_REMOVE(mkdir, md_mkdirs);
9687	dap = mkdir->md_diradd;
9688	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9689	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
9690		dap->da_state |= DEPCOMPLETE;
9691		complete_diradd(dap);
9692	}
9693	WORKITEM_FREE(mkdir, D_MKDIR);
9694}
9695
9696/*
9697 * Handle the completion of a mkdir dependency.
9698 */
9699static void
9700handle_written_mkdir(mkdir, type)
9701	struct mkdir *mkdir;
9702	int type;
9703{
9704
9705	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
9706		panic("handle_written_mkdir: bad type");
9707	mkdir->md_state |= COMPLETE;
9708	complete_mkdir(mkdir);
9709}
9710
9711static void
9712free_pagedep(pagedep)
9713	struct pagedep *pagedep;
9714{
9715	int i;
9716
9717	if (pagedep->pd_state & (NEWBLOCK | ONWORKLIST))
9718		return;
9719	for (i = 0; i < DAHASHSZ; i++)
9720		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
9721			return;
9722	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
9723		return;
9724	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
9725		return;
9726	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
9727		return;
9728	LIST_REMOVE(pagedep, pd_hash);
9729	WORKITEM_FREE(pagedep, D_PAGEDEP);
9730}
9731
9732/*
9733 * Called from within softdep_disk_write_complete above.
9734 * A write operation was just completed. Removed inodes can
9735 * now be freed and associated block pointers may be committed.
9736 * Note that this routine is always called from interrupt level
9737 * with further splbio interrupts blocked.
9738 */
9739static int
9740handle_written_filepage(pagedep, bp)
9741	struct pagedep *pagedep;
9742	struct buf *bp;		/* buffer containing the written page */
9743{
9744	struct dirrem *dirrem;
9745	struct diradd *dap, *nextdap;
9746	struct direct *ep;
9747	int i, chgs;
9748
9749	if ((pagedep->pd_state & IOSTARTED) == 0)
9750		panic("handle_written_filepage: not started");
9751	pagedep->pd_state &= ~IOSTARTED;
9752	/*
9753	 * Process any directory removals that have been committed.
9754	 */
9755	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
9756		LIST_REMOVE(dirrem, dm_next);
9757		dirrem->dm_state |= COMPLETE;
9758		dirrem->dm_dirinum = pagedep->pd_ino;
9759		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9760		    ("handle_written_filepage: Journal entries not written."));
9761		add_to_worklist(&dirrem->dm_list, 0);
9762	}
9763	/*
9764	 * Free any directory additions that have been committed.
9765	 * If it is a newly allocated block, we have to wait until
9766	 * the on-disk directory inode claims the new block.
9767	 */
9768	if ((pagedep->pd_state & NEWBLOCK) == 0)
9769		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
9770			free_diradd(dap, NULL);
9771	/*
9772	 * Uncommitted directory entries must be restored.
9773	 */
9774	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
9775		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
9776		     dap = nextdap) {
9777			nextdap = LIST_NEXT(dap, da_pdlist);
9778			if (dap->da_state & ATTACHED)
9779				panic("handle_written_filepage: attached");
9780			ep = (struct direct *)
9781			    ((char *)bp->b_data + dap->da_offset);
9782			ep->d_ino = dap->da_newinum;
9783			dap->da_state &= ~UNDONE;
9784			dap->da_state |= ATTACHED;
9785			chgs = 1;
9786			/*
9787			 * If the inode referenced by the directory has
9788			 * been written out, then the dependency can be
9789			 * moved to the pending list.
9790			 */
9791			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
9792				LIST_REMOVE(dap, da_pdlist);
9793				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
9794				    da_pdlist);
9795			}
9796		}
9797	}
9798	/*
9799	 * If there were any rollbacks in the directory, then it must be
9800	 * marked dirty so that its will eventually get written back in
9801	 * its correct form.
9802	 */
9803	if (chgs) {
9804		if ((bp->b_flags & B_DELWRI) == 0)
9805			stat_dir_entry++;
9806		bdirty(bp);
9807		return (1);
9808	}
9809	/*
9810	 * If we are not waiting for a new directory block to be
9811	 * claimed by its inode, then the pagedep will be freed.
9812	 * Otherwise it will remain to track any new entries on
9813	 * the page in case they are fsync'ed.
9814	 */
9815	if ((pagedep->pd_state & NEWBLOCK) == 0 &&
9816	    LIST_EMPTY(&pagedep->pd_jmvrefhd)) {
9817		LIST_REMOVE(pagedep, pd_hash);
9818		WORKITEM_FREE(pagedep, D_PAGEDEP);
9819	}
9820	return (0);
9821}
9822
9823/*
9824 * Writing back in-core inode structures.
9825 *
9826 * The filesystem only accesses an inode's contents when it occupies an
9827 * "in-core" inode structure.  These "in-core" structures are separate from
9828 * the page frames used to cache inode blocks.  Only the latter are
9829 * transferred to/from the disk.  So, when the updated contents of the
9830 * "in-core" inode structure are copied to the corresponding in-memory inode
9831 * block, the dependencies are also transferred.  The following procedure is
9832 * called when copying a dirty "in-core" inode to a cached inode block.
9833 */
9834
9835/*
9836 * Called when an inode is loaded from disk. If the effective link count
9837 * differed from the actual link count when it was last flushed, then we
9838 * need to ensure that the correct effective link count is put back.
9839 */
9840void
9841softdep_load_inodeblock(ip)
9842	struct inode *ip;	/* the "in_core" copy of the inode */
9843{
9844	struct inodedep *inodedep;
9845
9846	/*
9847	 * Check for alternate nlink count.
9848	 */
9849	ip->i_effnlink = ip->i_nlink;
9850	ACQUIRE_LOCK(&lk);
9851	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
9852	    &inodedep) == 0) {
9853		FREE_LOCK(&lk);
9854		return;
9855	}
9856	ip->i_effnlink -= inodedep->id_nlinkdelta;
9857	FREE_LOCK(&lk);
9858}
9859
9860/*
9861 * This routine is called just before the "in-core" inode
9862 * information is to be copied to the in-memory inode block.
9863 * Recall that an inode block contains several inodes. If
9864 * the force flag is set, then the dependencies will be
9865 * cleared so that the update can always be made. Note that
9866 * the buffer is locked when this routine is called, so we
9867 * will never be in the middle of writing the inode block
9868 * to disk.
9869 */
9870void
9871softdep_update_inodeblock(ip, bp, waitfor)
9872	struct inode *ip;	/* the "in_core" copy of the inode */
9873	struct buf *bp;		/* the buffer containing the inode block */
9874	int waitfor;		/* nonzero => update must be allowed */
9875{
9876	struct inodedep *inodedep;
9877	struct inoref *inoref;
9878	struct worklist *wk;
9879	struct mount *mp;
9880	struct buf *ibp;
9881	struct fs *fs;
9882	int error;
9883
9884	mp = UFSTOVFS(ip->i_ump);
9885	fs = ip->i_fs;
9886	/*
9887	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
9888	 * does not have access to the in-core ip so must write directly into
9889	 * the inode block buffer when setting freelink.
9890	 */
9891	if (fs->fs_magic == FS_UFS1_MAGIC)
9892		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
9893		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
9894	else
9895		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
9896		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
9897	/*
9898	 * If the effective link count is not equal to the actual link
9899	 * count, then we must track the difference in an inodedep while
9900	 * the inode is (potentially) tossed out of the cache. Otherwise,
9901	 * if there is no existing inodedep, then there are no dependencies
9902	 * to track.
9903	 */
9904	ACQUIRE_LOCK(&lk);
9905again:
9906	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
9907		FREE_LOCK(&lk);
9908		if (ip->i_effnlink != ip->i_nlink)
9909			panic("softdep_update_inodeblock: bad link count");
9910		return;
9911	}
9912	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
9913		panic("softdep_update_inodeblock: bad delta");
9914	/*
9915	 * If we're flushing all dependencies we must also move any waiting
9916	 * for journal writes onto the bufwait list prior to I/O.
9917	 */
9918	if (waitfor) {
9919		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9920			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
9921			    == DEPCOMPLETE) {
9922				stat_jwait_inode++;
9923				jwait(&inoref->if_list);
9924				goto again;
9925			}
9926		}
9927	}
9928	/*
9929	 * Changes have been initiated. Anything depending on these
9930	 * changes cannot occur until this inode has been written.
9931	 */
9932	inodedep->id_state &= ~COMPLETE;
9933	if ((inodedep->id_state & ONWORKLIST) == 0)
9934		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
9935	/*
9936	 * Any new dependencies associated with the incore inode must
9937	 * now be moved to the list associated with the buffer holding
9938	 * the in-memory copy of the inode. Once merged process any
9939	 * allocdirects that are completed by the merger.
9940	 */
9941	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
9942	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
9943		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
9944		    NULL);
9945	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
9946	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
9947		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
9948		    NULL);
9949	/*
9950	 * Now that the inode has been pushed into the buffer, the
9951	 * operations dependent on the inode being written to disk
9952	 * can be moved to the id_bufwait so that they will be
9953	 * processed when the buffer I/O completes.
9954	 */
9955	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
9956		WORKLIST_REMOVE(wk);
9957		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
9958	}
9959	/*
9960	 * Newly allocated inodes cannot be written until the bitmap
9961	 * that allocates them have been written (indicated by
9962	 * DEPCOMPLETE being set in id_state). If we are doing a
9963	 * forced sync (e.g., an fsync on a file), we force the bitmap
9964	 * to be written so that the update can be done.
9965	 */
9966	if (waitfor == 0) {
9967		FREE_LOCK(&lk);
9968		return;
9969	}
9970retry:
9971	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
9972		FREE_LOCK(&lk);
9973		return;
9974	}
9975	ibp = inodedep->id_bmsafemap->sm_buf;
9976	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
9977	if (ibp == NULL) {
9978		/*
9979		 * If ibp came back as NULL, the dependency could have been
9980		 * freed while we slept.  Look it up again, and check to see
9981		 * that it has completed.
9982		 */
9983		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
9984			goto retry;
9985		FREE_LOCK(&lk);
9986		return;
9987	}
9988	FREE_LOCK(&lk);
9989	if ((error = bwrite(ibp)) != 0)
9990		softdep_error("softdep_update_inodeblock: bwrite", error);
9991}
9992
9993/*
9994 * Merge the a new inode dependency list (such as id_newinoupdt) into an
9995 * old inode dependency list (such as id_inoupdt). This routine must be
9996 * called with splbio interrupts blocked.
9997 */
9998static void
9999merge_inode_lists(newlisthead, oldlisthead)
10000	struct allocdirectlst *newlisthead;
10001	struct allocdirectlst *oldlisthead;
10002{
10003	struct allocdirect *listadp, *newadp;
10004
10005	newadp = TAILQ_FIRST(newlisthead);
10006	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
10007		if (listadp->ad_offset < newadp->ad_offset) {
10008			listadp = TAILQ_NEXT(listadp, ad_next);
10009			continue;
10010		}
10011		TAILQ_REMOVE(newlisthead, newadp, ad_next);
10012		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
10013		if (listadp->ad_offset == newadp->ad_offset) {
10014			allocdirect_merge(oldlisthead, newadp,
10015			    listadp);
10016			listadp = newadp;
10017		}
10018		newadp = TAILQ_FIRST(newlisthead);
10019	}
10020	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
10021		TAILQ_REMOVE(newlisthead, newadp, ad_next);
10022		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
10023	}
10024}
10025
10026/*
10027 * If we are doing an fsync, then we must ensure that any directory
10028 * entries for the inode have been written after the inode gets to disk.
10029 */
10030int
10031softdep_fsync(vp)
10032	struct vnode *vp;	/* the "in_core" copy of the inode */
10033{
10034	struct inodedep *inodedep;
10035	struct pagedep *pagedep;
10036	struct inoref *inoref;
10037	struct worklist *wk;
10038	struct diradd *dap;
10039	struct mount *mp;
10040	struct vnode *pvp;
10041	struct inode *ip;
10042	struct buf *bp;
10043	struct fs *fs;
10044	struct thread *td = curthread;
10045	int error, flushparent, pagedep_new_block;
10046	ino_t parentino;
10047	ufs_lbn_t lbn;
10048
10049	ip = VTOI(vp);
10050	fs = ip->i_fs;
10051	mp = vp->v_mount;
10052	ACQUIRE_LOCK(&lk);
10053restart:
10054	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
10055		FREE_LOCK(&lk);
10056		return (0);
10057	}
10058	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10059		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10060		    == DEPCOMPLETE) {
10061			stat_jwait_inode++;
10062			jwait(&inoref->if_list);
10063			goto restart;
10064		}
10065	}
10066	if (!LIST_EMPTY(&inodedep->id_inowait) ||
10067	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
10068	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
10069	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
10070	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
10071		panic("softdep_fsync: pending ops %p", inodedep);
10072	for (error = 0, flushparent = 0; ; ) {
10073		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
10074			break;
10075		if (wk->wk_type != D_DIRADD)
10076			panic("softdep_fsync: Unexpected type %s",
10077			    TYPENAME(wk->wk_type));
10078		dap = WK_DIRADD(wk);
10079		/*
10080		 * Flush our parent if this directory entry has a MKDIR_PARENT
10081		 * dependency or is contained in a newly allocated block.
10082		 */
10083		if (dap->da_state & DIRCHG)
10084			pagedep = dap->da_previous->dm_pagedep;
10085		else
10086			pagedep = dap->da_pagedep;
10087		parentino = pagedep->pd_ino;
10088		lbn = pagedep->pd_lbn;
10089		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
10090			panic("softdep_fsync: dirty");
10091		if ((dap->da_state & MKDIR_PARENT) ||
10092		    (pagedep->pd_state & NEWBLOCK))
10093			flushparent = 1;
10094		else
10095			flushparent = 0;
10096		/*
10097		 * If we are being fsync'ed as part of vgone'ing this vnode,
10098		 * then we will not be able to release and recover the
10099		 * vnode below, so we just have to give up on writing its
10100		 * directory entry out. It will eventually be written, just
10101		 * not now, but then the user was not asking to have it
10102		 * written, so we are not breaking any promises.
10103		 */
10104		if (vp->v_iflag & VI_DOOMED)
10105			break;
10106		/*
10107		 * We prevent deadlock by always fetching inodes from the
10108		 * root, moving down the directory tree. Thus, when fetching
10109		 * our parent directory, we first try to get the lock. If
10110		 * that fails, we must unlock ourselves before requesting
10111		 * the lock on our parent. See the comment in ufs_lookup
10112		 * for details on possible races.
10113		 */
10114		FREE_LOCK(&lk);
10115		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
10116		    FFSV_FORCEINSMQ)) {
10117			error = vfs_busy(mp, MBF_NOWAIT);
10118			if (error != 0) {
10119				vfs_ref(mp);
10120				VOP_UNLOCK(vp, 0);
10121				error = vfs_busy(mp, 0);
10122				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
10123				vfs_rel(mp);
10124				if (error != 0)
10125					return (ENOENT);
10126				if (vp->v_iflag & VI_DOOMED) {
10127					vfs_unbusy(mp);
10128					return (ENOENT);
10129				}
10130			}
10131			VOP_UNLOCK(vp, 0);
10132			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
10133			    &pvp, FFSV_FORCEINSMQ);
10134			vfs_unbusy(mp);
10135			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
10136			if (vp->v_iflag & VI_DOOMED) {
10137				if (error == 0)
10138					vput(pvp);
10139				error = ENOENT;
10140			}
10141			if (error != 0)
10142				return (error);
10143		}
10144		/*
10145		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
10146		 * that are contained in direct blocks will be resolved by
10147		 * doing a ffs_update. Pagedeps contained in indirect blocks
10148		 * may require a complete sync'ing of the directory. So, we
10149		 * try the cheap and fast ffs_update first, and if that fails,
10150		 * then we do the slower ffs_syncvnode of the directory.
10151		 */
10152		if (flushparent) {
10153			int locked;
10154
10155			if ((error = ffs_update(pvp, 1)) != 0) {
10156				vput(pvp);
10157				return (error);
10158			}
10159			ACQUIRE_LOCK(&lk);
10160			locked = 1;
10161			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
10162				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
10163					if (wk->wk_type != D_DIRADD)
10164						panic("softdep_fsync: Unexpected type %s",
10165						      TYPENAME(wk->wk_type));
10166					dap = WK_DIRADD(wk);
10167					if (dap->da_state & DIRCHG)
10168						pagedep = dap->da_previous->dm_pagedep;
10169					else
10170						pagedep = dap->da_pagedep;
10171					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
10172					FREE_LOCK(&lk);
10173					locked = 0;
10174					if (pagedep_new_block &&
10175					    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
10176						vput(pvp);
10177						return (error);
10178					}
10179				}
10180			}
10181			if (locked)
10182				FREE_LOCK(&lk);
10183		}
10184		/*
10185		 * Flush directory page containing the inode's name.
10186		 */
10187		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
10188		    &bp);
10189		if (error == 0)
10190			error = bwrite(bp);
10191		else
10192			brelse(bp);
10193		vput(pvp);
10194		if (error != 0)
10195			return (error);
10196		ACQUIRE_LOCK(&lk);
10197		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
10198			break;
10199	}
10200	FREE_LOCK(&lk);
10201	return (0);
10202}
10203
10204/*
10205 * Flush all the dirty bitmaps associated with the block device
10206 * before flushing the rest of the dirty blocks so as to reduce
10207 * the number of dependencies that will have to be rolled back.
10208 */
10209void
10210softdep_fsync_mountdev(vp)
10211	struct vnode *vp;
10212{
10213	struct buf *bp, *nbp;
10214	struct worklist *wk;
10215	struct bufobj *bo;
10216
10217	if (!vn_isdisk(vp, NULL))
10218		panic("softdep_fsync_mountdev: vnode not a disk");
10219	bo = &vp->v_bufobj;
10220restart:
10221	BO_LOCK(bo);
10222	ACQUIRE_LOCK(&lk);
10223	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
10224		/*
10225		 * If it is already scheduled, skip to the next buffer.
10226		 */
10227		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
10228			continue;
10229
10230		if ((bp->b_flags & B_DELWRI) == 0)
10231			panic("softdep_fsync_mountdev: not dirty");
10232		/*
10233		 * We are only interested in bitmaps with outstanding
10234		 * dependencies.
10235		 */
10236		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
10237		    wk->wk_type != D_BMSAFEMAP ||
10238		    (bp->b_vflags & BV_BKGRDINPROG)) {
10239			BUF_UNLOCK(bp);
10240			continue;
10241		}
10242		FREE_LOCK(&lk);
10243		BO_UNLOCK(bo);
10244		bremfree(bp);
10245		(void) bawrite(bp);
10246		goto restart;
10247	}
10248	FREE_LOCK(&lk);
10249	drain_output(vp);
10250	BO_UNLOCK(bo);
10251}
10252
10253/*
10254 * This routine is called when we are trying to synchronously flush a
10255 * file. This routine must eliminate any filesystem metadata dependencies
10256 * so that the syncing routine can succeed by pushing the dirty blocks
10257 * associated with the file. If any I/O errors occur, they are returned.
10258 */
10259int
10260softdep_sync_metadata(struct vnode *vp)
10261{
10262	struct pagedep *pagedep;
10263	struct allocindir *aip;
10264	struct newblk *newblk;
10265	struct buf *bp, *nbp;
10266	struct worklist *wk;
10267	struct bufobj *bo;
10268	int i, error, waitfor;
10269
10270	if (!DOINGSOFTDEP(vp))
10271		return (0);
10272	/*
10273	 * Ensure that any direct block dependencies have been cleared.
10274	 */
10275	ACQUIRE_LOCK(&lk);
10276	if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) {
10277		FREE_LOCK(&lk);
10278		return (error);
10279	}
10280	FREE_LOCK(&lk);
10281	/*
10282	 * For most files, the only metadata dependencies are the
10283	 * cylinder group maps that allocate their inode or blocks.
10284	 * The block allocation dependencies can be found by traversing
10285	 * the dependency lists for any buffers that remain on their
10286	 * dirty buffer list. The inode allocation dependency will
10287	 * be resolved when the inode is updated with MNT_WAIT.
10288	 * This work is done in two passes. The first pass grabs most
10289	 * of the buffers and begins asynchronously writing them. The
10290	 * only way to wait for these asynchronous writes is to sleep
10291	 * on the filesystem vnode which may stay busy for a long time
10292	 * if the filesystem is active. So, instead, we make a second
10293	 * pass over the dependencies blocking on each write. In the
10294	 * usual case we will be blocking against a write that we
10295	 * initiated, so when it is done the dependency will have been
10296	 * resolved. Thus the second pass is expected to end quickly.
10297	 */
10298	waitfor = MNT_NOWAIT;
10299	bo = &vp->v_bufobj;
10300
10301top:
10302	/*
10303	 * We must wait for any I/O in progress to finish so that
10304	 * all potential buffers on the dirty list will be visible.
10305	 */
10306	BO_LOCK(bo);
10307	drain_output(vp);
10308	while ((bp = TAILQ_FIRST(&bo->bo_dirty.bv_hd)) != NULL) {
10309		bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT);
10310		if (bp)
10311			break;
10312	}
10313	BO_UNLOCK(bo);
10314	if (bp == NULL)
10315		return (0);
10316loop:
10317	/* While syncing snapshots, we must allow recursive lookups */
10318	BUF_AREC(bp);
10319	ACQUIRE_LOCK(&lk);
10320	/*
10321	 * As we hold the buffer locked, none of its dependencies
10322	 * will disappear.
10323	 */
10324	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
10325		switch (wk->wk_type) {
10326
10327		case D_ALLOCDIRECT:
10328		case D_ALLOCINDIR:
10329			newblk = WK_NEWBLK(wk);
10330			if (newblk->nb_jnewblk != NULL) {
10331				stat_jwait_newblk++;
10332				jwait(&newblk->nb_jnewblk->jn_list);
10333				goto restart;
10334			}
10335			if (newblk->nb_state & DEPCOMPLETE)
10336				continue;
10337			nbp = newblk->nb_bmsafemap->sm_buf;
10338			nbp = getdirtybuf(nbp, &lk, waitfor);
10339			if (nbp == NULL)
10340				continue;
10341			FREE_LOCK(&lk);
10342			if (waitfor == MNT_NOWAIT) {
10343				bawrite(nbp);
10344			} else if ((error = bwrite(nbp)) != 0) {
10345				break;
10346			}
10347			ACQUIRE_LOCK(&lk);
10348			continue;
10349
10350		case D_INDIRDEP:
10351		restart:
10352
10353			LIST_FOREACH(aip,
10354			    &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
10355				newblk = (struct newblk *)aip;
10356				if (newblk->nb_jnewblk != NULL) {
10357					stat_jwait_newblk++;
10358					jwait(&newblk->nb_jnewblk->jn_list);
10359					goto restart;
10360				}
10361				if (newblk->nb_state & DEPCOMPLETE)
10362					continue;
10363				nbp = newblk->nb_bmsafemap->sm_buf;
10364				nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
10365				if (nbp == NULL)
10366					goto restart;
10367				FREE_LOCK(&lk);
10368				if ((error = bwrite(nbp)) != 0) {
10369					goto loop_end;
10370				}
10371				ACQUIRE_LOCK(&lk);
10372				goto restart;
10373			}
10374			continue;
10375
10376		case D_PAGEDEP:
10377			/*
10378			 * We are trying to sync a directory that may
10379			 * have dependencies on both its own metadata
10380			 * and/or dependencies on the inodes of any
10381			 * recently allocated files. We walk its diradd
10382			 * lists pushing out the associated inode.
10383			 */
10384			pagedep = WK_PAGEDEP(wk);
10385			for (i = 0; i < DAHASHSZ; i++) {
10386				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
10387					continue;
10388				if ((error =
10389				    flush_pagedep_deps(vp, wk->wk_mp,
10390						&pagedep->pd_diraddhd[i]))) {
10391					FREE_LOCK(&lk);
10392					goto loop_end;
10393				}
10394			}
10395			continue;
10396
10397		default:
10398			panic("softdep_sync_metadata: Unknown type %s",
10399			    TYPENAME(wk->wk_type));
10400			/* NOTREACHED */
10401		}
10402	loop_end:
10403		/* We reach here only in error and unlocked */
10404		if (error == 0)
10405			panic("softdep_sync_metadata: zero error");
10406		BUF_NOREC(bp);
10407		bawrite(bp);
10408		return (error);
10409	}
10410	FREE_LOCK(&lk);
10411	BO_LOCK(bo);
10412	while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
10413		nbp = getdirtybuf(nbp, BO_MTX(bo), MNT_WAIT);
10414		if (nbp)
10415			break;
10416	}
10417	BO_UNLOCK(bo);
10418	BUF_NOREC(bp);
10419	bawrite(bp);
10420	if (nbp != NULL) {
10421		bp = nbp;
10422		goto loop;
10423	}
10424	/*
10425	 * The brief unlock is to allow any pent up dependency
10426	 * processing to be done. Then proceed with the second pass.
10427	 */
10428	if (waitfor == MNT_NOWAIT) {
10429		waitfor = MNT_WAIT;
10430		goto top;
10431	}
10432
10433	/*
10434	 * If we have managed to get rid of all the dirty buffers,
10435	 * then we are done. For certain directories and block
10436	 * devices, we may need to do further work.
10437	 *
10438	 * We must wait for any I/O in progress to finish so that
10439	 * all potential buffers on the dirty list will be visible.
10440	 */
10441	BO_LOCK(bo);
10442	drain_output(vp);
10443	BO_UNLOCK(bo);
10444	return ffs_update(vp, 1);
10445	/* return (0); */
10446}
10447
10448/*
10449 * Flush the dependencies associated with an inodedep.
10450 * Called with splbio blocked.
10451 */
10452static int
10453flush_inodedep_deps(mp, ino)
10454	struct mount *mp;
10455	ino_t ino;
10456{
10457	struct inodedep *inodedep;
10458	struct inoref *inoref;
10459	int error, waitfor;
10460
10461	/*
10462	 * This work is done in two passes. The first pass grabs most
10463	 * of the buffers and begins asynchronously writing them. The
10464	 * only way to wait for these asynchronous writes is to sleep
10465	 * on the filesystem vnode which may stay busy for a long time
10466	 * if the filesystem is active. So, instead, we make a second
10467	 * pass over the dependencies blocking on each write. In the
10468	 * usual case we will be blocking against a write that we
10469	 * initiated, so when it is done the dependency will have been
10470	 * resolved. Thus the second pass is expected to end quickly.
10471	 * We give a brief window at the top of the loop to allow
10472	 * any pending I/O to complete.
10473	 */
10474	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
10475		if (error)
10476			return (error);
10477		FREE_LOCK(&lk);
10478		ACQUIRE_LOCK(&lk);
10479restart:
10480		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
10481			return (0);
10482		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10483			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10484			    == DEPCOMPLETE) {
10485				stat_jwait_inode++;
10486				jwait(&inoref->if_list);
10487				goto restart;
10488			}
10489		}
10490		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
10491		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
10492		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
10493		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
10494			continue;
10495		/*
10496		 * If pass2, we are done, otherwise do pass 2.
10497		 */
10498		if (waitfor == MNT_WAIT)
10499			break;
10500		waitfor = MNT_WAIT;
10501	}
10502	/*
10503	 * Try freeing inodedep in case all dependencies have been removed.
10504	 */
10505	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
10506		(void) free_inodedep(inodedep);
10507	return (0);
10508}
10509
10510/*
10511 * Flush an inode dependency list.
10512 * Called with splbio blocked.
10513 */
10514static int
10515flush_deplist(listhead, waitfor, errorp)
10516	struct allocdirectlst *listhead;
10517	int waitfor;
10518	int *errorp;
10519{
10520	struct allocdirect *adp;
10521	struct newblk *newblk;
10522	struct buf *bp;
10523
10524	mtx_assert(&lk, MA_OWNED);
10525	TAILQ_FOREACH(adp, listhead, ad_next) {
10526		newblk = (struct newblk *)adp;
10527		if (newblk->nb_jnewblk != NULL) {
10528			stat_jwait_newblk++;
10529			jwait(&newblk->nb_jnewblk->jn_list);
10530			return (1);
10531		}
10532		if (newblk->nb_state & DEPCOMPLETE)
10533			continue;
10534		bp = newblk->nb_bmsafemap->sm_buf;
10535		bp = getdirtybuf(bp, &lk, waitfor);
10536		if (bp == NULL) {
10537			if (waitfor == MNT_NOWAIT)
10538				continue;
10539			return (1);
10540		}
10541		FREE_LOCK(&lk);
10542		if (waitfor == MNT_NOWAIT) {
10543			bawrite(bp);
10544		} else if ((*errorp = bwrite(bp)) != 0) {
10545			ACQUIRE_LOCK(&lk);
10546			return (1);
10547		}
10548		ACQUIRE_LOCK(&lk);
10549		return (1);
10550	}
10551	return (0);
10552}
10553
10554/*
10555 * Flush dependencies associated with an allocdirect block.
10556 */
10557static int
10558flush_newblk_dep(vp, mp, lbn)
10559	struct vnode *vp;
10560	struct mount *mp;
10561	ufs_lbn_t lbn;
10562{
10563	struct newblk *newblk;
10564	struct bufobj *bo;
10565	struct inode *ip;
10566	struct buf *bp;
10567	ufs2_daddr_t blkno;
10568	int error;
10569
10570	error = 0;
10571	bo = &vp->v_bufobj;
10572	ip = VTOI(vp);
10573	blkno = DIP(ip, i_db[lbn]);
10574	if (blkno == 0)
10575		panic("flush_newblk_dep: Missing block");
10576	ACQUIRE_LOCK(&lk);
10577	/*
10578	 * Loop until all dependencies related to this block are satisfied.
10579	 * We must be careful to restart after each sleep in case a write
10580	 * completes some part of this process for us.
10581	 */
10582	for (;;) {
10583		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
10584			FREE_LOCK(&lk);
10585			break;
10586		}
10587		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
10588			panic("flush_newblk_deps: Bad newblk %p", newblk);
10589		/*
10590		 * Flush the journal.
10591		 */
10592		if (newblk->nb_jnewblk != NULL) {
10593			stat_jwait_newblk++;
10594			jwait(&newblk->nb_jnewblk->jn_list);
10595			continue;
10596		}
10597		/*
10598		 * Write the bitmap dependency.
10599		 */
10600		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
10601			bp = newblk->nb_bmsafemap->sm_buf;
10602			bp = getdirtybuf(bp, &lk, MNT_WAIT);
10603			if (bp == NULL)
10604				continue;
10605			FREE_LOCK(&lk);
10606			error = bwrite(bp);
10607			if (error)
10608				break;
10609			ACQUIRE_LOCK(&lk);
10610			continue;
10611		}
10612		/*
10613		 * Write the buffer.
10614		 */
10615		FREE_LOCK(&lk);
10616		BO_LOCK(bo);
10617		bp = gbincore(bo, lbn);
10618		if (bp != NULL) {
10619			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
10620			    LK_INTERLOCK, BO_MTX(bo));
10621			if (error == ENOLCK) {
10622				ACQUIRE_LOCK(&lk);
10623				continue; /* Slept, retry */
10624			}
10625			if (error != 0)
10626				break;	/* Failed */
10627			if (bp->b_flags & B_DELWRI) {
10628				bremfree(bp);
10629				error = bwrite(bp);
10630				if (error)
10631					break;
10632			} else
10633				BUF_UNLOCK(bp);
10634		} else
10635			BO_UNLOCK(bo);
10636		/*
10637		 * We have to wait for the direct pointers to
10638		 * point at the newdirblk before the dependency
10639		 * will go away.
10640		 */
10641		error = ffs_update(vp, MNT_WAIT);
10642		if (error)
10643			break;
10644		ACQUIRE_LOCK(&lk);
10645	}
10646	return (error);
10647}
10648
10649/*
10650 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
10651 * Called with splbio blocked.
10652 */
10653static int
10654flush_pagedep_deps(pvp, mp, diraddhdp)
10655	struct vnode *pvp;
10656	struct mount *mp;
10657	struct diraddhd *diraddhdp;
10658{
10659	struct inodedep *inodedep;
10660	struct inoref *inoref;
10661	struct ufsmount *ump;
10662	struct diradd *dap;
10663	struct vnode *vp;
10664	int error = 0;
10665	struct buf *bp;
10666	ino_t inum;
10667
10668	ump = VFSTOUFS(mp);
10669restart:
10670	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
10671		/*
10672		 * Flush ourselves if this directory entry
10673		 * has a MKDIR_PARENT dependency.
10674		 */
10675		if (dap->da_state & MKDIR_PARENT) {
10676			FREE_LOCK(&lk);
10677			if ((error = ffs_update(pvp, MNT_WAIT)) != 0)
10678				break;
10679			ACQUIRE_LOCK(&lk);
10680			/*
10681			 * If that cleared dependencies, go on to next.
10682			 */
10683			if (dap != LIST_FIRST(diraddhdp))
10684				continue;
10685			if (dap->da_state & MKDIR_PARENT)
10686				panic("flush_pagedep_deps: MKDIR_PARENT");
10687		}
10688		/*
10689		 * A newly allocated directory must have its "." and
10690		 * ".." entries written out before its name can be
10691		 * committed in its parent.
10692		 */
10693		inum = dap->da_newinum;
10694		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
10695			panic("flush_pagedep_deps: lost inode1");
10696		/*
10697		 * Wait for any pending journal adds to complete so we don't
10698		 * cause rollbacks while syncing.
10699		 */
10700		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10701			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10702			    == DEPCOMPLETE) {
10703				stat_jwait_inode++;
10704				jwait(&inoref->if_list);
10705				goto restart;
10706			}
10707		}
10708		if (dap->da_state & MKDIR_BODY) {
10709			FREE_LOCK(&lk);
10710			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
10711			    FFSV_FORCEINSMQ)))
10712				break;
10713			error = flush_newblk_dep(vp, mp, 0);
10714			/*
10715			 * If we still have the dependency we might need to
10716			 * update the vnode to sync the new link count to
10717			 * disk.
10718			 */
10719			if (error == 0 && dap == LIST_FIRST(diraddhdp))
10720				error = ffs_update(vp, MNT_WAIT);
10721			vput(vp);
10722			if (error != 0)
10723				break;
10724			ACQUIRE_LOCK(&lk);
10725			/*
10726			 * If that cleared dependencies, go on to next.
10727			 */
10728			if (dap != LIST_FIRST(diraddhdp))
10729				continue;
10730			if (dap->da_state & MKDIR_BODY) {
10731				inodedep_lookup(UFSTOVFS(ump), inum, 0,
10732				    &inodedep);
10733				panic("flush_pagedep_deps: MKDIR_BODY "
10734				    "inodedep %p dap %p vp %p",
10735				    inodedep, dap, vp);
10736			}
10737		}
10738		/*
10739		 * Flush the inode on which the directory entry depends.
10740		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
10741		 * the only remaining dependency is that the updated inode
10742		 * count must get pushed to disk. The inode has already
10743		 * been pushed into its inode buffer (via VOP_UPDATE) at
10744		 * the time of the reference count change. So we need only
10745		 * locate that buffer, ensure that there will be no rollback
10746		 * caused by a bitmap dependency, then write the inode buffer.
10747		 */
10748retry:
10749		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
10750			panic("flush_pagedep_deps: lost inode");
10751		/*
10752		 * If the inode still has bitmap dependencies,
10753		 * push them to disk.
10754		 */
10755		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
10756			bp = inodedep->id_bmsafemap->sm_buf;
10757			bp = getdirtybuf(bp, &lk, MNT_WAIT);
10758			if (bp == NULL)
10759				goto retry;
10760			FREE_LOCK(&lk);
10761			if ((error = bwrite(bp)) != 0)
10762				break;
10763			ACQUIRE_LOCK(&lk);
10764			if (dap != LIST_FIRST(diraddhdp))
10765				continue;
10766		}
10767		/*
10768		 * If the inode is still sitting in a buffer waiting
10769		 * to be written or waiting for the link count to be
10770		 * adjusted update it here to flush it to disk.
10771		 */
10772		if (dap == LIST_FIRST(diraddhdp)) {
10773			FREE_LOCK(&lk);
10774			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
10775			    FFSV_FORCEINSMQ)))
10776				break;
10777			error = ffs_update(vp, MNT_WAIT);
10778			vput(vp);
10779			if (error)
10780				break;
10781			ACQUIRE_LOCK(&lk);
10782		}
10783		/*
10784		 * If we have failed to get rid of all the dependencies
10785		 * then something is seriously wrong.
10786		 */
10787		if (dap == LIST_FIRST(diraddhdp)) {
10788			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
10789			panic("flush_pagedep_deps: failed to flush "
10790			    "inodedep %p ino %d dap %p", inodedep, inum, dap);
10791		}
10792	}
10793	if (error)
10794		ACQUIRE_LOCK(&lk);
10795	return (error);
10796}
10797
10798/*
10799 * A large burst of file addition or deletion activity can drive the
10800 * memory load excessively high. First attempt to slow things down
10801 * using the techniques below. If that fails, this routine requests
10802 * the offending operations to fall back to running synchronously
10803 * until the memory load returns to a reasonable level.
10804 */
10805int
10806softdep_slowdown(vp)
10807	struct vnode *vp;
10808{
10809	struct ufsmount *ump;
10810	int jlow;
10811	int max_softdeps_hard;
10812
10813	ACQUIRE_LOCK(&lk);
10814	jlow = 0;
10815	/*
10816	 * Check for journal space if needed.
10817	 */
10818	if (DOINGSUJ(vp)) {
10819		ump = VFSTOUFS(vp->v_mount);
10820		if (journal_space(ump, 0) == 0)
10821			jlow = 1;
10822	}
10823	max_softdeps_hard = max_softdeps * 11 / 10;
10824	if (num_dirrem < max_softdeps_hard / 2 &&
10825	    num_inodedep < max_softdeps_hard &&
10826	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
10827	    num_freeblkdep < max_softdeps_hard && jlow == 0) {
10828		FREE_LOCK(&lk);
10829  		return (0);
10830	}
10831	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
10832		softdep_speedup();
10833	stat_sync_limit_hit += 1;
10834	FREE_LOCK(&lk);
10835	return (1);
10836}
10837
10838/*
10839 * Called by the allocation routines when they are about to fail
10840 * in the hope that we can free up some disk space.
10841 *
10842 * First check to see if the work list has anything on it. If it has,
10843 * clean up entries until we successfully free some space. Because this
10844 * process holds inodes locked, we cannot handle any remove requests
10845 * that might block on a locked inode as that could lead to deadlock.
10846 * If the worklist yields no free space, encourage the syncer daemon
10847 * to help us. In no event will we try for longer than tickdelay seconds.
10848 */
10849int
10850softdep_request_cleanup(fs, vp)
10851	struct fs *fs;
10852	struct vnode *vp;
10853{
10854	struct ufsmount *ump;
10855	long starttime;
10856	ufs2_daddr_t needed;
10857	int error;
10858
10859	ump = VTOI(vp)->i_ump;
10860	mtx_assert(UFS_MTX(ump), MA_OWNED);
10861	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
10862	starttime = time_second + tickdelay;
10863	/*
10864	 * If we are being called because of a process doing a
10865	 * copy-on-write, then it is not safe to update the vnode
10866	 * as we may recurse into the copy-on-write routine.
10867	 */
10868	if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
10869		UFS_UNLOCK(ump);
10870		error = ffs_update(vp, 1);
10871		UFS_LOCK(ump);
10872		if (error != 0)
10873			return (0);
10874	}
10875	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
10876		if (time_second > starttime)
10877			return (0);
10878		UFS_UNLOCK(ump);
10879		ACQUIRE_LOCK(&lk);
10880		process_removes(vp);
10881		if (ump->softdep_on_worklist > 0 &&
10882		    process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) {
10883			stat_worklist_push += 1;
10884			FREE_LOCK(&lk);
10885			UFS_LOCK(ump);
10886			continue;
10887		}
10888		request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT);
10889		FREE_LOCK(&lk);
10890		UFS_LOCK(ump);
10891	}
10892	return (1);
10893}
10894
10895/*
10896 * If memory utilization has gotten too high, deliberately slow things
10897 * down and speed up the I/O processing.
10898 */
10899extern struct thread *syncertd;
10900static int
10901request_cleanup(mp, resource)
10902	struct mount *mp;
10903	int resource;
10904{
10905	struct thread *td = curthread;
10906	struct ufsmount *ump;
10907
10908	mtx_assert(&lk, MA_OWNED);
10909	/*
10910	 * We never hold up the filesystem syncer or buf daemon.
10911	 */
10912	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
10913		return (0);
10914	ump = VFSTOUFS(mp);
10915	/*
10916	 * First check to see if the work list has gotten backlogged.
10917	 * If it has, co-opt this process to help clean up two entries.
10918	 * Because this process may hold inodes locked, we cannot
10919	 * handle any remove requests that might block on a locked
10920	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
10921	 * to avoid recursively processing the worklist.
10922	 */
10923	if (ump->softdep_on_worklist > max_softdeps / 10) {
10924		td->td_pflags |= TDP_SOFTDEP;
10925		process_worklist_item(mp, LK_NOWAIT);
10926		process_worklist_item(mp, LK_NOWAIT);
10927		td->td_pflags &= ~TDP_SOFTDEP;
10928		stat_worklist_push += 2;
10929		return(1);
10930	}
10931	/*
10932	 * Next, we attempt to speed up the syncer process. If that
10933	 * is successful, then we allow the process to continue.
10934	 */
10935	if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT)
10936		return(0);
10937	/*
10938	 * If we are resource constrained on inode dependencies, try
10939	 * flushing some dirty inodes. Otherwise, we are constrained
10940	 * by file deletions, so try accelerating flushes of directories
10941	 * with removal dependencies. We would like to do the cleanup
10942	 * here, but we probably hold an inode locked at this point and
10943	 * that might deadlock against one that we try to clean. So,
10944	 * the best that we can do is request the syncer daemon to do
10945	 * the cleanup for us.
10946	 */
10947	switch (resource) {
10948
10949	case FLUSH_INODES:
10950		stat_ino_limit_push += 1;
10951		req_clear_inodedeps += 1;
10952		stat_countp = &stat_ino_limit_hit;
10953		break;
10954
10955	case FLUSH_REMOVE:
10956	case FLUSH_REMOVE_WAIT:
10957		stat_blk_limit_push += 1;
10958		req_clear_remove += 1;
10959		stat_countp = &stat_blk_limit_hit;
10960		break;
10961
10962	default:
10963		panic("request_cleanup: unknown type");
10964	}
10965	/*
10966	 * Hopefully the syncer daemon will catch up and awaken us.
10967	 * We wait at most tickdelay before proceeding in any case.
10968	 */
10969	proc_waiting += 1;
10970	if (callout_pending(&softdep_callout) == FALSE)
10971		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
10972		    pause_timer, 0);
10973
10974	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
10975	proc_waiting -= 1;
10976	return (1);
10977}
10978
10979/*
10980 * Awaken processes pausing in request_cleanup and clear proc_waiting
10981 * to indicate that there is no longer a timer running.
10982 */
10983static void
10984pause_timer(arg)
10985	void *arg;
10986{
10987
10988	/*
10989	 * The callout_ API has acquired mtx and will hold it around this
10990	 * function call.
10991	 */
10992	*stat_countp += 1;
10993	wakeup_one(&proc_waiting);
10994	if (proc_waiting > 0)
10995		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
10996		    pause_timer, 0);
10997}
10998
10999/*
11000 * Flush out a directory with at least one removal dependency in an effort to
11001 * reduce the number of dirrem, freefile, and freeblks dependency structures.
11002 */
11003static void
11004clear_remove(td)
11005	struct thread *td;
11006{
11007	struct pagedep_hashhead *pagedephd;
11008	struct pagedep *pagedep;
11009	static int next = 0;
11010	struct mount *mp;
11011	struct vnode *vp;
11012	struct bufobj *bo;
11013	int error, cnt;
11014	ino_t ino;
11015
11016	mtx_assert(&lk, MA_OWNED);
11017
11018	for (cnt = 0; cnt < pagedep_hash; cnt++) {
11019		pagedephd = &pagedep_hashtbl[next++];
11020		if (next >= pagedep_hash)
11021			next = 0;
11022		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
11023			if (LIST_EMPTY(&pagedep->pd_dirremhd))
11024				continue;
11025			mp = pagedep->pd_list.wk_mp;
11026			ino = pagedep->pd_ino;
11027			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
11028				continue;
11029			FREE_LOCK(&lk);
11030
11031			/*
11032			 * Let unmount clear deps
11033			 */
11034			error = vfs_busy(mp, MBF_NOWAIT);
11035			if (error != 0)
11036				goto finish_write;
11037			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
11038			     FFSV_FORCEINSMQ);
11039			vfs_unbusy(mp);
11040			if (error != 0) {
11041				softdep_error("clear_remove: vget", error);
11042				goto finish_write;
11043			}
11044			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
11045				softdep_error("clear_remove: fsync", error);
11046			bo = &vp->v_bufobj;
11047			BO_LOCK(bo);
11048			drain_output(vp);
11049			BO_UNLOCK(bo);
11050			vput(vp);
11051		finish_write:
11052			vn_finished_write(mp);
11053			ACQUIRE_LOCK(&lk);
11054			return;
11055		}
11056	}
11057}
11058
11059/*
11060 * Clear out a block of dirty inodes in an effort to reduce
11061 * the number of inodedep dependency structures.
11062 */
11063static void
11064clear_inodedeps(td)
11065	struct thread *td;
11066{
11067	struct inodedep_hashhead *inodedephd;
11068	struct inodedep *inodedep;
11069	static int next = 0;
11070	struct mount *mp;
11071	struct vnode *vp;
11072	struct fs *fs;
11073	int error, cnt;
11074	ino_t firstino, lastino, ino;
11075
11076	mtx_assert(&lk, MA_OWNED);
11077	/*
11078	 * Pick a random inode dependency to be cleared.
11079	 * We will then gather up all the inodes in its block
11080	 * that have dependencies and flush them out.
11081	 */
11082	for (cnt = 0; cnt < inodedep_hash; cnt++) {
11083		inodedephd = &inodedep_hashtbl[next++];
11084		if (next >= inodedep_hash)
11085			next = 0;
11086		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
11087			break;
11088	}
11089	if (inodedep == NULL)
11090		return;
11091	fs = inodedep->id_fs;
11092	mp = inodedep->id_list.wk_mp;
11093	/*
11094	 * Find the last inode in the block with dependencies.
11095	 */
11096	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
11097	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
11098		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
11099			break;
11100	/*
11101	 * Asynchronously push all but the last inode with dependencies.
11102	 * Synchronously push the last inode with dependencies to ensure
11103	 * that the inode block gets written to free up the inodedeps.
11104	 */
11105	for (ino = firstino; ino <= lastino; ino++) {
11106		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
11107			continue;
11108		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
11109			continue;
11110		FREE_LOCK(&lk);
11111		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
11112		if (error != 0) {
11113			vn_finished_write(mp);
11114			ACQUIRE_LOCK(&lk);
11115			return;
11116		}
11117		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
11118		    FFSV_FORCEINSMQ)) != 0) {
11119			softdep_error("clear_inodedeps: vget", error);
11120			vfs_unbusy(mp);
11121			vn_finished_write(mp);
11122			ACQUIRE_LOCK(&lk);
11123			return;
11124		}
11125		vfs_unbusy(mp);
11126		if (ino == lastino) {
11127			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
11128				softdep_error("clear_inodedeps: fsync1", error);
11129		} else {
11130			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
11131				softdep_error("clear_inodedeps: fsync2", error);
11132			BO_LOCK(&vp->v_bufobj);
11133			drain_output(vp);
11134			BO_UNLOCK(&vp->v_bufobj);
11135		}
11136		vput(vp);
11137		vn_finished_write(mp);
11138		ACQUIRE_LOCK(&lk);
11139	}
11140}
11141
11142/*
11143 * Function to determine if the buffer has outstanding dependencies
11144 * that will cause a roll-back if the buffer is written. If wantcount
11145 * is set, return number of dependencies, otherwise just yes or no.
11146 */
11147static int
11148softdep_count_dependencies(bp, wantcount)
11149	struct buf *bp;
11150	int wantcount;
11151{
11152	struct worklist *wk;
11153	struct bmsafemap *bmsafemap;
11154	struct inodedep *inodedep;
11155	struct indirdep *indirdep;
11156	struct freeblks *freeblks;
11157	struct allocindir *aip;
11158	struct pagedep *pagedep;
11159	struct dirrem *dirrem;
11160	struct newblk *newblk;
11161	struct mkdir *mkdir;
11162	struct diradd *dap;
11163	int i, retval;
11164
11165	retval = 0;
11166	ACQUIRE_LOCK(&lk);
11167	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11168		switch (wk->wk_type) {
11169
11170		case D_INODEDEP:
11171			inodedep = WK_INODEDEP(wk);
11172			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
11173				/* bitmap allocation dependency */
11174				retval += 1;
11175				if (!wantcount)
11176					goto out;
11177			}
11178			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
11179				/* direct block pointer dependency */
11180				retval += 1;
11181				if (!wantcount)
11182					goto out;
11183			}
11184			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
11185				/* direct block pointer dependency */
11186				retval += 1;
11187				if (!wantcount)
11188					goto out;
11189			}
11190			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
11191				/* Add reference dependency. */
11192				retval += 1;
11193				if (!wantcount)
11194					goto out;
11195			}
11196			continue;
11197
11198		case D_INDIRDEP:
11199			indirdep = WK_INDIRDEP(wk);
11200
11201			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
11202				/* indirect block pointer dependency */
11203				retval += 1;
11204				if (!wantcount)
11205					goto out;
11206			}
11207			continue;
11208
11209		case D_PAGEDEP:
11210			pagedep = WK_PAGEDEP(wk);
11211			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
11212				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
11213					/* Journal remove ref dependency. */
11214					retval += 1;
11215					if (!wantcount)
11216						goto out;
11217				}
11218			}
11219			for (i = 0; i < DAHASHSZ; i++) {
11220
11221				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
11222					/* directory entry dependency */
11223					retval += 1;
11224					if (!wantcount)
11225						goto out;
11226				}
11227			}
11228			continue;
11229
11230		case D_BMSAFEMAP:
11231			bmsafemap = WK_BMSAFEMAP(wk);
11232			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
11233				/* Add reference dependency. */
11234				retval += 1;
11235				if (!wantcount)
11236					goto out;
11237			}
11238			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
11239				/* Allocate block dependency. */
11240				retval += 1;
11241				if (!wantcount)
11242					goto out;
11243			}
11244			continue;
11245
11246		case D_FREEBLKS:
11247			freeblks = WK_FREEBLKS(wk);
11248			if (LIST_FIRST(&freeblks->fb_jfreeblkhd)) {
11249				/* Freeblk journal dependency. */
11250				retval += 1;
11251				if (!wantcount)
11252					goto out;
11253			}
11254			continue;
11255
11256		case D_ALLOCDIRECT:
11257		case D_ALLOCINDIR:
11258			newblk = WK_NEWBLK(wk);
11259			if (newblk->nb_jnewblk) {
11260				/* Journal allocate dependency. */
11261				retval += 1;
11262				if (!wantcount)
11263					goto out;
11264			}
11265			continue;
11266
11267		case D_MKDIR:
11268			mkdir = WK_MKDIR(wk);
11269			if (mkdir->md_jaddref) {
11270				/* Journal reference dependency. */
11271				retval += 1;
11272				if (!wantcount)
11273					goto out;
11274			}
11275			continue;
11276
11277		case D_FREEWORK:
11278		case D_FREEDEP:
11279		case D_JSEGDEP:
11280		case D_JSEG:
11281		case D_SBDEP:
11282			/* never a dependency on these blocks */
11283			continue;
11284
11285		default:
11286			panic("softdep_count_dependencies: Unexpected type %s",
11287			    TYPENAME(wk->wk_type));
11288			/* NOTREACHED */
11289		}
11290	}
11291out:
11292	FREE_LOCK(&lk);
11293	return retval;
11294}
11295
11296/*
11297 * Acquire exclusive access to a buffer.
11298 * Must be called with a locked mtx parameter.
11299 * Return acquired buffer or NULL on failure.
11300 */
11301static struct buf *
11302getdirtybuf(bp, mtx, waitfor)
11303	struct buf *bp;
11304	struct mtx *mtx;
11305	int waitfor;
11306{
11307	int error;
11308
11309	mtx_assert(mtx, MA_OWNED);
11310	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
11311		if (waitfor != MNT_WAIT)
11312			return (NULL);
11313		error = BUF_LOCK(bp,
11314		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
11315		/*
11316		 * Even if we sucessfully acquire bp here, we have dropped
11317		 * mtx, which may violates our guarantee.
11318		 */
11319		if (error == 0)
11320			BUF_UNLOCK(bp);
11321		else if (error != ENOLCK)
11322			panic("getdirtybuf: inconsistent lock: %d", error);
11323		mtx_lock(mtx);
11324		return (NULL);
11325	}
11326	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
11327		if (mtx == &lk && waitfor == MNT_WAIT) {
11328			mtx_unlock(mtx);
11329			BO_LOCK(bp->b_bufobj);
11330			BUF_UNLOCK(bp);
11331			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
11332				bp->b_vflags |= BV_BKGRDWAIT;
11333				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
11334				       PRIBIO | PDROP, "getbuf", 0);
11335			} else
11336				BO_UNLOCK(bp->b_bufobj);
11337			mtx_lock(mtx);
11338			return (NULL);
11339		}
11340		BUF_UNLOCK(bp);
11341		if (waitfor != MNT_WAIT)
11342			return (NULL);
11343		/*
11344		 * The mtx argument must be bp->b_vp's mutex in
11345		 * this case.
11346		 */
11347#ifdef	DEBUG_VFS_LOCKS
11348		if (bp->b_vp->v_type != VCHR)
11349			ASSERT_BO_LOCKED(bp->b_bufobj);
11350#endif
11351		bp->b_vflags |= BV_BKGRDWAIT;
11352		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
11353		return (NULL);
11354	}
11355	if ((bp->b_flags & B_DELWRI) == 0) {
11356		BUF_UNLOCK(bp);
11357		return (NULL);
11358	}
11359	bremfree(bp);
11360	return (bp);
11361}
11362
11363
11364/*
11365 * Check if it is safe to suspend the file system now.  On entry,
11366 * the vnode interlock for devvp should be held.  Return 0 with
11367 * the mount interlock held if the file system can be suspended now,
11368 * otherwise return EAGAIN with the mount interlock held.
11369 */
11370int
11371softdep_check_suspend(struct mount *mp,
11372		      struct vnode *devvp,
11373		      int softdep_deps,
11374		      int softdep_accdeps,
11375		      int secondary_writes,
11376		      int secondary_accwrites)
11377{
11378	struct bufobj *bo;
11379	struct ufsmount *ump;
11380	int error;
11381
11382	ump = VFSTOUFS(mp);
11383	bo = &devvp->v_bufobj;
11384	ASSERT_BO_LOCKED(bo);
11385
11386	for (;;) {
11387		if (!TRY_ACQUIRE_LOCK(&lk)) {
11388			BO_UNLOCK(bo);
11389			ACQUIRE_LOCK(&lk);
11390			FREE_LOCK(&lk);
11391			BO_LOCK(bo);
11392			continue;
11393		}
11394		MNT_ILOCK(mp);
11395		if (mp->mnt_secondary_writes != 0) {
11396			FREE_LOCK(&lk);
11397			BO_UNLOCK(bo);
11398			msleep(&mp->mnt_secondary_writes,
11399			       MNT_MTX(mp),
11400			       (PUSER - 1) | PDROP, "secwr", 0);
11401			BO_LOCK(bo);
11402			continue;
11403		}
11404		break;
11405	}
11406
11407	/*
11408	 * Reasons for needing more work before suspend:
11409	 * - Dirty buffers on devvp.
11410	 * - Softdep activity occurred after start of vnode sync loop
11411	 * - Secondary writes occurred after start of vnode sync loop
11412	 */
11413	error = 0;
11414	if (bo->bo_numoutput > 0 ||
11415	    bo->bo_dirty.bv_cnt > 0 ||
11416	    softdep_deps != 0 ||
11417	    ump->softdep_deps != 0 ||
11418	    softdep_accdeps != ump->softdep_accdeps ||
11419	    secondary_writes != 0 ||
11420	    mp->mnt_secondary_writes != 0 ||
11421	    secondary_accwrites != mp->mnt_secondary_accwrites)
11422		error = EAGAIN;
11423	FREE_LOCK(&lk);
11424	BO_UNLOCK(bo);
11425	return (error);
11426}
11427
11428
11429/*
11430 * Get the number of dependency structures for the file system, both
11431 * the current number and the total number allocated.  These will
11432 * later be used to detect that softdep processing has occurred.
11433 */
11434void
11435softdep_get_depcounts(struct mount *mp,
11436		      int *softdep_depsp,
11437		      int *softdep_accdepsp)
11438{
11439	struct ufsmount *ump;
11440
11441	ump = VFSTOUFS(mp);
11442	ACQUIRE_LOCK(&lk);
11443	*softdep_depsp = ump->softdep_deps;
11444	*softdep_accdepsp = ump->softdep_accdeps;
11445	FREE_LOCK(&lk);
11446}
11447
11448/*
11449 * Wait for pending output on a vnode to complete.
11450 * Must be called with vnode lock and interlock locked.
11451 *
11452 * XXX: Should just be a call to bufobj_wwait().
11453 */
11454static void
11455drain_output(vp)
11456	struct vnode *vp;
11457{
11458	struct bufobj *bo;
11459
11460	bo = &vp->v_bufobj;
11461	ASSERT_VOP_LOCKED(vp, "drain_output");
11462	ASSERT_BO_LOCKED(bo);
11463
11464	while (bo->bo_numoutput) {
11465		bo->bo_flag |= BO_WWAIT;
11466		msleep((caddr_t)&bo->bo_numoutput,
11467		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
11468	}
11469}
11470
11471/*
11472 * Called whenever a buffer that is being invalidated or reallocated
11473 * contains dependencies. This should only happen if an I/O error has
11474 * occurred. The routine is called with the buffer locked.
11475 */
11476static void
11477softdep_deallocate_dependencies(bp)
11478	struct buf *bp;
11479{
11480
11481	if ((bp->b_ioflags & BIO_ERROR) == 0)
11482		panic("softdep_deallocate_dependencies: dangling deps");
11483	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
11484	panic("softdep_deallocate_dependencies: unrecovered I/O error");
11485}
11486
11487/*
11488 * Function to handle asynchronous write errors in the filesystem.
11489 */
11490static void
11491softdep_error(func, error)
11492	char *func;
11493	int error;
11494{
11495
11496	/* XXX should do something better! */
11497	printf("%s: got error %d while accessing filesystem\n", func, error);
11498}
11499
11500#ifdef DDB
11501
11502static void
11503inodedep_print(struct inodedep *inodedep, int verbose)
11504{
11505	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
11506	    " saveino %p\n",
11507	    inodedep, inodedep->id_fs, inodedep->id_state,
11508	    (intmax_t)inodedep->id_ino,
11509	    (intmax_t)fsbtodb(inodedep->id_fs,
11510	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
11511	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
11512	    inodedep->id_savedino1);
11513
11514	if (verbose == 0)
11515		return;
11516
11517	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
11518	    "mkdiradd %p\n",
11519	    LIST_FIRST(&inodedep->id_pendinghd),
11520	    LIST_FIRST(&inodedep->id_bufwait),
11521	    LIST_FIRST(&inodedep->id_inowait),
11522	    TAILQ_FIRST(&inodedep->id_inoreflst),
11523	    inodedep->id_mkdiradd);
11524	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
11525	    TAILQ_FIRST(&inodedep->id_inoupdt),
11526	    TAILQ_FIRST(&inodedep->id_newinoupdt),
11527	    TAILQ_FIRST(&inodedep->id_extupdt),
11528	    TAILQ_FIRST(&inodedep->id_newextupdt));
11529}
11530
11531DB_SHOW_COMMAND(inodedep, db_show_inodedep)
11532{
11533
11534	if (have_addr == 0) {
11535		db_printf("Address required\n");
11536		return;
11537	}
11538	inodedep_print((struct inodedep*)addr, 1);
11539}
11540
11541DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
11542{
11543	struct inodedep_hashhead *inodedephd;
11544	struct inodedep *inodedep;
11545	struct fs *fs;
11546	int cnt;
11547
11548	fs = have_addr ? (struct fs *)addr : NULL;
11549	for (cnt = 0; cnt < inodedep_hash; cnt++) {
11550		inodedephd = &inodedep_hashtbl[cnt];
11551		LIST_FOREACH(inodedep, inodedephd, id_hash) {
11552			if (fs != NULL && fs != inodedep->id_fs)
11553				continue;
11554			inodedep_print(inodedep, 0);
11555		}
11556	}
11557}
11558
11559DB_SHOW_COMMAND(worklist, db_show_worklist)
11560{
11561	struct worklist *wk;
11562
11563	if (have_addr == 0) {
11564		db_printf("Address required\n");
11565		return;
11566	}
11567	wk = (struct worklist *)addr;
11568	printf("worklist: %p type %s state 0x%X\n",
11569	    wk, TYPENAME(wk->wk_type), wk->wk_state);
11570}
11571
11572DB_SHOW_COMMAND(workhead, db_show_workhead)
11573{
11574	struct workhead *wkhd;
11575	struct worklist *wk;
11576	int i;
11577
11578	if (have_addr == 0) {
11579		db_printf("Address required\n");
11580		return;
11581	}
11582	wkhd = (struct workhead *)addr;
11583	wk = LIST_FIRST(wkhd);
11584	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
11585		db_printf("worklist: %p type %s state 0x%X",
11586		    wk, TYPENAME(wk->wk_type), wk->wk_state);
11587	if (i == 100)
11588		db_printf("workhead overflow");
11589	printf("\n");
11590}
11591
11592
11593DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
11594{
11595	struct jaddref *jaddref;
11596	struct diradd *diradd;
11597	struct mkdir *mkdir;
11598
11599	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
11600		diradd = mkdir->md_diradd;
11601		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
11602		    mkdir, mkdir->md_state, diradd, diradd->da_state);
11603		if ((jaddref = mkdir->md_jaddref) != NULL)
11604			db_printf(" jaddref %p jaddref state 0x%X",
11605			    jaddref, jaddref->ja_state);
11606		db_printf("\n");
11607	}
11608}
11609
11610#endif /* DDB */
11611
11612#endif /* SOFTUPDATES */
11613