ffs_softdep.c revision 196206
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12 *	1614 Oxford Street		mckusick@mckusick.com
13 *	Berkeley, CA 94709-1608		+1-510-843-9542
14 *	USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 196206 2009-08-14 11:00:38Z kib $");
43
44#include "opt_ffs.h"
45#include "opt_ddb.h"
46
47/*
48 * For now we want the safety net that the DEBUG flag provides.
49 */
50#ifndef DEBUG
51#define DEBUG
52#endif
53
54#include <sys/param.h>
55#include <sys/kernel.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/kdb.h>
60#include <sys/kthread.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mount.h>
64#include <sys/mutex.h>
65#include <sys/proc.h>
66#include <sys/stat.h>
67#include <sys/sysctl.h>
68#include <sys/syslog.h>
69#include <sys/vnode.h>
70#include <sys/conf.h>
71#include <ufs/ufs/dir.h>
72#include <ufs/ufs/extattr.h>
73#include <ufs/ufs/quota.h>
74#include <ufs/ufs/inode.h>
75#include <ufs/ufs/ufsmount.h>
76#include <ufs/ffs/fs.h>
77#include <ufs/ffs/softdep.h>
78#include <ufs/ffs/ffs_extern.h>
79#include <ufs/ufs/ufs_extern.h>
80
81#include <vm/vm.h>
82
83#include <ddb/ddb.h>
84
85#ifndef SOFTUPDATES
86
87int
88softdep_flushfiles(oldmnt, flags, td)
89	struct mount *oldmnt;
90	int flags;
91	struct thread *td;
92{
93
94	panic("softdep_flushfiles called");
95}
96
97int
98softdep_mount(devvp, mp, fs, cred)
99	struct vnode *devvp;
100	struct mount *mp;
101	struct fs *fs;
102	struct ucred *cred;
103{
104
105	return (0);
106}
107
108void
109softdep_initialize()
110{
111
112	return;
113}
114
115void
116softdep_uninitialize()
117{
118
119	return;
120}
121
122void
123softdep_setup_inomapdep(bp, ip, newinum)
124	struct buf *bp;
125	struct inode *ip;
126	ino_t newinum;
127{
128
129	panic("softdep_setup_inomapdep called");
130}
131
132void
133softdep_setup_blkmapdep(bp, mp, newblkno)
134	struct buf *bp;
135	struct mount *mp;
136	ufs2_daddr_t newblkno;
137{
138
139	panic("softdep_setup_blkmapdep called");
140}
141
142void
143softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
144	struct inode *ip;
145	ufs_lbn_t lbn;
146	ufs2_daddr_t newblkno;
147	ufs2_daddr_t oldblkno;
148	long newsize;
149	long oldsize;
150	struct buf *bp;
151{
152
153	panic("softdep_setup_allocdirect called");
154}
155
156void
157softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
158	struct inode *ip;
159	ufs_lbn_t lbn;
160	ufs2_daddr_t newblkno;
161	ufs2_daddr_t oldblkno;
162	long newsize;
163	long oldsize;
164	struct buf *bp;
165{
166
167	panic("softdep_setup_allocext called");
168}
169
170void
171softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
172	struct inode *ip;
173	ufs_lbn_t lbn;
174	struct buf *bp;
175	int ptrno;
176	ufs2_daddr_t newblkno;
177	ufs2_daddr_t oldblkno;
178	struct buf *nbp;
179{
180
181	panic("softdep_setup_allocindir_page called");
182}
183
184void
185softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
186	struct buf *nbp;
187	struct inode *ip;
188	struct buf *bp;
189	int ptrno;
190	ufs2_daddr_t newblkno;
191{
192
193	panic("softdep_setup_allocindir_meta called");
194}
195
196void
197softdep_setup_freeblocks(ip, length, flags)
198	struct inode *ip;
199	off_t length;
200	int flags;
201{
202
203	panic("softdep_setup_freeblocks called");
204}
205
206void
207softdep_freefile(pvp, ino, mode)
208		struct vnode *pvp;
209		ino_t ino;
210		int mode;
211{
212
213	panic("softdep_freefile called");
214}
215
216int
217softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
218	struct buf *bp;
219	struct inode *dp;
220	off_t diroffset;
221	ino_t newinum;
222	struct buf *newdirbp;
223	int isnewblk;
224{
225
226	panic("softdep_setup_directory_add called");
227}
228
229void
230softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
231	struct inode *dp;
232	caddr_t base;
233	caddr_t oldloc;
234	caddr_t newloc;
235	int entrysize;
236{
237
238	panic("softdep_change_directoryentry_offset called");
239}
240
241void
242softdep_setup_remove(bp, dp, ip, isrmdir)
243	struct buf *bp;
244	struct inode *dp;
245	struct inode *ip;
246	int isrmdir;
247{
248
249	panic("softdep_setup_remove called");
250}
251
252void
253softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
254	struct buf *bp;
255	struct inode *dp;
256	struct inode *ip;
257	ino_t newinum;
258	int isrmdir;
259{
260
261	panic("softdep_setup_directory_change called");
262}
263
264void
265softdep_change_linkcnt(ip)
266	struct inode *ip;
267{
268
269	panic("softdep_change_linkcnt called");
270}
271
272void
273softdep_load_inodeblock(ip)
274	struct inode *ip;
275{
276
277	panic("softdep_load_inodeblock called");
278}
279
280void
281softdep_update_inodeblock(ip, bp, waitfor)
282	struct inode *ip;
283	struct buf *bp;
284	int waitfor;
285{
286
287	panic("softdep_update_inodeblock called");
288}
289
290int
291softdep_fsync(vp)
292	struct vnode *vp;	/* the "in_core" copy of the inode */
293{
294
295	return (0);
296}
297
298void
299softdep_fsync_mountdev(vp)
300	struct vnode *vp;
301{
302
303	return;
304}
305
306int
307softdep_flushworklist(oldmnt, countp, td)
308	struct mount *oldmnt;
309	int *countp;
310	struct thread *td;
311{
312
313	*countp = 0;
314	return (0);
315}
316
317int
318softdep_sync_metadata(struct vnode *vp)
319{
320
321	return (0);
322}
323
324int
325softdep_slowdown(vp)
326	struct vnode *vp;
327{
328
329	panic("softdep_slowdown called");
330}
331
332void
333softdep_releasefile(ip)
334	struct inode *ip;	/* inode with the zero effective link count */
335{
336
337	panic("softdep_releasefile called");
338}
339
340int
341softdep_request_cleanup(fs, vp)
342	struct fs *fs;
343	struct vnode *vp;
344{
345
346	return (0);
347}
348
349int
350softdep_check_suspend(struct mount *mp,
351		      struct vnode *devvp,
352		      int softdep_deps,
353		      int softdep_accdeps,
354		      int secondary_writes,
355		      int secondary_accwrites)
356{
357	struct bufobj *bo;
358	int error;
359
360	(void) softdep_deps,
361	(void) softdep_accdeps;
362
363	bo = &devvp->v_bufobj;
364	ASSERT_BO_LOCKED(bo);
365
366	MNT_ILOCK(mp);
367	while (mp->mnt_secondary_writes != 0) {
368		BO_UNLOCK(bo);
369		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
370		    (PUSER - 1) | PDROP, "secwr", 0);
371		BO_LOCK(bo);
372		MNT_ILOCK(mp);
373	}
374
375	/*
376	 * Reasons for needing more work before suspend:
377	 * - Dirty buffers on devvp.
378	 * - Secondary writes occurred after start of vnode sync loop
379	 */
380	error = 0;
381	if (bo->bo_numoutput > 0 ||
382	    bo->bo_dirty.bv_cnt > 0 ||
383	    secondary_writes != 0 ||
384	    mp->mnt_secondary_writes != 0 ||
385	    secondary_accwrites != mp->mnt_secondary_accwrites)
386		error = EAGAIN;
387	BO_UNLOCK(bo);
388	return (error);
389}
390
391void
392softdep_get_depcounts(struct mount *mp,
393		      int *softdepactivep,
394		      int *softdepactiveaccp)
395{
396	(void) mp;
397	*softdepactivep = 0;
398	*softdepactiveaccp = 0;
399}
400
401#else
402/*
403 * These definitions need to be adapted to the system to which
404 * this file is being ported.
405 */
406/*
407 * malloc types defined for the softdep system.
408 */
409static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
410static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
411static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
412static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
413static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
414static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
415static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
416static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
417static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
418static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
419static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
420static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
421static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
422static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block");
423static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes");
424
425#define M_SOFTDEP_FLAGS	(M_WAITOK | M_USE_RESERVE)
426
427#define	D_PAGEDEP	0
428#define	D_INODEDEP	1
429#define	D_NEWBLK	2
430#define	D_BMSAFEMAP	3
431#define	D_ALLOCDIRECT	4
432#define	D_INDIRDEP	5
433#define	D_ALLOCINDIR	6
434#define	D_FREEFRAG	7
435#define	D_FREEBLKS	8
436#define	D_FREEFILE	9
437#define	D_DIRADD	10
438#define	D_MKDIR		11
439#define	D_DIRREM	12
440#define	D_NEWDIRBLK	13
441#define	D_LAST		D_NEWDIRBLK
442
443/*
444 * translate from workitem type to memory type
445 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
446 */
447static struct malloc_type *memtype[] = {
448	M_PAGEDEP,
449	M_INODEDEP,
450	M_NEWBLK,
451	M_BMSAFEMAP,
452	M_ALLOCDIRECT,
453	M_INDIRDEP,
454	M_ALLOCINDIR,
455	M_FREEFRAG,
456	M_FREEBLKS,
457	M_FREEFILE,
458	M_DIRADD,
459	M_MKDIR,
460	M_DIRREM,
461	M_NEWDIRBLK
462};
463
464#define DtoM(type) (memtype[type])
465
466/*
467 * Names of malloc types.
468 */
469#define TYPENAME(type)  \
470	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
471/*
472 * End system adaptation definitions.
473 */
474
475/*
476 * Forward declarations.
477 */
478struct inodedep_hashhead;
479struct newblk_hashhead;
480struct pagedep_hashhead;
481
482/*
483 * Internal function prototypes.
484 */
485static	void softdep_error(char *, int);
486static	void drain_output(struct vnode *);
487static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
488static	void clear_remove(struct thread *);
489static	void clear_inodedeps(struct thread *);
490static	int flush_pagedep_deps(struct vnode *, struct mount *,
491	    struct diraddhd *);
492static	int flush_inodedep_deps(struct mount *, ino_t);
493static	int flush_deplist(struct allocdirectlst *, int, int *);
494static	int handle_written_filepage(struct pagedep *, struct buf *);
495static  void diradd_inode_written(struct diradd *, struct inodedep *);
496static	int handle_written_inodeblock(struct inodedep *, struct buf *);
497static	void handle_allocdirect_partdone(struct allocdirect *);
498static	void handle_allocindir_partdone(struct allocindir *);
499static	void initiate_write_filepage(struct pagedep *, struct buf *);
500static	void handle_written_mkdir(struct mkdir *, int);
501static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
502static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
503static	void handle_workitem_freefile(struct freefile *);
504static	void handle_workitem_remove(struct dirrem *, struct vnode *);
505static	struct dirrem *newdirrem(struct buf *, struct inode *,
506	    struct inode *, int, struct dirrem **);
507static	void free_diradd(struct diradd *);
508static	void free_allocindir(struct allocindir *, struct inodedep *);
509static	void free_newdirblk(struct newdirblk *);
510static	int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t,
511	    ufs2_daddr_t *);
512static	void deallocate_dependencies(struct buf *, struct inodedep *);
513static	void free_allocdirect(struct allocdirectlst *,
514	    struct allocdirect *, int);
515static	int check_inode_unwritten(struct inodedep *);
516static	int free_inodedep(struct inodedep *);
517static	void handle_workitem_freeblocks(struct freeblks *, int);
518static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
519static	void setup_allocindir_phase2(struct buf *, struct inode *,
520	    struct allocindir *);
521static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
522	    ufs2_daddr_t);
523static	void handle_workitem_freefrag(struct freefrag *);
524static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long);
525static	void allocdirect_merge(struct allocdirectlst *,
526	    struct allocdirect *, struct allocdirect *);
527static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *);
528static	int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t,
529	    struct newblk **);
530static	int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **);
531static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
532	    struct inodedep **);
533static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
534static	int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **);
535static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
536	    struct mount *mp, int, struct pagedep **);
537static	void pause_timer(void *);
538static	int request_cleanup(struct mount *, int);
539static	int process_worklist_item(struct mount *, int);
540static	void add_to_worklist(struct worklist *);
541static	void softdep_flush(void);
542static	int softdep_speedup(void);
543
544/*
545 * Exported softdep operations.
546 */
547static	void softdep_disk_io_initiation(struct buf *);
548static	void softdep_disk_write_complete(struct buf *);
549static	void softdep_deallocate_dependencies(struct buf *);
550static	int softdep_count_dependencies(struct buf *bp, int);
551
552static struct mtx lk;
553MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
554
555#define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
556#define ACQUIRE_LOCK(lk)		mtx_lock(lk)
557#define FREE_LOCK(lk)			mtx_unlock(lk)
558
559#define	BUF_AREC(bp)	((bp)->b_lock.lock_object.lo_flags |= LO_RECURSABLE)
560#define	BUF_NOREC(bp)	((bp)->b_lock.lock_object.lo_flags &= ~LO_RECURSABLE)
561
562/*
563 * Worklist queue management.
564 * These routines require that the lock be held.
565 */
566#ifndef /* NOT */ DEBUG
567#define WORKLIST_INSERT(head, item) do {	\
568	(item)->wk_state |= ONWORKLIST;		\
569	LIST_INSERT_HEAD(head, item, wk_list);	\
570} while (0)
571#define WORKLIST_REMOVE(item) do {		\
572	(item)->wk_state &= ~ONWORKLIST;	\
573	LIST_REMOVE(item, wk_list);		\
574} while (0)
575#else /* DEBUG */
576static	void worklist_insert(struct workhead *, struct worklist *);
577static	void worklist_remove(struct worklist *);
578
579#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
580#define WORKLIST_REMOVE(item) worklist_remove(item)
581
582static void
583worklist_insert(head, item)
584	struct workhead *head;
585	struct worklist *item;
586{
587
588	mtx_assert(&lk, MA_OWNED);
589	if (item->wk_state & ONWORKLIST)
590		panic("worklist_insert: already on list");
591	item->wk_state |= ONWORKLIST;
592	LIST_INSERT_HEAD(head, item, wk_list);
593}
594
595static void
596worklist_remove(item)
597	struct worklist *item;
598{
599
600	mtx_assert(&lk, MA_OWNED);
601	if ((item->wk_state & ONWORKLIST) == 0)
602		panic("worklist_remove: not on list");
603	item->wk_state &= ~ONWORKLIST;
604	LIST_REMOVE(item, wk_list);
605}
606#endif /* DEBUG */
607
608/*
609 * Routines for tracking and managing workitems.
610 */
611static	void workitem_free(struct worklist *, int);
612static	void workitem_alloc(struct worklist *, int, struct mount *);
613
614#define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
615
616static void
617workitem_free(item, type)
618	struct worklist *item;
619	int type;
620{
621	struct ufsmount *ump;
622	mtx_assert(&lk, MA_OWNED);
623
624#ifdef DEBUG
625	if (item->wk_state & ONWORKLIST)
626		panic("workitem_free: still on list");
627	if (item->wk_type != type)
628		panic("workitem_free: type mismatch");
629#endif
630	ump = VFSTOUFS(item->wk_mp);
631	if (--ump->softdep_deps == 0 && ump->softdep_req)
632		wakeup(&ump->softdep_deps);
633	free(item, DtoM(type));
634}
635
636static void
637workitem_alloc(item, type, mp)
638	struct worklist *item;
639	int type;
640	struct mount *mp;
641{
642	item->wk_type = type;
643	item->wk_mp = mp;
644	item->wk_state = 0;
645	ACQUIRE_LOCK(&lk);
646	VFSTOUFS(mp)->softdep_deps++;
647	VFSTOUFS(mp)->softdep_accdeps++;
648	FREE_LOCK(&lk);
649}
650
651/*
652 * Workitem queue management
653 */
654static int max_softdeps;	/* maximum number of structs before slowdown */
655static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
656static int tickdelay = 2;	/* number of ticks to pause during slowdown */
657static int proc_waiting;	/* tracks whether we have a timeout posted */
658static int *stat_countp;	/* statistic to count in proc_waiting timeout */
659static struct callout softdep_callout;
660static int req_pending;
661static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
662#define FLUSH_INODES		1
663static int req_clear_remove;	/* syncer process flush some freeblks */
664#define FLUSH_REMOVE		2
665#define FLUSH_REMOVE_WAIT	3
666static long num_freeblkdep;	/* number of freeblks workitems allocated */
667
668/*
669 * runtime statistics
670 */
671static int stat_worklist_push;	/* number of worklist cleanups */
672static int stat_blk_limit_push;	/* number of times block limit neared */
673static int stat_ino_limit_push;	/* number of times inode limit neared */
674static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
675static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
676static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
677static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
678static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
679static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
680static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
681
682SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
683SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
684SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, "");
685SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
686SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
687SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
688SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
689SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
690SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
691SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
692SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
693SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
694SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
695/* SYSCTL_INT(_debug, OID_AUTO, worklist_num, CTLFLAG_RD, &softdep_on_worklist, 0, ""); */
696
697SYSCTL_DECL(_vfs_ffs);
698
699static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
700SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
701	   &compute_summary_at_mount, 0, "Recompute summary at mount");
702
703static struct proc *softdepproc;
704static struct kproc_desc softdep_kp = {
705	"softdepflush",
706	softdep_flush,
707	&softdepproc
708};
709SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
710    &softdep_kp);
711
712static void
713softdep_flush(void)
714{
715	struct mount *nmp;
716	struct mount *mp;
717	struct ufsmount *ump;
718	struct thread *td;
719	int remaining;
720	int vfslocked;
721
722	td = curthread;
723	td->td_pflags |= TDP_NORUNNINGBUF;
724
725	for (;;) {
726		kproc_suspend_check(softdepproc);
727		vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
728		ACQUIRE_LOCK(&lk);
729		/*
730		 * If requested, try removing inode or removal dependencies.
731		 */
732		if (req_clear_inodedeps) {
733			clear_inodedeps(td);
734			req_clear_inodedeps -= 1;
735			wakeup_one(&proc_waiting);
736		}
737		if (req_clear_remove) {
738			clear_remove(td);
739			req_clear_remove -= 1;
740			wakeup_one(&proc_waiting);
741		}
742		FREE_LOCK(&lk);
743		VFS_UNLOCK_GIANT(vfslocked);
744		remaining = 0;
745		mtx_lock(&mountlist_mtx);
746		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
747			nmp = TAILQ_NEXT(mp, mnt_list);
748			if ((mp->mnt_flag & MNT_SOFTDEP) == 0)
749				continue;
750			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
751				continue;
752			vfslocked = VFS_LOCK_GIANT(mp);
753			softdep_process_worklist(mp, 0);
754			ump = VFSTOUFS(mp);
755			remaining += ump->softdep_on_worklist -
756				ump->softdep_on_worklist_inprogress;
757			VFS_UNLOCK_GIANT(vfslocked);
758			mtx_lock(&mountlist_mtx);
759			nmp = TAILQ_NEXT(mp, mnt_list);
760			vfs_unbusy(mp);
761		}
762		mtx_unlock(&mountlist_mtx);
763		if (remaining)
764			continue;
765		ACQUIRE_LOCK(&lk);
766		if (!req_pending)
767			msleep(&req_pending, &lk, PVM, "sdflush", hz);
768		req_pending = 0;
769		FREE_LOCK(&lk);
770	}
771}
772
773static int
774softdep_speedup(void)
775{
776
777	mtx_assert(&lk, MA_OWNED);
778	if (req_pending == 0) {
779		req_pending = 1;
780		wakeup(&req_pending);
781	}
782
783	return speedup_syncer();
784}
785
786/*
787 * Add an item to the end of the work queue.
788 * This routine requires that the lock be held.
789 * This is the only routine that adds items to the list.
790 * The following routine is the only one that removes items
791 * and does so in order from first to last.
792 */
793static void
794add_to_worklist(wk)
795	struct worklist *wk;
796{
797	struct ufsmount *ump;
798
799	mtx_assert(&lk, MA_OWNED);
800	ump = VFSTOUFS(wk->wk_mp);
801	if (wk->wk_state & ONWORKLIST)
802		panic("add_to_worklist: already on list");
803	wk->wk_state |= ONWORKLIST;
804	if (LIST_EMPTY(&ump->softdep_workitem_pending))
805		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
806	else
807		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
808	ump->softdep_worklist_tail = wk;
809	ump->softdep_on_worklist += 1;
810}
811
812/*
813 * Process that runs once per second to handle items in the background queue.
814 *
815 * Note that we ensure that everything is done in the order in which they
816 * appear in the queue. The code below depends on this property to ensure
817 * that blocks of a file are freed before the inode itself is freed. This
818 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
819 * until all the old ones have been purged from the dependency lists.
820 */
821int
822softdep_process_worklist(mp, full)
823	struct mount *mp;
824	int full;
825{
826	struct thread *td = curthread;
827	int cnt, matchcnt, loopcount;
828	struct ufsmount *ump;
829	long starttime;
830
831	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
832	/*
833	 * Record the process identifier of our caller so that we can give
834	 * this process preferential treatment in request_cleanup below.
835	 */
836	matchcnt = 0;
837	ump = VFSTOUFS(mp);
838	ACQUIRE_LOCK(&lk);
839	loopcount = 1;
840	starttime = time_second;
841	while (ump->softdep_on_worklist > 0) {
842		if ((cnt = process_worklist_item(mp, 0)) == -1)
843			break;
844		else
845			matchcnt += cnt;
846		/*
847		 * If requested, try removing inode or removal dependencies.
848		 */
849		if (req_clear_inodedeps) {
850			clear_inodedeps(td);
851			req_clear_inodedeps -= 1;
852			wakeup_one(&proc_waiting);
853		}
854		if (req_clear_remove) {
855			clear_remove(td);
856			req_clear_remove -= 1;
857			wakeup_one(&proc_waiting);
858		}
859		/*
860		 * We do not generally want to stop for buffer space, but if
861		 * we are really being a buffer hog, we will stop and wait.
862		 */
863		if (loopcount++ % 128 == 0) {
864			FREE_LOCK(&lk);
865			uio_yield();
866			bwillwrite();
867			ACQUIRE_LOCK(&lk);
868		}
869		/*
870		 * Never allow processing to run for more than one
871		 * second. Otherwise the other mountpoints may get
872		 * excessively backlogged.
873		 */
874		if (!full && starttime != time_second) {
875			matchcnt = -1;
876			break;
877		}
878	}
879	FREE_LOCK(&lk);
880	return (matchcnt);
881}
882
883/*
884 * Process one item on the worklist.
885 */
886static int
887process_worklist_item(mp, flags)
888	struct mount *mp;
889	int flags;
890{
891	struct worklist *wk, *wkend;
892	struct ufsmount *ump;
893	struct vnode *vp;
894	int matchcnt = 0;
895
896	mtx_assert(&lk, MA_OWNED);
897	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
898	/*
899	 * If we are being called because of a process doing a
900	 * copy-on-write, then it is not safe to write as we may
901	 * recurse into the copy-on-write routine.
902	 */
903	if (curthread->td_pflags & TDP_COWINPROGRESS)
904		return (-1);
905	/*
906	 * Normally we just process each item on the worklist in order.
907	 * However, if we are in a situation where we cannot lock any
908	 * inodes, we have to skip over any dirrem requests whose
909	 * vnodes are resident and locked.
910	 */
911	ump = VFSTOUFS(mp);
912	vp = NULL;
913	LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) {
914		if (wk->wk_state & INPROGRESS)
915			continue;
916		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
917			break;
918		wk->wk_state |= INPROGRESS;
919		ump->softdep_on_worklist_inprogress++;
920		FREE_LOCK(&lk);
921		ffs_vgetf(mp, WK_DIRREM(wk)->dm_oldinum,
922		    LK_NOWAIT | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ);
923		ACQUIRE_LOCK(&lk);
924		wk->wk_state &= ~INPROGRESS;
925		ump->softdep_on_worklist_inprogress--;
926		if (vp != NULL)
927			break;
928	}
929	if (wk == 0)
930		return (-1);
931	/*
932	 * Remove the item to be processed. If we are removing the last
933	 * item on the list, we need to recalculate the tail pointer.
934	 * As this happens rarely and usually when the list is short,
935	 * we just run down the list to find it rather than tracking it
936	 * in the above loop.
937	 */
938	WORKLIST_REMOVE(wk);
939	if (wk == ump->softdep_worklist_tail) {
940		LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list)
941			if (LIST_NEXT(wkend, wk_list) == NULL)
942				break;
943		ump->softdep_worklist_tail = wkend;
944	}
945	ump->softdep_on_worklist -= 1;
946	FREE_LOCK(&lk);
947	if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
948		panic("process_worklist_item: suspended filesystem");
949	matchcnt++;
950	switch (wk->wk_type) {
951
952	case D_DIRREM:
953		/* removal of a directory entry */
954		handle_workitem_remove(WK_DIRREM(wk), vp);
955		break;
956
957	case D_FREEBLKS:
958		/* releasing blocks and/or fragments from a file */
959		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
960		break;
961
962	case D_FREEFRAG:
963		/* releasing a fragment when replaced as a file grows */
964		handle_workitem_freefrag(WK_FREEFRAG(wk));
965		break;
966
967	case D_FREEFILE:
968		/* releasing an inode when its link count drops to 0 */
969		handle_workitem_freefile(WK_FREEFILE(wk));
970		break;
971
972	default:
973		panic("%s_process_worklist: Unknown type %s",
974		    "softdep", TYPENAME(wk->wk_type));
975		/* NOTREACHED */
976	}
977	vn_finished_secondary_write(mp);
978	ACQUIRE_LOCK(&lk);
979	return (matchcnt);
980}
981
982/*
983 * Move dependencies from one buffer to another.
984 */
985void
986softdep_move_dependencies(oldbp, newbp)
987	struct buf *oldbp;
988	struct buf *newbp;
989{
990	struct worklist *wk, *wktail;
991
992	if (!LIST_EMPTY(&newbp->b_dep))
993		panic("softdep_move_dependencies: need merge code");
994	wktail = 0;
995	ACQUIRE_LOCK(&lk);
996	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
997		LIST_REMOVE(wk, wk_list);
998		if (wktail == 0)
999			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1000		else
1001			LIST_INSERT_AFTER(wktail, wk, wk_list);
1002		wktail = wk;
1003	}
1004	FREE_LOCK(&lk);
1005}
1006
1007/*
1008 * Purge the work list of all items associated with a particular mount point.
1009 */
1010int
1011softdep_flushworklist(oldmnt, countp, td)
1012	struct mount *oldmnt;
1013	int *countp;
1014	struct thread *td;
1015{
1016	struct vnode *devvp;
1017	int count, error = 0;
1018	struct ufsmount *ump;
1019
1020	/*
1021	 * Alternately flush the block device associated with the mount
1022	 * point and process any dependencies that the flushing
1023	 * creates. We continue until no more worklist dependencies
1024	 * are found.
1025	 */
1026	*countp = 0;
1027	ump = VFSTOUFS(oldmnt);
1028	devvp = ump->um_devvp;
1029	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1030		*countp += count;
1031		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1032		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1033		VOP_UNLOCK(devvp, 0);
1034		if (error)
1035			break;
1036	}
1037	return (error);
1038}
1039
1040int
1041softdep_waitidle(struct mount *mp)
1042{
1043	struct ufsmount *ump;
1044	int error;
1045	int i;
1046
1047	ump = VFSTOUFS(mp);
1048	ACQUIRE_LOCK(&lk);
1049	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1050		ump->softdep_req = 1;
1051		if (ump->softdep_on_worklist)
1052			panic("softdep_waitidle: work added after flush.");
1053		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1054	}
1055	ump->softdep_req = 0;
1056	FREE_LOCK(&lk);
1057	error = 0;
1058	if (i == 10) {
1059		error = EBUSY;
1060		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1061		    mp);
1062	}
1063
1064	return (error);
1065}
1066
1067/*
1068 * Flush all vnodes and worklist items associated with a specified mount point.
1069 */
1070int
1071softdep_flushfiles(oldmnt, flags, td)
1072	struct mount *oldmnt;
1073	int flags;
1074	struct thread *td;
1075{
1076	int error, depcount, loopcnt, retry_flush_count, retry;
1077
1078	loopcnt = 10;
1079	retry_flush_count = 3;
1080retry_flush:
1081	error = 0;
1082
1083	/*
1084	 * Alternately flush the vnodes associated with the mount
1085	 * point and process any dependencies that the flushing
1086	 * creates. In theory, this loop can happen at most twice,
1087	 * but we give it a few extra just to be sure.
1088	 */
1089	for (; loopcnt > 0; loopcnt--) {
1090		/*
1091		 * Do another flush in case any vnodes were brought in
1092		 * as part of the cleanup operations.
1093		 */
1094		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1095			break;
1096		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1097		    depcount == 0)
1098			break;
1099	}
1100	/*
1101	 * If we are unmounting then it is an error to fail. If we
1102	 * are simply trying to downgrade to read-only, then filesystem
1103	 * activity can keep us busy forever, so we just fail with EBUSY.
1104	 */
1105	if (loopcnt == 0) {
1106		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1107			panic("softdep_flushfiles: looping");
1108		error = EBUSY;
1109	}
1110	if (!error)
1111		error = softdep_waitidle(oldmnt);
1112	if (!error) {
1113		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1114			retry = 0;
1115			MNT_ILOCK(oldmnt);
1116			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1117			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1118			if (oldmnt->mnt_nvnodelistsize > 0) {
1119				if (--retry_flush_count > 0) {
1120					retry = 1;
1121					loopcnt = 3;
1122				} else
1123					error = EBUSY;
1124			}
1125			MNT_IUNLOCK(oldmnt);
1126			if (retry)
1127				goto retry_flush;
1128		}
1129	}
1130	return (error);
1131}
1132
1133/*
1134 * Structure hashing.
1135 *
1136 * There are three types of structures that can be looked up:
1137 *	1) pagedep structures identified by mount point, inode number,
1138 *	   and logical block.
1139 *	2) inodedep structures identified by mount point and inode number.
1140 *	3) newblk structures identified by mount point and
1141 *	   physical block number.
1142 *
1143 * The "pagedep" and "inodedep" dependency structures are hashed
1144 * separately from the file blocks and inodes to which they correspond.
1145 * This separation helps when the in-memory copy of an inode or
1146 * file block must be replaced. It also obviates the need to access
1147 * an inode or file page when simply updating (or de-allocating)
1148 * dependency structures. Lookup of newblk structures is needed to
1149 * find newly allocated blocks when trying to associate them with
1150 * their allocdirect or allocindir structure.
1151 *
1152 * The lookup routines optionally create and hash a new instance when
1153 * an existing entry is not found.
1154 */
1155#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1156#define NODELAY		0x0002	/* cannot do background work */
1157
1158/*
1159 * Structures and routines associated with pagedep caching.
1160 */
1161LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1162u_long	pagedep_hash;		/* size of hash table - 1 */
1163#define	PAGEDEP_HASH(mp, inum, lbn) \
1164	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1165	    pagedep_hash])
1166
1167static int
1168pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1169	struct pagedep_hashhead *pagedephd;
1170	ino_t ino;
1171	ufs_lbn_t lbn;
1172	struct mount *mp;
1173	int flags;
1174	struct pagedep **pagedeppp;
1175{
1176	struct pagedep *pagedep;
1177
1178	LIST_FOREACH(pagedep, pagedephd, pd_hash)
1179		if (ino == pagedep->pd_ino &&
1180		    lbn == pagedep->pd_lbn &&
1181		    mp == pagedep->pd_list.wk_mp)
1182			break;
1183	if (pagedep) {
1184		*pagedeppp = pagedep;
1185		if ((flags & DEPALLOC) != 0 &&
1186		    (pagedep->pd_state & ONWORKLIST) == 0)
1187			return (0);
1188		return (1);
1189	}
1190	*pagedeppp = NULL;
1191	return (0);
1192}
1193/*
1194 * Look up a pagedep. Return 1 if found, 0 if not found or found
1195 * when asked to allocate but not associated with any buffer.
1196 * If not found, allocate if DEPALLOC flag is passed.
1197 * Found or allocated entry is returned in pagedeppp.
1198 * This routine must be called with splbio interrupts blocked.
1199 */
1200static int
1201pagedep_lookup(ip, lbn, flags, pagedeppp)
1202	struct inode *ip;
1203	ufs_lbn_t lbn;
1204	int flags;
1205	struct pagedep **pagedeppp;
1206{
1207	struct pagedep *pagedep;
1208	struct pagedep_hashhead *pagedephd;
1209	struct mount *mp;
1210	int ret;
1211	int i;
1212
1213	mtx_assert(&lk, MA_OWNED);
1214	mp = ITOV(ip)->v_mount;
1215	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
1216
1217	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
1218	if (*pagedeppp || (flags & DEPALLOC) == 0)
1219		return (ret);
1220	FREE_LOCK(&lk);
1221	pagedep = malloc(sizeof(struct pagedep),
1222	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
1223	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
1224	ACQUIRE_LOCK(&lk);
1225	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
1226	if (*pagedeppp) {
1227		WORKITEM_FREE(pagedep, D_PAGEDEP);
1228		return (ret);
1229	}
1230	pagedep->pd_ino = ip->i_number;
1231	pagedep->pd_lbn = lbn;
1232	LIST_INIT(&pagedep->pd_dirremhd);
1233	LIST_INIT(&pagedep->pd_pendinghd);
1234	for (i = 0; i < DAHASHSZ; i++)
1235		LIST_INIT(&pagedep->pd_diraddhd[i]);
1236	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
1237	*pagedeppp = pagedep;
1238	return (0);
1239}
1240
1241/*
1242 * Structures and routines associated with inodedep caching.
1243 */
1244LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1245static u_long	inodedep_hash;	/* size of hash table - 1 */
1246static long	num_inodedep;	/* number of inodedep allocated */
1247#define	INODEDEP_HASH(fs, inum) \
1248      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1249
1250static int
1251inodedep_find(inodedephd, fs, inum, inodedeppp)
1252	struct inodedep_hashhead *inodedephd;
1253	struct fs *fs;
1254	ino_t inum;
1255	struct inodedep **inodedeppp;
1256{
1257	struct inodedep *inodedep;
1258
1259	LIST_FOREACH(inodedep, inodedephd, id_hash)
1260		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1261			break;
1262	if (inodedep) {
1263		*inodedeppp = inodedep;
1264		return (1);
1265	}
1266	*inodedeppp = NULL;
1267
1268	return (0);
1269}
1270/*
1271 * Look up an inodedep. Return 1 if found, 0 if not found.
1272 * If not found, allocate if DEPALLOC flag is passed.
1273 * Found or allocated entry is returned in inodedeppp.
1274 * This routine must be called with splbio interrupts blocked.
1275 */
1276static int
1277inodedep_lookup(mp, inum, flags, inodedeppp)
1278	struct mount *mp;
1279	ino_t inum;
1280	int flags;
1281	struct inodedep **inodedeppp;
1282{
1283	struct inodedep *inodedep;
1284	struct inodedep_hashhead *inodedephd;
1285	struct fs *fs;
1286
1287	mtx_assert(&lk, MA_OWNED);
1288	fs = VFSTOUFS(mp)->um_fs;
1289	inodedephd = INODEDEP_HASH(fs, inum);
1290
1291	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
1292		return (1);
1293	if ((flags & DEPALLOC) == 0)
1294		return (0);
1295	/*
1296	 * If we are over our limit, try to improve the situation.
1297	 */
1298	if (num_inodedep > max_softdeps && (flags & NODELAY) == 0)
1299		request_cleanup(mp, FLUSH_INODES);
1300	FREE_LOCK(&lk);
1301	inodedep = malloc(sizeof(struct inodedep),
1302		M_INODEDEP, M_SOFTDEP_FLAGS);
1303	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
1304	ACQUIRE_LOCK(&lk);
1305	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
1306		WORKITEM_FREE(inodedep, D_INODEDEP);
1307		return (1);
1308	}
1309	num_inodedep += 1;
1310	inodedep->id_fs = fs;
1311	inodedep->id_ino = inum;
1312	inodedep->id_state = ALLCOMPLETE;
1313	inodedep->id_nlinkdelta = 0;
1314	inodedep->id_savedino1 = NULL;
1315	inodedep->id_savedsize = -1;
1316	inodedep->id_savedextsize = -1;
1317	inodedep->id_buf = NULL;
1318	LIST_INIT(&inodedep->id_pendinghd);
1319	LIST_INIT(&inodedep->id_inowait);
1320	LIST_INIT(&inodedep->id_bufwait);
1321	TAILQ_INIT(&inodedep->id_inoupdt);
1322	TAILQ_INIT(&inodedep->id_newinoupdt);
1323	TAILQ_INIT(&inodedep->id_extupdt);
1324	TAILQ_INIT(&inodedep->id_newextupdt);
1325	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1326	*inodedeppp = inodedep;
1327	return (0);
1328}
1329
1330/*
1331 * Structures and routines associated with newblk caching.
1332 */
1333LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1334u_long	newblk_hash;		/* size of hash table - 1 */
1335#define	NEWBLK_HASH(fs, inum) \
1336	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1337
1338static int
1339newblk_find(newblkhd, fs, newblkno, newblkpp)
1340	struct newblk_hashhead *newblkhd;
1341	struct fs *fs;
1342	ufs2_daddr_t newblkno;
1343	struct newblk **newblkpp;
1344{
1345	struct newblk *newblk;
1346
1347	LIST_FOREACH(newblk, newblkhd, nb_hash)
1348		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1349			break;
1350	if (newblk) {
1351		*newblkpp = newblk;
1352		return (1);
1353	}
1354	*newblkpp = NULL;
1355	return (0);
1356}
1357
1358/*
1359 * Look up a newblk. Return 1 if found, 0 if not found.
1360 * If not found, allocate if DEPALLOC flag is passed.
1361 * Found or allocated entry is returned in newblkpp.
1362 */
1363static int
1364newblk_lookup(fs, newblkno, flags, newblkpp)
1365	struct fs *fs;
1366	ufs2_daddr_t newblkno;
1367	int flags;
1368	struct newblk **newblkpp;
1369{
1370	struct newblk *newblk;
1371	struct newblk_hashhead *newblkhd;
1372
1373	newblkhd = NEWBLK_HASH(fs, newblkno);
1374	if (newblk_find(newblkhd, fs, newblkno, newblkpp))
1375		return (1);
1376	if ((flags & DEPALLOC) == 0)
1377		return (0);
1378	FREE_LOCK(&lk);
1379	newblk = malloc(sizeof(struct newblk),
1380		M_NEWBLK, M_SOFTDEP_FLAGS);
1381	ACQUIRE_LOCK(&lk);
1382	if (newblk_find(newblkhd, fs, newblkno, newblkpp)) {
1383		free(newblk, M_NEWBLK);
1384		return (1);
1385	}
1386	newblk->nb_state = 0;
1387	newblk->nb_fs = fs;
1388	newblk->nb_newblkno = newblkno;
1389	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1390	*newblkpp = newblk;
1391	return (0);
1392}
1393
1394/*
1395 * Executed during filesystem system initialization before
1396 * mounting any filesystems.
1397 */
1398void
1399softdep_initialize()
1400{
1401
1402	LIST_INIT(&mkdirlisthd);
1403	max_softdeps = desiredvnodes * 4;
1404	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1405	    &pagedep_hash);
1406	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1407	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1408
1409	/* initialise bioops hack */
1410	bioops.io_start = softdep_disk_io_initiation;
1411	bioops.io_complete = softdep_disk_write_complete;
1412	bioops.io_deallocate = softdep_deallocate_dependencies;
1413	bioops.io_countdeps = softdep_count_dependencies;
1414
1415	/* Initialize the callout with an mtx. */
1416	callout_init_mtx(&softdep_callout, &lk, 0);
1417}
1418
1419/*
1420 * Executed after all filesystems have been unmounted during
1421 * filesystem module unload.
1422 */
1423void
1424softdep_uninitialize()
1425{
1426
1427	callout_drain(&softdep_callout);
1428	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
1429	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
1430	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
1431}
1432
1433/*
1434 * Called at mount time to notify the dependency code that a
1435 * filesystem wishes to use it.
1436 */
1437int
1438softdep_mount(devvp, mp, fs, cred)
1439	struct vnode *devvp;
1440	struct mount *mp;
1441	struct fs *fs;
1442	struct ucred *cred;
1443{
1444	struct csum_total cstotal;
1445	struct ufsmount *ump;
1446	struct cg *cgp;
1447	struct buf *bp;
1448	int error, cyl;
1449
1450	MNT_ILOCK(mp);
1451	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
1452	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
1453		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
1454			MNTK_SOFTDEP;
1455		mp->mnt_noasync++;
1456	}
1457	MNT_IUNLOCK(mp);
1458	ump = VFSTOUFS(mp);
1459	LIST_INIT(&ump->softdep_workitem_pending);
1460	ump->softdep_worklist_tail = NULL;
1461	ump->softdep_on_worklist = 0;
1462	ump->softdep_deps = 0;
1463	/*
1464	 * When doing soft updates, the counters in the
1465	 * superblock may have gotten out of sync. Recomputation
1466	 * can take a long time and can be deferred for background
1467	 * fsck.  However, the old behavior of scanning the cylinder
1468	 * groups and recalculating them at mount time is available
1469	 * by setting vfs.ffs.compute_summary_at_mount to one.
1470	 */
1471	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
1472		return (0);
1473	bzero(&cstotal, sizeof cstotal);
1474	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1475		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1476		    fs->fs_cgsize, cred, &bp)) != 0) {
1477			brelse(bp);
1478			return (error);
1479		}
1480		cgp = (struct cg *)bp->b_data;
1481		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1482		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1483		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1484		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1485		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1486		brelse(bp);
1487	}
1488#ifdef DEBUG
1489	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1490		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
1491#endif
1492	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1493	return (0);
1494}
1495
1496/*
1497 * Protecting the freemaps (or bitmaps).
1498 *
1499 * To eliminate the need to execute fsck before mounting a filesystem
1500 * after a power failure, one must (conservatively) guarantee that the
1501 * on-disk copy of the bitmaps never indicate that a live inode or block is
1502 * free.  So, when a block or inode is allocated, the bitmap should be
1503 * updated (on disk) before any new pointers.  When a block or inode is
1504 * freed, the bitmap should not be updated until all pointers have been
1505 * reset.  The latter dependency is handled by the delayed de-allocation
1506 * approach described below for block and inode de-allocation.  The former
1507 * dependency is handled by calling the following procedure when a block or
1508 * inode is allocated. When an inode is allocated an "inodedep" is created
1509 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1510 * Each "inodedep" is also inserted into the hash indexing structure so
1511 * that any additional link additions can be made dependent on the inode
1512 * allocation.
1513 *
1514 * The ufs filesystem maintains a number of free block counts (e.g., per
1515 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1516 * in addition to the bitmaps.  These counts are used to improve efficiency
1517 * during allocation and therefore must be consistent with the bitmaps.
1518 * There is no convenient way to guarantee post-crash consistency of these
1519 * counts with simple update ordering, for two main reasons: (1) The counts
1520 * and bitmaps for a single cylinder group block are not in the same disk
1521 * sector.  If a disk write is interrupted (e.g., by power failure), one may
1522 * be written and the other not.  (2) Some of the counts are located in the
1523 * superblock rather than the cylinder group block. So, we focus our soft
1524 * updates implementation on protecting the bitmaps. When mounting a
1525 * filesystem, we recompute the auxiliary counts from the bitmaps.
1526 */
1527
1528/*
1529 * Called just after updating the cylinder group block to allocate an inode.
1530 */
1531void
1532softdep_setup_inomapdep(bp, ip, newinum)
1533	struct buf *bp;		/* buffer for cylgroup block with inode map */
1534	struct inode *ip;	/* inode related to allocation */
1535	ino_t newinum;		/* new inode number being allocated */
1536{
1537	struct inodedep *inodedep;
1538	struct bmsafemap *bmsafemap;
1539
1540	/*
1541	 * Create a dependency for the newly allocated inode.
1542	 * Panic if it already exists as something is seriously wrong.
1543	 * Otherwise add it to the dependency list for the buffer holding
1544	 * the cylinder group map from which it was allocated.
1545	 */
1546	ACQUIRE_LOCK(&lk);
1547	if ((inodedep_lookup(UFSTOVFS(ip->i_ump), newinum, DEPALLOC|NODELAY,
1548	    &inodedep)))
1549		panic("softdep_setup_inomapdep: dependency for new inode "
1550		    "already exists");
1551	inodedep->id_buf = bp;
1552	inodedep->id_state &= ~DEPCOMPLETE;
1553	bmsafemap = bmsafemap_lookup(inodedep->id_list.wk_mp, bp);
1554	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1555	FREE_LOCK(&lk);
1556}
1557
1558/*
1559 * Called just after updating the cylinder group block to
1560 * allocate block or fragment.
1561 */
1562void
1563softdep_setup_blkmapdep(bp, mp, newblkno)
1564	struct buf *bp;		/* buffer for cylgroup block with block map */
1565	struct mount *mp;	/* filesystem doing allocation */
1566	ufs2_daddr_t newblkno;	/* number of newly allocated block */
1567{
1568	struct newblk *newblk;
1569	struct bmsafemap *bmsafemap;
1570	struct fs *fs;
1571
1572	fs = VFSTOUFS(mp)->um_fs;
1573	/*
1574	 * Create a dependency for the newly allocated block.
1575	 * Add it to the dependency list for the buffer holding
1576	 * the cylinder group map from which it was allocated.
1577	 */
1578	ACQUIRE_LOCK(&lk);
1579	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1580		panic("softdep_setup_blkmapdep: found block");
1581	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp);
1582	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1583	FREE_LOCK(&lk);
1584}
1585
1586/*
1587 * Find the bmsafemap associated with a cylinder group buffer.
1588 * If none exists, create one. The buffer must be locked when
1589 * this routine is called and this routine must be called with
1590 * splbio interrupts blocked.
1591 */
1592static struct bmsafemap *
1593bmsafemap_lookup(mp, bp)
1594	struct mount *mp;
1595	struct buf *bp;
1596{
1597	struct bmsafemap *bmsafemap;
1598	struct worklist *wk;
1599
1600	mtx_assert(&lk, MA_OWNED);
1601	LIST_FOREACH(wk, &bp->b_dep, wk_list)
1602		if (wk->wk_type == D_BMSAFEMAP)
1603			return (WK_BMSAFEMAP(wk));
1604	FREE_LOCK(&lk);
1605	bmsafemap = malloc(sizeof(struct bmsafemap),
1606		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1607	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
1608	bmsafemap->sm_buf = bp;
1609	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1610	LIST_INIT(&bmsafemap->sm_allocindirhd);
1611	LIST_INIT(&bmsafemap->sm_inodedephd);
1612	LIST_INIT(&bmsafemap->sm_newblkhd);
1613	ACQUIRE_LOCK(&lk);
1614	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1615	return (bmsafemap);
1616}
1617
1618/*
1619 * Direct block allocation dependencies.
1620 *
1621 * When a new block is allocated, the corresponding disk locations must be
1622 * initialized (with zeros or new data) before the on-disk inode points to
1623 * them.  Also, the freemap from which the block was allocated must be
1624 * updated (on disk) before the inode's pointer. These two dependencies are
1625 * independent of each other and are needed for all file blocks and indirect
1626 * blocks that are pointed to directly by the inode.  Just before the
1627 * "in-core" version of the inode is updated with a newly allocated block
1628 * number, a procedure (below) is called to setup allocation dependency
1629 * structures.  These structures are removed when the corresponding
1630 * dependencies are satisfied or when the block allocation becomes obsolete
1631 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1632 * fragment that gets upgraded).  All of these cases are handled in
1633 * procedures described later.
1634 *
1635 * When a file extension causes a fragment to be upgraded, either to a larger
1636 * fragment or to a full block, the on-disk location may change (if the
1637 * previous fragment could not simply be extended). In this case, the old
1638 * fragment must be de-allocated, but not until after the inode's pointer has
1639 * been updated. In most cases, this is handled by later procedures, which
1640 * will construct a "freefrag" structure to be added to the workitem queue
1641 * when the inode update is complete (or obsolete).  The main exception to
1642 * this is when an allocation occurs while a pending allocation dependency
1643 * (for the same block pointer) remains.  This case is handled in the main
1644 * allocation dependency setup procedure by immediately freeing the
1645 * unreferenced fragments.
1646 */
1647void
1648softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1649	struct inode *ip;	/* inode to which block is being added */
1650	ufs_lbn_t lbn;		/* block pointer within inode */
1651	ufs2_daddr_t newblkno;	/* disk block number being added */
1652	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1653	long newsize;		/* size of new block */
1654	long oldsize;		/* size of new block */
1655	struct buf *bp;		/* bp for allocated block */
1656{
1657	struct allocdirect *adp, *oldadp;
1658	struct allocdirectlst *adphead;
1659	struct bmsafemap *bmsafemap;
1660	struct inodedep *inodedep;
1661	struct pagedep *pagedep;
1662	struct newblk *newblk;
1663	struct mount *mp;
1664
1665	mp = UFSTOVFS(ip->i_ump);
1666	adp = malloc(sizeof(struct allocdirect),
1667		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1668	workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp);
1669	adp->ad_lbn = lbn;
1670	adp->ad_newblkno = newblkno;
1671	adp->ad_oldblkno = oldblkno;
1672	adp->ad_newsize = newsize;
1673	adp->ad_oldsize = oldsize;
1674	adp->ad_state = ATTACHED;
1675	LIST_INIT(&adp->ad_newdirblk);
1676	if (newblkno == oldblkno)
1677		adp->ad_freefrag = NULL;
1678	else
1679		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1680
1681	ACQUIRE_LOCK(&lk);
1682	if (lbn >= NDADDR) {
1683		/* allocating an indirect block */
1684		if (oldblkno != 0)
1685			panic("softdep_setup_allocdirect: non-zero indir");
1686	} else {
1687		/*
1688		 * Allocating a direct block.
1689		 *
1690		 * If we are allocating a directory block, then we must
1691		 * allocate an associated pagedep to track additions and
1692		 * deletions.
1693		 */
1694		if ((ip->i_mode & IFMT) == IFDIR &&
1695		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1696			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1697	}
1698	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1699		panic("softdep_setup_allocdirect: lost block");
1700	if (newblk->nb_state == DEPCOMPLETE) {
1701		adp->ad_state |= DEPCOMPLETE;
1702		adp->ad_buf = NULL;
1703	} else {
1704		bmsafemap = newblk->nb_bmsafemap;
1705		adp->ad_buf = bmsafemap->sm_buf;
1706		LIST_REMOVE(newblk, nb_deps);
1707		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1708	}
1709	LIST_REMOVE(newblk, nb_hash);
1710	free(newblk, M_NEWBLK);
1711
1712	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1713	adp->ad_inodedep = inodedep;
1714	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1715	/*
1716	 * The list of allocdirects must be kept in sorted and ascending
1717	 * order so that the rollback routines can quickly determine the
1718	 * first uncommitted block (the size of the file stored on disk
1719	 * ends at the end of the lowest committed fragment, or if there
1720	 * are no fragments, at the end of the highest committed block).
1721	 * Since files generally grow, the typical case is that the new
1722	 * block is to be added at the end of the list. We speed this
1723	 * special case by checking against the last allocdirect in the
1724	 * list before laboriously traversing the list looking for the
1725	 * insertion point.
1726	 */
1727	adphead = &inodedep->id_newinoupdt;
1728	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1729	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1730		/* insert at end of list */
1731		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1732		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1733			allocdirect_merge(adphead, adp, oldadp);
1734		FREE_LOCK(&lk);
1735		return;
1736	}
1737	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1738		if (oldadp->ad_lbn >= lbn)
1739			break;
1740	}
1741	if (oldadp == NULL)
1742		panic("softdep_setup_allocdirect: lost entry");
1743	/* insert in middle of list */
1744	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1745	if (oldadp->ad_lbn == lbn)
1746		allocdirect_merge(adphead, adp, oldadp);
1747	FREE_LOCK(&lk);
1748}
1749
1750/*
1751 * Replace an old allocdirect dependency with a newer one.
1752 * This routine must be called with splbio interrupts blocked.
1753 */
1754static void
1755allocdirect_merge(adphead, newadp, oldadp)
1756	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1757	struct allocdirect *newadp;	/* allocdirect being added */
1758	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1759{
1760	struct worklist *wk;
1761	struct freefrag *freefrag;
1762	struct newdirblk *newdirblk;
1763
1764	mtx_assert(&lk, MA_OWNED);
1765	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1766	    newadp->ad_oldsize != oldadp->ad_newsize ||
1767	    newadp->ad_lbn >= NDADDR)
1768		panic("%s %jd != new %jd || old size %ld != new %ld",
1769		    "allocdirect_merge: old blkno",
1770		    (intmax_t)newadp->ad_oldblkno,
1771		    (intmax_t)oldadp->ad_newblkno,
1772		    newadp->ad_oldsize, oldadp->ad_newsize);
1773	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1774	newadp->ad_oldsize = oldadp->ad_oldsize;
1775	/*
1776	 * If the old dependency had a fragment to free or had never
1777	 * previously had a block allocated, then the new dependency
1778	 * can immediately post its freefrag and adopt the old freefrag.
1779	 * This action is done by swapping the freefrag dependencies.
1780	 * The new dependency gains the old one's freefrag, and the
1781	 * old one gets the new one and then immediately puts it on
1782	 * the worklist when it is freed by free_allocdirect. It is
1783	 * not possible to do this swap when the old dependency had a
1784	 * non-zero size but no previous fragment to free. This condition
1785	 * arises when the new block is an extension of the old block.
1786	 * Here, the first part of the fragment allocated to the new
1787	 * dependency is part of the block currently claimed on disk by
1788	 * the old dependency, so cannot legitimately be freed until the
1789	 * conditions for the new dependency are fulfilled.
1790	 */
1791	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1792		freefrag = newadp->ad_freefrag;
1793		newadp->ad_freefrag = oldadp->ad_freefrag;
1794		oldadp->ad_freefrag = freefrag;
1795	}
1796	/*
1797	 * If we are tracking a new directory-block allocation,
1798	 * move it from the old allocdirect to the new allocdirect.
1799	 */
1800	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
1801		newdirblk = WK_NEWDIRBLK(wk);
1802		WORKLIST_REMOVE(&newdirblk->db_list);
1803		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
1804			panic("allocdirect_merge: extra newdirblk");
1805		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
1806	}
1807	free_allocdirect(adphead, oldadp, 0);
1808}
1809
1810/*
1811 * Allocate a new freefrag structure if needed.
1812 */
1813static struct freefrag *
1814newfreefrag(ip, blkno, size)
1815	struct inode *ip;
1816	ufs2_daddr_t blkno;
1817	long size;
1818{
1819	struct freefrag *freefrag;
1820	struct fs *fs;
1821
1822	if (blkno == 0)
1823		return (NULL);
1824	fs = ip->i_fs;
1825	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1826		panic("newfreefrag: frag size");
1827	freefrag = malloc(sizeof(struct freefrag),
1828		M_FREEFRAG, M_SOFTDEP_FLAGS);
1829	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
1830	freefrag->ff_inum = ip->i_number;
1831	freefrag->ff_blkno = blkno;
1832	freefrag->ff_fragsize = size;
1833	return (freefrag);
1834}
1835
1836/*
1837 * This workitem de-allocates fragments that were replaced during
1838 * file block allocation.
1839 */
1840static void
1841handle_workitem_freefrag(freefrag)
1842	struct freefrag *freefrag;
1843{
1844	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
1845
1846	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
1847	    freefrag->ff_fragsize, freefrag->ff_inum);
1848	ACQUIRE_LOCK(&lk);
1849	WORKITEM_FREE(freefrag, D_FREEFRAG);
1850	FREE_LOCK(&lk);
1851}
1852
1853/*
1854 * Set up a dependency structure for an external attributes data block.
1855 * This routine follows much of the structure of softdep_setup_allocdirect.
1856 * See the description of softdep_setup_allocdirect above for details.
1857 */
1858void
1859softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1860	struct inode *ip;
1861	ufs_lbn_t lbn;
1862	ufs2_daddr_t newblkno;
1863	ufs2_daddr_t oldblkno;
1864	long newsize;
1865	long oldsize;
1866	struct buf *bp;
1867{
1868	struct allocdirect *adp, *oldadp;
1869	struct allocdirectlst *adphead;
1870	struct bmsafemap *bmsafemap;
1871	struct inodedep *inodedep;
1872	struct newblk *newblk;
1873	struct mount *mp;
1874
1875	mp = UFSTOVFS(ip->i_ump);
1876	adp = malloc(sizeof(struct allocdirect),
1877		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1878	workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp);
1879	adp->ad_lbn = lbn;
1880	adp->ad_newblkno = newblkno;
1881	adp->ad_oldblkno = oldblkno;
1882	adp->ad_newsize = newsize;
1883	adp->ad_oldsize = oldsize;
1884	adp->ad_state = ATTACHED | EXTDATA;
1885	LIST_INIT(&adp->ad_newdirblk);
1886	if (newblkno == oldblkno)
1887		adp->ad_freefrag = NULL;
1888	else
1889		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1890
1891	ACQUIRE_LOCK(&lk);
1892	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1893		panic("softdep_setup_allocext: lost block");
1894
1895	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1896	adp->ad_inodedep = inodedep;
1897
1898	if (newblk->nb_state == DEPCOMPLETE) {
1899		adp->ad_state |= DEPCOMPLETE;
1900		adp->ad_buf = NULL;
1901	} else {
1902		bmsafemap = newblk->nb_bmsafemap;
1903		adp->ad_buf = bmsafemap->sm_buf;
1904		LIST_REMOVE(newblk, nb_deps);
1905		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1906	}
1907	LIST_REMOVE(newblk, nb_hash);
1908	free(newblk, M_NEWBLK);
1909
1910	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1911	if (lbn >= NXADDR)
1912		panic("softdep_setup_allocext: lbn %lld > NXADDR",
1913		    (long long)lbn);
1914	/*
1915	 * The list of allocdirects must be kept in sorted and ascending
1916	 * order so that the rollback routines can quickly determine the
1917	 * first uncommitted block (the size of the file stored on disk
1918	 * ends at the end of the lowest committed fragment, or if there
1919	 * are no fragments, at the end of the highest committed block).
1920	 * Since files generally grow, the typical case is that the new
1921	 * block is to be added at the end of the list. We speed this
1922	 * special case by checking against the last allocdirect in the
1923	 * list before laboriously traversing the list looking for the
1924	 * insertion point.
1925	 */
1926	adphead = &inodedep->id_newextupdt;
1927	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1928	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1929		/* insert at end of list */
1930		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1931		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1932			allocdirect_merge(adphead, adp, oldadp);
1933		FREE_LOCK(&lk);
1934		return;
1935	}
1936	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1937		if (oldadp->ad_lbn >= lbn)
1938			break;
1939	}
1940	if (oldadp == NULL)
1941		panic("softdep_setup_allocext: lost entry");
1942	/* insert in middle of list */
1943	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1944	if (oldadp->ad_lbn == lbn)
1945		allocdirect_merge(adphead, adp, oldadp);
1946	FREE_LOCK(&lk);
1947}
1948
1949/*
1950 * Indirect block allocation dependencies.
1951 *
1952 * The same dependencies that exist for a direct block also exist when
1953 * a new block is allocated and pointed to by an entry in a block of
1954 * indirect pointers. The undo/redo states described above are also
1955 * used here. Because an indirect block contains many pointers that
1956 * may have dependencies, a second copy of the entire in-memory indirect
1957 * block is kept. The buffer cache copy is always completely up-to-date.
1958 * The second copy, which is used only as a source for disk writes,
1959 * contains only the safe pointers (i.e., those that have no remaining
1960 * update dependencies). The second copy is freed when all pointers
1961 * are safe. The cache is not allowed to replace indirect blocks with
1962 * pending update dependencies. If a buffer containing an indirect
1963 * block with dependencies is written, these routines will mark it
1964 * dirty again. It can only be successfully written once all the
1965 * dependencies are removed. The ffs_fsync routine in conjunction with
1966 * softdep_sync_metadata work together to get all the dependencies
1967 * removed so that a file can be successfully written to disk. Three
1968 * procedures are used when setting up indirect block pointer
1969 * dependencies. The division is necessary because of the organization
1970 * of the "balloc" routine and because of the distinction between file
1971 * pages and file metadata blocks.
1972 */
1973
1974/*
1975 * Allocate a new allocindir structure.
1976 */
1977static struct allocindir *
1978newallocindir(ip, ptrno, newblkno, oldblkno)
1979	struct inode *ip;	/* inode for file being extended */
1980	int ptrno;		/* offset of pointer in indirect block */
1981	ufs2_daddr_t newblkno;	/* disk block number being added */
1982	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1983{
1984	struct allocindir *aip;
1985
1986	aip = malloc(sizeof(struct allocindir),
1987		M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO);
1988	workitem_alloc(&aip->ai_list, D_ALLOCINDIR, UFSTOVFS(ip->i_ump));
1989	aip->ai_state = ATTACHED;
1990	aip->ai_offset = ptrno;
1991	aip->ai_newblkno = newblkno;
1992	aip->ai_oldblkno = oldblkno;
1993	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1994	return (aip);
1995}
1996
1997/*
1998 * Called just before setting an indirect block pointer
1999 * to a newly allocated file page.
2000 */
2001void
2002softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
2003	struct inode *ip;	/* inode for file being extended */
2004	ufs_lbn_t lbn;		/* allocated block number within file */
2005	struct buf *bp;		/* buffer with indirect blk referencing page */
2006	int ptrno;		/* offset of pointer in indirect block */
2007	ufs2_daddr_t newblkno;	/* disk block number being added */
2008	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
2009	struct buf *nbp;	/* buffer holding allocated page */
2010{
2011	struct allocindir *aip;
2012	struct pagedep *pagedep;
2013
2014	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
2015	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
2016	ACQUIRE_LOCK(&lk);
2017	/*
2018	 * If we are allocating a directory page, then we must
2019	 * allocate an associated pagedep to track additions and
2020	 * deletions.
2021	 */
2022	if ((ip->i_mode & IFMT) == IFDIR &&
2023	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
2024		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
2025	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
2026	setup_allocindir_phase2(bp, ip, aip);
2027	FREE_LOCK(&lk);
2028}
2029
2030/*
2031 * Called just before setting an indirect block pointer to a
2032 * newly allocated indirect block.
2033 */
2034void
2035softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
2036	struct buf *nbp;	/* newly allocated indirect block */
2037	struct inode *ip;	/* inode for file being extended */
2038	struct buf *bp;		/* indirect block referencing allocated block */
2039	int ptrno;		/* offset of pointer in indirect block */
2040	ufs2_daddr_t newblkno;	/* disk block number being added */
2041{
2042	struct allocindir *aip;
2043
2044	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
2045	aip = newallocindir(ip, ptrno, newblkno, 0);
2046	ACQUIRE_LOCK(&lk);
2047	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
2048	setup_allocindir_phase2(bp, ip, aip);
2049	FREE_LOCK(&lk);
2050}
2051
2052/*
2053 * Called to finish the allocation of the "aip" allocated
2054 * by one of the two routines above.
2055 */
2056static void
2057setup_allocindir_phase2(bp, ip, aip)
2058	struct buf *bp;		/* in-memory copy of the indirect block */
2059	struct inode *ip;	/* inode for file being extended */
2060	struct allocindir *aip;	/* allocindir allocated by the above routines */
2061{
2062	struct worklist *wk;
2063	struct indirdep *indirdep, *newindirdep;
2064	struct bmsafemap *bmsafemap;
2065	struct allocindir *oldaip;
2066	struct freefrag *freefrag;
2067	struct newblk *newblk;
2068	ufs2_daddr_t blkno;
2069
2070	mtx_assert(&lk, MA_OWNED);
2071	if (bp->b_lblkno >= 0)
2072		panic("setup_allocindir_phase2: not indir blk");
2073	for (indirdep = NULL, newindirdep = NULL; ; ) {
2074		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2075			if (wk->wk_type != D_INDIRDEP)
2076				continue;
2077			indirdep = WK_INDIRDEP(wk);
2078			break;
2079		}
2080		if (indirdep == NULL && newindirdep) {
2081			indirdep = newindirdep;
2082			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
2083			newindirdep = NULL;
2084		}
2085		if (indirdep) {
2086			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
2087			    &newblk) == 0)
2088				panic("setup_allocindir: lost block");
2089			if (newblk->nb_state == DEPCOMPLETE) {
2090				aip->ai_state |= DEPCOMPLETE;
2091				aip->ai_buf = NULL;
2092			} else {
2093				bmsafemap = newblk->nb_bmsafemap;
2094				aip->ai_buf = bmsafemap->sm_buf;
2095				LIST_REMOVE(newblk, nb_deps);
2096				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
2097				    aip, ai_deps);
2098			}
2099			LIST_REMOVE(newblk, nb_hash);
2100			free(newblk, M_NEWBLK);
2101			aip->ai_indirdep = indirdep;
2102			/*
2103			 * Check to see if there is an existing dependency
2104			 * for this block. If there is, merge the old
2105			 * dependency into the new one.
2106			 */
2107			if (aip->ai_oldblkno == 0)
2108				oldaip = NULL;
2109			else
2110
2111				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
2112					if (oldaip->ai_offset == aip->ai_offset)
2113						break;
2114			freefrag = NULL;
2115			if (oldaip != NULL) {
2116				if (oldaip->ai_newblkno != aip->ai_oldblkno)
2117					panic("setup_allocindir_phase2: blkno");
2118				aip->ai_oldblkno = oldaip->ai_oldblkno;
2119				freefrag = aip->ai_freefrag;
2120				aip->ai_freefrag = oldaip->ai_freefrag;
2121				oldaip->ai_freefrag = NULL;
2122				free_allocindir(oldaip, NULL);
2123			}
2124			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
2125			if (ip->i_ump->um_fstype == UFS1)
2126				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
2127				    [aip->ai_offset] = aip->ai_oldblkno;
2128			else
2129				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
2130				    [aip->ai_offset] = aip->ai_oldblkno;
2131			FREE_LOCK(&lk);
2132			if (freefrag != NULL)
2133				handle_workitem_freefrag(freefrag);
2134		} else
2135			FREE_LOCK(&lk);
2136		if (newindirdep) {
2137			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
2138			brelse(newindirdep->ir_savebp);
2139			ACQUIRE_LOCK(&lk);
2140			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
2141			if (indirdep)
2142				break;
2143			FREE_LOCK(&lk);
2144		}
2145		if (indirdep) {
2146			ACQUIRE_LOCK(&lk);
2147			break;
2148		}
2149		newindirdep = malloc(sizeof(struct indirdep),
2150			M_INDIRDEP, M_SOFTDEP_FLAGS);
2151		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP,
2152		    UFSTOVFS(ip->i_ump));
2153		newindirdep->ir_state = ATTACHED;
2154		if (ip->i_ump->um_fstype == UFS1)
2155			newindirdep->ir_state |= UFS1FMT;
2156		LIST_INIT(&newindirdep->ir_deplisthd);
2157		LIST_INIT(&newindirdep->ir_donehd);
2158		if (bp->b_blkno == bp->b_lblkno) {
2159			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
2160			    NULL, NULL);
2161			bp->b_blkno = blkno;
2162		}
2163		newindirdep->ir_savebp =
2164		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
2165		BUF_KERNPROC(newindirdep->ir_savebp);
2166		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
2167		ACQUIRE_LOCK(&lk);
2168	}
2169}
2170
2171/*
2172 * Block de-allocation dependencies.
2173 *
2174 * When blocks are de-allocated, the on-disk pointers must be nullified before
2175 * the blocks are made available for use by other files.  (The true
2176 * requirement is that old pointers must be nullified before new on-disk
2177 * pointers are set.  We chose this slightly more stringent requirement to
2178 * reduce complexity.) Our implementation handles this dependency by updating
2179 * the inode (or indirect block) appropriately but delaying the actual block
2180 * de-allocation (i.e., freemap and free space count manipulation) until
2181 * after the updated versions reach stable storage.  After the disk is
2182 * updated, the blocks can be safely de-allocated whenever it is convenient.
2183 * This implementation handles only the common case of reducing a file's
2184 * length to zero. Other cases are handled by the conventional synchronous
2185 * write approach.
2186 *
2187 * The ffs implementation with which we worked double-checks
2188 * the state of the block pointers and file size as it reduces
2189 * a file's length.  Some of this code is replicated here in our
2190 * soft updates implementation.  The freeblks->fb_chkcnt field is
2191 * used to transfer a part of this information to the procedure
2192 * that eventually de-allocates the blocks.
2193 *
2194 * This routine should be called from the routine that shortens
2195 * a file's length, before the inode's size or block pointers
2196 * are modified. It will save the block pointer information for
2197 * later release and zero the inode so that the calling routine
2198 * can release it.
2199 */
2200void
2201softdep_setup_freeblocks(ip, length, flags)
2202	struct inode *ip;	/* The inode whose length is to be reduced */
2203	off_t length;		/* The new length for the file */
2204	int flags;		/* IO_EXT and/or IO_NORMAL */
2205{
2206	struct freeblks *freeblks;
2207	struct inodedep *inodedep;
2208	struct allocdirect *adp;
2209	struct bufobj *bo;
2210	struct vnode *vp;
2211	struct buf *bp;
2212	struct fs *fs;
2213	ufs2_daddr_t extblocks, datablocks;
2214	struct mount *mp;
2215	int i, delay, error;
2216
2217	fs = ip->i_fs;
2218	mp = UFSTOVFS(ip->i_ump);
2219	if (length != 0)
2220		panic("softdep_setup_freeblocks: non-zero length");
2221	freeblks = malloc(sizeof(struct freeblks),
2222		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
2223	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
2224	freeblks->fb_state = ATTACHED;
2225	freeblks->fb_uid = ip->i_uid;
2226	freeblks->fb_previousinum = ip->i_number;
2227	freeblks->fb_devvp = ip->i_devvp;
2228	ACQUIRE_LOCK(&lk);
2229	num_freeblkdep++;
2230	FREE_LOCK(&lk);
2231	extblocks = 0;
2232	if (fs->fs_magic == FS_UFS2_MAGIC)
2233		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
2234	datablocks = DIP(ip, i_blocks) - extblocks;
2235	if ((flags & IO_NORMAL) == 0) {
2236		freeblks->fb_oldsize = 0;
2237		freeblks->fb_chkcnt = 0;
2238	} else {
2239		freeblks->fb_oldsize = ip->i_size;
2240		ip->i_size = 0;
2241		DIP_SET(ip, i_size, 0);
2242		freeblks->fb_chkcnt = datablocks;
2243		for (i = 0; i < NDADDR; i++) {
2244			freeblks->fb_dblks[i] = DIP(ip, i_db[i]);
2245			DIP_SET(ip, i_db[i], 0);
2246		}
2247		for (i = 0; i < NIADDR; i++) {
2248			freeblks->fb_iblks[i] = DIP(ip, i_ib[i]);
2249			DIP_SET(ip, i_ib[i], 0);
2250		}
2251		/*
2252		 * If the file was removed, then the space being freed was
2253		 * accounted for then (see softdep_releasefile()). If the
2254		 * file is merely being truncated, then we account for it now.
2255		 */
2256		if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2257			UFS_LOCK(ip->i_ump);
2258			fs->fs_pendingblocks += datablocks;
2259			UFS_UNLOCK(ip->i_ump);
2260		}
2261	}
2262	if ((flags & IO_EXT) == 0) {
2263		freeblks->fb_oldextsize = 0;
2264	} else {
2265		freeblks->fb_oldextsize = ip->i_din2->di_extsize;
2266		ip->i_din2->di_extsize = 0;
2267		freeblks->fb_chkcnt += extblocks;
2268		for (i = 0; i < NXADDR; i++) {
2269			freeblks->fb_eblks[i] = ip->i_din2->di_extb[i];
2270			ip->i_din2->di_extb[i] = 0;
2271		}
2272	}
2273	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
2274	/*
2275	 * Push the zero'ed inode to to its disk buffer so that we are free
2276	 * to delete its dependencies below. Once the dependencies are gone
2277	 * the buffer can be safely released.
2278	 */
2279	if ((error = bread(ip->i_devvp,
2280	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
2281	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
2282		brelse(bp);
2283		softdep_error("softdep_setup_freeblocks", error);
2284	}
2285	if (ip->i_ump->um_fstype == UFS1)
2286		*((struct ufs1_dinode *)bp->b_data +
2287		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
2288	else
2289		*((struct ufs2_dinode *)bp->b_data +
2290		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
2291	/*
2292	 * Find and eliminate any inode dependencies.
2293	 */
2294	ACQUIRE_LOCK(&lk);
2295	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
2296	if ((inodedep->id_state & IOSTARTED) != 0)
2297		panic("softdep_setup_freeblocks: inode busy");
2298	/*
2299	 * Add the freeblks structure to the list of operations that
2300	 * must await the zero'ed inode being written to disk. If we
2301	 * still have a bitmap dependency (delay == 0), then the inode
2302	 * has never been written to disk, so we can process the
2303	 * freeblks below once we have deleted the dependencies.
2304	 */
2305	delay = (inodedep->id_state & DEPCOMPLETE);
2306	if (delay)
2307		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
2308	/*
2309	 * Because the file length has been truncated to zero, any
2310	 * pending block allocation dependency structures associated
2311	 * with this inode are obsolete and can simply be de-allocated.
2312	 * We must first merge the two dependency lists to get rid of
2313	 * any duplicate freefrag structures, then purge the merged list.
2314	 * If we still have a bitmap dependency, then the inode has never
2315	 * been written to disk, so we can free any fragments without delay.
2316	 */
2317	if (flags & IO_NORMAL) {
2318		merge_inode_lists(&inodedep->id_newinoupdt,
2319		    &inodedep->id_inoupdt);
2320		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
2321			free_allocdirect(&inodedep->id_inoupdt, adp, delay);
2322	}
2323	if (flags & IO_EXT) {
2324		merge_inode_lists(&inodedep->id_newextupdt,
2325		    &inodedep->id_extupdt);
2326		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
2327			free_allocdirect(&inodedep->id_extupdt, adp, delay);
2328	}
2329	FREE_LOCK(&lk);
2330	bdwrite(bp);
2331	/*
2332	 * We must wait for any I/O in progress to finish so that
2333	 * all potential buffers on the dirty list will be visible.
2334	 * Once they are all there, walk the list and get rid of
2335	 * any dependencies.
2336	 */
2337	vp = ITOV(ip);
2338	bo = &vp->v_bufobj;
2339	BO_LOCK(bo);
2340	drain_output(vp);
2341restart:
2342	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2343		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
2344		    ((flags & IO_NORMAL) == 0 &&
2345		      (bp->b_xflags & BX_ALTDATA) == 0))
2346			continue;
2347		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
2348			goto restart;
2349		BO_UNLOCK(bo);
2350		ACQUIRE_LOCK(&lk);
2351		(void) inodedep_lookup(mp, ip->i_number, 0, &inodedep);
2352		deallocate_dependencies(bp, inodedep);
2353		FREE_LOCK(&lk);
2354		bp->b_flags |= B_INVAL | B_NOCACHE;
2355		brelse(bp);
2356		BO_LOCK(bo);
2357		goto restart;
2358	}
2359	BO_UNLOCK(bo);
2360	ACQUIRE_LOCK(&lk);
2361	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
2362		(void) free_inodedep(inodedep);
2363
2364	if(delay) {
2365		freeblks->fb_state |= DEPCOMPLETE;
2366		/*
2367		 * If the inode with zeroed block pointers is now on disk
2368		 * we can start freeing blocks. Add freeblks to the worklist
2369		 * instead of calling  handle_workitem_freeblocks directly as
2370		 * it is more likely that additional IO is needed to complete
2371		 * the request here than in the !delay case.
2372		 */
2373		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
2374			add_to_worklist(&freeblks->fb_list);
2375	}
2376
2377	FREE_LOCK(&lk);
2378	/*
2379	 * If the inode has never been written to disk (delay == 0),
2380	 * then we can process the freeblks now that we have deleted
2381	 * the dependencies.
2382	 */
2383	if (!delay)
2384		handle_workitem_freeblocks(freeblks, 0);
2385}
2386
2387/*
2388 * Reclaim any dependency structures from a buffer that is about to
2389 * be reallocated to a new vnode. The buffer must be locked, thus,
2390 * no I/O completion operations can occur while we are manipulating
2391 * its associated dependencies. The mutex is held so that other I/O's
2392 * associated with related dependencies do not occur.
2393 */
2394static void
2395deallocate_dependencies(bp, inodedep)
2396	struct buf *bp;
2397	struct inodedep *inodedep;
2398{
2399	struct worklist *wk;
2400	struct indirdep *indirdep;
2401	struct allocindir *aip;
2402	struct pagedep *pagedep;
2403	struct dirrem *dirrem;
2404	struct diradd *dap;
2405	int i;
2406
2407	mtx_assert(&lk, MA_OWNED);
2408	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2409		switch (wk->wk_type) {
2410
2411		case D_INDIRDEP:
2412			indirdep = WK_INDIRDEP(wk);
2413			/*
2414			 * None of the indirect pointers will ever be visible,
2415			 * so they can simply be tossed. GOINGAWAY ensures
2416			 * that allocated pointers will be saved in the buffer
2417			 * cache until they are freed. Note that they will
2418			 * only be able to be found by their physical address
2419			 * since the inode mapping the logical address will
2420			 * be gone. The save buffer used for the safe copy
2421			 * was allocated in setup_allocindir_phase2 using
2422			 * the physical address so it could be used for this
2423			 * purpose. Hence we swap the safe copy with the real
2424			 * copy, allowing the safe copy to be freed and holding
2425			 * on to the real copy for later use in indir_trunc.
2426			 */
2427			if (indirdep->ir_state & GOINGAWAY)
2428				panic("deallocate_dependencies: already gone");
2429			indirdep->ir_state |= GOINGAWAY;
2430			VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1;
2431			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2432				free_allocindir(aip, inodedep);
2433			if (bp->b_lblkno >= 0 ||
2434			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
2435				panic("deallocate_dependencies: not indir");
2436			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2437			    bp->b_bcount);
2438			WORKLIST_REMOVE(wk);
2439			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
2440			continue;
2441
2442		case D_PAGEDEP:
2443			pagedep = WK_PAGEDEP(wk);
2444			/*
2445			 * None of the directory additions will ever be
2446			 * visible, so they can simply be tossed.
2447			 */
2448			for (i = 0; i < DAHASHSZ; i++)
2449				while ((dap =
2450				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
2451					free_diradd(dap);
2452			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2453				free_diradd(dap);
2454			/*
2455			 * Copy any directory remove dependencies to the list
2456			 * to be processed after the zero'ed inode is written.
2457			 * If the inode has already been written, then they
2458			 * can be dumped directly onto the work list.
2459			 */
2460			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2461				LIST_REMOVE(dirrem, dm_next);
2462				dirrem->dm_dirinum = pagedep->pd_ino;
2463				if (inodedep == NULL ||
2464				    (inodedep->id_state & ALLCOMPLETE) ==
2465				     ALLCOMPLETE)
2466					add_to_worklist(&dirrem->dm_list);
2467				else
2468					WORKLIST_INSERT(&inodedep->id_bufwait,
2469					    &dirrem->dm_list);
2470			}
2471			if ((pagedep->pd_state & NEWBLOCK) != 0) {
2472				LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
2473					if (wk->wk_type == D_NEWDIRBLK &&
2474					    WK_NEWDIRBLK(wk)->db_pagedep ==
2475					      pagedep)
2476						break;
2477				if (wk != NULL) {
2478					WORKLIST_REMOVE(wk);
2479					free_newdirblk(WK_NEWDIRBLK(wk));
2480				} else
2481					panic("deallocate_dependencies: "
2482					      "lost pagedep");
2483			}
2484			WORKLIST_REMOVE(&pagedep->pd_list);
2485			LIST_REMOVE(pagedep, pd_hash);
2486			WORKITEM_FREE(pagedep, D_PAGEDEP);
2487			continue;
2488
2489		case D_ALLOCINDIR:
2490			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2491			continue;
2492
2493		case D_ALLOCDIRECT:
2494		case D_INODEDEP:
2495			panic("deallocate_dependencies: Unexpected type %s",
2496			    TYPENAME(wk->wk_type));
2497			/* NOTREACHED */
2498
2499		default:
2500			panic("deallocate_dependencies: Unknown type %s",
2501			    TYPENAME(wk->wk_type));
2502			/* NOTREACHED */
2503		}
2504	}
2505}
2506
2507/*
2508 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2509 * This routine must be called with splbio interrupts blocked.
2510 */
2511static void
2512free_allocdirect(adphead, adp, delay)
2513	struct allocdirectlst *adphead;
2514	struct allocdirect *adp;
2515	int delay;
2516{
2517	struct newdirblk *newdirblk;
2518	struct worklist *wk;
2519
2520	mtx_assert(&lk, MA_OWNED);
2521	if ((adp->ad_state & DEPCOMPLETE) == 0)
2522		LIST_REMOVE(adp, ad_deps);
2523	TAILQ_REMOVE(adphead, adp, ad_next);
2524	if ((adp->ad_state & COMPLETE) == 0)
2525		WORKLIST_REMOVE(&adp->ad_list);
2526	if (adp->ad_freefrag != NULL) {
2527		if (delay)
2528			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2529			    &adp->ad_freefrag->ff_list);
2530		else
2531			add_to_worklist(&adp->ad_freefrag->ff_list);
2532	}
2533	if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
2534		newdirblk = WK_NEWDIRBLK(wk);
2535		WORKLIST_REMOVE(&newdirblk->db_list);
2536		if (!LIST_EMPTY(&adp->ad_newdirblk))
2537			panic("free_allocdirect: extra newdirblk");
2538		if (delay)
2539			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2540			    &newdirblk->db_list);
2541		else
2542			free_newdirblk(newdirblk);
2543	}
2544	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2545}
2546
2547/*
2548 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
2549 * This routine must be called with splbio interrupts blocked.
2550 */
2551static void
2552free_newdirblk(newdirblk)
2553	struct newdirblk *newdirblk;
2554{
2555	struct pagedep *pagedep;
2556	struct diradd *dap;
2557	int i;
2558
2559	mtx_assert(&lk, MA_OWNED);
2560	/*
2561	 * If the pagedep is still linked onto the directory buffer
2562	 * dependency chain, then some of the entries on the
2563	 * pd_pendinghd list may not be committed to disk yet. In
2564	 * this case, we will simply clear the NEWBLOCK flag and
2565	 * let the pd_pendinghd list be processed when the pagedep
2566	 * is next written. If the pagedep is no longer on the buffer
2567	 * dependency chain, then all the entries on the pd_pending
2568	 * list are committed to disk and we can free them here.
2569	 */
2570	pagedep = newdirblk->db_pagedep;
2571	pagedep->pd_state &= ~NEWBLOCK;
2572	if ((pagedep->pd_state & ONWORKLIST) == 0)
2573		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2574			free_diradd(dap);
2575	/*
2576	 * If no dependencies remain, the pagedep will be freed.
2577	 */
2578	for (i = 0; i < DAHASHSZ; i++)
2579		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
2580			break;
2581	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
2582		LIST_REMOVE(pagedep, pd_hash);
2583		WORKITEM_FREE(pagedep, D_PAGEDEP);
2584	}
2585	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2586}
2587
2588/*
2589 * Prepare an inode to be freed. The actual free operation is not
2590 * done until the zero'ed inode has been written to disk.
2591 */
2592void
2593softdep_freefile(pvp, ino, mode)
2594	struct vnode *pvp;
2595	ino_t ino;
2596	int mode;
2597{
2598	struct inode *ip = VTOI(pvp);
2599	struct inodedep *inodedep;
2600	struct freefile *freefile;
2601
2602	/*
2603	 * This sets up the inode de-allocation dependency.
2604	 */
2605	freefile = malloc(sizeof(struct freefile),
2606		M_FREEFILE, M_SOFTDEP_FLAGS);
2607	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
2608	freefile->fx_mode = mode;
2609	freefile->fx_oldinum = ino;
2610	freefile->fx_devvp = ip->i_devvp;
2611	if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2612		UFS_LOCK(ip->i_ump);
2613		ip->i_fs->fs_pendinginodes += 1;
2614		UFS_UNLOCK(ip->i_ump);
2615	}
2616
2617	/*
2618	 * If the inodedep does not exist, then the zero'ed inode has
2619	 * been written to disk. If the allocated inode has never been
2620	 * written to disk, then the on-disk inode is zero'ed. In either
2621	 * case we can free the file immediately.
2622	 */
2623	ACQUIRE_LOCK(&lk);
2624	if (inodedep_lookup(pvp->v_mount, ino, 0, &inodedep) == 0 ||
2625	    check_inode_unwritten(inodedep)) {
2626		FREE_LOCK(&lk);
2627		handle_workitem_freefile(freefile);
2628		return;
2629	}
2630	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2631	FREE_LOCK(&lk);
2632	if (ip->i_number == ino)
2633		ip->i_flag |= IN_MODIFIED;
2634}
2635
2636/*
2637 * Check to see if an inode has never been written to disk. If
2638 * so free the inodedep and return success, otherwise return failure.
2639 * This routine must be called with splbio interrupts blocked.
2640 *
2641 * If we still have a bitmap dependency, then the inode has never
2642 * been written to disk. Drop the dependency as it is no longer
2643 * necessary since the inode is being deallocated. We set the
2644 * ALLCOMPLETE flags since the bitmap now properly shows that the
2645 * inode is not allocated. Even if the inode is actively being
2646 * written, it has been rolled back to its zero'ed state, so we
2647 * are ensured that a zero inode is what is on the disk. For short
2648 * lived files, this change will usually result in removing all the
2649 * dependencies from the inode so that it can be freed immediately.
2650 */
2651static int
2652check_inode_unwritten(inodedep)
2653	struct inodedep *inodedep;
2654{
2655
2656	mtx_assert(&lk, MA_OWNED);
2657	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2658	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
2659	    !LIST_EMPTY(&inodedep->id_bufwait) ||
2660	    !LIST_EMPTY(&inodedep->id_inowait) ||
2661	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
2662	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
2663	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
2664	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
2665	    inodedep->id_nlinkdelta != 0)
2666		return (0);
2667
2668	/*
2669	 * Another process might be in initiate_write_inodeblock_ufs[12]
2670	 * trying to allocate memory without holding "Softdep Lock".
2671	 */
2672	if ((inodedep->id_state & IOSTARTED) != 0 &&
2673	    inodedep->id_savedino1 == NULL)
2674		return (0);
2675
2676	inodedep->id_state |= ALLCOMPLETE;
2677	LIST_REMOVE(inodedep, id_deps);
2678	inodedep->id_buf = NULL;
2679	if (inodedep->id_state & ONWORKLIST)
2680		WORKLIST_REMOVE(&inodedep->id_list);
2681	if (inodedep->id_savedino1 != NULL) {
2682		free(inodedep->id_savedino1, M_SAVEDINO);
2683		inodedep->id_savedino1 = NULL;
2684	}
2685	if (free_inodedep(inodedep) == 0)
2686		panic("check_inode_unwritten: busy inode");
2687	return (1);
2688}
2689
2690/*
2691 * Try to free an inodedep structure. Return 1 if it could be freed.
2692 */
2693static int
2694free_inodedep(inodedep)
2695	struct inodedep *inodedep;
2696{
2697
2698	mtx_assert(&lk, MA_OWNED);
2699	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2700	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2701	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
2702	    !LIST_EMPTY(&inodedep->id_bufwait) ||
2703	    !LIST_EMPTY(&inodedep->id_inowait) ||
2704	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
2705	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
2706	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
2707	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
2708	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL)
2709		return (0);
2710	LIST_REMOVE(inodedep, id_hash);
2711	WORKITEM_FREE(inodedep, D_INODEDEP);
2712	num_inodedep -= 1;
2713	return (1);
2714}
2715
2716/*
2717 * This workitem routine performs the block de-allocation.
2718 * The workitem is added to the pending list after the updated
2719 * inode block has been written to disk.  As mentioned above,
2720 * checks regarding the number of blocks de-allocated (compared
2721 * to the number of blocks allocated for the file) are also
2722 * performed in this function.
2723 */
2724static void
2725handle_workitem_freeblocks(freeblks, flags)
2726	struct freeblks *freeblks;
2727	int flags;
2728{
2729	struct inode *ip;
2730	struct vnode *vp;
2731	struct fs *fs;
2732	struct ufsmount *ump;
2733	int i, nblocks, level, bsize;
2734	ufs2_daddr_t bn, blocksreleased = 0;
2735	int error, allerror = 0;
2736	ufs_lbn_t baselbns[NIADDR], tmpval;
2737	int fs_pendingblocks;
2738
2739	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
2740	fs = ump->um_fs;
2741	fs_pendingblocks = 0;
2742	tmpval = 1;
2743	baselbns[0] = NDADDR;
2744	for (i = 1; i < NIADDR; i++) {
2745		tmpval *= NINDIR(fs);
2746		baselbns[i] = baselbns[i - 1] + tmpval;
2747	}
2748	nblocks = btodb(fs->fs_bsize);
2749	blocksreleased = 0;
2750	/*
2751	 * Release all extended attribute blocks or frags.
2752	 */
2753	if (freeblks->fb_oldextsize > 0) {
2754		for (i = (NXADDR - 1); i >= 0; i--) {
2755			if ((bn = freeblks->fb_eblks[i]) == 0)
2756				continue;
2757			bsize = sblksize(fs, freeblks->fb_oldextsize, i);
2758			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2759			    freeblks->fb_previousinum);
2760			blocksreleased += btodb(bsize);
2761		}
2762	}
2763	/*
2764	 * Release all data blocks or frags.
2765	 */
2766	if (freeblks->fb_oldsize > 0) {
2767		/*
2768		 * Indirect blocks first.
2769		 */
2770		for (level = (NIADDR - 1); level >= 0; level--) {
2771			if ((bn = freeblks->fb_iblks[level]) == 0)
2772				continue;
2773			if ((error = indir_trunc(freeblks, fsbtodb(fs, bn),
2774			    level, baselbns[level], &blocksreleased)) != 0)
2775				allerror = error;
2776			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn,
2777			    fs->fs_bsize, freeblks->fb_previousinum);
2778			fs_pendingblocks += nblocks;
2779			blocksreleased += nblocks;
2780		}
2781		/*
2782		 * All direct blocks or frags.
2783		 */
2784		for (i = (NDADDR - 1); i >= 0; i--) {
2785			if ((bn = freeblks->fb_dblks[i]) == 0)
2786				continue;
2787			bsize = sblksize(fs, freeblks->fb_oldsize, i);
2788			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2789			    freeblks->fb_previousinum);
2790			fs_pendingblocks += btodb(bsize);
2791			blocksreleased += btodb(bsize);
2792		}
2793	}
2794	UFS_LOCK(ump);
2795	fs->fs_pendingblocks -= fs_pendingblocks;
2796	UFS_UNLOCK(ump);
2797	/*
2798	 * If we still have not finished background cleanup, then check
2799	 * to see if the block count needs to be adjusted.
2800	 */
2801	if (freeblks->fb_chkcnt != blocksreleased &&
2802	    (fs->fs_flags & FS_UNCLEAN) != 0 &&
2803	    ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_previousinum,
2804		(flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ)
2805	    == 0) {
2806		ip = VTOI(vp);
2807		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \
2808		    freeblks->fb_chkcnt - blocksreleased);
2809		ip->i_flag |= IN_CHANGE;
2810		vput(vp);
2811	}
2812
2813#ifdef INVARIANTS
2814	if (freeblks->fb_chkcnt != blocksreleased &&
2815	    ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
2816		printf("handle_workitem_freeblocks: block count\n");
2817	if (allerror)
2818		softdep_error("handle_workitem_freeblks", allerror);
2819#endif /* INVARIANTS */
2820
2821	ACQUIRE_LOCK(&lk);
2822	WORKITEM_FREE(freeblks, D_FREEBLKS);
2823	num_freeblkdep--;
2824	FREE_LOCK(&lk);
2825}
2826
2827/*
2828 * Release blocks associated with the inode ip and stored in the indirect
2829 * block dbn. If level is greater than SINGLE, the block is an indirect block
2830 * and recursive calls to indirtrunc must be used to cleanse other indirect
2831 * blocks.
2832 */
2833static int
2834indir_trunc(freeblks, dbn, level, lbn, countp)
2835	struct freeblks *freeblks;
2836	ufs2_daddr_t dbn;
2837	int level;
2838	ufs_lbn_t lbn;
2839	ufs2_daddr_t *countp;
2840{
2841	struct buf *bp;
2842	struct fs *fs;
2843	struct worklist *wk;
2844	struct indirdep *indirdep;
2845	struct ufsmount *ump;
2846	ufs1_daddr_t *bap1 = 0;
2847	ufs2_daddr_t nb, *bap2 = 0;
2848	ufs_lbn_t lbnadd;
2849	int i, nblocks, ufs1fmt;
2850	int error, allerror = 0;
2851	int fs_pendingblocks;
2852
2853	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
2854	fs = ump->um_fs;
2855	fs_pendingblocks = 0;
2856	lbnadd = 1;
2857	for (i = level; i > 0; i--)
2858		lbnadd *= NINDIR(fs);
2859	/*
2860	 * Get buffer of block pointers to be freed. This routine is not
2861	 * called until the zero'ed inode has been written, so it is safe
2862	 * to free blocks as they are encountered. Because the inode has
2863	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2864	 * have to use the on-disk address and the block device for the
2865	 * filesystem to look them up. If the file was deleted before its
2866	 * indirect blocks were all written to disk, the routine that set
2867	 * us up (deallocate_dependencies) will have arranged to leave
2868	 * a complete copy of the indirect block in memory for our use.
2869	 * Otherwise we have to read the blocks in from the disk.
2870	 */
2871#ifdef notyet
2872	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
2873	    GB_NOCREAT);
2874#else
2875	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
2876#endif
2877	ACQUIRE_LOCK(&lk);
2878	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2879		if (wk->wk_type != D_INDIRDEP ||
2880		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2881		    (indirdep->ir_state & GOINGAWAY) == 0)
2882			panic("indir_trunc: lost indirdep");
2883		WORKLIST_REMOVE(wk);
2884		WORKITEM_FREE(indirdep, D_INDIRDEP);
2885		if (!LIST_EMPTY(&bp->b_dep))
2886			panic("indir_trunc: dangling dep");
2887		ump->um_numindirdeps -= 1;
2888		FREE_LOCK(&lk);
2889	} else {
2890#ifdef notyet
2891		if (bp)
2892			brelse(bp);
2893#endif
2894		FREE_LOCK(&lk);
2895		error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
2896		    NOCRED, &bp);
2897		if (error) {
2898			brelse(bp);
2899			return (error);
2900		}
2901	}
2902	/*
2903	 * Recursively free indirect blocks.
2904	 */
2905	if (ump->um_fstype == UFS1) {
2906		ufs1fmt = 1;
2907		bap1 = (ufs1_daddr_t *)bp->b_data;
2908	} else {
2909		ufs1fmt = 0;
2910		bap2 = (ufs2_daddr_t *)bp->b_data;
2911	}
2912	nblocks = btodb(fs->fs_bsize);
2913	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2914		if (ufs1fmt)
2915			nb = bap1[i];
2916		else
2917			nb = bap2[i];
2918		if (nb == 0)
2919			continue;
2920		if (level != 0) {
2921			if ((error = indir_trunc(freeblks, fsbtodb(fs, nb),
2922			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2923				allerror = error;
2924		}
2925		ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize,
2926		    freeblks->fb_previousinum);
2927		fs_pendingblocks += nblocks;
2928		*countp += nblocks;
2929	}
2930	UFS_LOCK(ump);
2931	fs->fs_pendingblocks -= fs_pendingblocks;
2932	UFS_UNLOCK(ump);
2933	bp->b_flags |= B_INVAL | B_NOCACHE;
2934	brelse(bp);
2935	return (allerror);
2936}
2937
2938/*
2939 * Free an allocindir.
2940 * This routine must be called with splbio interrupts blocked.
2941 */
2942static void
2943free_allocindir(aip, inodedep)
2944	struct allocindir *aip;
2945	struct inodedep *inodedep;
2946{
2947	struct freefrag *freefrag;
2948
2949	mtx_assert(&lk, MA_OWNED);
2950	if ((aip->ai_state & DEPCOMPLETE) == 0)
2951		LIST_REMOVE(aip, ai_deps);
2952	if (aip->ai_state & ONWORKLIST)
2953		WORKLIST_REMOVE(&aip->ai_list);
2954	LIST_REMOVE(aip, ai_next);
2955	if ((freefrag = aip->ai_freefrag) != NULL) {
2956		if (inodedep == NULL)
2957			add_to_worklist(&freefrag->ff_list);
2958		else
2959			WORKLIST_INSERT(&inodedep->id_bufwait,
2960			    &freefrag->ff_list);
2961	}
2962	WORKITEM_FREE(aip, D_ALLOCINDIR);
2963}
2964
2965/*
2966 * Directory entry addition dependencies.
2967 *
2968 * When adding a new directory entry, the inode (with its incremented link
2969 * count) must be written to disk before the directory entry's pointer to it.
2970 * Also, if the inode is newly allocated, the corresponding freemap must be
2971 * updated (on disk) before the directory entry's pointer. These requirements
2972 * are met via undo/redo on the directory entry's pointer, which consists
2973 * simply of the inode number.
2974 *
2975 * As directory entries are added and deleted, the free space within a
2976 * directory block can become fragmented.  The ufs filesystem will compact
2977 * a fragmented directory block to make space for a new entry. When this
2978 * occurs, the offsets of previously added entries change. Any "diradd"
2979 * dependency structures corresponding to these entries must be updated with
2980 * the new offsets.
2981 */
2982
2983/*
2984 * This routine is called after the in-memory inode's link
2985 * count has been incremented, but before the directory entry's
2986 * pointer to the inode has been set.
2987 */
2988int
2989softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
2990	struct buf *bp;		/* buffer containing directory block */
2991	struct inode *dp;	/* inode for directory */
2992	off_t diroffset;	/* offset of new entry in directory */
2993	ino_t newinum;		/* inode referenced by new directory entry */
2994	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2995	int isnewblk;		/* entry is in a newly allocated block */
2996{
2997	int offset;		/* offset of new entry within directory block */
2998	ufs_lbn_t lbn;		/* block in directory containing new entry */
2999	struct fs *fs;
3000	struct diradd *dap;
3001	struct allocdirect *adp;
3002	struct pagedep *pagedep;
3003	struct inodedep *inodedep;
3004	struct newdirblk *newdirblk = 0;
3005	struct mkdir *mkdir1, *mkdir2;
3006	struct mount *mp;
3007
3008	/*
3009	 * Whiteouts have no dependencies.
3010	 */
3011	if (newinum == WINO) {
3012		if (newdirbp != NULL)
3013			bdwrite(newdirbp);
3014		return (0);
3015	}
3016	mp = UFSTOVFS(dp->i_ump);
3017	fs = dp->i_fs;
3018	lbn = lblkno(fs, diroffset);
3019	offset = blkoff(fs, diroffset);
3020	dap = malloc(sizeof(struct diradd), M_DIRADD,
3021		M_SOFTDEP_FLAGS|M_ZERO);
3022	workitem_alloc(&dap->da_list, D_DIRADD, mp);
3023	dap->da_offset = offset;
3024	dap->da_newinum = newinum;
3025	dap->da_state = ATTACHED;
3026	if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
3027		newdirblk = malloc(sizeof(struct newdirblk),
3028		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
3029		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
3030	}
3031	if (newdirbp == NULL) {
3032		dap->da_state |= DEPCOMPLETE;
3033		ACQUIRE_LOCK(&lk);
3034	} else {
3035		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
3036		mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR,
3037		    M_SOFTDEP_FLAGS);
3038		workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
3039		mkdir1->md_state = MKDIR_BODY;
3040		mkdir1->md_diradd = dap;
3041		mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR,
3042		    M_SOFTDEP_FLAGS);
3043		workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
3044		mkdir2->md_state = MKDIR_PARENT;
3045		mkdir2->md_diradd = dap;
3046		/*
3047		 * Dependency on "." and ".." being written to disk.
3048		 */
3049		mkdir1->md_buf = newdirbp;
3050		ACQUIRE_LOCK(&lk);
3051		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
3052		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
3053		FREE_LOCK(&lk);
3054		bdwrite(newdirbp);
3055		/*
3056		 * Dependency on link count increase for parent directory
3057		 */
3058		ACQUIRE_LOCK(&lk);
3059		if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0
3060		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3061			dap->da_state &= ~MKDIR_PARENT;
3062			WORKITEM_FREE(mkdir2, D_MKDIR);
3063		} else {
3064			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
3065			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
3066		}
3067	}
3068	/*
3069	 * Link into parent directory pagedep to await its being written.
3070	 */
3071	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3072		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3073	dap->da_pagedep = pagedep;
3074	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
3075	    da_pdlist);
3076	/*
3077	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3078	 * is not yet written. If it is written, do the post-inode write
3079	 * processing to put it on the id_pendinghd list.
3080	 */
3081	(void) inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
3082	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
3083		diradd_inode_written(dap, inodedep);
3084	else
3085		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3086	if (isnewblk) {
3087		/*
3088		 * Directories growing into indirect blocks are rare
3089		 * enough and the frequency of new block allocation
3090		 * in those cases even more rare, that we choose not
3091		 * to bother tracking them. Rather we simply force the
3092		 * new directory entry to disk.
3093		 */
3094		if (lbn >= NDADDR) {
3095			FREE_LOCK(&lk);
3096			/*
3097			 * We only have a new allocation when at the
3098			 * beginning of a new block, not when we are
3099			 * expanding into an existing block.
3100			 */
3101			if (blkoff(fs, diroffset) == 0)
3102				return (1);
3103			return (0);
3104		}
3105		/*
3106		 * We only have a new allocation when at the beginning
3107		 * of a new fragment, not when we are expanding into an
3108		 * existing fragment. Also, there is nothing to do if we
3109		 * are already tracking this block.
3110		 */
3111		if (fragoff(fs, diroffset) != 0) {
3112			FREE_LOCK(&lk);
3113			return (0);
3114		}
3115		if ((pagedep->pd_state & NEWBLOCK) != 0) {
3116			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
3117			FREE_LOCK(&lk);
3118			return (0);
3119		}
3120		/*
3121		 * Find our associated allocdirect and have it track us.
3122		 */
3123		if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0)
3124			panic("softdep_setup_directory_add: lost inodedep");
3125		adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
3126		if (adp == NULL || adp->ad_lbn != lbn)
3127			panic("softdep_setup_directory_add: lost entry");
3128		pagedep->pd_state |= NEWBLOCK;
3129		newdirblk->db_pagedep = pagedep;
3130		WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
3131	}
3132	FREE_LOCK(&lk);
3133	return (0);
3134}
3135
3136/*
3137 * This procedure is called to change the offset of a directory
3138 * entry when compacting a directory block which must be owned
3139 * exclusively by the caller. Note that the actual entry movement
3140 * must be done in this procedure to ensure that no I/O completions
3141 * occur while the move is in progress.
3142 */
3143void
3144softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
3145	struct inode *dp;	/* inode for directory */
3146	caddr_t base;		/* address of dp->i_offset */
3147	caddr_t oldloc;		/* address of old directory location */
3148	caddr_t newloc;		/* address of new directory location */
3149	int entrysize;		/* size of directory entry */
3150{
3151	int offset, oldoffset, newoffset;
3152	struct pagedep *pagedep;
3153	struct diradd *dap;
3154	ufs_lbn_t lbn;
3155
3156	ACQUIRE_LOCK(&lk);
3157	lbn = lblkno(dp->i_fs, dp->i_offset);
3158	offset = blkoff(dp->i_fs, dp->i_offset);
3159	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
3160		goto done;
3161	oldoffset = offset + (oldloc - base);
3162	newoffset = offset + (newloc - base);
3163
3164	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
3165		if (dap->da_offset != oldoffset)
3166			continue;
3167		dap->da_offset = newoffset;
3168		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
3169			break;
3170		LIST_REMOVE(dap, da_pdlist);
3171		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
3172		    dap, da_pdlist);
3173		break;
3174	}
3175	if (dap == NULL) {
3176
3177		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
3178			if (dap->da_offset == oldoffset) {
3179				dap->da_offset = newoffset;
3180				break;
3181			}
3182		}
3183	}
3184done:
3185	bcopy(oldloc, newloc, entrysize);
3186	FREE_LOCK(&lk);
3187}
3188
3189/*
3190 * Free a diradd dependency structure. This routine must be called
3191 * with splbio interrupts blocked.
3192 */
3193static void
3194free_diradd(dap)
3195	struct diradd *dap;
3196{
3197	struct dirrem *dirrem;
3198	struct pagedep *pagedep;
3199	struct inodedep *inodedep;
3200	struct mkdir *mkdir, *nextmd;
3201
3202	mtx_assert(&lk, MA_OWNED);
3203	WORKLIST_REMOVE(&dap->da_list);
3204	LIST_REMOVE(dap, da_pdlist);
3205	if ((dap->da_state & DIRCHG) == 0) {
3206		pagedep = dap->da_pagedep;
3207	} else {
3208		dirrem = dap->da_previous;
3209		pagedep = dirrem->dm_pagedep;
3210		dirrem->dm_dirinum = pagedep->pd_ino;
3211		add_to_worklist(&dirrem->dm_list);
3212	}
3213	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
3214	    0, &inodedep) != 0)
3215		(void) free_inodedep(inodedep);
3216	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
3217		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
3218			nextmd = LIST_NEXT(mkdir, md_mkdirs);
3219			if (mkdir->md_diradd != dap)
3220				continue;
3221			dap->da_state &= ~mkdir->md_state;
3222			WORKLIST_REMOVE(&mkdir->md_list);
3223			LIST_REMOVE(mkdir, md_mkdirs);
3224			WORKITEM_FREE(mkdir, D_MKDIR);
3225		}
3226		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
3227			panic("free_diradd: unfound ref");
3228	}
3229	WORKITEM_FREE(dap, D_DIRADD);
3230}
3231
3232/*
3233 * Directory entry removal dependencies.
3234 *
3235 * When removing a directory entry, the entry's inode pointer must be
3236 * zero'ed on disk before the corresponding inode's link count is decremented
3237 * (possibly freeing the inode for re-use). This dependency is handled by
3238 * updating the directory entry but delaying the inode count reduction until
3239 * after the directory block has been written to disk. After this point, the
3240 * inode count can be decremented whenever it is convenient.
3241 */
3242
3243/*
3244 * This routine should be called immediately after removing
3245 * a directory entry.  The inode's link count should not be
3246 * decremented by the calling procedure -- the soft updates
3247 * code will do this task when it is safe.
3248 */
3249void
3250softdep_setup_remove(bp, dp, ip, isrmdir)
3251	struct buf *bp;		/* buffer containing directory block */
3252	struct inode *dp;	/* inode for the directory being modified */
3253	struct inode *ip;	/* inode for directory entry being removed */
3254	int isrmdir;		/* indicates if doing RMDIR */
3255{
3256	struct dirrem *dirrem, *prevdirrem;
3257
3258	/*
3259	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
3260	 */
3261	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3262
3263	/*
3264	 * If the COMPLETE flag is clear, then there were no active
3265	 * entries and we want to roll back to a zeroed entry until
3266	 * the new inode is committed to disk. If the COMPLETE flag is
3267	 * set then we have deleted an entry that never made it to
3268	 * disk. If the entry we deleted resulted from a name change,
3269	 * then the old name still resides on disk. We cannot delete
3270	 * its inode (returned to us in prevdirrem) until the zeroed
3271	 * directory entry gets to disk. The new inode has never been
3272	 * referenced on the disk, so can be deleted immediately.
3273	 */
3274	if ((dirrem->dm_state & COMPLETE) == 0) {
3275		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
3276		    dm_next);
3277		FREE_LOCK(&lk);
3278	} else {
3279		if (prevdirrem != NULL)
3280			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
3281			    prevdirrem, dm_next);
3282		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
3283		FREE_LOCK(&lk);
3284		handle_workitem_remove(dirrem, NULL);
3285	}
3286}
3287
3288/*
3289 * Allocate a new dirrem if appropriate and return it along with
3290 * its associated pagedep. Called without a lock, returns with lock.
3291 */
3292static long num_dirrem;		/* number of dirrem allocated */
3293static struct dirrem *
3294newdirrem(bp, dp, ip, isrmdir, prevdirremp)
3295	struct buf *bp;		/* buffer containing directory block */
3296	struct inode *dp;	/* inode for the directory being modified */
3297	struct inode *ip;	/* inode for directory entry being removed */
3298	int isrmdir;		/* indicates if doing RMDIR */
3299	struct dirrem **prevdirremp; /* previously referenced inode, if any */
3300{
3301	int offset;
3302	ufs_lbn_t lbn;
3303	struct diradd *dap;
3304	struct dirrem *dirrem;
3305	struct pagedep *pagedep;
3306
3307	/*
3308	 * Whiteouts have no deletion dependencies.
3309	 */
3310	if (ip == NULL)
3311		panic("newdirrem: whiteout");
3312	/*
3313	 * If we are over our limit, try to improve the situation.
3314	 * Limiting the number of dirrem structures will also limit
3315	 * the number of freefile and freeblks structures.
3316	 */
3317	ACQUIRE_LOCK(&lk);
3318	if (!(ip->i_flags & SF_SNAPSHOT) && num_dirrem > max_softdeps / 2)
3319		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE);
3320	num_dirrem += 1;
3321	FREE_LOCK(&lk);
3322	dirrem = malloc(sizeof(struct dirrem),
3323		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
3324	workitem_alloc(&dirrem->dm_list, D_DIRREM, ITOV(dp)->v_mount);
3325	dirrem->dm_state = isrmdir ? RMDIR : 0;
3326	dirrem->dm_oldinum = ip->i_number;
3327	*prevdirremp = NULL;
3328
3329	ACQUIRE_LOCK(&lk);
3330	lbn = lblkno(dp->i_fs, dp->i_offset);
3331	offset = blkoff(dp->i_fs, dp->i_offset);
3332	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3333		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3334	dirrem->dm_pagedep = pagedep;
3335	/*
3336	 * Check for a diradd dependency for the same directory entry.
3337	 * If present, then both dependencies become obsolete and can
3338	 * be de-allocated. Check for an entry on both the pd_dirraddhd
3339	 * list and the pd_pendinghd list.
3340	 */
3341
3342	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
3343		if (dap->da_offset == offset)
3344			break;
3345	if (dap == NULL) {
3346
3347		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
3348			if (dap->da_offset == offset)
3349				break;
3350		if (dap == NULL)
3351			return (dirrem);
3352	}
3353	/*
3354	 * Must be ATTACHED at this point.
3355	 */
3356	if ((dap->da_state & ATTACHED) == 0)
3357		panic("newdirrem: not ATTACHED");
3358	if (dap->da_newinum != ip->i_number)
3359		panic("newdirrem: inum %d should be %d",
3360		    ip->i_number, dap->da_newinum);
3361	/*
3362	 * If we are deleting a changed name that never made it to disk,
3363	 * then return the dirrem describing the previous inode (which
3364	 * represents the inode currently referenced from this entry on disk).
3365	 */
3366	if ((dap->da_state & DIRCHG) != 0) {
3367		*prevdirremp = dap->da_previous;
3368		dap->da_state &= ~DIRCHG;
3369		dap->da_pagedep = pagedep;
3370	}
3371	/*
3372	 * We are deleting an entry that never made it to disk.
3373	 * Mark it COMPLETE so we can delete its inode immediately.
3374	 */
3375	dirrem->dm_state |= COMPLETE;
3376	free_diradd(dap);
3377	return (dirrem);
3378}
3379
3380/*
3381 * Directory entry change dependencies.
3382 *
3383 * Changing an existing directory entry requires that an add operation
3384 * be completed first followed by a deletion. The semantics for the addition
3385 * are identical to the description of adding a new entry above except
3386 * that the rollback is to the old inode number rather than zero. Once
3387 * the addition dependency is completed, the removal is done as described
3388 * in the removal routine above.
3389 */
3390
3391/*
3392 * This routine should be called immediately after changing
3393 * a directory entry.  The inode's link count should not be
3394 * decremented by the calling procedure -- the soft updates
3395 * code will perform this task when it is safe.
3396 */
3397void
3398softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
3399	struct buf *bp;		/* buffer containing directory block */
3400	struct inode *dp;	/* inode for the directory being modified */
3401	struct inode *ip;	/* inode for directory entry being removed */
3402	ino_t newinum;		/* new inode number for changed entry */
3403	int isrmdir;		/* indicates if doing RMDIR */
3404{
3405	int offset;
3406	struct diradd *dap = NULL;
3407	struct dirrem *dirrem, *prevdirrem;
3408	struct pagedep *pagedep;
3409	struct inodedep *inodedep;
3410	struct mount *mp;
3411
3412	offset = blkoff(dp->i_fs, dp->i_offset);
3413	mp = UFSTOVFS(dp->i_ump);
3414
3415	/*
3416	 * Whiteouts do not need diradd dependencies.
3417	 */
3418	if (newinum != WINO) {
3419		dap = malloc(sizeof(struct diradd),
3420		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
3421		workitem_alloc(&dap->da_list, D_DIRADD, mp);
3422		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
3423		dap->da_offset = offset;
3424		dap->da_newinum = newinum;
3425	}
3426
3427	/*
3428	 * Allocate a new dirrem and ACQUIRE_LOCK.
3429	 */
3430	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3431	pagedep = dirrem->dm_pagedep;
3432	/*
3433	 * The possible values for isrmdir:
3434	 *	0 - non-directory file rename
3435	 *	1 - directory rename within same directory
3436	 *   inum - directory rename to new directory of given inode number
3437	 * When renaming to a new directory, we are both deleting and
3438	 * creating a new directory entry, so the link count on the new
3439	 * directory should not change. Thus we do not need the followup
3440	 * dirrem which is usually done in handle_workitem_remove. We set
3441	 * the DIRCHG flag to tell handle_workitem_remove to skip the
3442	 * followup dirrem.
3443	 */
3444	if (isrmdir > 1)
3445		dirrem->dm_state |= DIRCHG;
3446
3447	/*
3448	 * Whiteouts have no additional dependencies,
3449	 * so just put the dirrem on the correct list.
3450	 */
3451	if (newinum == WINO) {
3452		if ((dirrem->dm_state & COMPLETE) == 0) {
3453			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
3454			    dm_next);
3455		} else {
3456			dirrem->dm_dirinum = pagedep->pd_ino;
3457			add_to_worklist(&dirrem->dm_list);
3458		}
3459		FREE_LOCK(&lk);
3460		return;
3461	}
3462
3463	/*
3464	 * If the COMPLETE flag is clear, then there were no active
3465	 * entries and we want to roll back to the previous inode until
3466	 * the new inode is committed to disk. If the COMPLETE flag is
3467	 * set, then we have deleted an entry that never made it to disk.
3468	 * If the entry we deleted resulted from a name change, then the old
3469	 * inode reference still resides on disk. Any rollback that we do
3470	 * needs to be to that old inode (returned to us in prevdirrem). If
3471	 * the entry we deleted resulted from a create, then there is
3472	 * no entry on the disk, so we want to roll back to zero rather
3473	 * than the uncommitted inode. In either of the COMPLETE cases we
3474	 * want to immediately free the unwritten and unreferenced inode.
3475	 */
3476	if ((dirrem->dm_state & COMPLETE) == 0) {
3477		dap->da_previous = dirrem;
3478	} else {
3479		if (prevdirrem != NULL) {
3480			dap->da_previous = prevdirrem;
3481		} else {
3482			dap->da_state &= ~DIRCHG;
3483			dap->da_pagedep = pagedep;
3484		}
3485		dirrem->dm_dirinum = pagedep->pd_ino;
3486		add_to_worklist(&dirrem->dm_list);
3487	}
3488	/*
3489	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3490	 * is not yet written. If it is written, do the post-inode write
3491	 * processing to put it on the id_pendinghd list.
3492	 */
3493	if (inodedep_lookup(mp, newinum, DEPALLOC, &inodedep) == 0 ||
3494	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3495		dap->da_state |= COMPLETE;
3496		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3497		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3498	} else {
3499		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
3500		    dap, da_pdlist);
3501		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3502	}
3503	FREE_LOCK(&lk);
3504}
3505
3506/*
3507 * Called whenever the link count on an inode is changed.
3508 * It creates an inode dependency so that the new reference(s)
3509 * to the inode cannot be committed to disk until the updated
3510 * inode has been written.
3511 */
3512void
3513softdep_change_linkcnt(ip)
3514	struct inode *ip;	/* the inode with the increased link count */
3515{
3516	struct inodedep *inodedep;
3517
3518	ACQUIRE_LOCK(&lk);
3519	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
3520	    DEPALLOC, &inodedep);
3521	if (ip->i_nlink < ip->i_effnlink)
3522		panic("softdep_change_linkcnt: bad delta");
3523	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3524	FREE_LOCK(&lk);
3525}
3526
3527/*
3528 * Called when the effective link count and the reference count
3529 * on an inode drops to zero. At this point there are no names
3530 * referencing the file in the filesystem and no active file
3531 * references. The space associated with the file will be freed
3532 * as soon as the necessary soft dependencies are cleared.
3533 */
3534void
3535softdep_releasefile(ip)
3536	struct inode *ip;	/* inode with the zero effective link count */
3537{
3538	struct inodedep *inodedep;
3539	struct fs *fs;
3540	int extblocks;
3541
3542	if (ip->i_effnlink > 0)
3543		panic("softdep_releasefile: file still referenced");
3544	/*
3545	 * We may be called several times as the on-disk link count
3546	 * drops to zero. We only want to account for the space once.
3547	 */
3548	if (ip->i_flag & IN_SPACECOUNTED)
3549		return;
3550	/*
3551	 * We have to deactivate a snapshot otherwise copyonwrites may
3552	 * add blocks and the cleanup may remove blocks after we have
3553	 * tried to account for them.
3554	 */
3555	if ((ip->i_flags & SF_SNAPSHOT) != 0)
3556		ffs_snapremove(ITOV(ip));
3557	/*
3558	 * If we are tracking an nlinkdelta, we have to also remember
3559	 * whether we accounted for the freed space yet.
3560	 */
3561	ACQUIRE_LOCK(&lk);
3562	if ((inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, &inodedep)))
3563		inodedep->id_state |= SPACECOUNTED;
3564	FREE_LOCK(&lk);
3565	fs = ip->i_fs;
3566	extblocks = 0;
3567	if (fs->fs_magic == FS_UFS2_MAGIC)
3568		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
3569	UFS_LOCK(ip->i_ump);
3570	ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks;
3571	ip->i_fs->fs_pendinginodes += 1;
3572	UFS_UNLOCK(ip->i_ump);
3573	ip->i_flag |= IN_SPACECOUNTED;
3574}
3575
3576/*
3577 * This workitem decrements the inode's link count.
3578 * If the link count reaches zero, the file is removed.
3579 */
3580static void
3581handle_workitem_remove(dirrem, xp)
3582	struct dirrem *dirrem;
3583	struct vnode *xp;
3584{
3585	struct thread *td = curthread;
3586	struct inodedep *inodedep;
3587	struct vnode *vp;
3588	struct inode *ip;
3589	ino_t oldinum;
3590	int error;
3591
3592	if ((vp = xp) == NULL &&
3593	    (error = ffs_vgetf(dirrem->dm_list.wk_mp,
3594		    dirrem->dm_oldinum, LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ)) != 0) {
3595		softdep_error("handle_workitem_remove: vget", error);
3596		return;
3597	}
3598	ip = VTOI(vp);
3599	ACQUIRE_LOCK(&lk);
3600	if ((inodedep_lookup(dirrem->dm_list.wk_mp,
3601	    dirrem->dm_oldinum, 0, &inodedep)) == 0)
3602		panic("handle_workitem_remove: lost inodedep");
3603	/*
3604	 * Normal file deletion.
3605	 */
3606	if ((dirrem->dm_state & RMDIR) == 0) {
3607		ip->i_nlink--;
3608		DIP_SET(ip, i_nlink, ip->i_nlink);
3609		ip->i_flag |= IN_CHANGE;
3610		if (ip->i_nlink < ip->i_effnlink)
3611			panic("handle_workitem_remove: bad file delta");
3612		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3613		num_dirrem -= 1;
3614		WORKITEM_FREE(dirrem, D_DIRREM);
3615		FREE_LOCK(&lk);
3616		vput(vp);
3617		return;
3618	}
3619	/*
3620	 * Directory deletion. Decrement reference count for both the
3621	 * just deleted parent directory entry and the reference for ".".
3622	 * Next truncate the directory to length zero. When the
3623	 * truncation completes, arrange to have the reference count on
3624	 * the parent decremented to account for the loss of "..".
3625	 */
3626	ip->i_nlink -= 2;
3627	DIP_SET(ip, i_nlink, ip->i_nlink);
3628	ip->i_flag |= IN_CHANGE;
3629	if (ip->i_nlink < ip->i_effnlink)
3630		panic("handle_workitem_remove: bad dir delta");
3631	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3632	FREE_LOCK(&lk);
3633	if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0)
3634		softdep_error("handle_workitem_remove: truncate", error);
3635	ACQUIRE_LOCK(&lk);
3636	/*
3637	 * Rename a directory to a new parent. Since, we are both deleting
3638	 * and creating a new directory entry, the link count on the new
3639	 * directory should not change. Thus we skip the followup dirrem.
3640	 */
3641	if (dirrem->dm_state & DIRCHG) {
3642		num_dirrem -= 1;
3643		WORKITEM_FREE(dirrem, D_DIRREM);
3644		FREE_LOCK(&lk);
3645		vput(vp);
3646		return;
3647	}
3648	/*
3649	 * If the inodedep does not exist, then the zero'ed inode has
3650	 * been written to disk. If the allocated inode has never been
3651	 * written to disk, then the on-disk inode is zero'ed. In either
3652	 * case we can remove the file immediately.
3653	 */
3654	dirrem->dm_state = 0;
3655	oldinum = dirrem->dm_oldinum;
3656	dirrem->dm_oldinum = dirrem->dm_dirinum;
3657	if (inodedep_lookup(dirrem->dm_list.wk_mp, oldinum,
3658	    0, &inodedep) == 0 || check_inode_unwritten(inodedep)) {
3659		if (xp != NULL)
3660			add_to_worklist(&dirrem->dm_list);
3661		FREE_LOCK(&lk);
3662		vput(vp);
3663		if (xp == NULL)
3664			handle_workitem_remove(dirrem, NULL);
3665		return;
3666	}
3667	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3668	FREE_LOCK(&lk);
3669	ip->i_flag |= IN_CHANGE;
3670	ffs_update(vp, 0);
3671	vput(vp);
3672}
3673
3674/*
3675 * Inode de-allocation dependencies.
3676 *
3677 * When an inode's link count is reduced to zero, it can be de-allocated. We
3678 * found it convenient to postpone de-allocation until after the inode is
3679 * written to disk with its new link count (zero).  At this point, all of the
3680 * on-disk inode's block pointers are nullified and, with careful dependency
3681 * list ordering, all dependencies related to the inode will be satisfied and
3682 * the corresponding dependency structures de-allocated.  So, if/when the
3683 * inode is reused, there will be no mixing of old dependencies with new
3684 * ones.  This artificial dependency is set up by the block de-allocation
3685 * procedure above (softdep_setup_freeblocks) and completed by the
3686 * following procedure.
3687 */
3688static void
3689handle_workitem_freefile(freefile)
3690	struct freefile *freefile;
3691{
3692	struct fs *fs;
3693	struct inodedep *idp;
3694	struct ufsmount *ump;
3695	int error;
3696
3697	ump = VFSTOUFS(freefile->fx_list.wk_mp);
3698	fs = ump->um_fs;
3699#ifdef DEBUG
3700	ACQUIRE_LOCK(&lk);
3701	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
3702	FREE_LOCK(&lk);
3703	if (error)
3704		panic("handle_workitem_freefile: inodedep survived");
3705#endif
3706	UFS_LOCK(ump);
3707	fs->fs_pendinginodes -= 1;
3708	UFS_UNLOCK(ump);
3709	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
3710	    freefile->fx_oldinum, freefile->fx_mode)) != 0)
3711		softdep_error("handle_workitem_freefile", error);
3712	ACQUIRE_LOCK(&lk);
3713	WORKITEM_FREE(freefile, D_FREEFILE);
3714	FREE_LOCK(&lk);
3715}
3716
3717
3718/*
3719 * Helper function which unlinks marker element from work list and returns
3720 * the next element on the list.
3721 */
3722static __inline struct worklist *
3723markernext(struct worklist *marker)
3724{
3725	struct worklist *next;
3726
3727	next = LIST_NEXT(marker, wk_list);
3728	LIST_REMOVE(marker, wk_list);
3729	return next;
3730}
3731
3732/*
3733 * Disk writes.
3734 *
3735 * The dependency structures constructed above are most actively used when file
3736 * system blocks are written to disk.  No constraints are placed on when a
3737 * block can be written, but unsatisfied update dependencies are made safe by
3738 * modifying (or replacing) the source memory for the duration of the disk
3739 * write.  When the disk write completes, the memory block is again brought
3740 * up-to-date.
3741 *
3742 * In-core inode structure reclamation.
3743 *
3744 * Because there are a finite number of "in-core" inode structures, they are
3745 * reused regularly.  By transferring all inode-related dependencies to the
3746 * in-memory inode block and indexing them separately (via "inodedep"s), we
3747 * can allow "in-core" inode structures to be reused at any time and avoid
3748 * any increase in contention.
3749 *
3750 * Called just before entering the device driver to initiate a new disk I/O.
3751 * The buffer must be locked, thus, no I/O completion operations can occur
3752 * while we are manipulating its associated dependencies.
3753 */
3754static void
3755softdep_disk_io_initiation(bp)
3756	struct buf *bp;		/* structure describing disk write to occur */
3757{
3758	struct worklist *wk;
3759	struct worklist marker;
3760	struct indirdep *indirdep;
3761	struct inodedep *inodedep;
3762
3763	/*
3764	 * We only care about write operations. There should never
3765	 * be dependencies for reads.
3766	 */
3767	if (bp->b_iocmd != BIO_WRITE)
3768		panic("softdep_disk_io_initiation: not write");
3769
3770	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3771	PHOLD(curproc);			/* Don't swap out kernel stack */
3772
3773	ACQUIRE_LOCK(&lk);
3774	/*
3775	 * Do any necessary pre-I/O processing.
3776	 */
3777	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
3778	     wk = markernext(&marker)) {
3779		LIST_INSERT_AFTER(wk, &marker, wk_list);
3780		switch (wk->wk_type) {
3781
3782		case D_PAGEDEP:
3783			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3784			continue;
3785
3786		case D_INODEDEP:
3787			inodedep = WK_INODEDEP(wk);
3788			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
3789				initiate_write_inodeblock_ufs1(inodedep, bp);
3790			else
3791				initiate_write_inodeblock_ufs2(inodedep, bp);
3792			continue;
3793
3794		case D_INDIRDEP:
3795			indirdep = WK_INDIRDEP(wk);
3796			if (indirdep->ir_state & GOINGAWAY)
3797				panic("disk_io_initiation: indirdep gone");
3798			/*
3799			 * If there are no remaining dependencies, this
3800			 * will be writing the real pointers, so the
3801			 * dependency can be freed.
3802			 */
3803			if (LIST_EMPTY(&indirdep->ir_deplisthd)) {
3804				struct buf *bp;
3805
3806				bp = indirdep->ir_savebp;
3807				bp->b_flags |= B_INVAL | B_NOCACHE;
3808				/* inline expand WORKLIST_REMOVE(wk); */
3809				wk->wk_state &= ~ONWORKLIST;
3810				LIST_REMOVE(wk, wk_list);
3811				WORKITEM_FREE(indirdep, D_INDIRDEP);
3812				FREE_LOCK(&lk);
3813				brelse(bp);
3814				ACQUIRE_LOCK(&lk);
3815				continue;
3816			}
3817			/*
3818			 * Replace up-to-date version with safe version.
3819			 */
3820			FREE_LOCK(&lk);
3821			indirdep->ir_saveddata = malloc(bp->b_bcount,
3822			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3823			ACQUIRE_LOCK(&lk);
3824			indirdep->ir_state &= ~ATTACHED;
3825			indirdep->ir_state |= UNDONE;
3826			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3827			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3828			    bp->b_bcount);
3829			continue;
3830
3831		case D_MKDIR:
3832		case D_BMSAFEMAP:
3833		case D_ALLOCDIRECT:
3834		case D_ALLOCINDIR:
3835			continue;
3836
3837		default:
3838			panic("handle_disk_io_initiation: Unexpected type %s",
3839			    TYPENAME(wk->wk_type));
3840			/* NOTREACHED */
3841		}
3842	}
3843	FREE_LOCK(&lk);
3844	PRELE(curproc);			/* Allow swapout of kernel stack */
3845}
3846
3847/*
3848 * Called from within the procedure above to deal with unsatisfied
3849 * allocation dependencies in a directory. The buffer must be locked,
3850 * thus, no I/O completion operations can occur while we are
3851 * manipulating its associated dependencies.
3852 */
3853static void
3854initiate_write_filepage(pagedep, bp)
3855	struct pagedep *pagedep;
3856	struct buf *bp;
3857{
3858	struct diradd *dap;
3859	struct direct *ep;
3860	int i;
3861
3862	if (pagedep->pd_state & IOSTARTED) {
3863		/*
3864		 * This can only happen if there is a driver that does not
3865		 * understand chaining. Here biodone will reissue the call
3866		 * to strategy for the incomplete buffers.
3867		 */
3868		printf("initiate_write_filepage: already started\n");
3869		return;
3870	}
3871	pagedep->pd_state |= IOSTARTED;
3872	for (i = 0; i < DAHASHSZ; i++) {
3873		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3874			ep = (struct direct *)
3875			    ((char *)bp->b_data + dap->da_offset);
3876			if (ep->d_ino != dap->da_newinum)
3877				panic("%s: dir inum %d != new %d",
3878				    "initiate_write_filepage",
3879				    ep->d_ino, dap->da_newinum);
3880			if (dap->da_state & DIRCHG)
3881				ep->d_ino = dap->da_previous->dm_oldinum;
3882			else
3883				ep->d_ino = 0;
3884			dap->da_state &= ~ATTACHED;
3885			dap->da_state |= UNDONE;
3886		}
3887	}
3888}
3889
3890/*
3891 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
3892 * Note that any bug fixes made to this routine must be done in the
3893 * version found below.
3894 *
3895 * Called from within the procedure above to deal with unsatisfied
3896 * allocation dependencies in an inodeblock. The buffer must be
3897 * locked, thus, no I/O completion operations can occur while we
3898 * are manipulating its associated dependencies.
3899 */
3900static void
3901initiate_write_inodeblock_ufs1(inodedep, bp)
3902	struct inodedep *inodedep;
3903	struct buf *bp;			/* The inode block */
3904{
3905	struct allocdirect *adp, *lastadp;
3906	struct ufs1_dinode *dp;
3907	struct ufs1_dinode *sip;
3908	struct fs *fs;
3909	ufs_lbn_t i;
3910#ifdef INVARIANTS
3911	ufs_lbn_t prevlbn = 0;
3912#endif
3913	int deplist;
3914
3915	if (inodedep->id_state & IOSTARTED)
3916		panic("initiate_write_inodeblock_ufs1: already started");
3917	inodedep->id_state |= IOSTARTED;
3918	fs = inodedep->id_fs;
3919	dp = (struct ufs1_dinode *)bp->b_data +
3920	    ino_to_fsbo(fs, inodedep->id_ino);
3921	/*
3922	 * If the bitmap is not yet written, then the allocated
3923	 * inode cannot be written to disk.
3924	 */
3925	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3926		if (inodedep->id_savedino1 != NULL)
3927			panic("initiate_write_inodeblock_ufs1: I/O underway");
3928		FREE_LOCK(&lk);
3929		sip = malloc(sizeof(struct ufs1_dinode),
3930		    M_SAVEDINO, M_SOFTDEP_FLAGS);
3931		ACQUIRE_LOCK(&lk);
3932		inodedep->id_savedino1 = sip;
3933		*inodedep->id_savedino1 = *dp;
3934		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3935		dp->di_gen = inodedep->id_savedino1->di_gen;
3936		return;
3937	}
3938	/*
3939	 * If no dependencies, then there is nothing to roll back.
3940	 */
3941	inodedep->id_savedsize = dp->di_size;
3942	inodedep->id_savedextsize = 0;
3943	if (TAILQ_EMPTY(&inodedep->id_inoupdt))
3944		return;
3945	/*
3946	 * Set the dependencies to busy.
3947	 */
3948	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3949	     adp = TAILQ_NEXT(adp, ad_next)) {
3950#ifdef INVARIANTS
3951		if (deplist != 0 && prevlbn >= adp->ad_lbn)
3952			panic("softdep_write_inodeblock: lbn order");
3953		prevlbn = adp->ad_lbn;
3954		if (adp->ad_lbn < NDADDR &&
3955		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
3956			panic("%s: direct pointer #%jd mismatch %d != %jd",
3957			    "softdep_write_inodeblock",
3958			    (intmax_t)adp->ad_lbn,
3959			    dp->di_db[adp->ad_lbn],
3960			    (intmax_t)adp->ad_newblkno);
3961		if (adp->ad_lbn >= NDADDR &&
3962		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
3963			panic("%s: indirect pointer #%jd mismatch %d != %jd",
3964			    "softdep_write_inodeblock",
3965			    (intmax_t)adp->ad_lbn - NDADDR,
3966			    dp->di_ib[adp->ad_lbn - NDADDR],
3967			    (intmax_t)adp->ad_newblkno);
3968		deplist |= 1 << adp->ad_lbn;
3969		if ((adp->ad_state & ATTACHED) == 0)
3970			panic("softdep_write_inodeblock: Unknown state 0x%x",
3971			    adp->ad_state);
3972#endif /* INVARIANTS */
3973		adp->ad_state &= ~ATTACHED;
3974		adp->ad_state |= UNDONE;
3975	}
3976	/*
3977	 * The on-disk inode cannot claim to be any larger than the last
3978	 * fragment that has been written. Otherwise, the on-disk inode
3979	 * might have fragments that were not the last block in the file
3980	 * which would corrupt the filesystem.
3981	 */
3982	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3983	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3984		if (adp->ad_lbn >= NDADDR)
3985			break;
3986		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3987		/* keep going until hitting a rollback to a frag */
3988		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3989			continue;
3990		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3991		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3992#ifdef INVARIANTS
3993			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
3994				panic("softdep_write_inodeblock: lost dep1");
3995#endif /* INVARIANTS */
3996			dp->di_db[i] = 0;
3997		}
3998		for (i = 0; i < NIADDR; i++) {
3999#ifdef INVARIANTS
4000			if (dp->di_ib[i] != 0 &&
4001			    (deplist & ((1 << NDADDR) << i)) == 0)
4002				panic("softdep_write_inodeblock: lost dep2");
4003#endif /* INVARIANTS */
4004			dp->di_ib[i] = 0;
4005		}
4006		return;
4007	}
4008	/*
4009	 * If we have zero'ed out the last allocated block of the file,
4010	 * roll back the size to the last currently allocated block.
4011	 * We know that this last allocated block is a full-sized as
4012	 * we already checked for fragments in the loop above.
4013	 */
4014	if (lastadp != NULL &&
4015	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
4016		for (i = lastadp->ad_lbn; i >= 0; i--)
4017			if (dp->di_db[i] != 0)
4018				break;
4019		dp->di_size = (i + 1) * fs->fs_bsize;
4020	}
4021	/*
4022	 * The only dependencies are for indirect blocks.
4023	 *
4024	 * The file size for indirect block additions is not guaranteed.
4025	 * Such a guarantee would be non-trivial to achieve. The conventional
4026	 * synchronous write implementation also does not make this guarantee.
4027	 * Fsck should catch and fix discrepancies. Arguably, the file size
4028	 * can be over-estimated without destroying integrity when the file
4029	 * moves into the indirect blocks (i.e., is large). If we want to
4030	 * postpone fsck, we are stuck with this argument.
4031	 */
4032	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
4033		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
4034}
4035
4036/*
4037 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
4038 * Note that any bug fixes made to this routine must be done in the
4039 * version found above.
4040 *
4041 * Called from within the procedure above to deal with unsatisfied
4042 * allocation dependencies in an inodeblock. The buffer must be
4043 * locked, thus, no I/O completion operations can occur while we
4044 * are manipulating its associated dependencies.
4045 */
4046static void
4047initiate_write_inodeblock_ufs2(inodedep, bp)
4048	struct inodedep *inodedep;
4049	struct buf *bp;			/* The inode block */
4050{
4051	struct allocdirect *adp, *lastadp;
4052	struct ufs2_dinode *dp;
4053	struct ufs2_dinode *sip;
4054	struct fs *fs;
4055	ufs_lbn_t i;
4056#ifdef INVARIANTS
4057	ufs_lbn_t prevlbn = 0;
4058#endif
4059	int deplist;
4060
4061	if (inodedep->id_state & IOSTARTED)
4062		panic("initiate_write_inodeblock_ufs2: already started");
4063	inodedep->id_state |= IOSTARTED;
4064	fs = inodedep->id_fs;
4065	dp = (struct ufs2_dinode *)bp->b_data +
4066	    ino_to_fsbo(fs, inodedep->id_ino);
4067	/*
4068	 * If the bitmap is not yet written, then the allocated
4069	 * inode cannot be written to disk.
4070	 */
4071	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4072		if (inodedep->id_savedino2 != NULL)
4073			panic("initiate_write_inodeblock_ufs2: I/O underway");
4074		FREE_LOCK(&lk);
4075		sip = malloc(sizeof(struct ufs2_dinode),
4076		    M_SAVEDINO, M_SOFTDEP_FLAGS);
4077		ACQUIRE_LOCK(&lk);
4078		inodedep->id_savedino2 = sip;
4079		*inodedep->id_savedino2 = *dp;
4080		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
4081		dp->di_gen = inodedep->id_savedino2->di_gen;
4082		return;
4083	}
4084	/*
4085	 * If no dependencies, then there is nothing to roll back.
4086	 */
4087	inodedep->id_savedsize = dp->di_size;
4088	inodedep->id_savedextsize = dp->di_extsize;
4089	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
4090	    TAILQ_EMPTY(&inodedep->id_extupdt))
4091		return;
4092	/*
4093	 * Set the ext data dependencies to busy.
4094	 */
4095	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
4096	     adp = TAILQ_NEXT(adp, ad_next)) {
4097#ifdef INVARIANTS
4098		if (deplist != 0 && prevlbn >= adp->ad_lbn)
4099			panic("softdep_write_inodeblock: lbn order");
4100		prevlbn = adp->ad_lbn;
4101		if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno)
4102			panic("%s: direct pointer #%jd mismatch %jd != %jd",
4103			    "softdep_write_inodeblock",
4104			    (intmax_t)adp->ad_lbn,
4105			    (intmax_t)dp->di_extb[adp->ad_lbn],
4106			    (intmax_t)adp->ad_newblkno);
4107		deplist |= 1 << adp->ad_lbn;
4108		if ((adp->ad_state & ATTACHED) == 0)
4109			panic("softdep_write_inodeblock: Unknown state 0x%x",
4110			    adp->ad_state);
4111#endif /* INVARIANTS */
4112		adp->ad_state &= ~ATTACHED;
4113		adp->ad_state |= UNDONE;
4114	}
4115	/*
4116	 * The on-disk inode cannot claim to be any larger than the last
4117	 * fragment that has been written. Otherwise, the on-disk inode
4118	 * might have fragments that were not the last block in the ext
4119	 * data which would corrupt the filesystem.
4120	 */
4121	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
4122	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
4123		dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno;
4124		/* keep going until hitting a rollback to a frag */
4125		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
4126			continue;
4127		dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
4128		for (i = adp->ad_lbn + 1; i < NXADDR; i++) {
4129#ifdef INVARIANTS
4130			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
4131				panic("softdep_write_inodeblock: lost dep1");
4132#endif /* INVARIANTS */
4133			dp->di_extb[i] = 0;
4134		}
4135		lastadp = NULL;
4136		break;
4137	}
4138	/*
4139	 * If we have zero'ed out the last allocated block of the ext
4140	 * data, roll back the size to the last currently allocated block.
4141	 * We know that this last allocated block is a full-sized as
4142	 * we already checked for fragments in the loop above.
4143	 */
4144	if (lastadp != NULL &&
4145	    dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
4146		for (i = lastadp->ad_lbn; i >= 0; i--)
4147			if (dp->di_extb[i] != 0)
4148				break;
4149		dp->di_extsize = (i + 1) * fs->fs_bsize;
4150	}
4151	/*
4152	 * Set the file data dependencies to busy.
4153	 */
4154	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
4155	     adp = TAILQ_NEXT(adp, ad_next)) {
4156#ifdef INVARIANTS
4157		if (deplist != 0 && prevlbn >= adp->ad_lbn)
4158			panic("softdep_write_inodeblock: lbn order");
4159		prevlbn = adp->ad_lbn;
4160		if (adp->ad_lbn < NDADDR &&
4161		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
4162			panic("%s: direct pointer #%jd mismatch %jd != %jd",
4163			    "softdep_write_inodeblock",
4164			    (intmax_t)adp->ad_lbn,
4165			    (intmax_t)dp->di_db[adp->ad_lbn],
4166			    (intmax_t)adp->ad_newblkno);
4167		if (adp->ad_lbn >= NDADDR &&
4168		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
4169			panic("%s indirect pointer #%jd mismatch %jd != %jd",
4170			    "softdep_write_inodeblock:",
4171			    (intmax_t)adp->ad_lbn - NDADDR,
4172			    (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR],
4173			    (intmax_t)adp->ad_newblkno);
4174		deplist |= 1 << adp->ad_lbn;
4175		if ((adp->ad_state & ATTACHED) == 0)
4176			panic("softdep_write_inodeblock: Unknown state 0x%x",
4177			    adp->ad_state);
4178#endif /* INVARIANTS */
4179		adp->ad_state &= ~ATTACHED;
4180		adp->ad_state |= UNDONE;
4181	}
4182	/*
4183	 * The on-disk inode cannot claim to be any larger than the last
4184	 * fragment that has been written. Otherwise, the on-disk inode
4185	 * might have fragments that were not the last block in the file
4186	 * which would corrupt the filesystem.
4187	 */
4188	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
4189	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
4190		if (adp->ad_lbn >= NDADDR)
4191			break;
4192		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
4193		/* keep going until hitting a rollback to a frag */
4194		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
4195			continue;
4196		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
4197		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
4198#ifdef INVARIANTS
4199			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
4200				panic("softdep_write_inodeblock: lost dep2");
4201#endif /* INVARIANTS */
4202			dp->di_db[i] = 0;
4203		}
4204		for (i = 0; i < NIADDR; i++) {
4205#ifdef INVARIANTS
4206			if (dp->di_ib[i] != 0 &&
4207			    (deplist & ((1 << NDADDR) << i)) == 0)
4208				panic("softdep_write_inodeblock: lost dep3");
4209#endif /* INVARIANTS */
4210			dp->di_ib[i] = 0;
4211		}
4212		return;
4213	}
4214	/*
4215	 * If we have zero'ed out the last allocated block of the file,
4216	 * roll back the size to the last currently allocated block.
4217	 * We know that this last allocated block is a full-sized as
4218	 * we already checked for fragments in the loop above.
4219	 */
4220	if (lastadp != NULL &&
4221	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
4222		for (i = lastadp->ad_lbn; i >= 0; i--)
4223			if (dp->di_db[i] != 0)
4224				break;
4225		dp->di_size = (i + 1) * fs->fs_bsize;
4226	}
4227	/*
4228	 * The only dependencies are for indirect blocks.
4229	 *
4230	 * The file size for indirect block additions is not guaranteed.
4231	 * Such a guarantee would be non-trivial to achieve. The conventional
4232	 * synchronous write implementation also does not make this guarantee.
4233	 * Fsck should catch and fix discrepancies. Arguably, the file size
4234	 * can be over-estimated without destroying integrity when the file
4235	 * moves into the indirect blocks (i.e., is large). If we want to
4236	 * postpone fsck, we are stuck with this argument.
4237	 */
4238	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
4239		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
4240}
4241
4242/*
4243 * This routine is called during the completion interrupt
4244 * service routine for a disk write (from the procedure called
4245 * by the device driver to inform the filesystem caches of
4246 * a request completion).  It should be called early in this
4247 * procedure, before the block is made available to other
4248 * processes or other routines are called.
4249 */
4250static void
4251softdep_disk_write_complete(bp)
4252	struct buf *bp;		/* describes the completed disk write */
4253{
4254	struct worklist *wk;
4255	struct worklist *owk;
4256	struct workhead reattach;
4257	struct newblk *newblk;
4258	struct allocindir *aip;
4259	struct allocdirect *adp;
4260	struct indirdep *indirdep;
4261	struct inodedep *inodedep;
4262	struct bmsafemap *bmsafemap;
4263
4264	/*
4265	 * If an error occurred while doing the write, then the data
4266	 * has not hit the disk and the dependencies cannot be unrolled.
4267	 */
4268	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
4269		return;
4270	LIST_INIT(&reattach);
4271	/*
4272	 * This lock must not be released anywhere in this code segment.
4273	 */
4274	ACQUIRE_LOCK(&lk);
4275	owk = NULL;
4276	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
4277		WORKLIST_REMOVE(wk);
4278		if (wk == owk)
4279			panic("duplicate worklist: %p\n", wk);
4280		owk = wk;
4281		switch (wk->wk_type) {
4282
4283		case D_PAGEDEP:
4284			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
4285				WORKLIST_INSERT(&reattach, wk);
4286			continue;
4287
4288		case D_INODEDEP:
4289			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
4290				WORKLIST_INSERT(&reattach, wk);
4291			continue;
4292
4293		case D_BMSAFEMAP:
4294			bmsafemap = WK_BMSAFEMAP(wk);
4295			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
4296				newblk->nb_state |= DEPCOMPLETE;
4297				newblk->nb_bmsafemap = NULL;
4298				LIST_REMOVE(newblk, nb_deps);
4299			}
4300			while ((adp =
4301			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
4302				adp->ad_state |= DEPCOMPLETE;
4303				adp->ad_buf = NULL;
4304				LIST_REMOVE(adp, ad_deps);
4305				handle_allocdirect_partdone(adp);
4306			}
4307			while ((aip =
4308			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
4309				aip->ai_state |= DEPCOMPLETE;
4310				aip->ai_buf = NULL;
4311				LIST_REMOVE(aip, ai_deps);
4312				handle_allocindir_partdone(aip);
4313			}
4314			while ((inodedep =
4315			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
4316				inodedep->id_state |= DEPCOMPLETE;
4317				LIST_REMOVE(inodedep, id_deps);
4318				inodedep->id_buf = NULL;
4319			}
4320			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4321			continue;
4322
4323		case D_MKDIR:
4324			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
4325			continue;
4326
4327		case D_ALLOCDIRECT:
4328			adp = WK_ALLOCDIRECT(wk);
4329			adp->ad_state |= COMPLETE;
4330			handle_allocdirect_partdone(adp);
4331			continue;
4332
4333		case D_ALLOCINDIR:
4334			aip = WK_ALLOCINDIR(wk);
4335			aip->ai_state |= COMPLETE;
4336			handle_allocindir_partdone(aip);
4337			continue;
4338
4339		case D_INDIRDEP:
4340			indirdep = WK_INDIRDEP(wk);
4341			if (indirdep->ir_state & GOINGAWAY)
4342				panic("disk_write_complete: indirdep gone");
4343			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
4344			free(indirdep->ir_saveddata, M_INDIRDEP);
4345			indirdep->ir_saveddata = 0;
4346			indirdep->ir_state &= ~UNDONE;
4347			indirdep->ir_state |= ATTACHED;
4348			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
4349				handle_allocindir_partdone(aip);
4350				if (aip == LIST_FIRST(&indirdep->ir_donehd))
4351					panic("disk_write_complete: not gone");
4352			}
4353			WORKLIST_INSERT(&reattach, wk);
4354			if ((bp->b_flags & B_DELWRI) == 0)
4355				stat_indir_blk_ptrs++;
4356			bdirty(bp);
4357			continue;
4358
4359		default:
4360			panic("handle_disk_write_complete: Unknown type %s",
4361			    TYPENAME(wk->wk_type));
4362			/* NOTREACHED */
4363		}
4364	}
4365	/*
4366	 * Reattach any requests that must be redone.
4367	 */
4368	while ((wk = LIST_FIRST(&reattach)) != NULL) {
4369		WORKLIST_REMOVE(wk);
4370		WORKLIST_INSERT(&bp->b_dep, wk);
4371	}
4372	FREE_LOCK(&lk);
4373}
4374
4375/*
4376 * Called from within softdep_disk_write_complete above. Note that
4377 * this routine is always called from interrupt level with further
4378 * splbio interrupts blocked.
4379 */
4380static void
4381handle_allocdirect_partdone(adp)
4382	struct allocdirect *adp;	/* the completed allocdirect */
4383{
4384	struct allocdirectlst *listhead;
4385	struct allocdirect *listadp;
4386	struct inodedep *inodedep;
4387	long bsize, delay;
4388
4389	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4390		return;
4391	if (adp->ad_buf != NULL)
4392		panic("handle_allocdirect_partdone: dangling dep");
4393	/*
4394	 * The on-disk inode cannot claim to be any larger than the last
4395	 * fragment that has been written. Otherwise, the on-disk inode
4396	 * might have fragments that were not the last block in the file
4397	 * which would corrupt the filesystem. Thus, we cannot free any
4398	 * allocdirects after one whose ad_oldblkno claims a fragment as
4399	 * these blocks must be rolled back to zero before writing the inode.
4400	 * We check the currently active set of allocdirects in id_inoupdt
4401	 * or id_extupdt as appropriate.
4402	 */
4403	inodedep = adp->ad_inodedep;
4404	bsize = inodedep->id_fs->fs_bsize;
4405	if (adp->ad_state & EXTDATA)
4406		listhead = &inodedep->id_extupdt;
4407	else
4408		listhead = &inodedep->id_inoupdt;
4409	TAILQ_FOREACH(listadp, listhead, ad_next) {
4410		/* found our block */
4411		if (listadp == adp)
4412			break;
4413		/* continue if ad_oldlbn is not a fragment */
4414		if (listadp->ad_oldsize == 0 ||
4415		    listadp->ad_oldsize == bsize)
4416			continue;
4417		/* hit a fragment */
4418		return;
4419	}
4420	/*
4421	 * If we have reached the end of the current list without
4422	 * finding the just finished dependency, then it must be
4423	 * on the future dependency list. Future dependencies cannot
4424	 * be freed until they are moved to the current list.
4425	 */
4426	if (listadp == NULL) {
4427#ifdef DEBUG
4428		if (adp->ad_state & EXTDATA)
4429			listhead = &inodedep->id_newextupdt;
4430		else
4431			listhead = &inodedep->id_newinoupdt;
4432		TAILQ_FOREACH(listadp, listhead, ad_next)
4433			/* found our block */
4434			if (listadp == adp)
4435				break;
4436		if (listadp == NULL)
4437			panic("handle_allocdirect_partdone: lost dep");
4438#endif /* DEBUG */
4439		return;
4440	}
4441	/*
4442	 * If we have found the just finished dependency, then free
4443	 * it along with anything that follows it that is complete.
4444	 * If the inode still has a bitmap dependency, then it has
4445	 * never been written to disk, hence the on-disk inode cannot
4446	 * reference the old fragment so we can free it without delay.
4447	 */
4448	delay = (inodedep->id_state & DEPCOMPLETE);
4449	for (; adp; adp = listadp) {
4450		listadp = TAILQ_NEXT(adp, ad_next);
4451		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4452			return;
4453		free_allocdirect(listhead, adp, delay);
4454	}
4455}
4456
4457/*
4458 * Called from within softdep_disk_write_complete above. Note that
4459 * this routine is always called from interrupt level with further
4460 * splbio interrupts blocked.
4461 */
4462static void
4463handle_allocindir_partdone(aip)
4464	struct allocindir *aip;		/* the completed allocindir */
4465{
4466	struct indirdep *indirdep;
4467
4468	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
4469		return;
4470	if (aip->ai_buf != NULL)
4471		panic("handle_allocindir_partdone: dangling dependency");
4472	indirdep = aip->ai_indirdep;
4473	if (indirdep->ir_state & UNDONE) {
4474		LIST_REMOVE(aip, ai_next);
4475		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
4476		return;
4477	}
4478	if (indirdep->ir_state & UFS1FMT)
4479		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4480		    aip->ai_newblkno;
4481	else
4482		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4483		    aip->ai_newblkno;
4484	LIST_REMOVE(aip, ai_next);
4485	if (aip->ai_freefrag != NULL)
4486		add_to_worklist(&aip->ai_freefrag->ff_list);
4487	WORKITEM_FREE(aip, D_ALLOCINDIR);
4488}
4489
4490/*
4491 * Called from within softdep_disk_write_complete above to restore
4492 * in-memory inode block contents to their most up-to-date state. Note
4493 * that this routine is always called from interrupt level with further
4494 * splbio interrupts blocked.
4495 */
4496static int
4497handle_written_inodeblock(inodedep, bp)
4498	struct inodedep *inodedep;
4499	struct buf *bp;		/* buffer containing the inode block */
4500{
4501	struct worklist *wk, *filefree;
4502	struct allocdirect *adp, *nextadp;
4503	struct ufs1_dinode *dp1 = NULL;
4504	struct ufs2_dinode *dp2 = NULL;
4505	int hadchanges, fstype;
4506
4507	if ((inodedep->id_state & IOSTARTED) == 0)
4508		panic("handle_written_inodeblock: not started");
4509	inodedep->id_state &= ~IOSTARTED;
4510	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
4511		fstype = UFS1;
4512		dp1 = (struct ufs1_dinode *)bp->b_data +
4513		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4514	} else {
4515		fstype = UFS2;
4516		dp2 = (struct ufs2_dinode *)bp->b_data +
4517		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4518	}
4519	/*
4520	 * If we had to rollback the inode allocation because of
4521	 * bitmaps being incomplete, then simply restore it.
4522	 * Keep the block dirty so that it will not be reclaimed until
4523	 * all associated dependencies have been cleared and the
4524	 * corresponding updates written to disk.
4525	 */
4526	if (inodedep->id_savedino1 != NULL) {
4527		if (fstype == UFS1)
4528			*dp1 = *inodedep->id_savedino1;
4529		else
4530			*dp2 = *inodedep->id_savedino2;
4531		free(inodedep->id_savedino1, M_SAVEDINO);
4532		inodedep->id_savedino1 = NULL;
4533		if ((bp->b_flags & B_DELWRI) == 0)
4534			stat_inode_bitmap++;
4535		bdirty(bp);
4536		return (1);
4537	}
4538	inodedep->id_state |= COMPLETE;
4539	/*
4540	 * Roll forward anything that had to be rolled back before
4541	 * the inode could be updated.
4542	 */
4543	hadchanges = 0;
4544	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
4545		nextadp = TAILQ_NEXT(adp, ad_next);
4546		if (adp->ad_state & ATTACHED)
4547			panic("handle_written_inodeblock: new entry");
4548		if (fstype == UFS1) {
4549			if (adp->ad_lbn < NDADDR) {
4550				if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4551					panic("%s %s #%jd mismatch %d != %jd",
4552					    "handle_written_inodeblock:",
4553					    "direct pointer",
4554					    (intmax_t)adp->ad_lbn,
4555					    dp1->di_db[adp->ad_lbn],
4556					    (intmax_t)adp->ad_oldblkno);
4557				dp1->di_db[adp->ad_lbn] = adp->ad_newblkno;
4558			} else {
4559				if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0)
4560					panic("%s: %s #%jd allocated as %d",
4561					    "handle_written_inodeblock",
4562					    "indirect pointer",
4563					    (intmax_t)adp->ad_lbn - NDADDR,
4564					    dp1->di_ib[adp->ad_lbn - NDADDR]);
4565				dp1->di_ib[adp->ad_lbn - NDADDR] =
4566				    adp->ad_newblkno;
4567			}
4568		} else {
4569			if (adp->ad_lbn < NDADDR) {
4570				if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4571					panic("%s: %s #%jd %s %jd != %jd",
4572					    "handle_written_inodeblock",
4573					    "direct pointer",
4574					    (intmax_t)adp->ad_lbn, "mismatch",
4575					    (intmax_t)dp2->di_db[adp->ad_lbn],
4576					    (intmax_t)adp->ad_oldblkno);
4577				dp2->di_db[adp->ad_lbn] = adp->ad_newblkno;
4578			} else {
4579				if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0)
4580					panic("%s: %s #%jd allocated as %jd",
4581					    "handle_written_inodeblock",
4582					    "indirect pointer",
4583					    (intmax_t)adp->ad_lbn - NDADDR,
4584					    (intmax_t)
4585					    dp2->di_ib[adp->ad_lbn - NDADDR]);
4586				dp2->di_ib[adp->ad_lbn - NDADDR] =
4587				    adp->ad_newblkno;
4588			}
4589		}
4590		adp->ad_state &= ~UNDONE;
4591		adp->ad_state |= ATTACHED;
4592		hadchanges = 1;
4593	}
4594	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
4595		nextadp = TAILQ_NEXT(adp, ad_next);
4596		if (adp->ad_state & ATTACHED)
4597			panic("handle_written_inodeblock: new entry");
4598		if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno)
4599			panic("%s: direct pointers #%jd %s %jd != %jd",
4600			    "handle_written_inodeblock",
4601			    (intmax_t)adp->ad_lbn, "mismatch",
4602			    (intmax_t)dp2->di_extb[adp->ad_lbn],
4603			    (intmax_t)adp->ad_oldblkno);
4604		dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno;
4605		adp->ad_state &= ~UNDONE;
4606		adp->ad_state |= ATTACHED;
4607		hadchanges = 1;
4608	}
4609	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
4610		stat_direct_blk_ptrs++;
4611	/*
4612	 * Reset the file size to its most up-to-date value.
4613	 */
4614	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
4615		panic("handle_written_inodeblock: bad size");
4616	if (fstype == UFS1) {
4617		if (dp1->di_size != inodedep->id_savedsize) {
4618			dp1->di_size = inodedep->id_savedsize;
4619			hadchanges = 1;
4620		}
4621	} else {
4622		if (dp2->di_size != inodedep->id_savedsize) {
4623			dp2->di_size = inodedep->id_savedsize;
4624			hadchanges = 1;
4625		}
4626		if (dp2->di_extsize != inodedep->id_savedextsize) {
4627			dp2->di_extsize = inodedep->id_savedextsize;
4628			hadchanges = 1;
4629		}
4630	}
4631	inodedep->id_savedsize = -1;
4632	inodedep->id_savedextsize = -1;
4633	/*
4634	 * If there were any rollbacks in the inode block, then it must be
4635	 * marked dirty so that its will eventually get written back in
4636	 * its correct form.
4637	 */
4638	if (hadchanges)
4639		bdirty(bp);
4640	/*
4641	 * Process any allocdirects that completed during the update.
4642	 */
4643	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
4644		handle_allocdirect_partdone(adp);
4645	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
4646		handle_allocdirect_partdone(adp);
4647	/*
4648	 * Process deallocations that were held pending until the
4649	 * inode had been written to disk. Freeing of the inode
4650	 * is delayed until after all blocks have been freed to
4651	 * avoid creation of new <vfsid, inum, lbn> triples
4652	 * before the old ones have been deleted.
4653	 */
4654	filefree = NULL;
4655	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
4656		WORKLIST_REMOVE(wk);
4657		switch (wk->wk_type) {
4658
4659		case D_FREEFILE:
4660			/*
4661			 * We defer adding filefree to the worklist until
4662			 * all other additions have been made to ensure
4663			 * that it will be done after all the old blocks
4664			 * have been freed.
4665			 */
4666			if (filefree != NULL)
4667				panic("handle_written_inodeblock: filefree");
4668			filefree = wk;
4669			continue;
4670
4671		case D_MKDIR:
4672			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
4673			continue;
4674
4675		case D_DIRADD:
4676			diradd_inode_written(WK_DIRADD(wk), inodedep);
4677			continue;
4678
4679		case D_FREEBLKS:
4680			wk->wk_state |= COMPLETE;
4681			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
4682				continue;
4683			 /* -- fall through -- */
4684		case D_FREEFRAG:
4685		case D_DIRREM:
4686			add_to_worklist(wk);
4687			continue;
4688
4689		case D_NEWDIRBLK:
4690			free_newdirblk(WK_NEWDIRBLK(wk));
4691			continue;
4692
4693		default:
4694			panic("handle_written_inodeblock: Unknown type %s",
4695			    TYPENAME(wk->wk_type));
4696			/* NOTREACHED */
4697		}
4698	}
4699	if (filefree != NULL) {
4700		if (free_inodedep(inodedep) == 0)
4701			panic("handle_written_inodeblock: live inodedep");
4702		add_to_worklist(filefree);
4703		return (0);
4704	}
4705
4706	/*
4707	 * If no outstanding dependencies, free it.
4708	 */
4709	if (free_inodedep(inodedep) ||
4710	    (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
4711	     TAILQ_FIRST(&inodedep->id_extupdt) == 0))
4712		return (0);
4713	return (hadchanges);
4714}
4715
4716/*
4717 * Process a diradd entry after its dependent inode has been written.
4718 * This routine must be called with splbio interrupts blocked.
4719 */
4720static void
4721diradd_inode_written(dap, inodedep)
4722	struct diradd *dap;
4723	struct inodedep *inodedep;
4724{
4725	struct pagedep *pagedep;
4726
4727	dap->da_state |= COMPLETE;
4728	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4729		if (dap->da_state & DIRCHG)
4730			pagedep = dap->da_previous->dm_pagedep;
4731		else
4732			pagedep = dap->da_pagedep;
4733		LIST_REMOVE(dap, da_pdlist);
4734		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4735	}
4736	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
4737}
4738
4739/*
4740 * Handle the completion of a mkdir dependency.
4741 */
4742static void
4743handle_written_mkdir(mkdir, type)
4744	struct mkdir *mkdir;
4745	int type;
4746{
4747	struct diradd *dap;
4748	struct pagedep *pagedep;
4749
4750	if (mkdir->md_state != type)
4751		panic("handle_written_mkdir: bad type");
4752	dap = mkdir->md_diradd;
4753	dap->da_state &= ~type;
4754	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
4755		dap->da_state |= DEPCOMPLETE;
4756	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4757		if (dap->da_state & DIRCHG)
4758			pagedep = dap->da_previous->dm_pagedep;
4759		else
4760			pagedep = dap->da_pagedep;
4761		LIST_REMOVE(dap, da_pdlist);
4762		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4763	}
4764	LIST_REMOVE(mkdir, md_mkdirs);
4765	WORKITEM_FREE(mkdir, D_MKDIR);
4766}
4767
4768/*
4769 * Called from within softdep_disk_write_complete above.
4770 * A write operation was just completed. Removed inodes can
4771 * now be freed and associated block pointers may be committed.
4772 * Note that this routine is always called from interrupt level
4773 * with further splbio interrupts blocked.
4774 */
4775static int
4776handle_written_filepage(pagedep, bp)
4777	struct pagedep *pagedep;
4778	struct buf *bp;		/* buffer containing the written page */
4779{
4780	struct dirrem *dirrem;
4781	struct diradd *dap, *nextdap;
4782	struct direct *ep;
4783	int i, chgs;
4784
4785	if ((pagedep->pd_state & IOSTARTED) == 0)
4786		panic("handle_written_filepage: not started");
4787	pagedep->pd_state &= ~IOSTARTED;
4788	/*
4789	 * Process any directory removals that have been committed.
4790	 */
4791	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
4792		LIST_REMOVE(dirrem, dm_next);
4793		dirrem->dm_dirinum = pagedep->pd_ino;
4794		add_to_worklist(&dirrem->dm_list);
4795	}
4796	/*
4797	 * Free any directory additions that have been committed.
4798	 * If it is a newly allocated block, we have to wait until
4799	 * the on-disk directory inode claims the new block.
4800	 */
4801	if ((pagedep->pd_state & NEWBLOCK) == 0)
4802		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
4803			free_diradd(dap);
4804	/*
4805	 * Uncommitted directory entries must be restored.
4806	 */
4807	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
4808		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
4809		     dap = nextdap) {
4810			nextdap = LIST_NEXT(dap, da_pdlist);
4811			if (dap->da_state & ATTACHED)
4812				panic("handle_written_filepage: attached");
4813			ep = (struct direct *)
4814			    ((char *)bp->b_data + dap->da_offset);
4815			ep->d_ino = dap->da_newinum;
4816			dap->da_state &= ~UNDONE;
4817			dap->da_state |= ATTACHED;
4818			chgs = 1;
4819			/*
4820			 * If the inode referenced by the directory has
4821			 * been written out, then the dependency can be
4822			 * moved to the pending list.
4823			 */
4824			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4825				LIST_REMOVE(dap, da_pdlist);
4826				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
4827				    da_pdlist);
4828			}
4829		}
4830	}
4831	/*
4832	 * If there were any rollbacks in the directory, then it must be
4833	 * marked dirty so that its will eventually get written back in
4834	 * its correct form.
4835	 */
4836	if (chgs) {
4837		if ((bp->b_flags & B_DELWRI) == 0)
4838			stat_dir_entry++;
4839		bdirty(bp);
4840		return (1);
4841	}
4842	/*
4843	 * If we are not waiting for a new directory block to be
4844	 * claimed by its inode, then the pagedep will be freed.
4845	 * Otherwise it will remain to track any new entries on
4846	 * the page in case they are fsync'ed.
4847	 */
4848	if ((pagedep->pd_state & NEWBLOCK) == 0) {
4849		LIST_REMOVE(pagedep, pd_hash);
4850		WORKITEM_FREE(pagedep, D_PAGEDEP);
4851	}
4852	return (0);
4853}
4854
4855/*
4856 * Writing back in-core inode structures.
4857 *
4858 * The filesystem only accesses an inode's contents when it occupies an
4859 * "in-core" inode structure.  These "in-core" structures are separate from
4860 * the page frames used to cache inode blocks.  Only the latter are
4861 * transferred to/from the disk.  So, when the updated contents of the
4862 * "in-core" inode structure are copied to the corresponding in-memory inode
4863 * block, the dependencies are also transferred.  The following procedure is
4864 * called when copying a dirty "in-core" inode to a cached inode block.
4865 */
4866
4867/*
4868 * Called when an inode is loaded from disk. If the effective link count
4869 * differed from the actual link count when it was last flushed, then we
4870 * need to ensure that the correct effective link count is put back.
4871 */
4872void
4873softdep_load_inodeblock(ip)
4874	struct inode *ip;	/* the "in_core" copy of the inode */
4875{
4876	struct inodedep *inodedep;
4877
4878	/*
4879	 * Check for alternate nlink count.
4880	 */
4881	ip->i_effnlink = ip->i_nlink;
4882	ACQUIRE_LOCK(&lk);
4883	if (inodedep_lookup(UFSTOVFS(ip->i_ump),
4884	    ip->i_number, 0, &inodedep) == 0) {
4885		FREE_LOCK(&lk);
4886		return;
4887	}
4888	ip->i_effnlink -= inodedep->id_nlinkdelta;
4889	if (inodedep->id_state & SPACECOUNTED)
4890		ip->i_flag |= IN_SPACECOUNTED;
4891	FREE_LOCK(&lk);
4892}
4893
4894/*
4895 * This routine is called just before the "in-core" inode
4896 * information is to be copied to the in-memory inode block.
4897 * Recall that an inode block contains several inodes. If
4898 * the force flag is set, then the dependencies will be
4899 * cleared so that the update can always be made. Note that
4900 * the buffer is locked when this routine is called, so we
4901 * will never be in the middle of writing the inode block
4902 * to disk.
4903 */
4904void
4905softdep_update_inodeblock(ip, bp, waitfor)
4906	struct inode *ip;	/* the "in_core" copy of the inode */
4907	struct buf *bp;		/* the buffer containing the inode block */
4908	int waitfor;		/* nonzero => update must be allowed */
4909{
4910	struct inodedep *inodedep;
4911	struct worklist *wk;
4912	struct mount *mp;
4913	struct buf *ibp;
4914	int error;
4915
4916	/*
4917	 * If the effective link count is not equal to the actual link
4918	 * count, then we must track the difference in an inodedep while
4919	 * the inode is (potentially) tossed out of the cache. Otherwise,
4920	 * if there is no existing inodedep, then there are no dependencies
4921	 * to track.
4922	 */
4923	mp = UFSTOVFS(ip->i_ump);
4924	ACQUIRE_LOCK(&lk);
4925	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
4926		FREE_LOCK(&lk);
4927		if (ip->i_effnlink != ip->i_nlink)
4928			panic("softdep_update_inodeblock: bad link count");
4929		return;
4930	}
4931	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
4932		panic("softdep_update_inodeblock: bad delta");
4933	/*
4934	 * Changes have been initiated. Anything depending on these
4935	 * changes cannot occur until this inode has been written.
4936	 */
4937	inodedep->id_state &= ~COMPLETE;
4938	if ((inodedep->id_state & ONWORKLIST) == 0)
4939		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
4940	/*
4941	 * Any new dependencies associated with the incore inode must
4942	 * now be moved to the list associated with the buffer holding
4943	 * the in-memory copy of the inode. Once merged process any
4944	 * allocdirects that are completed by the merger.
4945	 */
4946	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
4947	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
4948		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4949	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
4950	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
4951		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt));
4952	/*
4953	 * Now that the inode has been pushed into the buffer, the
4954	 * operations dependent on the inode being written to disk
4955	 * can be moved to the id_bufwait so that they will be
4956	 * processed when the buffer I/O completes.
4957	 */
4958	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4959		WORKLIST_REMOVE(wk);
4960		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4961	}
4962	/*
4963	 * Newly allocated inodes cannot be written until the bitmap
4964	 * that allocates them have been written (indicated by
4965	 * DEPCOMPLETE being set in id_state). If we are doing a
4966	 * forced sync (e.g., an fsync on a file), we force the bitmap
4967	 * to be written so that the update can be done.
4968	 */
4969	if (waitfor == 0) {
4970		FREE_LOCK(&lk);
4971		return;
4972	}
4973retry:
4974	if ((inodedep->id_state & DEPCOMPLETE) != 0) {
4975		FREE_LOCK(&lk);
4976		return;
4977	}
4978	ibp = inodedep->id_buf;
4979	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
4980	if (ibp == NULL) {
4981		/*
4982		 * If ibp came back as NULL, the dependency could have been
4983		 * freed while we slept.  Look it up again, and check to see
4984		 * that it has completed.
4985		 */
4986		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
4987			goto retry;
4988		FREE_LOCK(&lk);
4989		return;
4990	}
4991	FREE_LOCK(&lk);
4992	if ((error = bwrite(ibp)) != 0)
4993		softdep_error("softdep_update_inodeblock: bwrite", error);
4994}
4995
4996/*
4997 * Merge the a new inode dependency list (such as id_newinoupdt) into an
4998 * old inode dependency list (such as id_inoupdt). This routine must be
4999 * called with splbio interrupts blocked.
5000 */
5001static void
5002merge_inode_lists(newlisthead, oldlisthead)
5003	struct allocdirectlst *newlisthead;
5004	struct allocdirectlst *oldlisthead;
5005{
5006	struct allocdirect *listadp, *newadp;
5007
5008	newadp = TAILQ_FIRST(newlisthead);
5009	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
5010		if (listadp->ad_lbn < newadp->ad_lbn) {
5011			listadp = TAILQ_NEXT(listadp, ad_next);
5012			continue;
5013		}
5014		TAILQ_REMOVE(newlisthead, newadp, ad_next);
5015		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
5016		if (listadp->ad_lbn == newadp->ad_lbn) {
5017			allocdirect_merge(oldlisthead, newadp,
5018			    listadp);
5019			listadp = newadp;
5020		}
5021		newadp = TAILQ_FIRST(newlisthead);
5022	}
5023	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
5024		TAILQ_REMOVE(newlisthead, newadp, ad_next);
5025		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
5026	}
5027}
5028
5029/*
5030 * If we are doing an fsync, then we must ensure that any directory
5031 * entries for the inode have been written after the inode gets to disk.
5032 */
5033int
5034softdep_fsync(vp)
5035	struct vnode *vp;	/* the "in_core" copy of the inode */
5036{
5037	struct inodedep *inodedep;
5038	struct pagedep *pagedep;
5039	struct worklist *wk;
5040	struct diradd *dap;
5041	struct mount *mp;
5042	struct vnode *pvp;
5043	struct inode *ip;
5044	struct buf *bp;
5045	struct fs *fs;
5046	struct thread *td = curthread;
5047	int error, flushparent, pagedep_new_block;
5048	ino_t parentino;
5049	ufs_lbn_t lbn;
5050
5051	ip = VTOI(vp);
5052	fs = ip->i_fs;
5053	mp = vp->v_mount;
5054	ACQUIRE_LOCK(&lk);
5055	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
5056		FREE_LOCK(&lk);
5057		return (0);
5058	}
5059	if (!LIST_EMPTY(&inodedep->id_inowait) ||
5060	    !LIST_EMPTY(&inodedep->id_bufwait) ||
5061	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5062	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5063	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5064	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
5065		panic("softdep_fsync: pending ops");
5066	for (error = 0, flushparent = 0; ; ) {
5067		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
5068			break;
5069		if (wk->wk_type != D_DIRADD)
5070			panic("softdep_fsync: Unexpected type %s",
5071			    TYPENAME(wk->wk_type));
5072		dap = WK_DIRADD(wk);
5073		/*
5074		 * Flush our parent if this directory entry has a MKDIR_PARENT
5075		 * dependency or is contained in a newly allocated block.
5076		 */
5077		if (dap->da_state & DIRCHG)
5078			pagedep = dap->da_previous->dm_pagedep;
5079		else
5080			pagedep = dap->da_pagedep;
5081		parentino = pagedep->pd_ino;
5082		lbn = pagedep->pd_lbn;
5083		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
5084			panic("softdep_fsync: dirty");
5085		if ((dap->da_state & MKDIR_PARENT) ||
5086		    (pagedep->pd_state & NEWBLOCK))
5087			flushparent = 1;
5088		else
5089			flushparent = 0;
5090		/*
5091		 * If we are being fsync'ed as part of vgone'ing this vnode,
5092		 * then we will not be able to release and recover the
5093		 * vnode below, so we just have to give up on writing its
5094		 * directory entry out. It will eventually be written, just
5095		 * not now, but then the user was not asking to have it
5096		 * written, so we are not breaking any promises.
5097		 */
5098		if (vp->v_iflag & VI_DOOMED)
5099			break;
5100		/*
5101		 * We prevent deadlock by always fetching inodes from the
5102		 * root, moving down the directory tree. Thus, when fetching
5103		 * our parent directory, we first try to get the lock. If
5104		 * that fails, we must unlock ourselves before requesting
5105		 * the lock on our parent. See the comment in ufs_lookup
5106		 * for details on possible races.
5107		 */
5108		FREE_LOCK(&lk);
5109		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
5110		    FFSV_FORCEINSMQ)) {
5111			error = vfs_busy(mp, MBF_NOWAIT);
5112			if (error != 0) {
5113				vfs_ref(mp);
5114				VOP_UNLOCK(vp, 0);
5115				error = vfs_busy(mp, 0);
5116				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5117				vfs_rel(mp);
5118				if (error != 0)
5119					return (ENOENT);
5120				if (vp->v_iflag & VI_DOOMED) {
5121					vfs_unbusy(mp);
5122					return (ENOENT);
5123				}
5124			}
5125			VOP_UNLOCK(vp, 0);
5126			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
5127			    &pvp, FFSV_FORCEINSMQ);
5128			vfs_unbusy(mp);
5129			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5130			if (vp->v_iflag & VI_DOOMED) {
5131				if (error == 0)
5132					vput(pvp);
5133				error = ENOENT;
5134			}
5135			if (error != 0)
5136				return (error);
5137		}
5138		/*
5139		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
5140		 * that are contained in direct blocks will be resolved by
5141		 * doing a ffs_update. Pagedeps contained in indirect blocks
5142		 * may require a complete sync'ing of the directory. So, we
5143		 * try the cheap and fast ffs_update first, and if that fails,
5144		 * then we do the slower ffs_syncvnode of the directory.
5145		 */
5146		if (flushparent) {
5147			int locked;
5148
5149			if ((error = ffs_update(pvp, 1)) != 0) {
5150				vput(pvp);
5151				return (error);
5152			}
5153			ACQUIRE_LOCK(&lk);
5154			locked = 1;
5155			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
5156				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
5157					if (wk->wk_type != D_DIRADD)
5158						panic("softdep_fsync: Unexpected type %s",
5159						      TYPENAME(wk->wk_type));
5160					dap = WK_DIRADD(wk);
5161					if (dap->da_state & DIRCHG)
5162						pagedep = dap->da_previous->dm_pagedep;
5163					else
5164						pagedep = dap->da_pagedep;
5165					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
5166					FREE_LOCK(&lk);
5167					locked = 0;
5168					if (pagedep_new_block &&
5169					    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
5170						vput(pvp);
5171						return (error);
5172					}
5173				}
5174			}
5175			if (locked)
5176				FREE_LOCK(&lk);
5177		}
5178		/*
5179		 * Flush directory page containing the inode's name.
5180		 */
5181		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
5182		    &bp);
5183		if (error == 0)
5184			error = bwrite(bp);
5185		else
5186			brelse(bp);
5187		vput(pvp);
5188		if (error != 0)
5189			return (error);
5190		ACQUIRE_LOCK(&lk);
5191		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
5192			break;
5193	}
5194	FREE_LOCK(&lk);
5195	return (0);
5196}
5197
5198/*
5199 * Flush all the dirty bitmaps associated with the block device
5200 * before flushing the rest of the dirty blocks so as to reduce
5201 * the number of dependencies that will have to be rolled back.
5202 */
5203void
5204softdep_fsync_mountdev(vp)
5205	struct vnode *vp;
5206{
5207	struct buf *bp, *nbp;
5208	struct worklist *wk;
5209	struct bufobj *bo;
5210
5211	if (!vn_isdisk(vp, NULL))
5212		panic("softdep_fsync_mountdev: vnode not a disk");
5213	bo = &vp->v_bufobj;
5214restart:
5215	BO_LOCK(bo);
5216	ACQUIRE_LOCK(&lk);
5217	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
5218		/*
5219		 * If it is already scheduled, skip to the next buffer.
5220		 */
5221		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
5222			continue;
5223
5224		if ((bp->b_flags & B_DELWRI) == 0)
5225			panic("softdep_fsync_mountdev: not dirty");
5226		/*
5227		 * We are only interested in bitmaps with outstanding
5228		 * dependencies.
5229		 */
5230		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
5231		    wk->wk_type != D_BMSAFEMAP ||
5232		    (bp->b_vflags & BV_BKGRDINPROG)) {
5233			BUF_UNLOCK(bp);
5234			continue;
5235		}
5236		FREE_LOCK(&lk);
5237		BO_UNLOCK(bo);
5238		bremfree(bp);
5239		(void) bawrite(bp);
5240		goto restart;
5241	}
5242	FREE_LOCK(&lk);
5243	drain_output(vp);
5244	BO_UNLOCK(bo);
5245}
5246
5247/*
5248 * This routine is called when we are trying to synchronously flush a
5249 * file. This routine must eliminate any filesystem metadata dependencies
5250 * so that the syncing routine can succeed by pushing the dirty blocks
5251 * associated with the file. If any I/O errors occur, they are returned.
5252 */
5253int
5254softdep_sync_metadata(struct vnode *vp)
5255{
5256	struct pagedep *pagedep;
5257	struct allocdirect *adp;
5258	struct allocindir *aip;
5259	struct buf *bp, *nbp;
5260	struct worklist *wk;
5261	struct bufobj *bo;
5262	int i, error, waitfor;
5263
5264	if (!DOINGSOFTDEP(vp))
5265		return (0);
5266	/*
5267	 * Ensure that any direct block dependencies have been cleared.
5268	 */
5269	ACQUIRE_LOCK(&lk);
5270	if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) {
5271		FREE_LOCK(&lk);
5272		return (error);
5273	}
5274	FREE_LOCK(&lk);
5275	/*
5276	 * For most files, the only metadata dependencies are the
5277	 * cylinder group maps that allocate their inode or blocks.
5278	 * The block allocation dependencies can be found by traversing
5279	 * the dependency lists for any buffers that remain on their
5280	 * dirty buffer list. The inode allocation dependency will
5281	 * be resolved when the inode is updated with MNT_WAIT.
5282	 * This work is done in two passes. The first pass grabs most
5283	 * of the buffers and begins asynchronously writing them. The
5284	 * only way to wait for these asynchronous writes is to sleep
5285	 * on the filesystem vnode which may stay busy for a long time
5286	 * if the filesystem is active. So, instead, we make a second
5287	 * pass over the dependencies blocking on each write. In the
5288	 * usual case we will be blocking against a write that we
5289	 * initiated, so when it is done the dependency will have been
5290	 * resolved. Thus the second pass is expected to end quickly.
5291	 */
5292	waitfor = MNT_NOWAIT;
5293	bo = &vp->v_bufobj;
5294
5295top:
5296	/*
5297	 * We must wait for any I/O in progress to finish so that
5298	 * all potential buffers on the dirty list will be visible.
5299	 */
5300	BO_LOCK(bo);
5301	drain_output(vp);
5302	while ((bp = TAILQ_FIRST(&bo->bo_dirty.bv_hd)) != NULL) {
5303		bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT);
5304		if (bp)
5305			break;
5306	}
5307	BO_UNLOCK(bo);
5308	if (bp == NULL)
5309		return (0);
5310loop:
5311	/* While syncing snapshots, we must allow recursive lookups */
5312	BUF_AREC(bp);
5313	ACQUIRE_LOCK(&lk);
5314	/*
5315	 * As we hold the buffer locked, none of its dependencies
5316	 * will disappear.
5317	 */
5318	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5319		switch (wk->wk_type) {
5320
5321		case D_ALLOCDIRECT:
5322			adp = WK_ALLOCDIRECT(wk);
5323			if (adp->ad_state & DEPCOMPLETE)
5324				continue;
5325			nbp = adp->ad_buf;
5326			nbp = getdirtybuf(nbp, &lk, waitfor);
5327			if (nbp == NULL)
5328				continue;
5329			FREE_LOCK(&lk);
5330			if (waitfor == MNT_NOWAIT) {
5331				bawrite(nbp);
5332			} else if ((error = bwrite(nbp)) != 0) {
5333				break;
5334			}
5335			ACQUIRE_LOCK(&lk);
5336			continue;
5337
5338		case D_ALLOCINDIR:
5339			aip = WK_ALLOCINDIR(wk);
5340			if (aip->ai_state & DEPCOMPLETE)
5341				continue;
5342			nbp = aip->ai_buf;
5343			nbp = getdirtybuf(nbp, &lk, waitfor);
5344			if (nbp == NULL)
5345				continue;
5346			FREE_LOCK(&lk);
5347			if (waitfor == MNT_NOWAIT) {
5348				bawrite(nbp);
5349			} else if ((error = bwrite(nbp)) != 0) {
5350				break;
5351			}
5352			ACQUIRE_LOCK(&lk);
5353			continue;
5354
5355		case D_INDIRDEP:
5356		restart:
5357
5358			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
5359				if (aip->ai_state & DEPCOMPLETE)
5360					continue;
5361				nbp = aip->ai_buf;
5362				nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
5363				if (nbp == NULL)
5364					goto restart;
5365				FREE_LOCK(&lk);
5366				if ((error = bwrite(nbp)) != 0) {
5367					goto loop_end;
5368				}
5369				ACQUIRE_LOCK(&lk);
5370				goto restart;
5371			}
5372			continue;
5373
5374		case D_INODEDEP:
5375			if ((error = flush_inodedep_deps(wk->wk_mp,
5376			    WK_INODEDEP(wk)->id_ino)) != 0) {
5377				FREE_LOCK(&lk);
5378				break;
5379			}
5380			continue;
5381
5382		case D_PAGEDEP:
5383			/*
5384			 * We are trying to sync a directory that may
5385			 * have dependencies on both its own metadata
5386			 * and/or dependencies on the inodes of any
5387			 * recently allocated files. We walk its diradd
5388			 * lists pushing out the associated inode.
5389			 */
5390			pagedep = WK_PAGEDEP(wk);
5391			for (i = 0; i < DAHASHSZ; i++) {
5392				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
5393					continue;
5394				if ((error =
5395				    flush_pagedep_deps(vp, wk->wk_mp,
5396						&pagedep->pd_diraddhd[i]))) {
5397					FREE_LOCK(&lk);
5398					goto loop_end;
5399				}
5400			}
5401			continue;
5402
5403		case D_MKDIR:
5404			/*
5405			 * This case should never happen if the vnode has
5406			 * been properly sync'ed. However, if this function
5407			 * is used at a place where the vnode has not yet
5408			 * been sync'ed, this dependency can show up. So,
5409			 * rather than panic, just flush it.
5410			 */
5411			nbp = WK_MKDIR(wk)->md_buf;
5412			nbp = getdirtybuf(nbp, &lk, waitfor);
5413			if (nbp == NULL)
5414				continue;
5415			FREE_LOCK(&lk);
5416			if (waitfor == MNT_NOWAIT) {
5417				bawrite(nbp);
5418			} else if ((error = bwrite(nbp)) != 0) {
5419				break;
5420			}
5421			ACQUIRE_LOCK(&lk);
5422			continue;
5423
5424		case D_BMSAFEMAP:
5425			/*
5426			 * This case should never happen if the vnode has
5427			 * been properly sync'ed. However, if this function
5428			 * is used at a place where the vnode has not yet
5429			 * been sync'ed, this dependency can show up. So,
5430			 * rather than panic, just flush it.
5431			 */
5432			nbp = WK_BMSAFEMAP(wk)->sm_buf;
5433			nbp = getdirtybuf(nbp, &lk, waitfor);
5434			if (nbp == NULL)
5435				continue;
5436			FREE_LOCK(&lk);
5437			if (waitfor == MNT_NOWAIT) {
5438				bawrite(nbp);
5439			} else if ((error = bwrite(nbp)) != 0) {
5440				break;
5441			}
5442			ACQUIRE_LOCK(&lk);
5443			continue;
5444
5445		default:
5446			panic("softdep_sync_metadata: Unknown type %s",
5447			    TYPENAME(wk->wk_type));
5448			/* NOTREACHED */
5449		}
5450	loop_end:
5451		/* We reach here only in error and unlocked */
5452		if (error == 0)
5453			panic("softdep_sync_metadata: zero error");
5454		BUF_NOREC(bp);
5455		bawrite(bp);
5456		return (error);
5457	}
5458	FREE_LOCK(&lk);
5459	BO_LOCK(bo);
5460	while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
5461		nbp = getdirtybuf(nbp, BO_MTX(bo), MNT_WAIT);
5462		if (nbp)
5463			break;
5464	}
5465	BO_UNLOCK(bo);
5466	BUF_NOREC(bp);
5467	bawrite(bp);
5468	if (nbp != NULL) {
5469		bp = nbp;
5470		goto loop;
5471	}
5472	/*
5473	 * The brief unlock is to allow any pent up dependency
5474	 * processing to be done. Then proceed with the second pass.
5475	 */
5476	if (waitfor == MNT_NOWAIT) {
5477		waitfor = MNT_WAIT;
5478		goto top;
5479	}
5480
5481	/*
5482	 * If we have managed to get rid of all the dirty buffers,
5483	 * then we are done. For certain directories and block
5484	 * devices, we may need to do further work.
5485	 *
5486	 * We must wait for any I/O in progress to finish so that
5487	 * all potential buffers on the dirty list will be visible.
5488	 */
5489	BO_LOCK(bo);
5490	drain_output(vp);
5491	BO_UNLOCK(bo);
5492	return (0);
5493}
5494
5495/*
5496 * Flush the dependencies associated with an inodedep.
5497 * Called with splbio blocked.
5498 */
5499static int
5500flush_inodedep_deps(mp, ino)
5501	struct mount *mp;
5502	ino_t ino;
5503{
5504	struct inodedep *inodedep;
5505	int error, waitfor;
5506
5507	/*
5508	 * This work is done in two passes. The first pass grabs most
5509	 * of the buffers and begins asynchronously writing them. The
5510	 * only way to wait for these asynchronous writes is to sleep
5511	 * on the filesystem vnode which may stay busy for a long time
5512	 * if the filesystem is active. So, instead, we make a second
5513	 * pass over the dependencies blocking on each write. In the
5514	 * usual case we will be blocking against a write that we
5515	 * initiated, so when it is done the dependency will have been
5516	 * resolved. Thus the second pass is expected to end quickly.
5517	 * We give a brief window at the top of the loop to allow
5518	 * any pending I/O to complete.
5519	 */
5520	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
5521		if (error)
5522			return (error);
5523		FREE_LOCK(&lk);
5524		ACQUIRE_LOCK(&lk);
5525		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
5526			return (0);
5527		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
5528		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
5529		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
5530		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
5531			continue;
5532		/*
5533		 * If pass2, we are done, otherwise do pass 2.
5534		 */
5535		if (waitfor == MNT_WAIT)
5536			break;
5537		waitfor = MNT_WAIT;
5538	}
5539	/*
5540	 * Try freeing inodedep in case all dependencies have been removed.
5541	 */
5542	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
5543		(void) free_inodedep(inodedep);
5544	return (0);
5545}
5546
5547/*
5548 * Flush an inode dependency list.
5549 * Called with splbio blocked.
5550 */
5551static int
5552flush_deplist(listhead, waitfor, errorp)
5553	struct allocdirectlst *listhead;
5554	int waitfor;
5555	int *errorp;
5556{
5557	struct allocdirect *adp;
5558	struct buf *bp;
5559
5560	mtx_assert(&lk, MA_OWNED);
5561	TAILQ_FOREACH(adp, listhead, ad_next) {
5562		if (adp->ad_state & DEPCOMPLETE)
5563			continue;
5564		bp = adp->ad_buf;
5565		bp = getdirtybuf(bp, &lk, waitfor);
5566		if (bp == NULL) {
5567			if (waitfor == MNT_NOWAIT)
5568				continue;
5569			return (1);
5570		}
5571		FREE_LOCK(&lk);
5572		if (waitfor == MNT_NOWAIT) {
5573			bawrite(bp);
5574		} else if ((*errorp = bwrite(bp)) != 0) {
5575			ACQUIRE_LOCK(&lk);
5576			return (1);
5577		}
5578		ACQUIRE_LOCK(&lk);
5579		return (1);
5580	}
5581	return (0);
5582}
5583
5584/*
5585 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
5586 * Called with splbio blocked.
5587 */
5588static int
5589flush_pagedep_deps(pvp, mp, diraddhdp)
5590	struct vnode *pvp;
5591	struct mount *mp;
5592	struct diraddhd *diraddhdp;
5593{
5594	struct inodedep *inodedep;
5595	struct ufsmount *ump;
5596	struct diradd *dap;
5597	struct vnode *vp;
5598	struct bufobj *bo;
5599	int error = 0;
5600	struct buf *bp;
5601	ino_t inum;
5602	struct worklist *wk;
5603
5604	ump = VFSTOUFS(mp);
5605	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
5606		/*
5607		 * Flush ourselves if this directory entry
5608		 * has a MKDIR_PARENT dependency.
5609		 */
5610		if (dap->da_state & MKDIR_PARENT) {
5611			FREE_LOCK(&lk);
5612			if ((error = ffs_update(pvp, 1)) != 0)
5613				break;
5614			ACQUIRE_LOCK(&lk);
5615			/*
5616			 * If that cleared dependencies, go on to next.
5617			 */
5618			if (dap != LIST_FIRST(diraddhdp))
5619				continue;
5620			if (dap->da_state & MKDIR_PARENT)
5621				panic("flush_pagedep_deps: MKDIR_PARENT");
5622		}
5623		/*
5624		 * A newly allocated directory must have its "." and
5625		 * ".." entries written out before its name can be
5626		 * committed in its parent. We do not want or need
5627		 * the full semantics of a synchronous ffs_syncvnode as
5628		 * that may end up here again, once for each directory
5629		 * level in the filesystem. Instead, we push the blocks
5630		 * and wait for them to clear. We have to fsync twice
5631		 * because the first call may choose to defer blocks
5632		 * that still have dependencies, but deferral will
5633		 * happen at most once.
5634		 */
5635		inum = dap->da_newinum;
5636		if (dap->da_state & MKDIR_BODY) {
5637			FREE_LOCK(&lk);
5638			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
5639			    FFSV_FORCEINSMQ)))
5640				break;
5641			if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) ||
5642			    (error=ffs_syncvnode(vp, MNT_NOWAIT))) {
5643				vput(vp);
5644				break;
5645			}
5646			bo = &vp->v_bufobj;
5647			BO_LOCK(bo);
5648			drain_output(vp);
5649			/*
5650			 * If first block is still dirty with a D_MKDIR
5651			 * dependency then it needs to be written now.
5652			 */
5653			for (;;) {
5654				error = 0;
5655				bp = gbincore(bo, 0);
5656				if (bp == NULL)
5657					break;	/* First block not present */
5658				error = BUF_LOCK(bp,
5659						 LK_EXCLUSIVE |
5660						 LK_SLEEPFAIL |
5661						 LK_INTERLOCK,
5662						 BO_MTX(bo));
5663				BO_LOCK(bo);
5664				if (error == ENOLCK)
5665					continue;	/* Slept, retry */
5666				if (error != 0)
5667					break;		/* Failed */
5668				if ((bp->b_flags & B_DELWRI) == 0) {
5669					BUF_UNLOCK(bp);
5670					break;	/* Buffer not dirty */
5671				}
5672				for (wk = LIST_FIRST(&bp->b_dep);
5673				     wk != NULL;
5674				     wk = LIST_NEXT(wk, wk_list))
5675					if (wk->wk_type == D_MKDIR)
5676						break;
5677				if (wk == NULL)
5678					BUF_UNLOCK(bp);	/* Dependency gone */
5679				else {
5680					/*
5681					 * D_MKDIR dependency remains,
5682					 * must write buffer to stable
5683					 * storage.
5684					 */
5685					BO_UNLOCK(bo);
5686					bremfree(bp);
5687					error = bwrite(bp);
5688					BO_LOCK(bo);
5689				}
5690				break;
5691			}
5692			BO_UNLOCK(bo);
5693			vput(vp);
5694			if (error != 0)
5695				break;	/* Flushing of first block failed */
5696			ACQUIRE_LOCK(&lk);
5697			/*
5698			 * If that cleared dependencies, go on to next.
5699			 */
5700			if (dap != LIST_FIRST(diraddhdp))
5701				continue;
5702			if (dap->da_state & MKDIR_BODY)
5703				panic("flush_pagedep_deps: MKDIR_BODY");
5704		}
5705		/*
5706		 * Flush the inode on which the directory entry depends.
5707		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
5708		 * the only remaining dependency is that the updated inode
5709		 * count must get pushed to disk. The inode has already
5710		 * been pushed into its inode buffer (via VOP_UPDATE) at
5711		 * the time of the reference count change. So we need only
5712		 * locate that buffer, ensure that there will be no rollback
5713		 * caused by a bitmap dependency, then write the inode buffer.
5714		 */
5715retry:
5716		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
5717			panic("flush_pagedep_deps: lost inode");
5718		/*
5719		 * If the inode still has bitmap dependencies,
5720		 * push them to disk.
5721		 */
5722		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5723			bp = inodedep->id_buf;
5724			bp = getdirtybuf(bp, &lk, MNT_WAIT);
5725			if (bp == NULL)
5726				goto retry;
5727			FREE_LOCK(&lk);
5728			if ((error = bwrite(bp)) != 0)
5729				break;
5730			ACQUIRE_LOCK(&lk);
5731			if (dap != LIST_FIRST(diraddhdp))
5732				continue;
5733		}
5734		/*
5735		 * If the inode is still sitting in a buffer waiting
5736		 * to be written, push it to disk.
5737		 */
5738		FREE_LOCK(&lk);
5739		if ((error = bread(ump->um_devvp,
5740		    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
5741		    (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) {
5742			brelse(bp);
5743			break;
5744		}
5745		if ((error = bwrite(bp)) != 0)
5746			break;
5747		ACQUIRE_LOCK(&lk);
5748		/*
5749		 * If we have failed to get rid of all the dependencies
5750		 * then something is seriously wrong.
5751		 */
5752		if (dap == LIST_FIRST(diraddhdp))
5753			panic("flush_pagedep_deps: flush failed");
5754	}
5755	if (error)
5756		ACQUIRE_LOCK(&lk);
5757	return (error);
5758}
5759
5760/*
5761 * A large burst of file addition or deletion activity can drive the
5762 * memory load excessively high. First attempt to slow things down
5763 * using the techniques below. If that fails, this routine requests
5764 * the offending operations to fall back to running synchronously
5765 * until the memory load returns to a reasonable level.
5766 */
5767int
5768softdep_slowdown(vp)
5769	struct vnode *vp;
5770{
5771	int max_softdeps_hard;
5772
5773	ACQUIRE_LOCK(&lk);
5774	max_softdeps_hard = max_softdeps * 11 / 10;
5775	if (num_dirrem < max_softdeps_hard / 2 &&
5776	    num_inodedep < max_softdeps_hard &&
5777	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
5778	    num_freeblkdep < max_softdeps_hard) {
5779		FREE_LOCK(&lk);
5780  		return (0);
5781	}
5782	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps)
5783		softdep_speedup();
5784	stat_sync_limit_hit += 1;
5785	FREE_LOCK(&lk);
5786	return (1);
5787}
5788
5789/*
5790 * Called by the allocation routines when they are about to fail
5791 * in the hope that we can free up some disk space.
5792 *
5793 * First check to see if the work list has anything on it. If it has,
5794 * clean up entries until we successfully free some space. Because this
5795 * process holds inodes locked, we cannot handle any remove requests
5796 * that might block on a locked inode as that could lead to deadlock.
5797 * If the worklist yields no free space, encourage the syncer daemon
5798 * to help us. In no event will we try for longer than tickdelay seconds.
5799 */
5800int
5801softdep_request_cleanup(fs, vp)
5802	struct fs *fs;
5803	struct vnode *vp;
5804{
5805	struct ufsmount *ump;
5806	long starttime;
5807	ufs2_daddr_t needed;
5808	int error;
5809
5810	ump = VTOI(vp)->i_ump;
5811	mtx_assert(UFS_MTX(ump), MA_OWNED);
5812	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
5813	starttime = time_second + tickdelay;
5814	/*
5815	 * If we are being called because of a process doing a
5816	 * copy-on-write, then it is not safe to update the vnode
5817	 * as we may recurse into the copy-on-write routine.
5818	 */
5819	if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
5820		UFS_UNLOCK(ump);
5821		error = ffs_update(vp, 1);
5822		UFS_LOCK(ump);
5823		if (error != 0)
5824			return (0);
5825	}
5826	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
5827		if (time_second > starttime)
5828			return (0);
5829		UFS_UNLOCK(ump);
5830		ACQUIRE_LOCK(&lk);
5831		if (ump->softdep_on_worklist > 0 &&
5832		    process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) {
5833			stat_worklist_push += 1;
5834			FREE_LOCK(&lk);
5835			UFS_LOCK(ump);
5836			continue;
5837		}
5838		request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT);
5839		FREE_LOCK(&lk);
5840		UFS_LOCK(ump);
5841	}
5842	return (1);
5843}
5844
5845/*
5846 * If memory utilization has gotten too high, deliberately slow things
5847 * down and speed up the I/O processing.
5848 */
5849extern struct thread *syncertd;
5850static int
5851request_cleanup(mp, resource)
5852	struct mount *mp;
5853	int resource;
5854{
5855	struct thread *td = curthread;
5856	struct ufsmount *ump;
5857
5858	mtx_assert(&lk, MA_OWNED);
5859	/*
5860	 * We never hold up the filesystem syncer or buf daemon.
5861	 */
5862	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
5863		return (0);
5864	ump = VFSTOUFS(mp);
5865	/*
5866	 * First check to see if the work list has gotten backlogged.
5867	 * If it has, co-opt this process to help clean up two entries.
5868	 * Because this process may hold inodes locked, we cannot
5869	 * handle any remove requests that might block on a locked
5870	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
5871	 * to avoid recursively processing the worklist.
5872	 */
5873	if (ump->softdep_on_worklist > max_softdeps / 10) {
5874		td->td_pflags |= TDP_SOFTDEP;
5875		process_worklist_item(mp, LK_NOWAIT);
5876		process_worklist_item(mp, LK_NOWAIT);
5877		td->td_pflags &= ~TDP_SOFTDEP;
5878		stat_worklist_push += 2;
5879		return(1);
5880	}
5881	/*
5882	 * Next, we attempt to speed up the syncer process. If that
5883	 * is successful, then we allow the process to continue.
5884	 */
5885	if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT)
5886		return(0);
5887	/*
5888	 * If we are resource constrained on inode dependencies, try
5889	 * flushing some dirty inodes. Otherwise, we are constrained
5890	 * by file deletions, so try accelerating flushes of directories
5891	 * with removal dependencies. We would like to do the cleanup
5892	 * here, but we probably hold an inode locked at this point and
5893	 * that might deadlock against one that we try to clean. So,
5894	 * the best that we can do is request the syncer daemon to do
5895	 * the cleanup for us.
5896	 */
5897	switch (resource) {
5898
5899	case FLUSH_INODES:
5900		stat_ino_limit_push += 1;
5901		req_clear_inodedeps += 1;
5902		stat_countp = &stat_ino_limit_hit;
5903		break;
5904
5905	case FLUSH_REMOVE:
5906	case FLUSH_REMOVE_WAIT:
5907		stat_blk_limit_push += 1;
5908		req_clear_remove += 1;
5909		stat_countp = &stat_blk_limit_hit;
5910		break;
5911
5912	default:
5913		panic("request_cleanup: unknown type");
5914	}
5915	/*
5916	 * Hopefully the syncer daemon will catch up and awaken us.
5917	 * We wait at most tickdelay before proceeding in any case.
5918	 */
5919	proc_waiting += 1;
5920	if (callout_pending(&softdep_callout) == FALSE)
5921		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
5922		    pause_timer, 0);
5923
5924	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
5925	proc_waiting -= 1;
5926	return (1);
5927}
5928
5929/*
5930 * Awaken processes pausing in request_cleanup and clear proc_waiting
5931 * to indicate that there is no longer a timer running.
5932 */
5933static void
5934pause_timer(arg)
5935	void *arg;
5936{
5937
5938	/*
5939	 * The callout_ API has acquired mtx and will hold it around this
5940	 * function call.
5941	 */
5942	*stat_countp += 1;
5943	wakeup_one(&proc_waiting);
5944	if (proc_waiting > 0)
5945		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
5946		    pause_timer, 0);
5947}
5948
5949/*
5950 * Flush out a directory with at least one removal dependency in an effort to
5951 * reduce the number of dirrem, freefile, and freeblks dependency structures.
5952 */
5953static void
5954clear_remove(td)
5955	struct thread *td;
5956{
5957	struct pagedep_hashhead *pagedephd;
5958	struct pagedep *pagedep;
5959	static int next = 0;
5960	struct mount *mp;
5961	struct vnode *vp;
5962	struct bufobj *bo;
5963	int error, cnt;
5964	ino_t ino;
5965
5966	mtx_assert(&lk, MA_OWNED);
5967
5968	for (cnt = 0; cnt < pagedep_hash; cnt++) {
5969		pagedephd = &pagedep_hashtbl[next++];
5970		if (next >= pagedep_hash)
5971			next = 0;
5972		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
5973			if (LIST_EMPTY(&pagedep->pd_dirremhd))
5974				continue;
5975			mp = pagedep->pd_list.wk_mp;
5976			ino = pagedep->pd_ino;
5977			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5978				continue;
5979			FREE_LOCK(&lk);
5980			if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
5981			     FFSV_FORCEINSMQ))) {
5982				softdep_error("clear_remove: vget", error);
5983				vn_finished_write(mp);
5984				ACQUIRE_LOCK(&lk);
5985				return;
5986			}
5987			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
5988				softdep_error("clear_remove: fsync", error);
5989			bo = &vp->v_bufobj;
5990			BO_LOCK(bo);
5991			drain_output(vp);
5992			BO_UNLOCK(bo);
5993			vput(vp);
5994			vn_finished_write(mp);
5995			ACQUIRE_LOCK(&lk);
5996			return;
5997		}
5998	}
5999}
6000
6001/*
6002 * Clear out a block of dirty inodes in an effort to reduce
6003 * the number of inodedep dependency structures.
6004 */
6005static void
6006clear_inodedeps(td)
6007	struct thread *td;
6008{
6009	struct inodedep_hashhead *inodedephd;
6010	struct inodedep *inodedep;
6011	static int next = 0;
6012	struct mount *mp;
6013	struct vnode *vp;
6014	struct fs *fs;
6015	int error, cnt;
6016	ino_t firstino, lastino, ino;
6017
6018	mtx_assert(&lk, MA_OWNED);
6019	/*
6020	 * Pick a random inode dependency to be cleared.
6021	 * We will then gather up all the inodes in its block
6022	 * that have dependencies and flush them out.
6023	 */
6024	for (cnt = 0; cnt < inodedep_hash; cnt++) {
6025		inodedephd = &inodedep_hashtbl[next++];
6026		if (next >= inodedep_hash)
6027			next = 0;
6028		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
6029			break;
6030	}
6031	if (inodedep == NULL)
6032		return;
6033	fs = inodedep->id_fs;
6034	mp = inodedep->id_list.wk_mp;
6035	/*
6036	 * Find the last inode in the block with dependencies.
6037	 */
6038	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
6039	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
6040		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
6041			break;
6042	/*
6043	 * Asynchronously push all but the last inode with dependencies.
6044	 * Synchronously push the last inode with dependencies to ensure
6045	 * that the inode block gets written to free up the inodedeps.
6046	 */
6047	for (ino = firstino; ino <= lastino; ino++) {
6048		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
6049			continue;
6050		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
6051			continue;
6052		FREE_LOCK(&lk);
6053		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
6054		    FFSV_FORCEINSMQ)) != 0) {
6055			softdep_error("clear_inodedeps: vget", error);
6056			vn_finished_write(mp);
6057			ACQUIRE_LOCK(&lk);
6058			return;
6059		}
6060		if (ino == lastino) {
6061			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
6062				softdep_error("clear_inodedeps: fsync1", error);
6063		} else {
6064			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
6065				softdep_error("clear_inodedeps: fsync2", error);
6066			BO_LOCK(&vp->v_bufobj);
6067			drain_output(vp);
6068			BO_UNLOCK(&vp->v_bufobj);
6069		}
6070		vput(vp);
6071		vn_finished_write(mp);
6072		ACQUIRE_LOCK(&lk);
6073	}
6074}
6075
6076/*
6077 * Function to determine if the buffer has outstanding dependencies
6078 * that will cause a roll-back if the buffer is written. If wantcount
6079 * is set, return number of dependencies, otherwise just yes or no.
6080 */
6081static int
6082softdep_count_dependencies(bp, wantcount)
6083	struct buf *bp;
6084	int wantcount;
6085{
6086	struct worklist *wk;
6087	struct inodedep *inodedep;
6088	struct indirdep *indirdep;
6089	struct allocindir *aip;
6090	struct pagedep *pagedep;
6091	struct diradd *dap;
6092	int i, retval;
6093
6094	retval = 0;
6095	ACQUIRE_LOCK(&lk);
6096	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6097		switch (wk->wk_type) {
6098
6099		case D_INODEDEP:
6100			inodedep = WK_INODEDEP(wk);
6101			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
6102				/* bitmap allocation dependency */
6103				retval += 1;
6104				if (!wantcount)
6105					goto out;
6106			}
6107			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
6108				/* direct block pointer dependency */
6109				retval += 1;
6110				if (!wantcount)
6111					goto out;
6112			}
6113			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
6114				/* direct block pointer dependency */
6115				retval += 1;
6116				if (!wantcount)
6117					goto out;
6118			}
6119			continue;
6120
6121		case D_INDIRDEP:
6122			indirdep = WK_INDIRDEP(wk);
6123
6124			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
6125				/* indirect block pointer dependency */
6126				retval += 1;
6127				if (!wantcount)
6128					goto out;
6129			}
6130			continue;
6131
6132		case D_PAGEDEP:
6133			pagedep = WK_PAGEDEP(wk);
6134			for (i = 0; i < DAHASHSZ; i++) {
6135
6136				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
6137					/* directory entry dependency */
6138					retval += 1;
6139					if (!wantcount)
6140						goto out;
6141				}
6142			}
6143			continue;
6144
6145		case D_BMSAFEMAP:
6146		case D_ALLOCDIRECT:
6147		case D_ALLOCINDIR:
6148		case D_MKDIR:
6149			/* never a dependency on these blocks */
6150			continue;
6151
6152		default:
6153			panic("softdep_check_for_rollback: Unexpected type %s",
6154			    TYPENAME(wk->wk_type));
6155			/* NOTREACHED */
6156		}
6157	}
6158out:
6159	FREE_LOCK(&lk);
6160	return retval;
6161}
6162
6163/*
6164 * Acquire exclusive access to a buffer.
6165 * Must be called with a locked mtx parameter.
6166 * Return acquired buffer or NULL on failure.
6167 */
6168static struct buf *
6169getdirtybuf(bp, mtx, waitfor)
6170	struct buf *bp;
6171	struct mtx *mtx;
6172	int waitfor;
6173{
6174	int error;
6175
6176	mtx_assert(mtx, MA_OWNED);
6177	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
6178		if (waitfor != MNT_WAIT)
6179			return (NULL);
6180		error = BUF_LOCK(bp,
6181		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
6182		/*
6183		 * Even if we sucessfully acquire bp here, we have dropped
6184		 * mtx, which may violates our guarantee.
6185		 */
6186		if (error == 0)
6187			BUF_UNLOCK(bp);
6188		else if (error != ENOLCK)
6189			panic("getdirtybuf: inconsistent lock: %d", error);
6190		mtx_lock(mtx);
6191		return (NULL);
6192	}
6193	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
6194		if (mtx == &lk && waitfor == MNT_WAIT) {
6195			mtx_unlock(mtx);
6196			BO_LOCK(bp->b_bufobj);
6197			BUF_UNLOCK(bp);
6198			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
6199				bp->b_vflags |= BV_BKGRDWAIT;
6200				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
6201				       PRIBIO | PDROP, "getbuf", 0);
6202			} else
6203				BO_UNLOCK(bp->b_bufobj);
6204			mtx_lock(mtx);
6205			return (NULL);
6206		}
6207		BUF_UNLOCK(bp);
6208		if (waitfor != MNT_WAIT)
6209			return (NULL);
6210		/*
6211		 * The mtx argument must be bp->b_vp's mutex in
6212		 * this case.
6213		 */
6214#ifdef	DEBUG_VFS_LOCKS
6215		if (bp->b_vp->v_type != VCHR)
6216			ASSERT_BO_LOCKED(bp->b_bufobj);
6217#endif
6218		bp->b_vflags |= BV_BKGRDWAIT;
6219		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
6220		return (NULL);
6221	}
6222	if ((bp->b_flags & B_DELWRI) == 0) {
6223		BUF_UNLOCK(bp);
6224		return (NULL);
6225	}
6226	bremfree(bp);
6227	return (bp);
6228}
6229
6230
6231/*
6232 * Check if it is safe to suspend the file system now.  On entry,
6233 * the vnode interlock for devvp should be held.  Return 0 with
6234 * the mount interlock held if the file system can be suspended now,
6235 * otherwise return EAGAIN with the mount interlock held.
6236 */
6237int
6238softdep_check_suspend(struct mount *mp,
6239		      struct vnode *devvp,
6240		      int softdep_deps,
6241		      int softdep_accdeps,
6242		      int secondary_writes,
6243		      int secondary_accwrites)
6244{
6245	struct bufobj *bo;
6246	struct ufsmount *ump;
6247	int error;
6248
6249	ump = VFSTOUFS(mp);
6250	bo = &devvp->v_bufobj;
6251	ASSERT_BO_LOCKED(bo);
6252
6253	for (;;) {
6254		if (!TRY_ACQUIRE_LOCK(&lk)) {
6255			BO_UNLOCK(bo);
6256			ACQUIRE_LOCK(&lk);
6257			FREE_LOCK(&lk);
6258			BO_LOCK(bo);
6259			continue;
6260		}
6261		MNT_ILOCK(mp);
6262		if (mp->mnt_secondary_writes != 0) {
6263			FREE_LOCK(&lk);
6264			BO_UNLOCK(bo);
6265			msleep(&mp->mnt_secondary_writes,
6266			       MNT_MTX(mp),
6267			       (PUSER - 1) | PDROP, "secwr", 0);
6268			BO_LOCK(bo);
6269			continue;
6270		}
6271		break;
6272	}
6273
6274	/*
6275	 * Reasons for needing more work before suspend:
6276	 * - Dirty buffers on devvp.
6277	 * - Softdep activity occurred after start of vnode sync loop
6278	 * - Secondary writes occurred after start of vnode sync loop
6279	 */
6280	error = 0;
6281	if (bo->bo_numoutput > 0 ||
6282	    bo->bo_dirty.bv_cnt > 0 ||
6283	    softdep_deps != 0 ||
6284	    ump->softdep_deps != 0 ||
6285	    softdep_accdeps != ump->softdep_accdeps ||
6286	    secondary_writes != 0 ||
6287	    mp->mnt_secondary_writes != 0 ||
6288	    secondary_accwrites != mp->mnt_secondary_accwrites)
6289		error = EAGAIN;
6290	FREE_LOCK(&lk);
6291	BO_UNLOCK(bo);
6292	return (error);
6293}
6294
6295
6296/*
6297 * Get the number of dependency structures for the file system, both
6298 * the current number and the total number allocated.  These will
6299 * later be used to detect that softdep processing has occurred.
6300 */
6301void
6302softdep_get_depcounts(struct mount *mp,
6303		      int *softdep_depsp,
6304		      int *softdep_accdepsp)
6305{
6306	struct ufsmount *ump;
6307
6308	ump = VFSTOUFS(mp);
6309	ACQUIRE_LOCK(&lk);
6310	*softdep_depsp = ump->softdep_deps;
6311	*softdep_accdepsp = ump->softdep_accdeps;
6312	FREE_LOCK(&lk);
6313}
6314
6315/*
6316 * Wait for pending output on a vnode to complete.
6317 * Must be called with vnode lock and interlock locked.
6318 *
6319 * XXX: Should just be a call to bufobj_wwait().
6320 */
6321static void
6322drain_output(vp)
6323	struct vnode *vp;
6324{
6325	struct bufobj *bo;
6326
6327	bo = &vp->v_bufobj;
6328	ASSERT_VOP_LOCKED(vp, "drain_output");
6329	ASSERT_BO_LOCKED(bo);
6330
6331	while (bo->bo_numoutput) {
6332		bo->bo_flag |= BO_WWAIT;
6333		msleep((caddr_t)&bo->bo_numoutput,
6334		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
6335	}
6336}
6337
6338/*
6339 * Called whenever a buffer that is being invalidated or reallocated
6340 * contains dependencies. This should only happen if an I/O error has
6341 * occurred. The routine is called with the buffer locked.
6342 */
6343static void
6344softdep_deallocate_dependencies(bp)
6345	struct buf *bp;
6346{
6347
6348	if ((bp->b_ioflags & BIO_ERROR) == 0)
6349		panic("softdep_deallocate_dependencies: dangling deps");
6350	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
6351	panic("softdep_deallocate_dependencies: unrecovered I/O error");
6352}
6353
6354/*
6355 * Function to handle asynchronous write errors in the filesystem.
6356 */
6357static void
6358softdep_error(func, error)
6359	char *func;
6360	int error;
6361{
6362
6363	/* XXX should do something better! */
6364	printf("%s: got error %d while accessing filesystem\n", func, error);
6365}
6366
6367#ifdef DDB
6368
6369DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
6370{
6371	struct inodedep_hashhead *inodedephd;
6372	struct inodedep *inodedep;
6373	struct fs *fs;
6374	int cnt;
6375
6376	fs = have_addr ? (struct fs *)addr : NULL;
6377	for (cnt = 0; cnt < inodedep_hash; cnt++) {
6378		inodedephd = &inodedep_hashtbl[cnt];
6379		LIST_FOREACH(inodedep, inodedephd, id_hash) {
6380			if (fs != NULL && fs != inodedep->id_fs)
6381				continue;
6382			db_printf("%p fs %p st %x ino %jd inoblk %jd\n",
6383			    inodedep, inodedep->id_fs, inodedep->id_state,
6384			    (intmax_t)inodedep->id_ino,
6385			    (intmax_t)fsbtodb(inodedep->id_fs,
6386			    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)));
6387		}
6388	}
6389}
6390
6391#endif /* DDB */
6392
6393#endif /* SOFTUPDATES */
6394