ffs_softdep.c revision 158338
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12 *	1614 Oxford Street		mckusick@mckusick.com
13 *	Berkeley, CA 94709-1608		+1-510-843-9542
14 *	USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 158338 2006-05-06 20:51:31Z tegge $");
43
44/*
45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46 */
47#ifndef DIAGNOSTIC
48#define DIAGNOSTIC
49#endif
50#ifndef DEBUG
51#define DEBUG
52#endif
53
54#include <sys/param.h>
55#include <sys/kernel.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/kdb.h>
60#include <sys/kthread.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mount.h>
64#include <sys/mutex.h>
65#include <sys/proc.h>
66#include <sys/stat.h>
67#include <sys/sysctl.h>
68#include <sys/syslog.h>
69#include <sys/vnode.h>
70#include <sys/conf.h>
71#include <ufs/ufs/dir.h>
72#include <ufs/ufs/extattr.h>
73#include <ufs/ufs/quota.h>
74#include <ufs/ufs/inode.h>
75#include <ufs/ufs/ufsmount.h>
76#include <ufs/ffs/fs.h>
77#include <ufs/ffs/softdep.h>
78#include <ufs/ffs/ffs_extern.h>
79#include <ufs/ufs/ufs_extern.h>
80
81#include <vm/vm.h>
82
83#include "opt_ffs.h"
84
85#ifndef SOFTUPDATES
86
87int
88softdep_flushfiles(oldmnt, flags, td)
89	struct mount *oldmnt;
90	int flags;
91	struct thread *td;
92{
93
94	panic("softdep_flushfiles called");
95}
96
97int
98softdep_mount(devvp, mp, fs, cred)
99	struct vnode *devvp;
100	struct mount *mp;
101	struct fs *fs;
102	struct ucred *cred;
103{
104
105	return (0);
106}
107
108void
109softdep_initialize()
110{
111
112	return;
113}
114
115void
116softdep_uninitialize()
117{
118
119	return;
120}
121
122void
123softdep_setup_inomapdep(bp, ip, newinum)
124	struct buf *bp;
125	struct inode *ip;
126	ino_t newinum;
127{
128
129	panic("softdep_setup_inomapdep called");
130}
131
132void
133softdep_setup_blkmapdep(bp, mp, newblkno)
134	struct buf *bp;
135	struct mount *mp;
136	ufs2_daddr_t newblkno;
137{
138
139	panic("softdep_setup_blkmapdep called");
140}
141
142void
143softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
144	struct inode *ip;
145	ufs_lbn_t lbn;
146	ufs2_daddr_t newblkno;
147	ufs2_daddr_t oldblkno;
148	long newsize;
149	long oldsize;
150	struct buf *bp;
151{
152
153	panic("softdep_setup_allocdirect called");
154}
155
156void
157softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
158	struct inode *ip;
159	ufs_lbn_t lbn;
160	ufs2_daddr_t newblkno;
161	ufs2_daddr_t oldblkno;
162	long newsize;
163	long oldsize;
164	struct buf *bp;
165{
166
167	panic("softdep_setup_allocext called");
168}
169
170void
171softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
172	struct inode *ip;
173	ufs_lbn_t lbn;
174	struct buf *bp;
175	int ptrno;
176	ufs2_daddr_t newblkno;
177	ufs2_daddr_t oldblkno;
178	struct buf *nbp;
179{
180
181	panic("softdep_setup_allocindir_page called");
182}
183
184void
185softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
186	struct buf *nbp;
187	struct inode *ip;
188	struct buf *bp;
189	int ptrno;
190	ufs2_daddr_t newblkno;
191{
192
193	panic("softdep_setup_allocindir_meta called");
194}
195
196void
197softdep_setup_freeblocks(ip, length, flags)
198	struct inode *ip;
199	off_t length;
200	int flags;
201{
202
203	panic("softdep_setup_freeblocks called");
204}
205
206void
207softdep_freefile(pvp, ino, mode)
208		struct vnode *pvp;
209		ino_t ino;
210		int mode;
211{
212
213	panic("softdep_freefile called");
214}
215
216int
217softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
218	struct buf *bp;
219	struct inode *dp;
220	off_t diroffset;
221	ino_t newinum;
222	struct buf *newdirbp;
223	int isnewblk;
224{
225
226	panic("softdep_setup_directory_add called");
227}
228
229void
230softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
231	struct inode *dp;
232	caddr_t base;
233	caddr_t oldloc;
234	caddr_t newloc;
235	int entrysize;
236{
237
238	panic("softdep_change_directoryentry_offset called");
239}
240
241void
242softdep_setup_remove(bp, dp, ip, isrmdir)
243	struct buf *bp;
244	struct inode *dp;
245	struct inode *ip;
246	int isrmdir;
247{
248
249	panic("softdep_setup_remove called");
250}
251
252void
253softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
254	struct buf *bp;
255	struct inode *dp;
256	struct inode *ip;
257	ino_t newinum;
258	int isrmdir;
259{
260
261	panic("softdep_setup_directory_change called");
262}
263
264void
265softdep_change_linkcnt(ip)
266	struct inode *ip;
267{
268
269	panic("softdep_change_linkcnt called");
270}
271
272void
273softdep_load_inodeblock(ip)
274	struct inode *ip;
275{
276
277	panic("softdep_load_inodeblock called");
278}
279
280void
281softdep_update_inodeblock(ip, bp, waitfor)
282	struct inode *ip;
283	struct buf *bp;
284	int waitfor;
285{
286
287	panic("softdep_update_inodeblock called");
288}
289
290int
291softdep_fsync(vp)
292	struct vnode *vp;	/* the "in_core" copy of the inode */
293{
294
295	return (0);
296}
297
298void
299softdep_fsync_mountdev(vp)
300	struct vnode *vp;
301{
302
303	return;
304}
305
306int
307softdep_flushworklist(oldmnt, countp, td)
308	struct mount *oldmnt;
309	int *countp;
310	struct thread *td;
311{
312
313	*countp = 0;
314	return (0);
315}
316
317int
318softdep_sync_metadata(struct vnode *vp)
319{
320
321	return (0);
322}
323
324int
325softdep_slowdown(vp)
326	struct vnode *vp;
327{
328
329	panic("softdep_slowdown called");
330}
331
332void
333softdep_releasefile(ip)
334	struct inode *ip;	/* inode with the zero effective link count */
335{
336
337	panic("softdep_releasefile called");
338}
339
340int
341softdep_request_cleanup(fs, vp)
342	struct fs *fs;
343	struct vnode *vp;
344{
345
346	return (0);
347}
348
349int
350softdep_check_suspend(struct mount *mp,
351		      struct vnode *devvp,
352		      int softdep_deps,
353		      int softdep_accdeps,
354		      int secondary_writes,
355		      int secondary_accwrites)
356{
357	struct bufobj *bo;
358	int error;
359
360	(void) softdep_deps,
361	(void) softdep_accdeps;
362
363	ASSERT_VI_LOCKED(devvp, "softdep_check_suspend");
364	bo = &devvp->v_bufobj;
365
366	for (;;) {
367		if (!MNT_ITRYLOCK(mp)) {
368			VI_UNLOCK(devvp);
369			MNT_ILOCK(mp);
370			MNT_IUNLOCK(mp);
371			VI_LOCK(devvp);
372			continue;
373		}
374		if (mp->mnt_secondary_writes != 0) {
375			VI_UNLOCK(devvp);
376			msleep(&mp->mnt_secondary_writes,
377			       MNT_MTX(mp),
378			       (PUSER - 1) | PDROP, "secwr", 0);
379			VI_LOCK(devvp);
380			continue;
381		}
382		break;
383	}
384
385	/*
386	 * Reasons for needing more work before suspend:
387	 * - Dirty buffers on devvp.
388	 * - Secondary writes occurred after start of vnode sync loop
389	 */
390	error = 0;
391	if (bo->bo_numoutput > 0 ||
392	    bo->bo_dirty.bv_cnt > 0 ||
393	    secondary_writes != 0 ||
394	    mp->mnt_secondary_writes != 0 ||
395	    secondary_accwrites != mp->mnt_secondary_accwrites)
396		error = EAGAIN;
397	VI_UNLOCK(devvp);
398	return (error);
399}
400
401void
402softdep_get_depcounts(struct mount *mp,
403		      int *softdepactivep,
404		      int *softdepactiveaccp)
405{
406	(void) mp;
407	*softdepactivep = 0;
408	*softdepactiveaccp = 0;
409}
410
411#else
412/*
413 * These definitions need to be adapted to the system to which
414 * this file is being ported.
415 */
416/*
417 * malloc types defined for the softdep system.
418 */
419static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
420static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
421static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
422static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
423static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
424static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
425static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
426static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
427static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
428static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
429static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
430static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
431static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
432static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block");
433static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes");
434
435#define M_SOFTDEP_FLAGS	(M_WAITOK | M_USE_RESERVE)
436
437#define	D_PAGEDEP	0
438#define	D_INODEDEP	1
439#define	D_NEWBLK	2
440#define	D_BMSAFEMAP	3
441#define	D_ALLOCDIRECT	4
442#define	D_INDIRDEP	5
443#define	D_ALLOCINDIR	6
444#define	D_FREEFRAG	7
445#define	D_FREEBLKS	8
446#define	D_FREEFILE	9
447#define	D_DIRADD	10
448#define	D_MKDIR		11
449#define	D_DIRREM	12
450#define	D_NEWDIRBLK	13
451#define	D_LAST		D_NEWDIRBLK
452
453/*
454 * translate from workitem type to memory type
455 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
456 */
457static struct malloc_type *memtype[] = {
458	M_PAGEDEP,
459	M_INODEDEP,
460	M_NEWBLK,
461	M_BMSAFEMAP,
462	M_ALLOCDIRECT,
463	M_INDIRDEP,
464	M_ALLOCINDIR,
465	M_FREEFRAG,
466	M_FREEBLKS,
467	M_FREEFILE,
468	M_DIRADD,
469	M_MKDIR,
470	M_DIRREM,
471	M_NEWDIRBLK
472};
473
474#define DtoM(type) (memtype[type])
475
476/*
477 * Names of malloc types.
478 */
479#define TYPENAME(type)  \
480	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
481/*
482 * End system adaptation definitions.
483 */
484
485/*
486 * Forward declarations.
487 */
488struct inodedep_hashhead;
489struct newblk_hashhead;
490struct pagedep_hashhead;
491
492/*
493 * Internal function prototypes.
494 */
495static	void softdep_error(char *, int);
496static	void drain_output(struct vnode *);
497static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
498static	void clear_remove(struct thread *);
499static	void clear_inodedeps(struct thread *);
500static	int flush_pagedep_deps(struct vnode *, struct mount *,
501	    struct diraddhd *);
502static	int flush_inodedep_deps(struct mount *, ino_t);
503static	int flush_deplist(struct allocdirectlst *, int, int *);
504static	int handle_written_filepage(struct pagedep *, struct buf *);
505static  void diradd_inode_written(struct diradd *, struct inodedep *);
506static	int handle_written_inodeblock(struct inodedep *, struct buf *);
507static	void handle_allocdirect_partdone(struct allocdirect *);
508static	void handle_allocindir_partdone(struct allocindir *);
509static	void initiate_write_filepage(struct pagedep *, struct buf *);
510static	void handle_written_mkdir(struct mkdir *, int);
511static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
512static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
513static	void handle_workitem_freefile(struct freefile *);
514static	void handle_workitem_remove(struct dirrem *, struct vnode *);
515static	struct dirrem *newdirrem(struct buf *, struct inode *,
516	    struct inode *, int, struct dirrem **);
517static	void free_diradd(struct diradd *);
518static	void free_allocindir(struct allocindir *, struct inodedep *);
519static	void free_newdirblk(struct newdirblk *);
520static	int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t,
521	    ufs2_daddr_t *);
522static	void deallocate_dependencies(struct buf *, struct inodedep *);
523static	void free_allocdirect(struct allocdirectlst *,
524	    struct allocdirect *, int);
525static	int check_inode_unwritten(struct inodedep *);
526static	int free_inodedep(struct inodedep *);
527static	void handle_workitem_freeblocks(struct freeblks *, int);
528static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
529static	void setup_allocindir_phase2(struct buf *, struct inode *,
530	    struct allocindir *);
531static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
532	    ufs2_daddr_t);
533static	void handle_workitem_freefrag(struct freefrag *);
534static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long);
535static	void allocdirect_merge(struct allocdirectlst *,
536	    struct allocdirect *, struct allocdirect *);
537static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *);
538static	int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t,
539	    struct newblk **);
540static	int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **);
541static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
542	    struct inodedep **);
543static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
544static	int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **);
545static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
546	    struct mount *mp, int, struct pagedep **);
547static	void pause_timer(void *);
548static	int request_cleanup(struct mount *, int);
549static	int process_worklist_item(struct mount *, int);
550static	void add_to_worklist(struct worklist *);
551static	void softdep_flush(void);
552static	int softdep_speedup(void);
553
554/*
555 * Exported softdep operations.
556 */
557static	void softdep_disk_io_initiation(struct buf *);
558static	void softdep_disk_write_complete(struct buf *);
559static	void softdep_deallocate_dependencies(struct buf *);
560static	int softdep_count_dependencies(struct buf *bp, int);
561
562static struct mtx lk;
563MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
564
565#define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
566#define ACQUIRE_LOCK(lk)		mtx_lock(lk)
567#define FREE_LOCK(lk)			mtx_unlock(lk)
568
569/*
570 * Worklist queue management.
571 * These routines require that the lock be held.
572 */
573#ifndef /* NOT */ DEBUG
574#define WORKLIST_INSERT(head, item) do {	\
575	(item)->wk_state |= ONWORKLIST;		\
576	LIST_INSERT_HEAD(head, item, wk_list);	\
577} while (0)
578#define WORKLIST_REMOVE(item) do {		\
579	(item)->wk_state &= ~ONWORKLIST;	\
580	LIST_REMOVE(item, wk_list);		\
581} while (0)
582#else /* DEBUG */
583static	void worklist_insert(struct workhead *, struct worklist *);
584static	void worklist_remove(struct worklist *);
585
586#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
587#define WORKLIST_REMOVE(item) worklist_remove(item)
588
589static void
590worklist_insert(head, item)
591	struct workhead *head;
592	struct worklist *item;
593{
594
595	mtx_assert(&lk, MA_OWNED);
596	if (item->wk_state & ONWORKLIST)
597		panic("worklist_insert: already on list");
598	item->wk_state |= ONWORKLIST;
599	LIST_INSERT_HEAD(head, item, wk_list);
600}
601
602static void
603worklist_remove(item)
604	struct worklist *item;
605{
606
607	mtx_assert(&lk, MA_OWNED);
608	if ((item->wk_state & ONWORKLIST) == 0)
609		panic("worklist_remove: not on list");
610	item->wk_state &= ~ONWORKLIST;
611	LIST_REMOVE(item, wk_list);
612}
613#endif /* DEBUG */
614
615/*
616 * Routines for tracking and managing workitems.
617 */
618static	void workitem_free(struct worklist *, int);
619static	void workitem_alloc(struct worklist *, int, struct mount *);
620
621#define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
622
623static void
624workitem_free(item, type)
625	struct worklist *item;
626	int type;
627{
628	struct ufsmount *ump;
629	mtx_assert(&lk, MA_OWNED);
630
631#ifdef DEBUG
632	if (item->wk_state & ONWORKLIST)
633		panic("workitem_free: still on list");
634	if (item->wk_type != type)
635		panic("workitem_free: type mismatch");
636#endif
637	ump = VFSTOUFS(item->wk_mp);
638	if (--ump->softdep_deps == 0 && ump->softdep_req)
639		wakeup(&ump->softdep_deps);
640	FREE(item, DtoM(type));
641}
642
643static void
644workitem_alloc(item, type, mp)
645	struct worklist *item;
646	int type;
647	struct mount *mp;
648{
649	item->wk_type = type;
650	item->wk_mp = mp;
651	item->wk_state = 0;
652	ACQUIRE_LOCK(&lk);
653	VFSTOUFS(mp)->softdep_deps++;
654	VFSTOUFS(mp)->softdep_accdeps++;
655	FREE_LOCK(&lk);
656}
657
658/*
659 * Workitem queue management
660 */
661static int max_softdeps;	/* maximum number of structs before slowdown */
662static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
663static int tickdelay = 2;	/* number of ticks to pause during slowdown */
664static int proc_waiting;	/* tracks whether we have a timeout posted */
665static int *stat_countp;	/* statistic to count in proc_waiting timeout */
666static struct callout_handle handle; /* handle on posted proc_waiting timeout */
667static int req_pending;
668static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
669#define FLUSH_INODES		1
670static int req_clear_remove;	/* syncer process flush some freeblks */
671#define FLUSH_REMOVE		2
672#define FLUSH_REMOVE_WAIT	3
673/*
674 * runtime statistics
675 */
676static int stat_worklist_push;	/* number of worklist cleanups */
677static int stat_blk_limit_push;	/* number of times block limit neared */
678static int stat_ino_limit_push;	/* number of times inode limit neared */
679static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
680static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
681static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
682static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
683static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
684static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
685static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
686
687SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
688SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
689SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, "");
690SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
691SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
692SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
693SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
694SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
695SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
696SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
697SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
698SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
699SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
700/* SYSCTL_INT(_debug, OID_AUTO, worklist_num, CTLFLAG_RD, &softdep_on_worklist, 0, ""); */
701
702SYSCTL_DECL(_vfs_ffs);
703
704static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
705SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
706	   &compute_summary_at_mount, 0, "Recompute summary at mount");
707
708static struct proc *softdepproc;
709static struct kproc_desc softdep_kp = {
710	"softdepflush",
711	softdep_flush,
712	&softdepproc
713};
714SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, &softdep_kp)
715
716static void
717softdep_flush(void)
718{
719	struct mount *nmp;
720	struct mount *mp;
721	struct ufsmount *ump;
722	struct thread *td;
723	int remaining;
724	int vfslocked;
725
726	td = curthread;
727	td->td_pflags |= TDP_NORUNNINGBUF;
728
729	for (;;) {
730		kthread_suspend_check(softdepproc);
731		ACQUIRE_LOCK(&lk);
732		/*
733		 * If requested, try removing inode or removal dependencies.
734		 */
735		if (req_clear_inodedeps) {
736			clear_inodedeps(td);
737			req_clear_inodedeps -= 1;
738			wakeup_one(&proc_waiting);
739		}
740		if (req_clear_remove) {
741			clear_remove(td);
742			req_clear_remove -= 1;
743			wakeup_one(&proc_waiting);
744		}
745		FREE_LOCK(&lk);
746		remaining = 0;
747		mtx_lock(&mountlist_mtx);
748		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
749			nmp = TAILQ_NEXT(mp, mnt_list);
750			if ((mp->mnt_flag & MNT_SOFTDEP) == 0)
751				continue;
752			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
753				continue;
754			vfslocked = VFS_LOCK_GIANT(mp);
755			softdep_process_worklist(mp, 0);
756			ump = VFSTOUFS(mp);
757			remaining += ump->softdep_on_worklist -
758				ump->softdep_on_worklist_inprogress;
759			VFS_UNLOCK_GIANT(vfslocked);
760			mtx_lock(&mountlist_mtx);
761			nmp = TAILQ_NEXT(mp, mnt_list);
762			vfs_unbusy(mp, td);
763		}
764		mtx_unlock(&mountlist_mtx);
765		if (remaining)
766			continue;
767		ACQUIRE_LOCK(&lk);
768		if (!req_pending)
769			msleep(&req_pending, &lk, PVM, "sdflush", hz);
770		req_pending = 0;
771		FREE_LOCK(&lk);
772	}
773}
774
775static int
776softdep_speedup(void)
777{
778
779	mtx_assert(&lk, MA_OWNED);
780	if (req_pending == 0) {
781		req_pending = 1;
782		wakeup(&req_pending);
783	}
784
785	return speedup_syncer();
786}
787
788/*
789 * Add an item to the end of the work queue.
790 * This routine requires that the lock be held.
791 * This is the only routine that adds items to the list.
792 * The following routine is the only one that removes items
793 * and does so in order from first to last.
794 */
795static void
796add_to_worklist(wk)
797	struct worklist *wk;
798{
799	struct ufsmount *ump;
800
801	mtx_assert(&lk, MA_OWNED);
802	ump = VFSTOUFS(wk->wk_mp);
803	if (wk->wk_state & ONWORKLIST)
804		panic("add_to_worklist: already on list");
805	wk->wk_state |= ONWORKLIST;
806	if (LIST_FIRST(&ump->softdep_workitem_pending) == NULL)
807		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
808	else
809		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
810	ump->softdep_worklist_tail = wk;
811	ump->softdep_on_worklist += 1;
812}
813
814/*
815 * Process that runs once per second to handle items in the background queue.
816 *
817 * Note that we ensure that everything is done in the order in which they
818 * appear in the queue. The code below depends on this property to ensure
819 * that blocks of a file are freed before the inode itself is freed. This
820 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
821 * until all the old ones have been purged from the dependency lists.
822 */
823int
824softdep_process_worklist(mp, full)
825	struct mount *mp;
826	int full;
827{
828	struct thread *td = curthread;
829	int cnt, matchcnt, loopcount;
830	struct ufsmount *ump;
831	long starttime;
832
833	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
834	/*
835	 * Record the process identifier of our caller so that we can give
836	 * this process preferential treatment in request_cleanup below.
837	 */
838	matchcnt = 0;
839	ump = VFSTOUFS(mp);
840	ACQUIRE_LOCK(&lk);
841	loopcount = 1;
842	starttime = time_second;
843	while (ump->softdep_on_worklist > 0) {
844		if ((cnt = process_worklist_item(mp, 0)) == -1)
845			break;
846		else
847			matchcnt += cnt;
848		/*
849		 * If requested, try removing inode or removal dependencies.
850		 */
851		if (req_clear_inodedeps) {
852			clear_inodedeps(td);
853			req_clear_inodedeps -= 1;
854			wakeup_one(&proc_waiting);
855		}
856		if (req_clear_remove) {
857			clear_remove(td);
858			req_clear_remove -= 1;
859			wakeup_one(&proc_waiting);
860		}
861		/*
862		 * We do not generally want to stop for buffer space, but if
863		 * we are really being a buffer hog, we will stop and wait.
864		 */
865		if (loopcount++ % 128 == 0) {
866			FREE_LOCK(&lk);
867			bwillwrite();
868			ACQUIRE_LOCK(&lk);
869		}
870		/*
871		 * Never allow processing to run for more than one
872		 * second. Otherwise the other mountpoints may get
873		 * excessively backlogged.
874		 */
875		if (!full && starttime != time_second) {
876			matchcnt = -1;
877			break;
878		}
879	}
880	FREE_LOCK(&lk);
881	return (matchcnt);
882}
883
884/*
885 * Process one item on the worklist.
886 */
887static int
888process_worklist_item(mp, flags)
889	struct mount *mp;
890	int flags;
891{
892	struct worklist *wk, *wkend;
893	struct ufsmount *ump;
894	struct vnode *vp;
895	int matchcnt = 0;
896
897	mtx_assert(&lk, MA_OWNED);
898	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
899	/*
900	 * If we are being called because of a process doing a
901	 * copy-on-write, then it is not safe to write as we may
902	 * recurse into the copy-on-write routine.
903	 */
904	if (curthread->td_pflags & TDP_COWINPROGRESS)
905		return (-1);
906	/*
907	 * Normally we just process each item on the worklist in order.
908	 * However, if we are in a situation where we cannot lock any
909	 * inodes, we have to skip over any dirrem requests whose
910	 * vnodes are resident and locked.
911	 */
912	ump = VFSTOUFS(mp);
913	vp = NULL;
914	LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) {
915		if (wk->wk_state & INPROGRESS)
916			continue;
917		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
918			break;
919		wk->wk_state |= INPROGRESS;
920		ump->softdep_on_worklist_inprogress++;
921		FREE_LOCK(&lk);
922		ffs_vget(mp, WK_DIRREM(wk)->dm_oldinum,
923		    LK_NOWAIT | LK_EXCLUSIVE, &vp);
924		ACQUIRE_LOCK(&lk);
925		wk->wk_state &= ~INPROGRESS;
926		ump->softdep_on_worklist_inprogress--;
927		if (vp != NULL)
928			break;
929	}
930	if (wk == 0)
931		return (-1);
932	/*
933	 * Remove the item to be processed. If we are removing the last
934	 * item on the list, we need to recalculate the tail pointer.
935	 * As this happens rarely and usually when the list is short,
936	 * we just run down the list to find it rather than tracking it
937	 * in the above loop.
938	 */
939	WORKLIST_REMOVE(wk);
940	if (wk == ump->softdep_worklist_tail) {
941		LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list)
942			if (LIST_NEXT(wkend, wk_list) == NULL)
943				break;
944		ump->softdep_worklist_tail = wkend;
945	}
946	ump->softdep_on_worklist -= 1;
947	FREE_LOCK(&lk);
948	if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
949		panic("process_worklist_item: suspended filesystem");
950	matchcnt++;
951	switch (wk->wk_type) {
952
953	case D_DIRREM:
954		/* removal of a directory entry */
955		handle_workitem_remove(WK_DIRREM(wk), vp);
956		break;
957
958	case D_FREEBLKS:
959		/* releasing blocks and/or fragments from a file */
960		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
961		break;
962
963	case D_FREEFRAG:
964		/* releasing a fragment when replaced as a file grows */
965		handle_workitem_freefrag(WK_FREEFRAG(wk));
966		break;
967
968	case D_FREEFILE:
969		/* releasing an inode when its link count drops to 0 */
970		handle_workitem_freefile(WK_FREEFILE(wk));
971		break;
972
973	default:
974		panic("%s_process_worklist: Unknown type %s",
975		    "softdep", TYPENAME(wk->wk_type));
976		/* NOTREACHED */
977	}
978	vn_finished_secondary_write(mp);
979	ACQUIRE_LOCK(&lk);
980	return (matchcnt);
981}
982
983/*
984 * Move dependencies from one buffer to another.
985 */
986void
987softdep_move_dependencies(oldbp, newbp)
988	struct buf *oldbp;
989	struct buf *newbp;
990{
991	struct worklist *wk, *wktail;
992
993	if (LIST_FIRST(&newbp->b_dep) != NULL)
994		panic("softdep_move_dependencies: need merge code");
995	wktail = 0;
996	ACQUIRE_LOCK(&lk);
997	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
998		LIST_REMOVE(wk, wk_list);
999		if (wktail == 0)
1000			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1001		else
1002			LIST_INSERT_AFTER(wktail, wk, wk_list);
1003		wktail = wk;
1004	}
1005	FREE_LOCK(&lk);
1006}
1007
1008/*
1009 * Purge the work list of all items associated with a particular mount point.
1010 */
1011int
1012softdep_flushworklist(oldmnt, countp, td)
1013	struct mount *oldmnt;
1014	int *countp;
1015	struct thread *td;
1016{
1017	struct vnode *devvp;
1018	int count, error = 0;
1019	struct ufsmount *ump;
1020
1021	/*
1022	 * Alternately flush the block device associated with the mount
1023	 * point and process any dependencies that the flushing
1024	 * creates. We continue until no more worklist dependencies
1025	 * are found.
1026	 */
1027	*countp = 0;
1028	ump = VFSTOUFS(oldmnt);
1029	devvp = ump->um_devvp;
1030	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1031		*countp += count;
1032		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td);
1033		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1034		VOP_UNLOCK(devvp, 0, td);
1035		if (error)
1036			break;
1037	}
1038	return (error);
1039}
1040
1041int
1042softdep_waitidle(struct mount *mp)
1043{
1044	struct ufsmount *ump;
1045	int error;
1046	int i;
1047
1048	ump = VFSTOUFS(mp);
1049	ACQUIRE_LOCK(&lk);
1050	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1051		ump->softdep_req = 1;
1052		if (ump->softdep_on_worklist)
1053			panic("softdep_waitidle: work added after flush.");
1054		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1055	}
1056	ump->softdep_req = 0;
1057	FREE_LOCK(&lk);
1058	error = 0;
1059	if (i == 10) {
1060		error = EBUSY;
1061		printf("softdep_waitidle: Failed to flush worklist for %p",
1062		    mp);
1063	}
1064
1065	return (error);
1066}
1067
1068/*
1069 * Flush all vnodes and worklist items associated with a specified mount point.
1070 */
1071int
1072softdep_flushfiles(oldmnt, flags, td)
1073	struct mount *oldmnt;
1074	int flags;
1075	struct thread *td;
1076{
1077	int error, count, loopcnt;
1078
1079	error = 0;
1080
1081	/*
1082	 * Alternately flush the vnodes associated with the mount
1083	 * point and process any dependencies that the flushing
1084	 * creates. In theory, this loop can happen at most twice,
1085	 * but we give it a few extra just to be sure.
1086	 */
1087	for (loopcnt = 10; loopcnt > 0; loopcnt--) {
1088		/*
1089		 * Do another flush in case any vnodes were brought in
1090		 * as part of the cleanup operations.
1091		 */
1092		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1093			break;
1094		if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 ||
1095		    count == 0)
1096			break;
1097	}
1098	/*
1099	 * If we are unmounting then it is an error to fail. If we
1100	 * are simply trying to downgrade to read-only, then filesystem
1101	 * activity can keep us busy forever, so we just fail with EBUSY.
1102	 */
1103	if (loopcnt == 0) {
1104		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1105			panic("softdep_flushfiles: looping");
1106		error = EBUSY;
1107	}
1108	if (!error)
1109		error = softdep_waitidle(oldmnt);
1110	return (error);
1111}
1112
1113/*
1114 * Structure hashing.
1115 *
1116 * There are three types of structures that can be looked up:
1117 *	1) pagedep structures identified by mount point, inode number,
1118 *	   and logical block.
1119 *	2) inodedep structures identified by mount point and inode number.
1120 *	3) newblk structures identified by mount point and
1121 *	   physical block number.
1122 *
1123 * The "pagedep" and "inodedep" dependency structures are hashed
1124 * separately from the file blocks and inodes to which they correspond.
1125 * This separation helps when the in-memory copy of an inode or
1126 * file block must be replaced. It also obviates the need to access
1127 * an inode or file page when simply updating (or de-allocating)
1128 * dependency structures. Lookup of newblk structures is needed to
1129 * find newly allocated blocks when trying to associate them with
1130 * their allocdirect or allocindir structure.
1131 *
1132 * The lookup routines optionally create and hash a new instance when
1133 * an existing entry is not found.
1134 */
1135#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1136#define NODELAY		0x0002	/* cannot do background work */
1137
1138/*
1139 * Structures and routines associated with pagedep caching.
1140 */
1141LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1142u_long	pagedep_hash;		/* size of hash table - 1 */
1143#define	PAGEDEP_HASH(mp, inum, lbn) \
1144	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1145	    pagedep_hash])
1146
1147static int
1148pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1149	struct pagedep_hashhead *pagedephd;
1150	ino_t ino;
1151	ufs_lbn_t lbn;
1152	struct mount *mp;
1153	int flags;
1154	struct pagedep **pagedeppp;
1155{
1156	struct pagedep *pagedep;
1157
1158	LIST_FOREACH(pagedep, pagedephd, pd_hash)
1159		if (ino == pagedep->pd_ino &&
1160		    lbn == pagedep->pd_lbn &&
1161		    mp == pagedep->pd_list.wk_mp)
1162			break;
1163	if (pagedep) {
1164		*pagedeppp = pagedep;
1165		if ((flags & DEPALLOC) != 0 &&
1166		    (pagedep->pd_state & ONWORKLIST) == 0)
1167			return (0);
1168		return (1);
1169	}
1170	*pagedeppp = NULL;
1171	return (0);
1172}
1173/*
1174 * Look up a pagedep. Return 1 if found, 0 if not found or found
1175 * when asked to allocate but not associated with any buffer.
1176 * If not found, allocate if DEPALLOC flag is passed.
1177 * Found or allocated entry is returned in pagedeppp.
1178 * This routine must be called with splbio interrupts blocked.
1179 */
1180static int
1181pagedep_lookup(ip, lbn, flags, pagedeppp)
1182	struct inode *ip;
1183	ufs_lbn_t lbn;
1184	int flags;
1185	struct pagedep **pagedeppp;
1186{
1187	struct pagedep *pagedep;
1188	struct pagedep_hashhead *pagedephd;
1189	struct mount *mp;
1190	int ret;
1191	int i;
1192
1193	mtx_assert(&lk, MA_OWNED);
1194	mp = ITOV(ip)->v_mount;
1195	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
1196
1197	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
1198	if (*pagedeppp || (flags & DEPALLOC) == 0)
1199		return (ret);
1200	FREE_LOCK(&lk);
1201	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep),
1202	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
1203	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
1204	ACQUIRE_LOCK(&lk);
1205	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
1206	if (*pagedeppp) {
1207		WORKITEM_FREE(pagedep, D_PAGEDEP);
1208		return (ret);
1209	}
1210	pagedep->pd_ino = ip->i_number;
1211	pagedep->pd_lbn = lbn;
1212	LIST_INIT(&pagedep->pd_dirremhd);
1213	LIST_INIT(&pagedep->pd_pendinghd);
1214	for (i = 0; i < DAHASHSZ; i++)
1215		LIST_INIT(&pagedep->pd_diraddhd[i]);
1216	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
1217	*pagedeppp = pagedep;
1218	return (0);
1219}
1220
1221/*
1222 * Structures and routines associated with inodedep caching.
1223 */
1224LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1225static u_long	inodedep_hash;	/* size of hash table - 1 */
1226static long	num_inodedep;	/* number of inodedep allocated */
1227#define	INODEDEP_HASH(fs, inum) \
1228      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1229
1230static int
1231inodedep_find(inodedephd, fs, inum, inodedeppp)
1232	struct inodedep_hashhead *inodedephd;
1233	struct fs *fs;
1234	ino_t inum;
1235	struct inodedep **inodedeppp;
1236{
1237	struct inodedep *inodedep;
1238
1239	LIST_FOREACH(inodedep, inodedephd, id_hash)
1240		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1241			break;
1242	if (inodedep) {
1243		*inodedeppp = inodedep;
1244		return (1);
1245	}
1246	*inodedeppp = NULL;
1247
1248	return (0);
1249}
1250/*
1251 * Look up an inodedep. Return 1 if found, 0 if not found.
1252 * If not found, allocate if DEPALLOC flag is passed.
1253 * Found or allocated entry is returned in inodedeppp.
1254 * This routine must be called with splbio interrupts blocked.
1255 */
1256static int
1257inodedep_lookup(mp, inum, flags, inodedeppp)
1258	struct mount *mp;
1259	ino_t inum;
1260	int flags;
1261	struct inodedep **inodedeppp;
1262{
1263	struct inodedep *inodedep;
1264	struct inodedep_hashhead *inodedephd;
1265	struct fs *fs;
1266
1267	mtx_assert(&lk, MA_OWNED);
1268	fs = VFSTOUFS(mp)->um_fs;
1269	inodedephd = INODEDEP_HASH(fs, inum);
1270
1271	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
1272		return (1);
1273	if ((flags & DEPALLOC) == 0)
1274		return (0);
1275	/*
1276	 * If we are over our limit, try to improve the situation.
1277	 */
1278	if (num_inodedep > max_softdeps && (flags & NODELAY) == 0)
1279		request_cleanup(mp, FLUSH_INODES);
1280	FREE_LOCK(&lk);
1281	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1282		M_INODEDEP, M_SOFTDEP_FLAGS);
1283	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
1284	ACQUIRE_LOCK(&lk);
1285	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
1286		WORKITEM_FREE(inodedep, D_INODEDEP);
1287		return (1);
1288	}
1289	num_inodedep += 1;
1290	inodedep->id_fs = fs;
1291	inodedep->id_ino = inum;
1292	inodedep->id_state = ALLCOMPLETE;
1293	inodedep->id_nlinkdelta = 0;
1294	inodedep->id_savedino1 = NULL;
1295	inodedep->id_savedsize = -1;
1296	inodedep->id_savedextsize = -1;
1297	inodedep->id_buf = NULL;
1298	LIST_INIT(&inodedep->id_pendinghd);
1299	LIST_INIT(&inodedep->id_inowait);
1300	LIST_INIT(&inodedep->id_bufwait);
1301	TAILQ_INIT(&inodedep->id_inoupdt);
1302	TAILQ_INIT(&inodedep->id_newinoupdt);
1303	TAILQ_INIT(&inodedep->id_extupdt);
1304	TAILQ_INIT(&inodedep->id_newextupdt);
1305	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1306	*inodedeppp = inodedep;
1307	return (0);
1308}
1309
1310/*
1311 * Structures and routines associated with newblk caching.
1312 */
1313LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1314u_long	newblk_hash;		/* size of hash table - 1 */
1315#define	NEWBLK_HASH(fs, inum) \
1316	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1317
1318static int
1319newblk_find(newblkhd, fs, newblkno, newblkpp)
1320	struct newblk_hashhead *newblkhd;
1321	struct fs *fs;
1322	ufs2_daddr_t newblkno;
1323	struct newblk **newblkpp;
1324{
1325	struct newblk *newblk;
1326
1327	LIST_FOREACH(newblk, newblkhd, nb_hash)
1328		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1329			break;
1330	if (newblk) {
1331		*newblkpp = newblk;
1332		return (1);
1333	}
1334	*newblkpp = NULL;
1335	return (0);
1336}
1337
1338/*
1339 * Look up a newblk. Return 1 if found, 0 if not found.
1340 * If not found, allocate if DEPALLOC flag is passed.
1341 * Found or allocated entry is returned in newblkpp.
1342 */
1343static int
1344newblk_lookup(fs, newblkno, flags, newblkpp)
1345	struct fs *fs;
1346	ufs2_daddr_t newblkno;
1347	int flags;
1348	struct newblk **newblkpp;
1349{
1350	struct newblk *newblk;
1351	struct newblk_hashhead *newblkhd;
1352
1353	newblkhd = NEWBLK_HASH(fs, newblkno);
1354	if (newblk_find(newblkhd, fs, newblkno, newblkpp))
1355		return (1);
1356	if ((flags & DEPALLOC) == 0)
1357		return (0);
1358	FREE_LOCK(&lk);
1359	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1360		M_NEWBLK, M_SOFTDEP_FLAGS);
1361	ACQUIRE_LOCK(&lk);
1362	if (newblk_find(newblkhd, fs, newblkno, newblkpp)) {
1363		FREE(newblk, M_NEWBLK);
1364		return (1);
1365	}
1366	newblk->nb_state = 0;
1367	newblk->nb_fs = fs;
1368	newblk->nb_newblkno = newblkno;
1369	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1370	*newblkpp = newblk;
1371	return (0);
1372}
1373
1374/*
1375 * Executed during filesystem system initialization before
1376 * mounting any filesystems.
1377 */
1378void
1379softdep_initialize()
1380{
1381
1382	LIST_INIT(&mkdirlisthd);
1383	max_softdeps = desiredvnodes * 4;
1384	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1385	    &pagedep_hash);
1386	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1387	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1388
1389	/* initialise bioops hack */
1390	bioops.io_start = softdep_disk_io_initiation;
1391	bioops.io_complete = softdep_disk_write_complete;
1392	bioops.io_deallocate = softdep_deallocate_dependencies;
1393	bioops.io_countdeps = softdep_count_dependencies;
1394}
1395
1396/*
1397 * Executed after all filesystems have been unmounted during
1398 * filesystem module unload.
1399 */
1400void
1401softdep_uninitialize()
1402{
1403
1404	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
1405	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
1406	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
1407}
1408
1409/*
1410 * Called at mount time to notify the dependency code that a
1411 * filesystem wishes to use it.
1412 */
1413int
1414softdep_mount(devvp, mp, fs, cred)
1415	struct vnode *devvp;
1416	struct mount *mp;
1417	struct fs *fs;
1418	struct ucred *cred;
1419{
1420	struct csum_total cstotal;
1421	struct ufsmount *ump;
1422	struct cg *cgp;
1423	struct buf *bp;
1424	int error, cyl;
1425
1426	mp->mnt_flag &= ~MNT_ASYNC;
1427	mp->mnt_flag |= MNT_SOFTDEP;
1428	ump = VFSTOUFS(mp);
1429	LIST_INIT(&ump->softdep_workitem_pending);
1430	ump->softdep_worklist_tail = NULL;
1431	ump->softdep_on_worklist = 0;
1432	ump->softdep_deps = 0;
1433	/*
1434	 * When doing soft updates, the counters in the
1435	 * superblock may have gotten out of sync. Recomputation
1436	 * can take a long time and can be deferred for background
1437	 * fsck.  However, the old behavior of scanning the cylinder
1438	 * groups and recalculating them at mount time is available
1439	 * by setting vfs.ffs.compute_summary_at_mount to one.
1440	 */
1441	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
1442		return (0);
1443	bzero(&cstotal, sizeof cstotal);
1444	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1445		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1446		    fs->fs_cgsize, cred, &bp)) != 0) {
1447			brelse(bp);
1448			return (error);
1449		}
1450		cgp = (struct cg *)bp->b_data;
1451		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1452		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1453		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1454		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1455		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1456		brelse(bp);
1457	}
1458#ifdef DEBUG
1459	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1460		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
1461#endif
1462	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1463	return (0);
1464}
1465
1466/*
1467 * Protecting the freemaps (or bitmaps).
1468 *
1469 * To eliminate the need to execute fsck before mounting a filesystem
1470 * after a power failure, one must (conservatively) guarantee that the
1471 * on-disk copy of the bitmaps never indicate that a live inode or block is
1472 * free.  So, when a block or inode is allocated, the bitmap should be
1473 * updated (on disk) before any new pointers.  When a block or inode is
1474 * freed, the bitmap should not be updated until all pointers have been
1475 * reset.  The latter dependency is handled by the delayed de-allocation
1476 * approach described below for block and inode de-allocation.  The former
1477 * dependency is handled by calling the following procedure when a block or
1478 * inode is allocated. When an inode is allocated an "inodedep" is created
1479 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1480 * Each "inodedep" is also inserted into the hash indexing structure so
1481 * that any additional link additions can be made dependent on the inode
1482 * allocation.
1483 *
1484 * The ufs filesystem maintains a number of free block counts (e.g., per
1485 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1486 * in addition to the bitmaps.  These counts are used to improve efficiency
1487 * during allocation and therefore must be consistent with the bitmaps.
1488 * There is no convenient way to guarantee post-crash consistency of these
1489 * counts with simple update ordering, for two main reasons: (1) The counts
1490 * and bitmaps for a single cylinder group block are not in the same disk
1491 * sector.  If a disk write is interrupted (e.g., by power failure), one may
1492 * be written and the other not.  (2) Some of the counts are located in the
1493 * superblock rather than the cylinder group block. So, we focus our soft
1494 * updates implementation on protecting the bitmaps. When mounting a
1495 * filesystem, we recompute the auxiliary counts from the bitmaps.
1496 */
1497
1498/*
1499 * Called just after updating the cylinder group block to allocate an inode.
1500 */
1501void
1502softdep_setup_inomapdep(bp, ip, newinum)
1503	struct buf *bp;		/* buffer for cylgroup block with inode map */
1504	struct inode *ip;	/* inode related to allocation */
1505	ino_t newinum;		/* new inode number being allocated */
1506{
1507	struct inodedep *inodedep;
1508	struct bmsafemap *bmsafemap;
1509
1510	/*
1511	 * Create a dependency for the newly allocated inode.
1512	 * Panic if it already exists as something is seriously wrong.
1513	 * Otherwise add it to the dependency list for the buffer holding
1514	 * the cylinder group map from which it was allocated.
1515	 */
1516	ACQUIRE_LOCK(&lk);
1517	if ((inodedep_lookup(UFSTOVFS(ip->i_ump), newinum, DEPALLOC|NODELAY,
1518	    &inodedep)))
1519		panic("softdep_setup_inomapdep: found inode");
1520	inodedep->id_buf = bp;
1521	inodedep->id_state &= ~DEPCOMPLETE;
1522	bmsafemap = bmsafemap_lookup(inodedep->id_list.wk_mp, bp);
1523	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1524	FREE_LOCK(&lk);
1525}
1526
1527/*
1528 * Called just after updating the cylinder group block to
1529 * allocate block or fragment.
1530 */
1531void
1532softdep_setup_blkmapdep(bp, mp, newblkno)
1533	struct buf *bp;		/* buffer for cylgroup block with block map */
1534	struct mount *mp;	/* filesystem doing allocation */
1535	ufs2_daddr_t newblkno;	/* number of newly allocated block */
1536{
1537	struct newblk *newblk;
1538	struct bmsafemap *bmsafemap;
1539	struct fs *fs;
1540
1541	fs = VFSTOUFS(mp)->um_fs;
1542	/*
1543	 * Create a dependency for the newly allocated block.
1544	 * Add it to the dependency list for the buffer holding
1545	 * the cylinder group map from which it was allocated.
1546	 */
1547	ACQUIRE_LOCK(&lk);
1548	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1549		panic("softdep_setup_blkmapdep: found block");
1550	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp);
1551	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1552	FREE_LOCK(&lk);
1553}
1554
1555/*
1556 * Find the bmsafemap associated with a cylinder group buffer.
1557 * If none exists, create one. The buffer must be locked when
1558 * this routine is called and this routine must be called with
1559 * splbio interrupts blocked.
1560 */
1561static struct bmsafemap *
1562bmsafemap_lookup(mp, bp)
1563	struct mount *mp;
1564	struct buf *bp;
1565{
1566	struct bmsafemap *bmsafemap;
1567	struct worklist *wk;
1568
1569	mtx_assert(&lk, MA_OWNED);
1570	LIST_FOREACH(wk, &bp->b_dep, wk_list)
1571		if (wk->wk_type == D_BMSAFEMAP)
1572			return (WK_BMSAFEMAP(wk));
1573	FREE_LOCK(&lk);
1574	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1575		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1576	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
1577	bmsafemap->sm_buf = bp;
1578	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1579	LIST_INIT(&bmsafemap->sm_allocindirhd);
1580	LIST_INIT(&bmsafemap->sm_inodedephd);
1581	LIST_INIT(&bmsafemap->sm_newblkhd);
1582	ACQUIRE_LOCK(&lk);
1583	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1584	return (bmsafemap);
1585}
1586
1587/*
1588 * Direct block allocation dependencies.
1589 *
1590 * When a new block is allocated, the corresponding disk locations must be
1591 * initialized (with zeros or new data) before the on-disk inode points to
1592 * them.  Also, the freemap from which the block was allocated must be
1593 * updated (on disk) before the inode's pointer. These two dependencies are
1594 * independent of each other and are needed for all file blocks and indirect
1595 * blocks that are pointed to directly by the inode.  Just before the
1596 * "in-core" version of the inode is updated with a newly allocated block
1597 * number, a procedure (below) is called to setup allocation dependency
1598 * structures.  These structures are removed when the corresponding
1599 * dependencies are satisfied or when the block allocation becomes obsolete
1600 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1601 * fragment that gets upgraded).  All of these cases are handled in
1602 * procedures described later.
1603 *
1604 * When a file extension causes a fragment to be upgraded, either to a larger
1605 * fragment or to a full block, the on-disk location may change (if the
1606 * previous fragment could not simply be extended). In this case, the old
1607 * fragment must be de-allocated, but not until after the inode's pointer has
1608 * been updated. In most cases, this is handled by later procedures, which
1609 * will construct a "freefrag" structure to be added to the workitem queue
1610 * when the inode update is complete (or obsolete).  The main exception to
1611 * this is when an allocation occurs while a pending allocation dependency
1612 * (for the same block pointer) remains.  This case is handled in the main
1613 * allocation dependency setup procedure by immediately freeing the
1614 * unreferenced fragments.
1615 */
1616void
1617softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1618	struct inode *ip;	/* inode to which block is being added */
1619	ufs_lbn_t lbn;		/* block pointer within inode */
1620	ufs2_daddr_t newblkno;	/* disk block number being added */
1621	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1622	long newsize;		/* size of new block */
1623	long oldsize;		/* size of new block */
1624	struct buf *bp;		/* bp for allocated block */
1625{
1626	struct allocdirect *adp, *oldadp;
1627	struct allocdirectlst *adphead;
1628	struct bmsafemap *bmsafemap;
1629	struct inodedep *inodedep;
1630	struct pagedep *pagedep;
1631	struct newblk *newblk;
1632	struct mount *mp;
1633
1634	mp = UFSTOVFS(ip->i_ump);
1635	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1636		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1637	workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp);
1638	adp->ad_lbn = lbn;
1639	adp->ad_newblkno = newblkno;
1640	adp->ad_oldblkno = oldblkno;
1641	adp->ad_newsize = newsize;
1642	adp->ad_oldsize = oldsize;
1643	adp->ad_state = ATTACHED;
1644	LIST_INIT(&adp->ad_newdirblk);
1645	if (newblkno == oldblkno)
1646		adp->ad_freefrag = NULL;
1647	else
1648		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1649
1650	ACQUIRE_LOCK(&lk);
1651	if (lbn >= NDADDR) {
1652		/* allocating an indirect block */
1653		if (oldblkno != 0)
1654			panic("softdep_setup_allocdirect: non-zero indir");
1655	} else {
1656		/*
1657		 * Allocating a direct block.
1658		 *
1659		 * If we are allocating a directory block, then we must
1660		 * allocate an associated pagedep to track additions and
1661		 * deletions.
1662		 */
1663		if ((ip->i_mode & IFMT) == IFDIR &&
1664		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1665			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1666	}
1667	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1668		panic("softdep_setup_allocdirect: lost block");
1669	if (newblk->nb_state == DEPCOMPLETE) {
1670		adp->ad_state |= DEPCOMPLETE;
1671		adp->ad_buf = NULL;
1672	} else {
1673		bmsafemap = newblk->nb_bmsafemap;
1674		adp->ad_buf = bmsafemap->sm_buf;
1675		LIST_REMOVE(newblk, nb_deps);
1676		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1677	}
1678	LIST_REMOVE(newblk, nb_hash);
1679	FREE(newblk, M_NEWBLK);
1680
1681	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1682	adp->ad_inodedep = inodedep;
1683	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1684	/*
1685	 * The list of allocdirects must be kept in sorted and ascending
1686	 * order so that the rollback routines can quickly determine the
1687	 * first uncommitted block (the size of the file stored on disk
1688	 * ends at the end of the lowest committed fragment, or if there
1689	 * are no fragments, at the end of the highest committed block).
1690	 * Since files generally grow, the typical case is that the new
1691	 * block is to be added at the end of the list. We speed this
1692	 * special case by checking against the last allocdirect in the
1693	 * list before laboriously traversing the list looking for the
1694	 * insertion point.
1695	 */
1696	adphead = &inodedep->id_newinoupdt;
1697	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1698	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1699		/* insert at end of list */
1700		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1701		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1702			allocdirect_merge(adphead, adp, oldadp);
1703		FREE_LOCK(&lk);
1704		return;
1705	}
1706	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1707		if (oldadp->ad_lbn >= lbn)
1708			break;
1709	}
1710	if (oldadp == NULL)
1711		panic("softdep_setup_allocdirect: lost entry");
1712	/* insert in middle of list */
1713	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1714	if (oldadp->ad_lbn == lbn)
1715		allocdirect_merge(adphead, adp, oldadp);
1716	FREE_LOCK(&lk);
1717}
1718
1719/*
1720 * Replace an old allocdirect dependency with a newer one.
1721 * This routine must be called with splbio interrupts blocked.
1722 */
1723static void
1724allocdirect_merge(adphead, newadp, oldadp)
1725	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1726	struct allocdirect *newadp;	/* allocdirect being added */
1727	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1728{
1729	struct worklist *wk;
1730	struct freefrag *freefrag;
1731	struct newdirblk *newdirblk;
1732
1733	mtx_assert(&lk, MA_OWNED);
1734	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1735	    newadp->ad_oldsize != oldadp->ad_newsize ||
1736	    newadp->ad_lbn >= NDADDR)
1737		panic("%s %jd != new %jd || old size %ld != new %ld",
1738		    "allocdirect_merge: old blkno",
1739		    (intmax_t)newadp->ad_oldblkno,
1740		    (intmax_t)oldadp->ad_newblkno,
1741		    newadp->ad_oldsize, oldadp->ad_newsize);
1742	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1743	newadp->ad_oldsize = oldadp->ad_oldsize;
1744	/*
1745	 * If the old dependency had a fragment to free or had never
1746	 * previously had a block allocated, then the new dependency
1747	 * can immediately post its freefrag and adopt the old freefrag.
1748	 * This action is done by swapping the freefrag dependencies.
1749	 * The new dependency gains the old one's freefrag, and the
1750	 * old one gets the new one and then immediately puts it on
1751	 * the worklist when it is freed by free_allocdirect. It is
1752	 * not possible to do this swap when the old dependency had a
1753	 * non-zero size but no previous fragment to free. This condition
1754	 * arises when the new block is an extension of the old block.
1755	 * Here, the first part of the fragment allocated to the new
1756	 * dependency is part of the block currently claimed on disk by
1757	 * the old dependency, so cannot legitimately be freed until the
1758	 * conditions for the new dependency are fulfilled.
1759	 */
1760	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1761		freefrag = newadp->ad_freefrag;
1762		newadp->ad_freefrag = oldadp->ad_freefrag;
1763		oldadp->ad_freefrag = freefrag;
1764	}
1765	/*
1766	 * If we are tracking a new directory-block allocation,
1767	 * move it from the old allocdirect to the new allocdirect.
1768	 */
1769	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
1770		newdirblk = WK_NEWDIRBLK(wk);
1771		WORKLIST_REMOVE(&newdirblk->db_list);
1772		if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL)
1773			panic("allocdirect_merge: extra newdirblk");
1774		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
1775	}
1776	free_allocdirect(adphead, oldadp, 0);
1777}
1778
1779/*
1780 * Allocate a new freefrag structure if needed.
1781 */
1782static struct freefrag *
1783newfreefrag(ip, blkno, size)
1784	struct inode *ip;
1785	ufs2_daddr_t blkno;
1786	long size;
1787{
1788	struct freefrag *freefrag;
1789	struct fs *fs;
1790
1791	if (blkno == 0)
1792		return (NULL);
1793	fs = ip->i_fs;
1794	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1795		panic("newfreefrag: frag size");
1796	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1797		M_FREEFRAG, M_SOFTDEP_FLAGS);
1798	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
1799	freefrag->ff_inum = ip->i_number;
1800	freefrag->ff_blkno = blkno;
1801	freefrag->ff_fragsize = size;
1802	return (freefrag);
1803}
1804
1805/*
1806 * This workitem de-allocates fragments that were replaced during
1807 * file block allocation.
1808 */
1809static void
1810handle_workitem_freefrag(freefrag)
1811	struct freefrag *freefrag;
1812{
1813	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
1814
1815	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
1816	    freefrag->ff_fragsize, freefrag->ff_inum);
1817	ACQUIRE_LOCK(&lk);
1818	WORKITEM_FREE(freefrag, D_FREEFRAG);
1819	FREE_LOCK(&lk);
1820}
1821
1822/*
1823 * Set up a dependency structure for an external attributes data block.
1824 * This routine follows much of the structure of softdep_setup_allocdirect.
1825 * See the description of softdep_setup_allocdirect above for details.
1826 */
1827void
1828softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1829	struct inode *ip;
1830	ufs_lbn_t lbn;
1831	ufs2_daddr_t newblkno;
1832	ufs2_daddr_t oldblkno;
1833	long newsize;
1834	long oldsize;
1835	struct buf *bp;
1836{
1837	struct allocdirect *adp, *oldadp;
1838	struct allocdirectlst *adphead;
1839	struct bmsafemap *bmsafemap;
1840	struct inodedep *inodedep;
1841	struct newblk *newblk;
1842	struct mount *mp;
1843
1844	mp = UFSTOVFS(ip->i_ump);
1845	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1846		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1847	workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp);
1848	adp->ad_lbn = lbn;
1849	adp->ad_newblkno = newblkno;
1850	adp->ad_oldblkno = oldblkno;
1851	adp->ad_newsize = newsize;
1852	adp->ad_oldsize = oldsize;
1853	adp->ad_state = ATTACHED | EXTDATA;
1854	LIST_INIT(&adp->ad_newdirblk);
1855	if (newblkno == oldblkno)
1856		adp->ad_freefrag = NULL;
1857	else
1858		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1859
1860	ACQUIRE_LOCK(&lk);
1861	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1862		panic("softdep_setup_allocext: lost block");
1863
1864	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1865	adp->ad_inodedep = inodedep;
1866
1867	if (newblk->nb_state == DEPCOMPLETE) {
1868		adp->ad_state |= DEPCOMPLETE;
1869		adp->ad_buf = NULL;
1870	} else {
1871		bmsafemap = newblk->nb_bmsafemap;
1872		adp->ad_buf = bmsafemap->sm_buf;
1873		LIST_REMOVE(newblk, nb_deps);
1874		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1875	}
1876	LIST_REMOVE(newblk, nb_hash);
1877	FREE(newblk, M_NEWBLK);
1878
1879	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1880	if (lbn >= NXADDR)
1881		panic("softdep_setup_allocext: lbn %lld > NXADDR",
1882		    (long long)lbn);
1883	/*
1884	 * The list of allocdirects must be kept in sorted and ascending
1885	 * order so that the rollback routines can quickly determine the
1886	 * first uncommitted block (the size of the file stored on disk
1887	 * ends at the end of the lowest committed fragment, or if there
1888	 * are no fragments, at the end of the highest committed block).
1889	 * Since files generally grow, the typical case is that the new
1890	 * block is to be added at the end of the list. We speed this
1891	 * special case by checking against the last allocdirect in the
1892	 * list before laboriously traversing the list looking for the
1893	 * insertion point.
1894	 */
1895	adphead = &inodedep->id_newextupdt;
1896	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1897	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1898		/* insert at end of list */
1899		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1900		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1901			allocdirect_merge(adphead, adp, oldadp);
1902		FREE_LOCK(&lk);
1903		return;
1904	}
1905	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1906		if (oldadp->ad_lbn >= lbn)
1907			break;
1908	}
1909	if (oldadp == NULL)
1910		panic("softdep_setup_allocext: lost entry");
1911	/* insert in middle of list */
1912	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1913	if (oldadp->ad_lbn == lbn)
1914		allocdirect_merge(adphead, adp, oldadp);
1915	FREE_LOCK(&lk);
1916}
1917
1918/*
1919 * Indirect block allocation dependencies.
1920 *
1921 * The same dependencies that exist for a direct block also exist when
1922 * a new block is allocated and pointed to by an entry in a block of
1923 * indirect pointers. The undo/redo states described above are also
1924 * used here. Because an indirect block contains many pointers that
1925 * may have dependencies, a second copy of the entire in-memory indirect
1926 * block is kept. The buffer cache copy is always completely up-to-date.
1927 * The second copy, which is used only as a source for disk writes,
1928 * contains only the safe pointers (i.e., those that have no remaining
1929 * update dependencies). The second copy is freed when all pointers
1930 * are safe. The cache is not allowed to replace indirect blocks with
1931 * pending update dependencies. If a buffer containing an indirect
1932 * block with dependencies is written, these routines will mark it
1933 * dirty again. It can only be successfully written once all the
1934 * dependencies are removed. The ffs_fsync routine in conjunction with
1935 * softdep_sync_metadata work together to get all the dependencies
1936 * removed so that a file can be successfully written to disk. Three
1937 * procedures are used when setting up indirect block pointer
1938 * dependencies. The division is necessary because of the organization
1939 * of the "balloc" routine and because of the distinction between file
1940 * pages and file metadata blocks.
1941 */
1942
1943/*
1944 * Allocate a new allocindir structure.
1945 */
1946static struct allocindir *
1947newallocindir(ip, ptrno, newblkno, oldblkno)
1948	struct inode *ip;	/* inode for file being extended */
1949	int ptrno;		/* offset of pointer in indirect block */
1950	ufs2_daddr_t newblkno;	/* disk block number being added */
1951	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1952{
1953	struct allocindir *aip;
1954
1955	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1956		M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO);
1957	workitem_alloc(&aip->ai_list, D_ALLOCINDIR, UFSTOVFS(ip->i_ump));
1958	aip->ai_state = ATTACHED;
1959	aip->ai_offset = ptrno;
1960	aip->ai_newblkno = newblkno;
1961	aip->ai_oldblkno = oldblkno;
1962	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1963	return (aip);
1964}
1965
1966/*
1967 * Called just before setting an indirect block pointer
1968 * to a newly allocated file page.
1969 */
1970void
1971softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1972	struct inode *ip;	/* inode for file being extended */
1973	ufs_lbn_t lbn;		/* allocated block number within file */
1974	struct buf *bp;		/* buffer with indirect blk referencing page */
1975	int ptrno;		/* offset of pointer in indirect block */
1976	ufs2_daddr_t newblkno;	/* disk block number being added */
1977	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1978	struct buf *nbp;	/* buffer holding allocated page */
1979{
1980	struct allocindir *aip;
1981	struct pagedep *pagedep;
1982
1983	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
1984	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1985	ACQUIRE_LOCK(&lk);
1986	/*
1987	 * If we are allocating a directory page, then we must
1988	 * allocate an associated pagedep to track additions and
1989	 * deletions.
1990	 */
1991	if ((ip->i_mode & IFMT) == IFDIR &&
1992	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1993		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1994	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1995	setup_allocindir_phase2(bp, ip, aip);
1996	FREE_LOCK(&lk);
1997}
1998
1999/*
2000 * Called just before setting an indirect block pointer to a
2001 * newly allocated indirect block.
2002 */
2003void
2004softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
2005	struct buf *nbp;	/* newly allocated indirect block */
2006	struct inode *ip;	/* inode for file being extended */
2007	struct buf *bp;		/* indirect block referencing allocated block */
2008	int ptrno;		/* offset of pointer in indirect block */
2009	ufs2_daddr_t newblkno;	/* disk block number being added */
2010{
2011	struct allocindir *aip;
2012
2013	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
2014	aip = newallocindir(ip, ptrno, newblkno, 0);
2015	ACQUIRE_LOCK(&lk);
2016	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
2017	setup_allocindir_phase2(bp, ip, aip);
2018	FREE_LOCK(&lk);
2019}
2020
2021/*
2022 * Called to finish the allocation of the "aip" allocated
2023 * by one of the two routines above.
2024 */
2025static void
2026setup_allocindir_phase2(bp, ip, aip)
2027	struct buf *bp;		/* in-memory copy of the indirect block */
2028	struct inode *ip;	/* inode for file being extended */
2029	struct allocindir *aip;	/* allocindir allocated by the above routines */
2030{
2031	struct worklist *wk;
2032	struct indirdep *indirdep, *newindirdep;
2033	struct bmsafemap *bmsafemap;
2034	struct allocindir *oldaip;
2035	struct freefrag *freefrag;
2036	struct newblk *newblk;
2037	ufs2_daddr_t blkno;
2038
2039	mtx_assert(&lk, MA_OWNED);
2040	if (bp->b_lblkno >= 0)
2041		panic("setup_allocindir_phase2: not indir blk");
2042	for (indirdep = NULL, newindirdep = NULL; ; ) {
2043		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2044			if (wk->wk_type != D_INDIRDEP)
2045				continue;
2046			indirdep = WK_INDIRDEP(wk);
2047			break;
2048		}
2049		if (indirdep == NULL && newindirdep) {
2050			indirdep = newindirdep;
2051			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
2052			newindirdep = NULL;
2053		}
2054		if (indirdep) {
2055			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
2056			    &newblk) == 0)
2057				panic("setup_allocindir: lost block");
2058			if (newblk->nb_state == DEPCOMPLETE) {
2059				aip->ai_state |= DEPCOMPLETE;
2060				aip->ai_buf = NULL;
2061			} else {
2062				bmsafemap = newblk->nb_bmsafemap;
2063				aip->ai_buf = bmsafemap->sm_buf;
2064				LIST_REMOVE(newblk, nb_deps);
2065				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
2066				    aip, ai_deps);
2067			}
2068			LIST_REMOVE(newblk, nb_hash);
2069			FREE(newblk, M_NEWBLK);
2070			aip->ai_indirdep = indirdep;
2071			/*
2072			 * Check to see if there is an existing dependency
2073			 * for this block. If there is, merge the old
2074			 * dependency into the new one.
2075			 */
2076			if (aip->ai_oldblkno == 0)
2077				oldaip = NULL;
2078			else
2079
2080				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
2081					if (oldaip->ai_offset == aip->ai_offset)
2082						break;
2083			freefrag = NULL;
2084			if (oldaip != NULL) {
2085				if (oldaip->ai_newblkno != aip->ai_oldblkno)
2086					panic("setup_allocindir_phase2: blkno");
2087				aip->ai_oldblkno = oldaip->ai_oldblkno;
2088				freefrag = aip->ai_freefrag;
2089				aip->ai_freefrag = oldaip->ai_freefrag;
2090				oldaip->ai_freefrag = NULL;
2091				free_allocindir(oldaip, NULL);
2092			}
2093			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
2094			if (ip->i_ump->um_fstype == UFS1)
2095				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
2096				    [aip->ai_offset] = aip->ai_oldblkno;
2097			else
2098				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
2099				    [aip->ai_offset] = aip->ai_oldblkno;
2100			FREE_LOCK(&lk);
2101			if (freefrag != NULL)
2102				handle_workitem_freefrag(freefrag);
2103		} else
2104			FREE_LOCK(&lk);
2105		if (newindirdep) {
2106			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
2107			brelse(newindirdep->ir_savebp);
2108			ACQUIRE_LOCK(&lk);
2109			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
2110			if (indirdep)
2111				break;
2112			FREE_LOCK(&lk);
2113		}
2114		if (indirdep) {
2115			ACQUIRE_LOCK(&lk);
2116			break;
2117		}
2118		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
2119			M_INDIRDEP, M_SOFTDEP_FLAGS);
2120		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP,
2121		    UFSTOVFS(ip->i_ump));
2122		newindirdep->ir_state = ATTACHED;
2123		if (ip->i_ump->um_fstype == UFS1)
2124			newindirdep->ir_state |= UFS1FMT;
2125		LIST_INIT(&newindirdep->ir_deplisthd);
2126		LIST_INIT(&newindirdep->ir_donehd);
2127		if (bp->b_blkno == bp->b_lblkno) {
2128			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
2129			    NULL, NULL);
2130			bp->b_blkno = blkno;
2131		}
2132		newindirdep->ir_savebp =
2133		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
2134		BUF_KERNPROC(newindirdep->ir_savebp);
2135		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
2136		ACQUIRE_LOCK(&lk);
2137	}
2138}
2139
2140/*
2141 * Block de-allocation dependencies.
2142 *
2143 * When blocks are de-allocated, the on-disk pointers must be nullified before
2144 * the blocks are made available for use by other files.  (The true
2145 * requirement is that old pointers must be nullified before new on-disk
2146 * pointers are set.  We chose this slightly more stringent requirement to
2147 * reduce complexity.) Our implementation handles this dependency by updating
2148 * the inode (or indirect block) appropriately but delaying the actual block
2149 * de-allocation (i.e., freemap and free space count manipulation) until
2150 * after the updated versions reach stable storage.  After the disk is
2151 * updated, the blocks can be safely de-allocated whenever it is convenient.
2152 * This implementation handles only the common case of reducing a file's
2153 * length to zero. Other cases are handled by the conventional synchronous
2154 * write approach.
2155 *
2156 * The ffs implementation with which we worked double-checks
2157 * the state of the block pointers and file size as it reduces
2158 * a file's length.  Some of this code is replicated here in our
2159 * soft updates implementation.  The freeblks->fb_chkcnt field is
2160 * used to transfer a part of this information to the procedure
2161 * that eventually de-allocates the blocks.
2162 *
2163 * This routine should be called from the routine that shortens
2164 * a file's length, before the inode's size or block pointers
2165 * are modified. It will save the block pointer information for
2166 * later release and zero the inode so that the calling routine
2167 * can release it.
2168 */
2169void
2170softdep_setup_freeblocks(ip, length, flags)
2171	struct inode *ip;	/* The inode whose length is to be reduced */
2172	off_t length;		/* The new length for the file */
2173	int flags;		/* IO_EXT and/or IO_NORMAL */
2174{
2175	struct freeblks *freeblks;
2176	struct inodedep *inodedep;
2177	struct allocdirect *adp;
2178	struct vnode *vp;
2179	struct buf *bp;
2180	struct fs *fs;
2181	ufs2_daddr_t extblocks, datablocks;
2182	struct mount *mp;
2183	int i, delay, error;
2184
2185	fs = ip->i_fs;
2186	mp = UFSTOVFS(ip->i_ump);
2187	if (length != 0)
2188		panic("softdep_setup_freeblocks: non-zero length");
2189	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
2190		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
2191	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
2192	freeblks->fb_state = ATTACHED;
2193	freeblks->fb_uid = ip->i_uid;
2194	freeblks->fb_previousinum = ip->i_number;
2195	freeblks->fb_devvp = ip->i_devvp;
2196	extblocks = 0;
2197	if (fs->fs_magic == FS_UFS2_MAGIC)
2198		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
2199	datablocks = DIP(ip, i_blocks) - extblocks;
2200	if ((flags & IO_NORMAL) == 0) {
2201		freeblks->fb_oldsize = 0;
2202		freeblks->fb_chkcnt = 0;
2203	} else {
2204		freeblks->fb_oldsize = ip->i_size;
2205		ip->i_size = 0;
2206		DIP_SET(ip, i_size, 0);
2207		freeblks->fb_chkcnt = datablocks;
2208		for (i = 0; i < NDADDR; i++) {
2209			freeblks->fb_dblks[i] = DIP(ip, i_db[i]);
2210			DIP_SET(ip, i_db[i], 0);
2211		}
2212		for (i = 0; i < NIADDR; i++) {
2213			freeblks->fb_iblks[i] = DIP(ip, i_ib[i]);
2214			DIP_SET(ip, i_ib[i], 0);
2215		}
2216		/*
2217		 * If the file was removed, then the space being freed was
2218		 * accounted for then (see softdep_filereleased()). If the
2219		 * file is merely being truncated, then we account for it now.
2220		 */
2221		if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2222			UFS_LOCK(ip->i_ump);
2223			fs->fs_pendingblocks += datablocks;
2224			UFS_UNLOCK(ip->i_ump);
2225		}
2226	}
2227	if ((flags & IO_EXT) == 0) {
2228		freeblks->fb_oldextsize = 0;
2229	} else {
2230		freeblks->fb_oldextsize = ip->i_din2->di_extsize;
2231		ip->i_din2->di_extsize = 0;
2232		freeblks->fb_chkcnt += extblocks;
2233		for (i = 0; i < NXADDR; i++) {
2234			freeblks->fb_eblks[i] = ip->i_din2->di_extb[i];
2235			ip->i_din2->di_extb[i] = 0;
2236		}
2237	}
2238	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
2239	/*
2240	 * Push the zero'ed inode to to its disk buffer so that we are free
2241	 * to delete its dependencies below. Once the dependencies are gone
2242	 * the buffer can be safely released.
2243	 */
2244	if ((error = bread(ip->i_devvp,
2245	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
2246	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
2247		brelse(bp);
2248		softdep_error("softdep_setup_freeblocks", error);
2249	}
2250	if (ip->i_ump->um_fstype == UFS1)
2251		*((struct ufs1_dinode *)bp->b_data +
2252		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
2253	else
2254		*((struct ufs2_dinode *)bp->b_data +
2255		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
2256	/*
2257	 * Find and eliminate any inode dependencies.
2258	 */
2259	ACQUIRE_LOCK(&lk);
2260	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
2261	if ((inodedep->id_state & IOSTARTED) != 0)
2262		panic("softdep_setup_freeblocks: inode busy");
2263	/*
2264	 * Add the freeblks structure to the list of operations that
2265	 * must await the zero'ed inode being written to disk. If we
2266	 * still have a bitmap dependency (delay == 0), then the inode
2267	 * has never been written to disk, so we can process the
2268	 * freeblks below once we have deleted the dependencies.
2269	 */
2270	delay = (inodedep->id_state & DEPCOMPLETE);
2271	if (delay)
2272		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
2273	/*
2274	 * Because the file length has been truncated to zero, any
2275	 * pending block allocation dependency structures associated
2276	 * with this inode are obsolete and can simply be de-allocated.
2277	 * We must first merge the two dependency lists to get rid of
2278	 * any duplicate freefrag structures, then purge the merged list.
2279	 * If we still have a bitmap dependency, then the inode has never
2280	 * been written to disk, so we can free any fragments without delay.
2281	 */
2282	if (flags & IO_NORMAL) {
2283		merge_inode_lists(&inodedep->id_newinoupdt,
2284		    &inodedep->id_inoupdt);
2285		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
2286			free_allocdirect(&inodedep->id_inoupdt, adp, delay);
2287	}
2288	if (flags & IO_EXT) {
2289		merge_inode_lists(&inodedep->id_newextupdt,
2290		    &inodedep->id_extupdt);
2291		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
2292			free_allocdirect(&inodedep->id_extupdt, adp, delay);
2293	}
2294	FREE_LOCK(&lk);
2295	bdwrite(bp);
2296	/*
2297	 * We must wait for any I/O in progress to finish so that
2298	 * all potential buffers on the dirty list will be visible.
2299	 * Once they are all there, walk the list and get rid of
2300	 * any dependencies.
2301	 */
2302	vp = ITOV(ip);
2303	VI_LOCK(vp);
2304	drain_output(vp);
2305restart:
2306	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
2307		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
2308		    ((flags & IO_NORMAL) == 0 &&
2309		      (bp->b_xflags & BX_ALTDATA) == 0))
2310			continue;
2311		if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL)
2312			goto restart;
2313		VI_UNLOCK(vp);
2314		ACQUIRE_LOCK(&lk);
2315		(void) inodedep_lookup(mp, ip->i_number, 0, &inodedep);
2316		deallocate_dependencies(bp, inodedep);
2317		FREE_LOCK(&lk);
2318		bp->b_flags |= B_INVAL | B_NOCACHE;
2319		brelse(bp);
2320		VI_LOCK(vp);
2321		goto restart;
2322	}
2323	VI_UNLOCK(vp);
2324	ACQUIRE_LOCK(&lk);
2325	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
2326		(void) free_inodedep(inodedep);
2327
2328	if(delay) {
2329		freeblks->fb_state |= DEPCOMPLETE;
2330		/*
2331		 * If the inode with zeroed block pointers is now on disk
2332		 * we can start freeing blocks. Add freeblks to the worklist
2333		 * instead of calling  handle_workitem_freeblocks directly as
2334		 * it is more likely that additional IO is needed to complete
2335		 * the request here than in the !delay case.
2336		 */
2337		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
2338			add_to_worklist(&freeblks->fb_list);
2339	}
2340
2341	FREE_LOCK(&lk);
2342	/*
2343	 * If the inode has never been written to disk (delay == 0),
2344	 * then we can process the freeblks now that we have deleted
2345	 * the dependencies.
2346	 */
2347	if (!delay)
2348		handle_workitem_freeblocks(freeblks, 0);
2349}
2350
2351/*
2352 * Reclaim any dependency structures from a buffer that is about to
2353 * be reallocated to a new vnode. The buffer must be locked, thus,
2354 * no I/O completion operations can occur while we are manipulating
2355 * its associated dependencies. The mutex is held so that other I/O's
2356 * associated with related dependencies do not occur.
2357 */
2358static void
2359deallocate_dependencies(bp, inodedep)
2360	struct buf *bp;
2361	struct inodedep *inodedep;
2362{
2363	struct worklist *wk;
2364	struct indirdep *indirdep;
2365	struct allocindir *aip;
2366	struct pagedep *pagedep;
2367	struct dirrem *dirrem;
2368	struct diradd *dap;
2369	int i;
2370
2371	mtx_assert(&lk, MA_OWNED);
2372	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2373		switch (wk->wk_type) {
2374
2375		case D_INDIRDEP:
2376			indirdep = WK_INDIRDEP(wk);
2377			/*
2378			 * None of the indirect pointers will ever be visible,
2379			 * so they can simply be tossed. GOINGAWAY ensures
2380			 * that allocated pointers will be saved in the buffer
2381			 * cache until they are freed. Note that they will
2382			 * only be able to be found by their physical address
2383			 * since the inode mapping the logical address will
2384			 * be gone. The save buffer used for the safe copy
2385			 * was allocated in setup_allocindir_phase2 using
2386			 * the physical address so it could be used for this
2387			 * purpose. Hence we swap the safe copy with the real
2388			 * copy, allowing the safe copy to be freed and holding
2389			 * on to the real copy for later use in indir_trunc.
2390			 */
2391			if (indirdep->ir_state & GOINGAWAY)
2392				panic("deallocate_dependencies: already gone");
2393			indirdep->ir_state |= GOINGAWAY;
2394			VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1;
2395			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2396				free_allocindir(aip, inodedep);
2397			if (bp->b_lblkno >= 0 ||
2398			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
2399				panic("deallocate_dependencies: not indir");
2400			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2401			    bp->b_bcount);
2402			WORKLIST_REMOVE(wk);
2403			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
2404			continue;
2405
2406		case D_PAGEDEP:
2407			pagedep = WK_PAGEDEP(wk);
2408			/*
2409			 * None of the directory additions will ever be
2410			 * visible, so they can simply be tossed.
2411			 */
2412			for (i = 0; i < DAHASHSZ; i++)
2413				while ((dap =
2414				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
2415					free_diradd(dap);
2416			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2417				free_diradd(dap);
2418			/*
2419			 * Copy any directory remove dependencies to the list
2420			 * to be processed after the zero'ed inode is written.
2421			 * If the inode has already been written, then they
2422			 * can be dumped directly onto the work list.
2423			 */
2424			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2425				LIST_REMOVE(dirrem, dm_next);
2426				dirrem->dm_dirinum = pagedep->pd_ino;
2427				if (inodedep == NULL ||
2428				    (inodedep->id_state & ALLCOMPLETE) ==
2429				     ALLCOMPLETE)
2430					add_to_worklist(&dirrem->dm_list);
2431				else
2432					WORKLIST_INSERT(&inodedep->id_bufwait,
2433					    &dirrem->dm_list);
2434			}
2435			if ((pagedep->pd_state & NEWBLOCK) != 0) {
2436				LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
2437					if (wk->wk_type == D_NEWDIRBLK &&
2438					    WK_NEWDIRBLK(wk)->db_pagedep ==
2439					      pagedep)
2440						break;
2441				if (wk != NULL) {
2442					WORKLIST_REMOVE(wk);
2443					free_newdirblk(WK_NEWDIRBLK(wk));
2444				} else
2445					panic("deallocate_dependencies: "
2446					      "lost pagedep");
2447			}
2448			WORKLIST_REMOVE(&pagedep->pd_list);
2449			LIST_REMOVE(pagedep, pd_hash);
2450			WORKITEM_FREE(pagedep, D_PAGEDEP);
2451			continue;
2452
2453		case D_ALLOCINDIR:
2454			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2455			continue;
2456
2457		case D_ALLOCDIRECT:
2458		case D_INODEDEP:
2459			panic("deallocate_dependencies: Unexpected type %s",
2460			    TYPENAME(wk->wk_type));
2461			/* NOTREACHED */
2462
2463		default:
2464			panic("deallocate_dependencies: Unknown type %s",
2465			    TYPENAME(wk->wk_type));
2466			/* NOTREACHED */
2467		}
2468	}
2469}
2470
2471/*
2472 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2473 * This routine must be called with splbio interrupts blocked.
2474 */
2475static void
2476free_allocdirect(adphead, adp, delay)
2477	struct allocdirectlst *adphead;
2478	struct allocdirect *adp;
2479	int delay;
2480{
2481	struct newdirblk *newdirblk;
2482	struct worklist *wk;
2483
2484	mtx_assert(&lk, MA_OWNED);
2485	if ((adp->ad_state & DEPCOMPLETE) == 0)
2486		LIST_REMOVE(adp, ad_deps);
2487	TAILQ_REMOVE(adphead, adp, ad_next);
2488	if ((adp->ad_state & COMPLETE) == 0)
2489		WORKLIST_REMOVE(&adp->ad_list);
2490	if (adp->ad_freefrag != NULL) {
2491		if (delay)
2492			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2493			    &adp->ad_freefrag->ff_list);
2494		else
2495			add_to_worklist(&adp->ad_freefrag->ff_list);
2496	}
2497	if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
2498		newdirblk = WK_NEWDIRBLK(wk);
2499		WORKLIST_REMOVE(&newdirblk->db_list);
2500		if (LIST_FIRST(&adp->ad_newdirblk) != NULL)
2501			panic("free_allocdirect: extra newdirblk");
2502		if (delay)
2503			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2504			    &newdirblk->db_list);
2505		else
2506			free_newdirblk(newdirblk);
2507	}
2508	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2509}
2510
2511/*
2512 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
2513 * This routine must be called with splbio interrupts blocked.
2514 */
2515static void
2516free_newdirblk(newdirblk)
2517	struct newdirblk *newdirblk;
2518{
2519	struct pagedep *pagedep;
2520	struct diradd *dap;
2521	int i;
2522
2523	mtx_assert(&lk, MA_OWNED);
2524	/*
2525	 * If the pagedep is still linked onto the directory buffer
2526	 * dependency chain, then some of the entries on the
2527	 * pd_pendinghd list may not be committed to disk yet. In
2528	 * this case, we will simply clear the NEWBLOCK flag and
2529	 * let the pd_pendinghd list be processed when the pagedep
2530	 * is next written. If the pagedep is no longer on the buffer
2531	 * dependency chain, then all the entries on the pd_pending
2532	 * list are committed to disk and we can free them here.
2533	 */
2534	pagedep = newdirblk->db_pagedep;
2535	pagedep->pd_state &= ~NEWBLOCK;
2536	if ((pagedep->pd_state & ONWORKLIST) == 0)
2537		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2538			free_diradd(dap);
2539	/*
2540	 * If no dependencies remain, the pagedep will be freed.
2541	 */
2542	for (i = 0; i < DAHASHSZ; i++)
2543		if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
2544			break;
2545	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
2546		LIST_REMOVE(pagedep, pd_hash);
2547		WORKITEM_FREE(pagedep, D_PAGEDEP);
2548	}
2549	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2550}
2551
2552/*
2553 * Prepare an inode to be freed. The actual free operation is not
2554 * done until the zero'ed inode has been written to disk.
2555 */
2556void
2557softdep_freefile(pvp, ino, mode)
2558	struct vnode *pvp;
2559	ino_t ino;
2560	int mode;
2561{
2562	struct inode *ip = VTOI(pvp);
2563	struct inodedep *inodedep;
2564	struct freefile *freefile;
2565
2566	/*
2567	 * This sets up the inode de-allocation dependency.
2568	 */
2569	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2570		M_FREEFILE, M_SOFTDEP_FLAGS);
2571	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
2572	freefile->fx_mode = mode;
2573	freefile->fx_oldinum = ino;
2574	freefile->fx_devvp = ip->i_devvp;
2575	if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2576		UFS_LOCK(ip->i_ump);
2577		ip->i_fs->fs_pendinginodes += 1;
2578		UFS_UNLOCK(ip->i_ump);
2579	}
2580
2581	/*
2582	 * If the inodedep does not exist, then the zero'ed inode has
2583	 * been written to disk. If the allocated inode has never been
2584	 * written to disk, then the on-disk inode is zero'ed. In either
2585	 * case we can free the file immediately.
2586	 */
2587	ACQUIRE_LOCK(&lk);
2588	if (inodedep_lookup(pvp->v_mount, ino, 0, &inodedep) == 0 ||
2589	    check_inode_unwritten(inodedep)) {
2590		FREE_LOCK(&lk);
2591		handle_workitem_freefile(freefile);
2592		return;
2593	}
2594	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2595	FREE_LOCK(&lk);
2596}
2597
2598/*
2599 * Check to see if an inode has never been written to disk. If
2600 * so free the inodedep and return success, otherwise return failure.
2601 * This routine must be called with splbio interrupts blocked.
2602 *
2603 * If we still have a bitmap dependency, then the inode has never
2604 * been written to disk. Drop the dependency as it is no longer
2605 * necessary since the inode is being deallocated. We set the
2606 * ALLCOMPLETE flags since the bitmap now properly shows that the
2607 * inode is not allocated. Even if the inode is actively being
2608 * written, it has been rolled back to its zero'ed state, so we
2609 * are ensured that a zero inode is what is on the disk. For short
2610 * lived files, this change will usually result in removing all the
2611 * dependencies from the inode so that it can be freed immediately.
2612 */
2613static int
2614check_inode_unwritten(inodedep)
2615	struct inodedep *inodedep;
2616{
2617
2618	mtx_assert(&lk, MA_OWNED);
2619	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2620	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2621	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2622	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2623	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2624	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2625	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2626	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2627	    inodedep->id_nlinkdelta != 0)
2628		return (0);
2629
2630	/*
2631	 * Another process might be in initiate_write_inodeblock_ufs[12]
2632	 * trying to allocate memory without holding "Softdep Lock".
2633	 */
2634	if ((inodedep->id_state & IOSTARTED) != 0 &&
2635	    inodedep->id_savedino1 == NULL)
2636		return (0);
2637
2638	inodedep->id_state |= ALLCOMPLETE;
2639	LIST_REMOVE(inodedep, id_deps);
2640	inodedep->id_buf = NULL;
2641	if (inodedep->id_state & ONWORKLIST)
2642		WORKLIST_REMOVE(&inodedep->id_list);
2643	if (inodedep->id_savedino1 != NULL) {
2644		FREE(inodedep->id_savedino1, M_SAVEDINO);
2645		inodedep->id_savedino1 = NULL;
2646	}
2647	if (free_inodedep(inodedep) == 0)
2648		panic("check_inode_unwritten: busy inode");
2649	return (1);
2650}
2651
2652/*
2653 * Try to free an inodedep structure. Return 1 if it could be freed.
2654 */
2655static int
2656free_inodedep(inodedep)
2657	struct inodedep *inodedep;
2658{
2659
2660	mtx_assert(&lk, MA_OWNED);
2661	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2662	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2663	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2664	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2665	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2666	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2667	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2668	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2669	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2670	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL)
2671		return (0);
2672	LIST_REMOVE(inodedep, id_hash);
2673	WORKITEM_FREE(inodedep, D_INODEDEP);
2674	num_inodedep -= 1;
2675	return (1);
2676}
2677
2678/*
2679 * This workitem routine performs the block de-allocation.
2680 * The workitem is added to the pending list after the updated
2681 * inode block has been written to disk.  As mentioned above,
2682 * checks regarding the number of blocks de-allocated (compared
2683 * to the number of blocks allocated for the file) are also
2684 * performed in this function.
2685 */
2686static void
2687handle_workitem_freeblocks(freeblks, flags)
2688	struct freeblks *freeblks;
2689	int flags;
2690{
2691	struct inode *ip;
2692	struct vnode *vp;
2693	struct fs *fs;
2694	struct ufsmount *ump;
2695	int i, nblocks, level, bsize;
2696	ufs2_daddr_t bn, blocksreleased = 0;
2697	int error, allerror = 0;
2698	ufs_lbn_t baselbns[NIADDR], tmpval;
2699	int fs_pendingblocks;
2700
2701	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
2702	fs = ump->um_fs;
2703	fs_pendingblocks = 0;
2704	tmpval = 1;
2705	baselbns[0] = NDADDR;
2706	for (i = 1; i < NIADDR; i++) {
2707		tmpval *= NINDIR(fs);
2708		baselbns[i] = baselbns[i - 1] + tmpval;
2709	}
2710	nblocks = btodb(fs->fs_bsize);
2711	blocksreleased = 0;
2712	/*
2713	 * Release all extended attribute blocks or frags.
2714	 */
2715	if (freeblks->fb_oldextsize > 0) {
2716		for (i = (NXADDR - 1); i >= 0; i--) {
2717			if ((bn = freeblks->fb_eblks[i]) == 0)
2718				continue;
2719			bsize = sblksize(fs, freeblks->fb_oldextsize, i);
2720			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2721			    freeblks->fb_previousinum);
2722			blocksreleased += btodb(bsize);
2723		}
2724	}
2725	/*
2726	 * Release all data blocks or frags.
2727	 */
2728	if (freeblks->fb_oldsize > 0) {
2729		/*
2730		 * Indirect blocks first.
2731		 */
2732		for (level = (NIADDR - 1); level >= 0; level--) {
2733			if ((bn = freeblks->fb_iblks[level]) == 0)
2734				continue;
2735			if ((error = indir_trunc(freeblks, fsbtodb(fs, bn),
2736			    level, baselbns[level], &blocksreleased)) == 0)
2737				allerror = error;
2738			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn,
2739			    fs->fs_bsize, freeblks->fb_previousinum);
2740			fs_pendingblocks += nblocks;
2741			blocksreleased += nblocks;
2742		}
2743		/*
2744		 * All direct blocks or frags.
2745		 */
2746		for (i = (NDADDR - 1); i >= 0; i--) {
2747			if ((bn = freeblks->fb_dblks[i]) == 0)
2748				continue;
2749			bsize = sblksize(fs, freeblks->fb_oldsize, i);
2750			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2751			    freeblks->fb_previousinum);
2752			fs_pendingblocks += btodb(bsize);
2753			blocksreleased += btodb(bsize);
2754		}
2755	}
2756	UFS_LOCK(ump);
2757	fs->fs_pendingblocks -= fs_pendingblocks;
2758	UFS_UNLOCK(ump);
2759	/*
2760	 * If we still have not finished background cleanup, then check
2761	 * to see if the block count needs to be adjusted.
2762	 */
2763	if (freeblks->fb_chkcnt != blocksreleased &&
2764	    (fs->fs_flags & FS_UNCLEAN) != 0 &&
2765	    ffs_vget(freeblks->fb_list.wk_mp, freeblks->fb_previousinum,
2766	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) {
2767		ip = VTOI(vp);
2768		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \
2769		    freeblks->fb_chkcnt - blocksreleased);
2770		ip->i_flag |= IN_CHANGE;
2771		vput(vp);
2772	}
2773
2774#ifdef DIAGNOSTIC
2775	if (freeblks->fb_chkcnt != blocksreleased &&
2776	    ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
2777		printf("handle_workitem_freeblocks: block count\n");
2778	if (allerror)
2779		softdep_error("handle_workitem_freeblks", allerror);
2780#endif /* DIAGNOSTIC */
2781
2782	ACQUIRE_LOCK(&lk);
2783	WORKITEM_FREE(freeblks, D_FREEBLKS);
2784	FREE_LOCK(&lk);
2785}
2786
2787/*
2788 * Release blocks associated with the inode ip and stored in the indirect
2789 * block dbn. If level is greater than SINGLE, the block is an indirect block
2790 * and recursive calls to indirtrunc must be used to cleanse other indirect
2791 * blocks.
2792 */
2793static int
2794indir_trunc(freeblks, dbn, level, lbn, countp)
2795	struct freeblks *freeblks;
2796	ufs2_daddr_t dbn;
2797	int level;
2798	ufs_lbn_t lbn;
2799	ufs2_daddr_t *countp;
2800{
2801	struct buf *bp;
2802	struct fs *fs;
2803	struct worklist *wk;
2804	struct indirdep *indirdep;
2805	struct ufsmount *ump;
2806	ufs1_daddr_t *bap1 = 0;
2807	ufs2_daddr_t nb, *bap2 = 0;
2808	ufs_lbn_t lbnadd;
2809	int i, nblocks, ufs1fmt;
2810	int error, allerror = 0;
2811	int fs_pendingblocks;
2812
2813	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
2814	fs = ump->um_fs;
2815	fs_pendingblocks = 0;
2816	lbnadd = 1;
2817	for (i = level; i > 0; i--)
2818		lbnadd *= NINDIR(fs);
2819	/*
2820	 * Get buffer of block pointers to be freed. This routine is not
2821	 * called until the zero'ed inode has been written, so it is safe
2822	 * to free blocks as they are encountered. Because the inode has
2823	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2824	 * have to use the on-disk address and the block device for the
2825	 * filesystem to look them up. If the file was deleted before its
2826	 * indirect blocks were all written to disk, the routine that set
2827	 * us up (deallocate_dependencies) will have arranged to leave
2828	 * a complete copy of the indirect block in memory for our use.
2829	 * Otherwise we have to read the blocks in from the disk.
2830	 */
2831#ifdef notyet
2832	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
2833	    GB_NOCREAT);
2834#else
2835	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
2836#endif
2837	ACQUIRE_LOCK(&lk);
2838	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2839		if (wk->wk_type != D_INDIRDEP ||
2840		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2841		    (indirdep->ir_state & GOINGAWAY) == 0)
2842			panic("indir_trunc: lost indirdep");
2843		WORKLIST_REMOVE(wk);
2844		WORKITEM_FREE(indirdep, D_INDIRDEP);
2845		if (LIST_FIRST(&bp->b_dep) != NULL)
2846			panic("indir_trunc: dangling dep");
2847		ump->um_numindirdeps -= 1;
2848		FREE_LOCK(&lk);
2849	} else {
2850#ifdef notyet
2851		if (bp)
2852			brelse(bp);
2853#endif
2854		FREE_LOCK(&lk);
2855		error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
2856		    NOCRED, &bp);
2857		if (error) {
2858			brelse(bp);
2859			return (error);
2860		}
2861	}
2862	/*
2863	 * Recursively free indirect blocks.
2864	 */
2865	if (ump->um_fstype == UFS1) {
2866		ufs1fmt = 1;
2867		bap1 = (ufs1_daddr_t *)bp->b_data;
2868	} else {
2869		ufs1fmt = 0;
2870		bap2 = (ufs2_daddr_t *)bp->b_data;
2871	}
2872	nblocks = btodb(fs->fs_bsize);
2873	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2874		if (ufs1fmt)
2875			nb = bap1[i];
2876		else
2877			nb = bap2[i];
2878		if (nb == 0)
2879			continue;
2880		if (level != 0) {
2881			if ((error = indir_trunc(freeblks, fsbtodb(fs, nb),
2882			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2883				allerror = error;
2884		}
2885		ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize,
2886		    freeblks->fb_previousinum);
2887		fs_pendingblocks += nblocks;
2888		*countp += nblocks;
2889	}
2890	UFS_LOCK(ump);
2891	fs->fs_pendingblocks -= fs_pendingblocks;
2892	UFS_UNLOCK(ump);
2893	bp->b_flags |= B_INVAL | B_NOCACHE;
2894	brelse(bp);
2895	return (allerror);
2896}
2897
2898/*
2899 * Free an allocindir.
2900 * This routine must be called with splbio interrupts blocked.
2901 */
2902static void
2903free_allocindir(aip, inodedep)
2904	struct allocindir *aip;
2905	struct inodedep *inodedep;
2906{
2907	struct freefrag *freefrag;
2908
2909	mtx_assert(&lk, MA_OWNED);
2910	if ((aip->ai_state & DEPCOMPLETE) == 0)
2911		LIST_REMOVE(aip, ai_deps);
2912	if (aip->ai_state & ONWORKLIST)
2913		WORKLIST_REMOVE(&aip->ai_list);
2914	LIST_REMOVE(aip, ai_next);
2915	if ((freefrag = aip->ai_freefrag) != NULL) {
2916		if (inodedep == NULL)
2917			add_to_worklist(&freefrag->ff_list);
2918		else
2919			WORKLIST_INSERT(&inodedep->id_bufwait,
2920			    &freefrag->ff_list);
2921	}
2922	WORKITEM_FREE(aip, D_ALLOCINDIR);
2923}
2924
2925/*
2926 * Directory entry addition dependencies.
2927 *
2928 * When adding a new directory entry, the inode (with its incremented link
2929 * count) must be written to disk before the directory entry's pointer to it.
2930 * Also, if the inode is newly allocated, the corresponding freemap must be
2931 * updated (on disk) before the directory entry's pointer. These requirements
2932 * are met via undo/redo on the directory entry's pointer, which consists
2933 * simply of the inode number.
2934 *
2935 * As directory entries are added and deleted, the free space within a
2936 * directory block can become fragmented.  The ufs filesystem will compact
2937 * a fragmented directory block to make space for a new entry. When this
2938 * occurs, the offsets of previously added entries change. Any "diradd"
2939 * dependency structures corresponding to these entries must be updated with
2940 * the new offsets.
2941 */
2942
2943/*
2944 * This routine is called after the in-memory inode's link
2945 * count has been incremented, but before the directory entry's
2946 * pointer to the inode has been set.
2947 */
2948int
2949softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
2950	struct buf *bp;		/* buffer containing directory block */
2951	struct inode *dp;	/* inode for directory */
2952	off_t diroffset;	/* offset of new entry in directory */
2953	ino_t newinum;		/* inode referenced by new directory entry */
2954	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2955	int isnewblk;		/* entry is in a newly allocated block */
2956{
2957	int offset;		/* offset of new entry within directory block */
2958	ufs_lbn_t lbn;		/* block in directory containing new entry */
2959	struct fs *fs;
2960	struct diradd *dap;
2961	struct allocdirect *adp;
2962	struct pagedep *pagedep;
2963	struct inodedep *inodedep;
2964	struct newdirblk *newdirblk = 0;
2965	struct mkdir *mkdir1, *mkdir2;
2966	struct mount *mp;
2967
2968	/*
2969	 * Whiteouts have no dependencies.
2970	 */
2971	if (newinum == WINO) {
2972		if (newdirbp != NULL)
2973			bdwrite(newdirbp);
2974		return (0);
2975	}
2976	mp = UFSTOVFS(dp->i_ump);
2977	fs = dp->i_fs;
2978	lbn = lblkno(fs, diroffset);
2979	offset = blkoff(fs, diroffset);
2980	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2981		M_SOFTDEP_FLAGS|M_ZERO);
2982	workitem_alloc(&dap->da_list, D_DIRADD, mp);
2983	dap->da_offset = offset;
2984	dap->da_newinum = newinum;
2985	dap->da_state = ATTACHED;
2986	if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
2987		MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk),
2988		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
2989		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
2990	}
2991	if (newdirbp == NULL) {
2992		dap->da_state |= DEPCOMPLETE;
2993		ACQUIRE_LOCK(&lk);
2994	} else {
2995		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2996		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2997		    M_SOFTDEP_FLAGS);
2998		workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
2999		mkdir1->md_state = MKDIR_BODY;
3000		mkdir1->md_diradd = dap;
3001		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
3002		    M_SOFTDEP_FLAGS);
3003		workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
3004		mkdir2->md_state = MKDIR_PARENT;
3005		mkdir2->md_diradd = dap;
3006		/*
3007		 * Dependency on "." and ".." being written to disk.
3008		 */
3009		mkdir1->md_buf = newdirbp;
3010		ACQUIRE_LOCK(&lk);
3011		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
3012		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
3013		FREE_LOCK(&lk);
3014		bdwrite(newdirbp);
3015		/*
3016		 * Dependency on link count increase for parent directory
3017		 */
3018		ACQUIRE_LOCK(&lk);
3019		if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0
3020		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3021			dap->da_state &= ~MKDIR_PARENT;
3022			WORKITEM_FREE(mkdir2, D_MKDIR);
3023		} else {
3024			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
3025			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
3026		}
3027	}
3028	/*
3029	 * Link into parent directory pagedep to await its being written.
3030	 */
3031	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3032		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3033	dap->da_pagedep = pagedep;
3034	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
3035	    da_pdlist);
3036	/*
3037	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3038	 * is not yet written. If it is written, do the post-inode write
3039	 * processing to put it on the id_pendinghd list.
3040	 */
3041	(void) inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
3042	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
3043		diradd_inode_written(dap, inodedep);
3044	else
3045		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3046	if (isnewblk) {
3047		/*
3048		 * Directories growing into indirect blocks are rare
3049		 * enough and the frequency of new block allocation
3050		 * in those cases even more rare, that we choose not
3051		 * to bother tracking them. Rather we simply force the
3052		 * new directory entry to disk.
3053		 */
3054		if (lbn >= NDADDR) {
3055			FREE_LOCK(&lk);
3056			/*
3057			 * We only have a new allocation when at the
3058			 * beginning of a new block, not when we are
3059			 * expanding into an existing block.
3060			 */
3061			if (blkoff(fs, diroffset) == 0)
3062				return (1);
3063			return (0);
3064		}
3065		/*
3066		 * We only have a new allocation when at the beginning
3067		 * of a new fragment, not when we are expanding into an
3068		 * existing fragment. Also, there is nothing to do if we
3069		 * are already tracking this block.
3070		 */
3071		if (fragoff(fs, diroffset) != 0) {
3072			FREE_LOCK(&lk);
3073			return (0);
3074		}
3075		if ((pagedep->pd_state & NEWBLOCK) != 0) {
3076			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
3077			FREE_LOCK(&lk);
3078			return (0);
3079		}
3080		/*
3081		 * Find our associated allocdirect and have it track us.
3082		 */
3083		if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0)
3084			panic("softdep_setup_directory_add: lost inodedep");
3085		adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
3086		if (adp == NULL || adp->ad_lbn != lbn)
3087			panic("softdep_setup_directory_add: lost entry");
3088		pagedep->pd_state |= NEWBLOCK;
3089		newdirblk->db_pagedep = pagedep;
3090		WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
3091	}
3092	FREE_LOCK(&lk);
3093	return (0);
3094}
3095
3096/*
3097 * This procedure is called to change the offset of a directory
3098 * entry when compacting a directory block which must be owned
3099 * exclusively by the caller. Note that the actual entry movement
3100 * must be done in this procedure to ensure that no I/O completions
3101 * occur while the move is in progress.
3102 */
3103void
3104softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
3105	struct inode *dp;	/* inode for directory */
3106	caddr_t base;		/* address of dp->i_offset */
3107	caddr_t oldloc;		/* address of old directory location */
3108	caddr_t newloc;		/* address of new directory location */
3109	int entrysize;		/* size of directory entry */
3110{
3111	int offset, oldoffset, newoffset;
3112	struct pagedep *pagedep;
3113	struct diradd *dap;
3114	ufs_lbn_t lbn;
3115
3116	ACQUIRE_LOCK(&lk);
3117	lbn = lblkno(dp->i_fs, dp->i_offset);
3118	offset = blkoff(dp->i_fs, dp->i_offset);
3119	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
3120		goto done;
3121	oldoffset = offset + (oldloc - base);
3122	newoffset = offset + (newloc - base);
3123
3124	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
3125		if (dap->da_offset != oldoffset)
3126			continue;
3127		dap->da_offset = newoffset;
3128		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
3129			break;
3130		LIST_REMOVE(dap, da_pdlist);
3131		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
3132		    dap, da_pdlist);
3133		break;
3134	}
3135	if (dap == NULL) {
3136
3137		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
3138			if (dap->da_offset == oldoffset) {
3139				dap->da_offset = newoffset;
3140				break;
3141			}
3142		}
3143	}
3144done:
3145	bcopy(oldloc, newloc, entrysize);
3146	FREE_LOCK(&lk);
3147}
3148
3149/*
3150 * Free a diradd dependency structure. This routine must be called
3151 * with splbio interrupts blocked.
3152 */
3153static void
3154free_diradd(dap)
3155	struct diradd *dap;
3156{
3157	struct dirrem *dirrem;
3158	struct pagedep *pagedep;
3159	struct inodedep *inodedep;
3160	struct mkdir *mkdir, *nextmd;
3161
3162	mtx_assert(&lk, MA_OWNED);
3163	WORKLIST_REMOVE(&dap->da_list);
3164	LIST_REMOVE(dap, da_pdlist);
3165	if ((dap->da_state & DIRCHG) == 0) {
3166		pagedep = dap->da_pagedep;
3167	} else {
3168		dirrem = dap->da_previous;
3169		pagedep = dirrem->dm_pagedep;
3170		dirrem->dm_dirinum = pagedep->pd_ino;
3171		add_to_worklist(&dirrem->dm_list);
3172	}
3173	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
3174	    0, &inodedep) != 0)
3175		(void) free_inodedep(inodedep);
3176	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
3177		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
3178			nextmd = LIST_NEXT(mkdir, md_mkdirs);
3179			if (mkdir->md_diradd != dap)
3180				continue;
3181			dap->da_state &= ~mkdir->md_state;
3182			WORKLIST_REMOVE(&mkdir->md_list);
3183			LIST_REMOVE(mkdir, md_mkdirs);
3184			WORKITEM_FREE(mkdir, D_MKDIR);
3185		}
3186		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
3187			panic("free_diradd: unfound ref");
3188	}
3189	WORKITEM_FREE(dap, D_DIRADD);
3190}
3191
3192/*
3193 * Directory entry removal dependencies.
3194 *
3195 * When removing a directory entry, the entry's inode pointer must be
3196 * zero'ed on disk before the corresponding inode's link count is decremented
3197 * (possibly freeing the inode for re-use). This dependency is handled by
3198 * updating the directory entry but delaying the inode count reduction until
3199 * after the directory block has been written to disk. After this point, the
3200 * inode count can be decremented whenever it is convenient.
3201 */
3202
3203/*
3204 * This routine should be called immediately after removing
3205 * a directory entry.  The inode's link count should not be
3206 * decremented by the calling procedure -- the soft updates
3207 * code will do this task when it is safe.
3208 */
3209void
3210softdep_setup_remove(bp, dp, ip, isrmdir)
3211	struct buf *bp;		/* buffer containing directory block */
3212	struct inode *dp;	/* inode for the directory being modified */
3213	struct inode *ip;	/* inode for directory entry being removed */
3214	int isrmdir;		/* indicates if doing RMDIR */
3215{
3216	struct dirrem *dirrem, *prevdirrem;
3217
3218	/*
3219	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
3220	 */
3221	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3222
3223	/*
3224	 * If the COMPLETE flag is clear, then there were no active
3225	 * entries and we want to roll back to a zeroed entry until
3226	 * the new inode is committed to disk. If the COMPLETE flag is
3227	 * set then we have deleted an entry that never made it to
3228	 * disk. If the entry we deleted resulted from a name change,
3229	 * then the old name still resides on disk. We cannot delete
3230	 * its inode (returned to us in prevdirrem) until the zeroed
3231	 * directory entry gets to disk. The new inode has never been
3232	 * referenced on the disk, so can be deleted immediately.
3233	 */
3234	if ((dirrem->dm_state & COMPLETE) == 0) {
3235		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
3236		    dm_next);
3237		FREE_LOCK(&lk);
3238	} else {
3239		if (prevdirrem != NULL)
3240			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
3241			    prevdirrem, dm_next);
3242		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
3243		FREE_LOCK(&lk);
3244		handle_workitem_remove(dirrem, NULL);
3245	}
3246}
3247
3248/*
3249 * Allocate a new dirrem if appropriate and return it along with
3250 * its associated pagedep. Called without a lock, returns with lock.
3251 */
3252static long num_dirrem;		/* number of dirrem allocated */
3253static struct dirrem *
3254newdirrem(bp, dp, ip, isrmdir, prevdirremp)
3255	struct buf *bp;		/* buffer containing directory block */
3256	struct inode *dp;	/* inode for the directory being modified */
3257	struct inode *ip;	/* inode for directory entry being removed */
3258	int isrmdir;		/* indicates if doing RMDIR */
3259	struct dirrem **prevdirremp; /* previously referenced inode, if any */
3260{
3261	int offset;
3262	ufs_lbn_t lbn;
3263	struct diradd *dap;
3264	struct dirrem *dirrem;
3265	struct pagedep *pagedep;
3266
3267	/*
3268	 * Whiteouts have no deletion dependencies.
3269	 */
3270	if (ip == NULL)
3271		panic("newdirrem: whiteout");
3272	/*
3273	 * If we are over our limit, try to improve the situation.
3274	 * Limiting the number of dirrem structures will also limit
3275	 * the number of freefile and freeblks structures.
3276	 */
3277	ACQUIRE_LOCK(&lk);
3278	if (num_dirrem > max_softdeps / 2)
3279		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE);
3280	num_dirrem += 1;
3281	FREE_LOCK(&lk);
3282	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
3283		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
3284	workitem_alloc(&dirrem->dm_list, D_DIRREM, ITOV(dp)->v_mount);
3285	dirrem->dm_state = isrmdir ? RMDIR : 0;
3286	dirrem->dm_oldinum = ip->i_number;
3287	*prevdirremp = NULL;
3288
3289	ACQUIRE_LOCK(&lk);
3290	lbn = lblkno(dp->i_fs, dp->i_offset);
3291	offset = blkoff(dp->i_fs, dp->i_offset);
3292	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3293		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3294	dirrem->dm_pagedep = pagedep;
3295	/*
3296	 * Check for a diradd dependency for the same directory entry.
3297	 * If present, then both dependencies become obsolete and can
3298	 * be de-allocated. Check for an entry on both the pd_dirraddhd
3299	 * list and the pd_pendinghd list.
3300	 */
3301
3302	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
3303		if (dap->da_offset == offset)
3304			break;
3305	if (dap == NULL) {
3306
3307		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
3308			if (dap->da_offset == offset)
3309				break;
3310		if (dap == NULL)
3311			return (dirrem);
3312	}
3313	/*
3314	 * Must be ATTACHED at this point.
3315	 */
3316	if ((dap->da_state & ATTACHED) == 0)
3317		panic("newdirrem: not ATTACHED");
3318	if (dap->da_newinum != ip->i_number)
3319		panic("newdirrem: inum %d should be %d",
3320		    ip->i_number, dap->da_newinum);
3321	/*
3322	 * If we are deleting a changed name that never made it to disk,
3323	 * then return the dirrem describing the previous inode (which
3324	 * represents the inode currently referenced from this entry on disk).
3325	 */
3326	if ((dap->da_state & DIRCHG) != 0) {
3327		*prevdirremp = dap->da_previous;
3328		dap->da_state &= ~DIRCHG;
3329		dap->da_pagedep = pagedep;
3330	}
3331	/*
3332	 * We are deleting an entry that never made it to disk.
3333	 * Mark it COMPLETE so we can delete its inode immediately.
3334	 */
3335	dirrem->dm_state |= COMPLETE;
3336	free_diradd(dap);
3337	return (dirrem);
3338}
3339
3340/*
3341 * Directory entry change dependencies.
3342 *
3343 * Changing an existing directory entry requires that an add operation
3344 * be completed first followed by a deletion. The semantics for the addition
3345 * are identical to the description of adding a new entry above except
3346 * that the rollback is to the old inode number rather than zero. Once
3347 * the addition dependency is completed, the removal is done as described
3348 * in the removal routine above.
3349 */
3350
3351/*
3352 * This routine should be called immediately after changing
3353 * a directory entry.  The inode's link count should not be
3354 * decremented by the calling procedure -- the soft updates
3355 * code will perform this task when it is safe.
3356 */
3357void
3358softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
3359	struct buf *bp;		/* buffer containing directory block */
3360	struct inode *dp;	/* inode for the directory being modified */
3361	struct inode *ip;	/* inode for directory entry being removed */
3362	ino_t newinum;		/* new inode number for changed entry */
3363	int isrmdir;		/* indicates if doing RMDIR */
3364{
3365	int offset;
3366	struct diradd *dap = NULL;
3367	struct dirrem *dirrem, *prevdirrem;
3368	struct pagedep *pagedep;
3369	struct inodedep *inodedep;
3370	struct mount *mp;
3371
3372	offset = blkoff(dp->i_fs, dp->i_offset);
3373	mp = UFSTOVFS(dp->i_ump);
3374
3375	/*
3376	 * Whiteouts do not need diradd dependencies.
3377	 */
3378	if (newinum != WINO) {
3379		MALLOC(dap, struct diradd *, sizeof(struct diradd),
3380		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
3381		workitem_alloc(&dap->da_list, D_DIRADD, mp);
3382		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
3383		dap->da_offset = offset;
3384		dap->da_newinum = newinum;
3385	}
3386
3387	/*
3388	 * Allocate a new dirrem and ACQUIRE_LOCK.
3389	 */
3390	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3391	pagedep = dirrem->dm_pagedep;
3392	/*
3393	 * The possible values for isrmdir:
3394	 *	0 - non-directory file rename
3395	 *	1 - directory rename within same directory
3396	 *   inum - directory rename to new directory of given inode number
3397	 * When renaming to a new directory, we are both deleting and
3398	 * creating a new directory entry, so the link count on the new
3399	 * directory should not change. Thus we do not need the followup
3400	 * dirrem which is usually done in handle_workitem_remove. We set
3401	 * the DIRCHG flag to tell handle_workitem_remove to skip the
3402	 * followup dirrem.
3403	 */
3404	if (isrmdir > 1)
3405		dirrem->dm_state |= DIRCHG;
3406
3407	/*
3408	 * Whiteouts have no additional dependencies,
3409	 * so just put the dirrem on the correct list.
3410	 */
3411	if (newinum == WINO) {
3412		if ((dirrem->dm_state & COMPLETE) == 0) {
3413			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
3414			    dm_next);
3415		} else {
3416			dirrem->dm_dirinum = pagedep->pd_ino;
3417			add_to_worklist(&dirrem->dm_list);
3418		}
3419		FREE_LOCK(&lk);
3420		return;
3421	}
3422
3423	/*
3424	 * If the COMPLETE flag is clear, then there were no active
3425	 * entries and we want to roll back to the previous inode until
3426	 * the new inode is committed to disk. If the COMPLETE flag is
3427	 * set, then we have deleted an entry that never made it to disk.
3428	 * If the entry we deleted resulted from a name change, then the old
3429	 * inode reference still resides on disk. Any rollback that we do
3430	 * needs to be to that old inode (returned to us in prevdirrem). If
3431	 * the entry we deleted resulted from a create, then there is
3432	 * no entry on the disk, so we want to roll back to zero rather
3433	 * than the uncommitted inode. In either of the COMPLETE cases we
3434	 * want to immediately free the unwritten and unreferenced inode.
3435	 */
3436	if ((dirrem->dm_state & COMPLETE) == 0) {
3437		dap->da_previous = dirrem;
3438	} else {
3439		if (prevdirrem != NULL) {
3440			dap->da_previous = prevdirrem;
3441		} else {
3442			dap->da_state &= ~DIRCHG;
3443			dap->da_pagedep = pagedep;
3444		}
3445		dirrem->dm_dirinum = pagedep->pd_ino;
3446		add_to_worklist(&dirrem->dm_list);
3447	}
3448	/*
3449	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3450	 * is not yet written. If it is written, do the post-inode write
3451	 * processing to put it on the id_pendinghd list.
3452	 */
3453	if (inodedep_lookup(mp, newinum, DEPALLOC, &inodedep) == 0 ||
3454	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3455		dap->da_state |= COMPLETE;
3456		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3457		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3458	} else {
3459		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
3460		    dap, da_pdlist);
3461		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3462	}
3463	FREE_LOCK(&lk);
3464}
3465
3466/*
3467 * Called whenever the link count on an inode is changed.
3468 * It creates an inode dependency so that the new reference(s)
3469 * to the inode cannot be committed to disk until the updated
3470 * inode has been written.
3471 */
3472void
3473softdep_change_linkcnt(ip)
3474	struct inode *ip;	/* the inode with the increased link count */
3475{
3476	struct inodedep *inodedep;
3477
3478	ACQUIRE_LOCK(&lk);
3479	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
3480	    DEPALLOC, &inodedep);
3481	if (ip->i_nlink < ip->i_effnlink)
3482		panic("softdep_change_linkcnt: bad delta");
3483	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3484	FREE_LOCK(&lk);
3485}
3486
3487/*
3488 * Called when the effective link count and the reference count
3489 * on an inode drops to zero. At this point there are no names
3490 * referencing the file in the filesystem and no active file
3491 * references. The space associated with the file will be freed
3492 * as soon as the necessary soft dependencies are cleared.
3493 */
3494void
3495softdep_releasefile(ip)
3496	struct inode *ip;	/* inode with the zero effective link count */
3497{
3498	struct inodedep *inodedep;
3499	struct fs *fs;
3500	int extblocks;
3501
3502	if (ip->i_effnlink > 0)
3503		panic("softdep_filerelease: file still referenced");
3504	/*
3505	 * We may be called several times as the real reference count
3506	 * drops to zero. We only want to account for the space once.
3507	 */
3508	if (ip->i_flag & IN_SPACECOUNTED)
3509		return;
3510	/*
3511	 * We have to deactivate a snapshot otherwise copyonwrites may
3512	 * add blocks and the cleanup may remove blocks after we have
3513	 * tried to account for them.
3514	 */
3515	if ((ip->i_flags & SF_SNAPSHOT) != 0)
3516		ffs_snapremove(ITOV(ip));
3517	/*
3518	 * If we are tracking an nlinkdelta, we have to also remember
3519	 * whether we accounted for the freed space yet.
3520	 */
3521	ACQUIRE_LOCK(&lk);
3522	if ((inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, &inodedep)))
3523		inodedep->id_state |= SPACECOUNTED;
3524	FREE_LOCK(&lk);
3525	fs = ip->i_fs;
3526	extblocks = 0;
3527	if (fs->fs_magic == FS_UFS2_MAGIC)
3528		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
3529	UFS_LOCK(ip->i_ump);
3530	ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks;
3531	ip->i_fs->fs_pendinginodes += 1;
3532	UFS_UNLOCK(ip->i_ump);
3533	ip->i_flag |= IN_SPACECOUNTED;
3534}
3535
3536/*
3537 * This workitem decrements the inode's link count.
3538 * If the link count reaches zero, the file is removed.
3539 */
3540static void
3541handle_workitem_remove(dirrem, xp)
3542	struct dirrem *dirrem;
3543	struct vnode *xp;
3544{
3545	struct thread *td = curthread;
3546	struct inodedep *inodedep;
3547	struct vnode *vp;
3548	struct inode *ip;
3549	ino_t oldinum;
3550	int error;
3551
3552	if ((vp = xp) == NULL &&
3553	    (error = ffs_vget(dirrem->dm_list.wk_mp,
3554	    dirrem->dm_oldinum, LK_EXCLUSIVE, &vp)) != 0) {
3555		softdep_error("handle_workitem_remove: vget", error);
3556		return;
3557	}
3558	ip = VTOI(vp);
3559	ACQUIRE_LOCK(&lk);
3560	if ((inodedep_lookup(dirrem->dm_list.wk_mp,
3561	    dirrem->dm_oldinum, 0, &inodedep)) == 0)
3562		panic("handle_workitem_remove: lost inodedep");
3563	/*
3564	 * Normal file deletion.
3565	 */
3566	if ((dirrem->dm_state & RMDIR) == 0) {
3567		ip->i_nlink--;
3568		DIP_SET(ip, i_nlink, ip->i_nlink);
3569		ip->i_flag |= IN_CHANGE;
3570		if (ip->i_nlink < ip->i_effnlink)
3571			panic("handle_workitem_remove: bad file delta");
3572		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3573		num_dirrem -= 1;
3574		WORKITEM_FREE(dirrem, D_DIRREM);
3575		FREE_LOCK(&lk);
3576		vput(vp);
3577		return;
3578	}
3579	/*
3580	 * Directory deletion. Decrement reference count for both the
3581	 * just deleted parent directory entry and the reference for ".".
3582	 * Next truncate the directory to length zero. When the
3583	 * truncation completes, arrange to have the reference count on
3584	 * the parent decremented to account for the loss of "..".
3585	 */
3586	ip->i_nlink -= 2;
3587	DIP_SET(ip, i_nlink, ip->i_nlink);
3588	ip->i_flag |= IN_CHANGE;
3589	if (ip->i_nlink < ip->i_effnlink)
3590		panic("handle_workitem_remove: bad dir delta");
3591	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3592	FREE_LOCK(&lk);
3593	if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0)
3594		softdep_error("handle_workitem_remove: truncate", error);
3595	ACQUIRE_LOCK(&lk);
3596	/*
3597	 * Rename a directory to a new parent. Since, we are both deleting
3598	 * and creating a new directory entry, the link count on the new
3599	 * directory should not change. Thus we skip the followup dirrem.
3600	 */
3601	if (dirrem->dm_state & DIRCHG) {
3602		num_dirrem -= 1;
3603		WORKITEM_FREE(dirrem, D_DIRREM);
3604		FREE_LOCK(&lk);
3605		vput(vp);
3606		return;
3607	}
3608	/*
3609	 * If the inodedep does not exist, then the zero'ed inode has
3610	 * been written to disk. If the allocated inode has never been
3611	 * written to disk, then the on-disk inode is zero'ed. In either
3612	 * case we can remove the file immediately.
3613	 */
3614	dirrem->dm_state = 0;
3615	oldinum = dirrem->dm_oldinum;
3616	dirrem->dm_oldinum = dirrem->dm_dirinum;
3617	if (inodedep_lookup(dirrem->dm_list.wk_mp, oldinum,
3618	    0, &inodedep) == 0 || check_inode_unwritten(inodedep)) {
3619		FREE_LOCK(&lk);
3620		vput(vp);
3621		handle_workitem_remove(dirrem, NULL);
3622		return;
3623	}
3624	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3625	FREE_LOCK(&lk);
3626	ip->i_flag |= IN_CHANGE;
3627	ffs_update(vp, 0);
3628	vput(vp);
3629}
3630
3631/*
3632 * Inode de-allocation dependencies.
3633 *
3634 * When an inode's link count is reduced to zero, it can be de-allocated. We
3635 * found it convenient to postpone de-allocation until after the inode is
3636 * written to disk with its new link count (zero).  At this point, all of the
3637 * on-disk inode's block pointers are nullified and, with careful dependency
3638 * list ordering, all dependencies related to the inode will be satisfied and
3639 * the corresponding dependency structures de-allocated.  So, if/when the
3640 * inode is reused, there will be no mixing of old dependencies with new
3641 * ones.  This artificial dependency is set up by the block de-allocation
3642 * procedure above (softdep_setup_freeblocks) and completed by the
3643 * following procedure.
3644 */
3645static void
3646handle_workitem_freefile(freefile)
3647	struct freefile *freefile;
3648{
3649	struct fs *fs;
3650	struct inodedep *idp;
3651	struct ufsmount *ump;
3652	int error;
3653
3654	ump = VFSTOUFS(freefile->fx_list.wk_mp);
3655	fs = ump->um_fs;
3656#ifdef DEBUG
3657	ACQUIRE_LOCK(&lk);
3658	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
3659	FREE_LOCK(&lk);
3660	if (error)
3661		panic("handle_workitem_freefile: inodedep survived");
3662#endif
3663	UFS_LOCK(ump);
3664	fs->fs_pendinginodes -= 1;
3665	UFS_UNLOCK(ump);
3666	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
3667	    freefile->fx_oldinum, freefile->fx_mode)) != 0)
3668		softdep_error("handle_workitem_freefile", error);
3669	ACQUIRE_LOCK(&lk);
3670	WORKITEM_FREE(freefile, D_FREEFILE);
3671	FREE_LOCK(&lk);
3672}
3673
3674
3675/*
3676 * Helper function which unlinks marker element from work list and returns
3677 * the next element on the list.
3678 */
3679static __inline struct worklist *
3680markernext(struct worklist *marker)
3681{
3682	struct worklist *next;
3683
3684	next = LIST_NEXT(marker, wk_list);
3685	LIST_REMOVE(marker, wk_list);
3686	return next;
3687}
3688
3689/*
3690 * Disk writes.
3691 *
3692 * The dependency structures constructed above are most actively used when file
3693 * system blocks are written to disk.  No constraints are placed on when a
3694 * block can be written, but unsatisfied update dependencies are made safe by
3695 * modifying (or replacing) the source memory for the duration of the disk
3696 * write.  When the disk write completes, the memory block is again brought
3697 * up-to-date.
3698 *
3699 * In-core inode structure reclamation.
3700 *
3701 * Because there are a finite number of "in-core" inode structures, they are
3702 * reused regularly.  By transferring all inode-related dependencies to the
3703 * in-memory inode block and indexing them separately (via "inodedep"s), we
3704 * can allow "in-core" inode structures to be reused at any time and avoid
3705 * any increase in contention.
3706 *
3707 * Called just before entering the device driver to initiate a new disk I/O.
3708 * The buffer must be locked, thus, no I/O completion operations can occur
3709 * while we are manipulating its associated dependencies.
3710 */
3711static void
3712softdep_disk_io_initiation(bp)
3713	struct buf *bp;		/* structure describing disk write to occur */
3714{
3715	struct worklist *wk;
3716	struct worklist marker;
3717	struct indirdep *indirdep;
3718	struct inodedep *inodedep;
3719
3720	/*
3721	 * We only care about write operations. There should never
3722	 * be dependencies for reads.
3723	 */
3724	if (bp->b_iocmd != BIO_WRITE)
3725		panic("softdep_disk_io_initiation: not write");
3726
3727	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3728	PHOLD(curproc);			/* Don't swap out kernel stack */
3729
3730	ACQUIRE_LOCK(&lk);
3731	/*
3732	 * Do any necessary pre-I/O processing.
3733	 */
3734	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
3735	     wk = markernext(&marker)) {
3736		LIST_INSERT_AFTER(wk, &marker, wk_list);
3737		switch (wk->wk_type) {
3738
3739		case D_PAGEDEP:
3740			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3741			continue;
3742
3743		case D_INODEDEP:
3744			inodedep = WK_INODEDEP(wk);
3745			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
3746				initiate_write_inodeblock_ufs1(inodedep, bp);
3747			else
3748				initiate_write_inodeblock_ufs2(inodedep, bp);
3749			continue;
3750
3751		case D_INDIRDEP:
3752			indirdep = WK_INDIRDEP(wk);
3753			if (indirdep->ir_state & GOINGAWAY)
3754				panic("disk_io_initiation: indirdep gone");
3755			/*
3756			 * If there are no remaining dependencies, this
3757			 * will be writing the real pointers, so the
3758			 * dependency can be freed.
3759			 */
3760			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3761				struct buf *bp;
3762
3763				bp = indirdep->ir_savebp;
3764				bp->b_flags |= B_INVAL | B_NOCACHE;
3765				/* inline expand WORKLIST_REMOVE(wk); */
3766				wk->wk_state &= ~ONWORKLIST;
3767				LIST_REMOVE(wk, wk_list);
3768				WORKITEM_FREE(indirdep, D_INDIRDEP);
3769				FREE_LOCK(&lk);
3770				brelse(bp);
3771				ACQUIRE_LOCK(&lk);
3772				continue;
3773			}
3774			/*
3775			 * Replace up-to-date version with safe version.
3776			 */
3777			FREE_LOCK(&lk);
3778			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3779			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3780			ACQUIRE_LOCK(&lk);
3781			indirdep->ir_state &= ~ATTACHED;
3782			indirdep->ir_state |= UNDONE;
3783			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3784			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3785			    bp->b_bcount);
3786			continue;
3787
3788		case D_MKDIR:
3789		case D_BMSAFEMAP:
3790		case D_ALLOCDIRECT:
3791		case D_ALLOCINDIR:
3792			continue;
3793
3794		default:
3795			panic("handle_disk_io_initiation: Unexpected type %s",
3796			    TYPENAME(wk->wk_type));
3797			/* NOTREACHED */
3798		}
3799	}
3800	FREE_LOCK(&lk);
3801	PRELE(curproc);			/* Allow swapout of kernel stack */
3802}
3803
3804/*
3805 * Called from within the procedure above to deal with unsatisfied
3806 * allocation dependencies in a directory. The buffer must be locked,
3807 * thus, no I/O completion operations can occur while we are
3808 * manipulating its associated dependencies.
3809 */
3810static void
3811initiate_write_filepage(pagedep, bp)
3812	struct pagedep *pagedep;
3813	struct buf *bp;
3814{
3815	struct diradd *dap;
3816	struct direct *ep;
3817	int i;
3818
3819	if (pagedep->pd_state & IOSTARTED) {
3820		/*
3821		 * This can only happen if there is a driver that does not
3822		 * understand chaining. Here biodone will reissue the call
3823		 * to strategy for the incomplete buffers.
3824		 */
3825		printf("initiate_write_filepage: already started\n");
3826		return;
3827	}
3828	pagedep->pd_state |= IOSTARTED;
3829	for (i = 0; i < DAHASHSZ; i++) {
3830		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3831			ep = (struct direct *)
3832			    ((char *)bp->b_data + dap->da_offset);
3833			if (ep->d_ino != dap->da_newinum)
3834				panic("%s: dir inum %d != new %d",
3835				    "initiate_write_filepage",
3836				    ep->d_ino, dap->da_newinum);
3837			if (dap->da_state & DIRCHG)
3838				ep->d_ino = dap->da_previous->dm_oldinum;
3839			else
3840				ep->d_ino = 0;
3841			dap->da_state &= ~ATTACHED;
3842			dap->da_state |= UNDONE;
3843		}
3844	}
3845}
3846
3847/*
3848 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
3849 * Note that any bug fixes made to this routine must be done in the
3850 * version found below.
3851 *
3852 * Called from within the procedure above to deal with unsatisfied
3853 * allocation dependencies in an inodeblock. The buffer must be
3854 * locked, thus, no I/O completion operations can occur while we
3855 * are manipulating its associated dependencies.
3856 */
3857static void
3858initiate_write_inodeblock_ufs1(inodedep, bp)
3859	struct inodedep *inodedep;
3860	struct buf *bp;			/* The inode block */
3861{
3862	struct allocdirect *adp, *lastadp;
3863	struct ufs1_dinode *dp;
3864	struct ufs1_dinode *sip;
3865	struct fs *fs;
3866	ufs_lbn_t i, prevlbn = 0;
3867	int deplist;
3868
3869	if (inodedep->id_state & IOSTARTED)
3870		panic("initiate_write_inodeblock_ufs1: already started");
3871	inodedep->id_state |= IOSTARTED;
3872	fs = inodedep->id_fs;
3873	dp = (struct ufs1_dinode *)bp->b_data +
3874	    ino_to_fsbo(fs, inodedep->id_ino);
3875	/*
3876	 * If the bitmap is not yet written, then the allocated
3877	 * inode cannot be written to disk.
3878	 */
3879	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3880		if (inodedep->id_savedino1 != NULL)
3881			panic("initiate_write_inodeblock_ufs1: I/O underway");
3882		FREE_LOCK(&lk);
3883		MALLOC(sip, struct ufs1_dinode *,
3884		    sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS);
3885		ACQUIRE_LOCK(&lk);
3886		inodedep->id_savedino1 = sip;
3887		*inodedep->id_savedino1 = *dp;
3888		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3889		dp->di_gen = inodedep->id_savedino1->di_gen;
3890		return;
3891	}
3892	/*
3893	 * If no dependencies, then there is nothing to roll back.
3894	 */
3895	inodedep->id_savedsize = dp->di_size;
3896	inodedep->id_savedextsize = 0;
3897	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3898		return;
3899	/*
3900	 * Set the dependencies to busy.
3901	 */
3902	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3903	     adp = TAILQ_NEXT(adp, ad_next)) {
3904#ifdef DIAGNOSTIC
3905		if (deplist != 0 && prevlbn >= adp->ad_lbn)
3906			panic("softdep_write_inodeblock: lbn order");
3907		prevlbn = adp->ad_lbn;
3908		if (adp->ad_lbn < NDADDR &&
3909		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
3910			panic("%s: direct pointer #%jd mismatch %d != %jd",
3911			    "softdep_write_inodeblock",
3912			    (intmax_t)adp->ad_lbn,
3913			    dp->di_db[adp->ad_lbn],
3914			    (intmax_t)adp->ad_newblkno);
3915		if (adp->ad_lbn >= NDADDR &&
3916		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
3917			panic("%s: indirect pointer #%jd mismatch %d != %jd",
3918			    "softdep_write_inodeblock",
3919			    (intmax_t)adp->ad_lbn - NDADDR,
3920			    dp->di_ib[adp->ad_lbn - NDADDR],
3921			    (intmax_t)adp->ad_newblkno);
3922		deplist |= 1 << adp->ad_lbn;
3923		if ((adp->ad_state & ATTACHED) == 0)
3924			panic("softdep_write_inodeblock: Unknown state 0x%x",
3925			    adp->ad_state);
3926#endif /* DIAGNOSTIC */
3927		adp->ad_state &= ~ATTACHED;
3928		adp->ad_state |= UNDONE;
3929	}
3930	/*
3931	 * The on-disk inode cannot claim to be any larger than the last
3932	 * fragment that has been written. Otherwise, the on-disk inode
3933	 * might have fragments that were not the last block in the file
3934	 * which would corrupt the filesystem.
3935	 */
3936	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3937	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3938		if (adp->ad_lbn >= NDADDR)
3939			break;
3940		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3941		/* keep going until hitting a rollback to a frag */
3942		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3943			continue;
3944		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3945		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3946#ifdef DIAGNOSTIC
3947			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
3948				panic("softdep_write_inodeblock: lost dep1");
3949#endif /* DIAGNOSTIC */
3950			dp->di_db[i] = 0;
3951		}
3952		for (i = 0; i < NIADDR; i++) {
3953#ifdef DIAGNOSTIC
3954			if (dp->di_ib[i] != 0 &&
3955			    (deplist & ((1 << NDADDR) << i)) == 0)
3956				panic("softdep_write_inodeblock: lost dep2");
3957#endif /* DIAGNOSTIC */
3958			dp->di_ib[i] = 0;
3959		}
3960		return;
3961	}
3962	/*
3963	 * If we have zero'ed out the last allocated block of the file,
3964	 * roll back the size to the last currently allocated block.
3965	 * We know that this last allocated block is a full-sized as
3966	 * we already checked for fragments in the loop above.
3967	 */
3968	if (lastadp != NULL &&
3969	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3970		for (i = lastadp->ad_lbn; i >= 0; i--)
3971			if (dp->di_db[i] != 0)
3972				break;
3973		dp->di_size = (i + 1) * fs->fs_bsize;
3974	}
3975	/*
3976	 * The only dependencies are for indirect blocks.
3977	 *
3978	 * The file size for indirect block additions is not guaranteed.
3979	 * Such a guarantee would be non-trivial to achieve. The conventional
3980	 * synchronous write implementation also does not make this guarantee.
3981	 * Fsck should catch and fix discrepancies. Arguably, the file size
3982	 * can be over-estimated without destroying integrity when the file
3983	 * moves into the indirect blocks (i.e., is large). If we want to
3984	 * postpone fsck, we are stuck with this argument.
3985	 */
3986	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3987		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3988}
3989
3990/*
3991 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
3992 * Note that any bug fixes made to this routine must be done in the
3993 * version found above.
3994 *
3995 * Called from within the procedure above to deal with unsatisfied
3996 * allocation dependencies in an inodeblock. The buffer must be
3997 * locked, thus, no I/O completion operations can occur while we
3998 * are manipulating its associated dependencies.
3999 */
4000static void
4001initiate_write_inodeblock_ufs2(inodedep, bp)
4002	struct inodedep *inodedep;
4003	struct buf *bp;			/* The inode block */
4004{
4005	struct allocdirect *adp, *lastadp;
4006	struct ufs2_dinode *dp;
4007	struct ufs2_dinode *sip;
4008	struct fs *fs;
4009	ufs_lbn_t i, prevlbn = 0;
4010	int deplist;
4011
4012	if (inodedep->id_state & IOSTARTED)
4013		panic("initiate_write_inodeblock_ufs2: already started");
4014	inodedep->id_state |= IOSTARTED;
4015	fs = inodedep->id_fs;
4016	dp = (struct ufs2_dinode *)bp->b_data +
4017	    ino_to_fsbo(fs, inodedep->id_ino);
4018	/*
4019	 * If the bitmap is not yet written, then the allocated
4020	 * inode cannot be written to disk.
4021	 */
4022	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4023		if (inodedep->id_savedino2 != NULL)
4024			panic("initiate_write_inodeblock_ufs2: I/O underway");
4025		FREE_LOCK(&lk);
4026		MALLOC(sip, struct ufs2_dinode *,
4027		    sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS);
4028		ACQUIRE_LOCK(&lk);
4029		inodedep->id_savedino2 = sip;
4030		*inodedep->id_savedino2 = *dp;
4031		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
4032		dp->di_gen = inodedep->id_savedino2->di_gen;
4033		return;
4034	}
4035	/*
4036	 * If no dependencies, then there is nothing to roll back.
4037	 */
4038	inodedep->id_savedsize = dp->di_size;
4039	inodedep->id_savedextsize = dp->di_extsize;
4040	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL &&
4041	    TAILQ_FIRST(&inodedep->id_extupdt) == NULL)
4042		return;
4043	/*
4044	 * Set the ext data dependencies to busy.
4045	 */
4046	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
4047	     adp = TAILQ_NEXT(adp, ad_next)) {
4048#ifdef DIAGNOSTIC
4049		if (deplist != 0 && prevlbn >= adp->ad_lbn)
4050			panic("softdep_write_inodeblock: lbn order");
4051		prevlbn = adp->ad_lbn;
4052		if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno)
4053			panic("%s: direct pointer #%jd mismatch %jd != %jd",
4054			    "softdep_write_inodeblock",
4055			    (intmax_t)adp->ad_lbn,
4056			    (intmax_t)dp->di_extb[adp->ad_lbn],
4057			    (intmax_t)adp->ad_newblkno);
4058		deplist |= 1 << adp->ad_lbn;
4059		if ((adp->ad_state & ATTACHED) == 0)
4060			panic("softdep_write_inodeblock: Unknown state 0x%x",
4061			    adp->ad_state);
4062#endif /* DIAGNOSTIC */
4063		adp->ad_state &= ~ATTACHED;
4064		adp->ad_state |= UNDONE;
4065	}
4066	/*
4067	 * The on-disk inode cannot claim to be any larger than the last
4068	 * fragment that has been written. Otherwise, the on-disk inode
4069	 * might have fragments that were not the last block in the ext
4070	 * data which would corrupt the filesystem.
4071	 */
4072	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
4073	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
4074		dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno;
4075		/* keep going until hitting a rollback to a frag */
4076		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
4077			continue;
4078		dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
4079		for (i = adp->ad_lbn + 1; i < NXADDR; i++) {
4080#ifdef DIAGNOSTIC
4081			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
4082				panic("softdep_write_inodeblock: lost dep1");
4083#endif /* DIAGNOSTIC */
4084			dp->di_extb[i] = 0;
4085		}
4086		lastadp = NULL;
4087		break;
4088	}
4089	/*
4090	 * If we have zero'ed out the last allocated block of the ext
4091	 * data, roll back the size to the last currently allocated block.
4092	 * We know that this last allocated block is a full-sized as
4093	 * we already checked for fragments in the loop above.
4094	 */
4095	if (lastadp != NULL &&
4096	    dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
4097		for (i = lastadp->ad_lbn; i >= 0; i--)
4098			if (dp->di_extb[i] != 0)
4099				break;
4100		dp->di_extsize = (i + 1) * fs->fs_bsize;
4101	}
4102	/*
4103	 * Set the file data dependencies to busy.
4104	 */
4105	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
4106	     adp = TAILQ_NEXT(adp, ad_next)) {
4107#ifdef DIAGNOSTIC
4108		if (deplist != 0 && prevlbn >= adp->ad_lbn)
4109			panic("softdep_write_inodeblock: lbn order");
4110		prevlbn = adp->ad_lbn;
4111		if (adp->ad_lbn < NDADDR &&
4112		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
4113			panic("%s: direct pointer #%jd mismatch %jd != %jd",
4114			    "softdep_write_inodeblock",
4115			    (intmax_t)adp->ad_lbn,
4116			    (intmax_t)dp->di_db[adp->ad_lbn],
4117			    (intmax_t)adp->ad_newblkno);
4118		if (adp->ad_lbn >= NDADDR &&
4119		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
4120			panic("%s indirect pointer #%jd mismatch %jd != %jd",
4121			    "softdep_write_inodeblock:",
4122			    (intmax_t)adp->ad_lbn - NDADDR,
4123			    (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR],
4124			    (intmax_t)adp->ad_newblkno);
4125		deplist |= 1 << adp->ad_lbn;
4126		if ((adp->ad_state & ATTACHED) == 0)
4127			panic("softdep_write_inodeblock: Unknown state 0x%x",
4128			    adp->ad_state);
4129#endif /* DIAGNOSTIC */
4130		adp->ad_state &= ~ATTACHED;
4131		adp->ad_state |= UNDONE;
4132	}
4133	/*
4134	 * The on-disk inode cannot claim to be any larger than the last
4135	 * fragment that has been written. Otherwise, the on-disk inode
4136	 * might have fragments that were not the last block in the file
4137	 * which would corrupt the filesystem.
4138	 */
4139	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
4140	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
4141		if (adp->ad_lbn >= NDADDR)
4142			break;
4143		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
4144		/* keep going until hitting a rollback to a frag */
4145		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
4146			continue;
4147		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
4148		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
4149#ifdef DIAGNOSTIC
4150			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
4151				panic("softdep_write_inodeblock: lost dep2");
4152#endif /* DIAGNOSTIC */
4153			dp->di_db[i] = 0;
4154		}
4155		for (i = 0; i < NIADDR; i++) {
4156#ifdef DIAGNOSTIC
4157			if (dp->di_ib[i] != 0 &&
4158			    (deplist & ((1 << NDADDR) << i)) == 0)
4159				panic("softdep_write_inodeblock: lost dep3");
4160#endif /* DIAGNOSTIC */
4161			dp->di_ib[i] = 0;
4162		}
4163		return;
4164	}
4165	/*
4166	 * If we have zero'ed out the last allocated block of the file,
4167	 * roll back the size to the last currently allocated block.
4168	 * We know that this last allocated block is a full-sized as
4169	 * we already checked for fragments in the loop above.
4170	 */
4171	if (lastadp != NULL &&
4172	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
4173		for (i = lastadp->ad_lbn; i >= 0; i--)
4174			if (dp->di_db[i] != 0)
4175				break;
4176		dp->di_size = (i + 1) * fs->fs_bsize;
4177	}
4178	/*
4179	 * The only dependencies are for indirect blocks.
4180	 *
4181	 * The file size for indirect block additions is not guaranteed.
4182	 * Such a guarantee would be non-trivial to achieve. The conventional
4183	 * synchronous write implementation also does not make this guarantee.
4184	 * Fsck should catch and fix discrepancies. Arguably, the file size
4185	 * can be over-estimated without destroying integrity when the file
4186	 * moves into the indirect blocks (i.e., is large). If we want to
4187	 * postpone fsck, we are stuck with this argument.
4188	 */
4189	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
4190		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
4191}
4192
4193/*
4194 * This routine is called during the completion interrupt
4195 * service routine for a disk write (from the procedure called
4196 * by the device driver to inform the filesystem caches of
4197 * a request completion).  It should be called early in this
4198 * procedure, before the block is made available to other
4199 * processes or other routines are called.
4200 */
4201static void
4202softdep_disk_write_complete(bp)
4203	struct buf *bp;		/* describes the completed disk write */
4204{
4205	struct worklist *wk;
4206	struct worklist *owk;
4207	struct workhead reattach;
4208	struct newblk *newblk;
4209	struct allocindir *aip;
4210	struct allocdirect *adp;
4211	struct indirdep *indirdep;
4212	struct inodedep *inodedep;
4213	struct bmsafemap *bmsafemap;
4214
4215	/*
4216	 * If an error occurred while doing the write, then the data
4217	 * has not hit the disk and the dependencies cannot be unrolled.
4218	 */
4219	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
4220		return;
4221	LIST_INIT(&reattach);
4222	/*
4223	 * This lock must not be released anywhere in this code segment.
4224	 */
4225	ACQUIRE_LOCK(&lk);
4226	owk = NULL;
4227	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
4228		WORKLIST_REMOVE(wk);
4229		if (wk == owk)
4230			panic("duplicate worklist: %p\n", wk);
4231		owk = wk;
4232		switch (wk->wk_type) {
4233
4234		case D_PAGEDEP:
4235			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
4236				WORKLIST_INSERT(&reattach, wk);
4237			continue;
4238
4239		case D_INODEDEP:
4240			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
4241				WORKLIST_INSERT(&reattach, wk);
4242			continue;
4243
4244		case D_BMSAFEMAP:
4245			bmsafemap = WK_BMSAFEMAP(wk);
4246			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
4247				newblk->nb_state |= DEPCOMPLETE;
4248				newblk->nb_bmsafemap = NULL;
4249				LIST_REMOVE(newblk, nb_deps);
4250			}
4251			while ((adp =
4252			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
4253				adp->ad_state |= DEPCOMPLETE;
4254				adp->ad_buf = NULL;
4255				LIST_REMOVE(adp, ad_deps);
4256				handle_allocdirect_partdone(adp);
4257			}
4258			while ((aip =
4259			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
4260				aip->ai_state |= DEPCOMPLETE;
4261				aip->ai_buf = NULL;
4262				LIST_REMOVE(aip, ai_deps);
4263				handle_allocindir_partdone(aip);
4264			}
4265			while ((inodedep =
4266			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
4267				inodedep->id_state |= DEPCOMPLETE;
4268				LIST_REMOVE(inodedep, id_deps);
4269				inodedep->id_buf = NULL;
4270			}
4271			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4272			continue;
4273
4274		case D_MKDIR:
4275			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
4276			continue;
4277
4278		case D_ALLOCDIRECT:
4279			adp = WK_ALLOCDIRECT(wk);
4280			adp->ad_state |= COMPLETE;
4281			handle_allocdirect_partdone(adp);
4282			continue;
4283
4284		case D_ALLOCINDIR:
4285			aip = WK_ALLOCINDIR(wk);
4286			aip->ai_state |= COMPLETE;
4287			handle_allocindir_partdone(aip);
4288			continue;
4289
4290		case D_INDIRDEP:
4291			indirdep = WK_INDIRDEP(wk);
4292			if (indirdep->ir_state & GOINGAWAY)
4293				panic("disk_write_complete: indirdep gone");
4294			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
4295			FREE(indirdep->ir_saveddata, M_INDIRDEP);
4296			indirdep->ir_saveddata = 0;
4297			indirdep->ir_state &= ~UNDONE;
4298			indirdep->ir_state |= ATTACHED;
4299			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
4300				handle_allocindir_partdone(aip);
4301				if (aip == LIST_FIRST(&indirdep->ir_donehd))
4302					panic("disk_write_complete: not gone");
4303			}
4304			WORKLIST_INSERT(&reattach, wk);
4305			if ((bp->b_flags & B_DELWRI) == 0)
4306				stat_indir_blk_ptrs++;
4307			bdirty(bp);
4308			continue;
4309
4310		default:
4311			panic("handle_disk_write_complete: Unknown type %s",
4312			    TYPENAME(wk->wk_type));
4313			/* NOTREACHED */
4314		}
4315	}
4316	/*
4317	 * Reattach any requests that must be redone.
4318	 */
4319	while ((wk = LIST_FIRST(&reattach)) != NULL) {
4320		WORKLIST_REMOVE(wk);
4321		WORKLIST_INSERT(&bp->b_dep, wk);
4322	}
4323	FREE_LOCK(&lk);
4324}
4325
4326/*
4327 * Called from within softdep_disk_write_complete above. Note that
4328 * this routine is always called from interrupt level with further
4329 * splbio interrupts blocked.
4330 */
4331static void
4332handle_allocdirect_partdone(adp)
4333	struct allocdirect *adp;	/* the completed allocdirect */
4334{
4335	struct allocdirectlst *listhead;
4336	struct allocdirect *listadp;
4337	struct inodedep *inodedep;
4338	long bsize, delay;
4339
4340	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4341		return;
4342	if (adp->ad_buf != NULL)
4343		panic("handle_allocdirect_partdone: dangling dep");
4344	/*
4345	 * The on-disk inode cannot claim to be any larger than the last
4346	 * fragment that has been written. Otherwise, the on-disk inode
4347	 * might have fragments that were not the last block in the file
4348	 * which would corrupt the filesystem. Thus, we cannot free any
4349	 * allocdirects after one whose ad_oldblkno claims a fragment as
4350	 * these blocks must be rolled back to zero before writing the inode.
4351	 * We check the currently active set of allocdirects in id_inoupdt
4352	 * or id_extupdt as appropriate.
4353	 */
4354	inodedep = adp->ad_inodedep;
4355	bsize = inodedep->id_fs->fs_bsize;
4356	if (adp->ad_state & EXTDATA)
4357		listhead = &inodedep->id_extupdt;
4358	else
4359		listhead = &inodedep->id_inoupdt;
4360	TAILQ_FOREACH(listadp, listhead, ad_next) {
4361		/* found our block */
4362		if (listadp == adp)
4363			break;
4364		/* continue if ad_oldlbn is not a fragment */
4365		if (listadp->ad_oldsize == 0 ||
4366		    listadp->ad_oldsize == bsize)
4367			continue;
4368		/* hit a fragment */
4369		return;
4370	}
4371	/*
4372	 * If we have reached the end of the current list without
4373	 * finding the just finished dependency, then it must be
4374	 * on the future dependency list. Future dependencies cannot
4375	 * be freed until they are moved to the current list.
4376	 */
4377	if (listadp == NULL) {
4378#ifdef DEBUG
4379		if (adp->ad_state & EXTDATA)
4380			listhead = &inodedep->id_newextupdt;
4381		else
4382			listhead = &inodedep->id_newinoupdt;
4383		TAILQ_FOREACH(listadp, listhead, ad_next)
4384			/* found our block */
4385			if (listadp == adp)
4386				break;
4387		if (listadp == NULL)
4388			panic("handle_allocdirect_partdone: lost dep");
4389#endif /* DEBUG */
4390		return;
4391	}
4392	/*
4393	 * If we have found the just finished dependency, then free
4394	 * it along with anything that follows it that is complete.
4395	 * If the inode still has a bitmap dependency, then it has
4396	 * never been written to disk, hence the on-disk inode cannot
4397	 * reference the old fragment so we can free it without delay.
4398	 */
4399	delay = (inodedep->id_state & DEPCOMPLETE);
4400	for (; adp; adp = listadp) {
4401		listadp = TAILQ_NEXT(adp, ad_next);
4402		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4403			return;
4404		free_allocdirect(listhead, adp, delay);
4405	}
4406}
4407
4408/*
4409 * Called from within softdep_disk_write_complete above. Note that
4410 * this routine is always called from interrupt level with further
4411 * splbio interrupts blocked.
4412 */
4413static void
4414handle_allocindir_partdone(aip)
4415	struct allocindir *aip;		/* the completed allocindir */
4416{
4417	struct indirdep *indirdep;
4418
4419	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
4420		return;
4421	if (aip->ai_buf != NULL)
4422		panic("handle_allocindir_partdone: dangling dependency");
4423	indirdep = aip->ai_indirdep;
4424	if (indirdep->ir_state & UNDONE) {
4425		LIST_REMOVE(aip, ai_next);
4426		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
4427		return;
4428	}
4429	if (indirdep->ir_state & UFS1FMT)
4430		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4431		    aip->ai_newblkno;
4432	else
4433		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4434		    aip->ai_newblkno;
4435	LIST_REMOVE(aip, ai_next);
4436	if (aip->ai_freefrag != NULL)
4437		add_to_worklist(&aip->ai_freefrag->ff_list);
4438	WORKITEM_FREE(aip, D_ALLOCINDIR);
4439}
4440
4441/*
4442 * Called from within softdep_disk_write_complete above to restore
4443 * in-memory inode block contents to their most up-to-date state. Note
4444 * that this routine is always called from interrupt level with further
4445 * splbio interrupts blocked.
4446 */
4447static int
4448handle_written_inodeblock(inodedep, bp)
4449	struct inodedep *inodedep;
4450	struct buf *bp;		/* buffer containing the inode block */
4451{
4452	struct worklist *wk, *filefree;
4453	struct allocdirect *adp, *nextadp;
4454	struct ufs1_dinode *dp1 = NULL;
4455	struct ufs2_dinode *dp2 = NULL;
4456	int hadchanges, fstype;
4457
4458	if ((inodedep->id_state & IOSTARTED) == 0)
4459		panic("handle_written_inodeblock: not started");
4460	inodedep->id_state &= ~IOSTARTED;
4461	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
4462		fstype = UFS1;
4463		dp1 = (struct ufs1_dinode *)bp->b_data +
4464		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4465	} else {
4466		fstype = UFS2;
4467		dp2 = (struct ufs2_dinode *)bp->b_data +
4468		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4469	}
4470	/*
4471	 * If we had to rollback the inode allocation because of
4472	 * bitmaps being incomplete, then simply restore it.
4473	 * Keep the block dirty so that it will not be reclaimed until
4474	 * all associated dependencies have been cleared and the
4475	 * corresponding updates written to disk.
4476	 */
4477	if (inodedep->id_savedino1 != NULL) {
4478		if (fstype == UFS1)
4479			*dp1 = *inodedep->id_savedino1;
4480		else
4481			*dp2 = *inodedep->id_savedino2;
4482		FREE(inodedep->id_savedino1, M_SAVEDINO);
4483		inodedep->id_savedino1 = NULL;
4484		if ((bp->b_flags & B_DELWRI) == 0)
4485			stat_inode_bitmap++;
4486		bdirty(bp);
4487		return (1);
4488	}
4489	inodedep->id_state |= COMPLETE;
4490	/*
4491	 * Roll forward anything that had to be rolled back before
4492	 * the inode could be updated.
4493	 */
4494	hadchanges = 0;
4495	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
4496		nextadp = TAILQ_NEXT(adp, ad_next);
4497		if (adp->ad_state & ATTACHED)
4498			panic("handle_written_inodeblock: new entry");
4499		if (fstype == UFS1) {
4500			if (adp->ad_lbn < NDADDR) {
4501				if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4502					panic("%s %s #%jd mismatch %d != %jd",
4503					    "handle_written_inodeblock:",
4504					    "direct pointer",
4505					    (intmax_t)adp->ad_lbn,
4506					    dp1->di_db[adp->ad_lbn],
4507					    (intmax_t)adp->ad_oldblkno);
4508				dp1->di_db[adp->ad_lbn] = adp->ad_newblkno;
4509			} else {
4510				if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0)
4511					panic("%s: %s #%jd allocated as %d",
4512					    "handle_written_inodeblock",
4513					    "indirect pointer",
4514					    (intmax_t)adp->ad_lbn - NDADDR,
4515					    dp1->di_ib[adp->ad_lbn - NDADDR]);
4516				dp1->di_ib[adp->ad_lbn - NDADDR] =
4517				    adp->ad_newblkno;
4518			}
4519		} else {
4520			if (adp->ad_lbn < NDADDR) {
4521				if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4522					panic("%s: %s #%jd %s %jd != %jd",
4523					    "handle_written_inodeblock",
4524					    "direct pointer",
4525					    (intmax_t)adp->ad_lbn, "mismatch",
4526					    (intmax_t)dp2->di_db[adp->ad_lbn],
4527					    (intmax_t)adp->ad_oldblkno);
4528				dp2->di_db[adp->ad_lbn] = adp->ad_newblkno;
4529			} else {
4530				if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0)
4531					panic("%s: %s #%jd allocated as %jd",
4532					    "handle_written_inodeblock",
4533					    "indirect pointer",
4534					    (intmax_t)adp->ad_lbn - NDADDR,
4535					    (intmax_t)
4536					    dp2->di_ib[adp->ad_lbn - NDADDR]);
4537				dp2->di_ib[adp->ad_lbn - NDADDR] =
4538				    adp->ad_newblkno;
4539			}
4540		}
4541		adp->ad_state &= ~UNDONE;
4542		adp->ad_state |= ATTACHED;
4543		hadchanges = 1;
4544	}
4545	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
4546		nextadp = TAILQ_NEXT(adp, ad_next);
4547		if (adp->ad_state & ATTACHED)
4548			panic("handle_written_inodeblock: new entry");
4549		if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno)
4550			panic("%s: direct pointers #%jd %s %jd != %jd",
4551			    "handle_written_inodeblock",
4552			    (intmax_t)adp->ad_lbn, "mismatch",
4553			    (intmax_t)dp2->di_extb[adp->ad_lbn],
4554			    (intmax_t)adp->ad_oldblkno);
4555		dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno;
4556		adp->ad_state &= ~UNDONE;
4557		adp->ad_state |= ATTACHED;
4558		hadchanges = 1;
4559	}
4560	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
4561		stat_direct_blk_ptrs++;
4562	/*
4563	 * Reset the file size to its most up-to-date value.
4564	 */
4565	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
4566		panic("handle_written_inodeblock: bad size");
4567	if (fstype == UFS1) {
4568		if (dp1->di_size != inodedep->id_savedsize) {
4569			dp1->di_size = inodedep->id_savedsize;
4570			hadchanges = 1;
4571		}
4572	} else {
4573		if (dp2->di_size != inodedep->id_savedsize) {
4574			dp2->di_size = inodedep->id_savedsize;
4575			hadchanges = 1;
4576		}
4577		if (dp2->di_extsize != inodedep->id_savedextsize) {
4578			dp2->di_extsize = inodedep->id_savedextsize;
4579			hadchanges = 1;
4580		}
4581	}
4582	inodedep->id_savedsize = -1;
4583	inodedep->id_savedextsize = -1;
4584	/*
4585	 * If there were any rollbacks in the inode block, then it must be
4586	 * marked dirty so that its will eventually get written back in
4587	 * its correct form.
4588	 */
4589	if (hadchanges)
4590		bdirty(bp);
4591	/*
4592	 * Process any allocdirects that completed during the update.
4593	 */
4594	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
4595		handle_allocdirect_partdone(adp);
4596	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
4597		handle_allocdirect_partdone(adp);
4598	/*
4599	 * Process deallocations that were held pending until the
4600	 * inode had been written to disk. Freeing of the inode
4601	 * is delayed until after all blocks have been freed to
4602	 * avoid creation of new <vfsid, inum, lbn> triples
4603	 * before the old ones have been deleted.
4604	 */
4605	filefree = NULL;
4606	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
4607		WORKLIST_REMOVE(wk);
4608		switch (wk->wk_type) {
4609
4610		case D_FREEFILE:
4611			/*
4612			 * We defer adding filefree to the worklist until
4613			 * all other additions have been made to ensure
4614			 * that it will be done after all the old blocks
4615			 * have been freed.
4616			 */
4617			if (filefree != NULL)
4618				panic("handle_written_inodeblock: filefree");
4619			filefree = wk;
4620			continue;
4621
4622		case D_MKDIR:
4623			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
4624			continue;
4625
4626		case D_DIRADD:
4627			diradd_inode_written(WK_DIRADD(wk), inodedep);
4628			continue;
4629
4630		case D_FREEBLKS:
4631			wk->wk_state |= COMPLETE;
4632			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
4633				continue;
4634			 /* -- fall through -- */
4635		case D_FREEFRAG:
4636		case D_DIRREM:
4637			add_to_worklist(wk);
4638			continue;
4639
4640		case D_NEWDIRBLK:
4641			free_newdirblk(WK_NEWDIRBLK(wk));
4642			continue;
4643
4644		default:
4645			panic("handle_written_inodeblock: Unknown type %s",
4646			    TYPENAME(wk->wk_type));
4647			/* NOTREACHED */
4648		}
4649	}
4650	if (filefree != NULL) {
4651		if (free_inodedep(inodedep) == 0)
4652			panic("handle_written_inodeblock: live inodedep");
4653		add_to_worklist(filefree);
4654		return (0);
4655	}
4656
4657	/*
4658	 * If no outstanding dependencies, free it.
4659	 */
4660	if (free_inodedep(inodedep) ||
4661	    (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
4662	     TAILQ_FIRST(&inodedep->id_extupdt) == 0))
4663		return (0);
4664	return (hadchanges);
4665}
4666
4667/*
4668 * Process a diradd entry after its dependent inode has been written.
4669 * This routine must be called with splbio interrupts blocked.
4670 */
4671static void
4672diradd_inode_written(dap, inodedep)
4673	struct diradd *dap;
4674	struct inodedep *inodedep;
4675{
4676	struct pagedep *pagedep;
4677
4678	dap->da_state |= COMPLETE;
4679	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4680		if (dap->da_state & DIRCHG)
4681			pagedep = dap->da_previous->dm_pagedep;
4682		else
4683			pagedep = dap->da_pagedep;
4684		LIST_REMOVE(dap, da_pdlist);
4685		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4686	}
4687	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
4688}
4689
4690/*
4691 * Handle the completion of a mkdir dependency.
4692 */
4693static void
4694handle_written_mkdir(mkdir, type)
4695	struct mkdir *mkdir;
4696	int type;
4697{
4698	struct diradd *dap;
4699	struct pagedep *pagedep;
4700
4701	if (mkdir->md_state != type)
4702		panic("handle_written_mkdir: bad type");
4703	dap = mkdir->md_diradd;
4704	dap->da_state &= ~type;
4705	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
4706		dap->da_state |= DEPCOMPLETE;
4707	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4708		if (dap->da_state & DIRCHG)
4709			pagedep = dap->da_previous->dm_pagedep;
4710		else
4711			pagedep = dap->da_pagedep;
4712		LIST_REMOVE(dap, da_pdlist);
4713		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4714	}
4715	LIST_REMOVE(mkdir, md_mkdirs);
4716	WORKITEM_FREE(mkdir, D_MKDIR);
4717}
4718
4719/*
4720 * Called from within softdep_disk_write_complete above.
4721 * A write operation was just completed. Removed inodes can
4722 * now be freed and associated block pointers may be committed.
4723 * Note that this routine is always called from interrupt level
4724 * with further splbio interrupts blocked.
4725 */
4726static int
4727handle_written_filepage(pagedep, bp)
4728	struct pagedep *pagedep;
4729	struct buf *bp;		/* buffer containing the written page */
4730{
4731	struct dirrem *dirrem;
4732	struct diradd *dap, *nextdap;
4733	struct direct *ep;
4734	int i, chgs;
4735
4736	if ((pagedep->pd_state & IOSTARTED) == 0)
4737		panic("handle_written_filepage: not started");
4738	pagedep->pd_state &= ~IOSTARTED;
4739	/*
4740	 * Process any directory removals that have been committed.
4741	 */
4742	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
4743		LIST_REMOVE(dirrem, dm_next);
4744		dirrem->dm_dirinum = pagedep->pd_ino;
4745		add_to_worklist(&dirrem->dm_list);
4746	}
4747	/*
4748	 * Free any directory additions that have been committed.
4749	 * If it is a newly allocated block, we have to wait until
4750	 * the on-disk directory inode claims the new block.
4751	 */
4752	if ((pagedep->pd_state & NEWBLOCK) == 0)
4753		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
4754			free_diradd(dap);
4755	/*
4756	 * Uncommitted directory entries must be restored.
4757	 */
4758	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
4759		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
4760		     dap = nextdap) {
4761			nextdap = LIST_NEXT(dap, da_pdlist);
4762			if (dap->da_state & ATTACHED)
4763				panic("handle_written_filepage: attached");
4764			ep = (struct direct *)
4765			    ((char *)bp->b_data + dap->da_offset);
4766			ep->d_ino = dap->da_newinum;
4767			dap->da_state &= ~UNDONE;
4768			dap->da_state |= ATTACHED;
4769			chgs = 1;
4770			/*
4771			 * If the inode referenced by the directory has
4772			 * been written out, then the dependency can be
4773			 * moved to the pending list.
4774			 */
4775			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4776				LIST_REMOVE(dap, da_pdlist);
4777				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
4778				    da_pdlist);
4779			}
4780		}
4781	}
4782	/*
4783	 * If there were any rollbacks in the directory, then it must be
4784	 * marked dirty so that its will eventually get written back in
4785	 * its correct form.
4786	 */
4787	if (chgs) {
4788		if ((bp->b_flags & B_DELWRI) == 0)
4789			stat_dir_entry++;
4790		bdirty(bp);
4791		return (1);
4792	}
4793	/*
4794	 * If we are not waiting for a new directory block to be
4795	 * claimed by its inode, then the pagedep will be freed.
4796	 * Otherwise it will remain to track any new entries on
4797	 * the page in case they are fsync'ed.
4798	 */
4799	if ((pagedep->pd_state & NEWBLOCK) == 0) {
4800		LIST_REMOVE(pagedep, pd_hash);
4801		WORKITEM_FREE(pagedep, D_PAGEDEP);
4802	}
4803	return (0);
4804}
4805
4806/*
4807 * Writing back in-core inode structures.
4808 *
4809 * The filesystem only accesses an inode's contents when it occupies an
4810 * "in-core" inode structure.  These "in-core" structures are separate from
4811 * the page frames used to cache inode blocks.  Only the latter are
4812 * transferred to/from the disk.  So, when the updated contents of the
4813 * "in-core" inode structure are copied to the corresponding in-memory inode
4814 * block, the dependencies are also transferred.  The following procedure is
4815 * called when copying a dirty "in-core" inode to a cached inode block.
4816 */
4817
4818/*
4819 * Called when an inode is loaded from disk. If the effective link count
4820 * differed from the actual link count when it was last flushed, then we
4821 * need to ensure that the correct effective link count is put back.
4822 */
4823void
4824softdep_load_inodeblock(ip)
4825	struct inode *ip;	/* the "in_core" copy of the inode */
4826{
4827	struct inodedep *inodedep;
4828
4829	/*
4830	 * Check for alternate nlink count.
4831	 */
4832	ip->i_effnlink = ip->i_nlink;
4833	ACQUIRE_LOCK(&lk);
4834	if (inodedep_lookup(UFSTOVFS(ip->i_ump),
4835	    ip->i_number, 0, &inodedep) == 0) {
4836		FREE_LOCK(&lk);
4837		return;
4838	}
4839	ip->i_effnlink -= inodedep->id_nlinkdelta;
4840	if (inodedep->id_state & SPACECOUNTED)
4841		ip->i_flag |= IN_SPACECOUNTED;
4842	FREE_LOCK(&lk);
4843}
4844
4845/*
4846 * This routine is called just before the "in-core" inode
4847 * information is to be copied to the in-memory inode block.
4848 * Recall that an inode block contains several inodes. If
4849 * the force flag is set, then the dependencies will be
4850 * cleared so that the update can always be made. Note that
4851 * the buffer is locked when this routine is called, so we
4852 * will never be in the middle of writing the inode block
4853 * to disk.
4854 */
4855void
4856softdep_update_inodeblock(ip, bp, waitfor)
4857	struct inode *ip;	/* the "in_core" copy of the inode */
4858	struct buf *bp;		/* the buffer containing the inode block */
4859	int waitfor;		/* nonzero => update must be allowed */
4860{
4861	struct inodedep *inodedep;
4862	struct worklist *wk;
4863	struct mount *mp;
4864	struct buf *ibp;
4865	int error;
4866
4867	/*
4868	 * If the effective link count is not equal to the actual link
4869	 * count, then we must track the difference in an inodedep while
4870	 * the inode is (potentially) tossed out of the cache. Otherwise,
4871	 * if there is no existing inodedep, then there are no dependencies
4872	 * to track.
4873	 */
4874	mp = UFSTOVFS(ip->i_ump);
4875	ACQUIRE_LOCK(&lk);
4876	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
4877		FREE_LOCK(&lk);
4878		if (ip->i_effnlink != ip->i_nlink)
4879			panic("softdep_update_inodeblock: bad link count");
4880		return;
4881	}
4882	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
4883		panic("softdep_update_inodeblock: bad delta");
4884	/*
4885	 * Changes have been initiated. Anything depending on these
4886	 * changes cannot occur until this inode has been written.
4887	 */
4888	inodedep->id_state &= ~COMPLETE;
4889	if ((inodedep->id_state & ONWORKLIST) == 0)
4890		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
4891	/*
4892	 * Any new dependencies associated with the incore inode must
4893	 * now be moved to the list associated with the buffer holding
4894	 * the in-memory copy of the inode. Once merged process any
4895	 * allocdirects that are completed by the merger.
4896	 */
4897	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
4898	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4899		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4900	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
4901	if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL)
4902		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt));
4903	/*
4904	 * Now that the inode has been pushed into the buffer, the
4905	 * operations dependent on the inode being written to disk
4906	 * can be moved to the id_bufwait so that they will be
4907	 * processed when the buffer I/O completes.
4908	 */
4909	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4910		WORKLIST_REMOVE(wk);
4911		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4912	}
4913	/*
4914	 * Newly allocated inodes cannot be written until the bitmap
4915	 * that allocates them have been written (indicated by
4916	 * DEPCOMPLETE being set in id_state). If we are doing a
4917	 * forced sync (e.g., an fsync on a file), we force the bitmap
4918	 * to be written so that the update can be done.
4919	 */
4920	if (waitfor == 0) {
4921		FREE_LOCK(&lk);
4922		return;
4923	}
4924retry:
4925	if ((inodedep->id_state & DEPCOMPLETE) != 0) {
4926		FREE_LOCK(&lk);
4927		return;
4928	}
4929	ibp = inodedep->id_buf;
4930	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
4931	if (ibp == NULL) {
4932		/*
4933		 * If ibp came back as NULL, the dependency could have been
4934		 * freed while we slept.  Look it up again, and check to see
4935		 * that it has completed.
4936		 */
4937		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
4938			goto retry;
4939		FREE_LOCK(&lk);
4940		return;
4941	}
4942	FREE_LOCK(&lk);
4943	if ((error = bwrite(ibp)) != 0)
4944		softdep_error("softdep_update_inodeblock: bwrite", error);
4945}
4946
4947/*
4948 * Merge the a new inode dependency list (such as id_newinoupdt) into an
4949 * old inode dependency list (such as id_inoupdt). This routine must be
4950 * called with splbio interrupts blocked.
4951 */
4952static void
4953merge_inode_lists(newlisthead, oldlisthead)
4954	struct allocdirectlst *newlisthead;
4955	struct allocdirectlst *oldlisthead;
4956{
4957	struct allocdirect *listadp, *newadp;
4958
4959	newadp = TAILQ_FIRST(newlisthead);
4960	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
4961		if (listadp->ad_lbn < newadp->ad_lbn) {
4962			listadp = TAILQ_NEXT(listadp, ad_next);
4963			continue;
4964		}
4965		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4966		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4967		if (listadp->ad_lbn == newadp->ad_lbn) {
4968			allocdirect_merge(oldlisthead, newadp,
4969			    listadp);
4970			listadp = newadp;
4971		}
4972		newadp = TAILQ_FIRST(newlisthead);
4973	}
4974	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
4975		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4976		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
4977	}
4978}
4979
4980/*
4981 * If we are doing an fsync, then we must ensure that any directory
4982 * entries for the inode have been written after the inode gets to disk.
4983 */
4984int
4985softdep_fsync(vp)
4986	struct vnode *vp;	/* the "in_core" copy of the inode */
4987{
4988	struct inodedep *inodedep;
4989	struct pagedep *pagedep;
4990	struct worklist *wk;
4991	struct diradd *dap;
4992	struct mount *mp;
4993	struct vnode *pvp;
4994	struct inode *ip;
4995	struct buf *bp;
4996	struct fs *fs;
4997	struct thread *td = curthread;
4998	int error, flushparent;
4999	ino_t parentino;
5000	ufs_lbn_t lbn;
5001
5002	ip = VTOI(vp);
5003	fs = ip->i_fs;
5004	mp = vp->v_mount;
5005	ACQUIRE_LOCK(&lk);
5006	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
5007		FREE_LOCK(&lk);
5008		return (0);
5009	}
5010	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
5011	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
5012	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
5013	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
5014	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
5015	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL)
5016		panic("softdep_fsync: pending ops");
5017	for (error = 0, flushparent = 0; ; ) {
5018		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
5019			break;
5020		if (wk->wk_type != D_DIRADD)
5021			panic("softdep_fsync: Unexpected type %s",
5022			    TYPENAME(wk->wk_type));
5023		dap = WK_DIRADD(wk);
5024		/*
5025		 * Flush our parent if this directory entry has a MKDIR_PARENT
5026		 * dependency or is contained in a newly allocated block.
5027		 */
5028		if (dap->da_state & DIRCHG)
5029			pagedep = dap->da_previous->dm_pagedep;
5030		else
5031			pagedep = dap->da_pagedep;
5032		parentino = pagedep->pd_ino;
5033		lbn = pagedep->pd_lbn;
5034		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
5035			panic("softdep_fsync: dirty");
5036		if ((dap->da_state & MKDIR_PARENT) ||
5037		    (pagedep->pd_state & NEWBLOCK))
5038			flushparent = 1;
5039		else
5040			flushparent = 0;
5041		/*
5042		 * If we are being fsync'ed as part of vgone'ing this vnode,
5043		 * then we will not be able to release and recover the
5044		 * vnode below, so we just have to give up on writing its
5045		 * directory entry out. It will eventually be written, just
5046		 * not now, but then the user was not asking to have it
5047		 * written, so we are not breaking any promises.
5048		 */
5049		if (vp->v_iflag & VI_DOOMED)
5050			break;
5051		/*
5052		 * We prevent deadlock by always fetching inodes from the
5053		 * root, moving down the directory tree. Thus, when fetching
5054		 * our parent directory, we first try to get the lock. If
5055		 * that fails, we must unlock ourselves before requesting
5056		 * the lock on our parent. See the comment in ufs_lookup
5057		 * for details on possible races.
5058		 */
5059		FREE_LOCK(&lk);
5060		if (ffs_vget(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) {
5061			VOP_UNLOCK(vp, 0, td);
5062			error = ffs_vget(mp, parentino, LK_EXCLUSIVE, &pvp);
5063			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
5064			if (error != 0)
5065				return (error);
5066		}
5067		/*
5068		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
5069		 * that are contained in direct blocks will be resolved by
5070		 * doing a ffs_update. Pagedeps contained in indirect blocks
5071		 * may require a complete sync'ing of the directory. So, we
5072		 * try the cheap and fast ffs_update first, and if that fails,
5073		 * then we do the slower ffs_syncvnode of the directory.
5074		 */
5075		if (flushparent) {
5076			if ((error = ffs_update(pvp, 1)) != 0) {
5077				vput(pvp);
5078				return (error);
5079			}
5080			if ((pagedep->pd_state & NEWBLOCK) &&
5081			    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
5082				vput(pvp);
5083				return (error);
5084			}
5085		}
5086		/*
5087		 * Flush directory page containing the inode's name.
5088		 */
5089		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
5090		    &bp);
5091		if (error == 0)
5092			error = bwrite(bp);
5093		else
5094			brelse(bp);
5095		vput(pvp);
5096		if (error != 0)
5097			return (error);
5098		ACQUIRE_LOCK(&lk);
5099		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
5100			break;
5101	}
5102	FREE_LOCK(&lk);
5103	return (0);
5104}
5105
5106/*
5107 * Flush all the dirty bitmaps associated with the block device
5108 * before flushing the rest of the dirty blocks so as to reduce
5109 * the number of dependencies that will have to be rolled back.
5110 */
5111void
5112softdep_fsync_mountdev(vp)
5113	struct vnode *vp;
5114{
5115	struct buf *bp, *nbp;
5116	struct worklist *wk;
5117
5118	if (!vn_isdisk(vp, NULL))
5119		panic("softdep_fsync_mountdev: vnode not a disk");
5120restart:
5121	ACQUIRE_LOCK(&lk);
5122	VI_LOCK(vp);
5123	TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) {
5124		/*
5125		 * If it is already scheduled, skip to the next buffer.
5126		 */
5127		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
5128			continue;
5129
5130		if ((bp->b_flags & B_DELWRI) == 0)
5131			panic("softdep_fsync_mountdev: not dirty");
5132		/*
5133		 * We are only interested in bitmaps with outstanding
5134		 * dependencies.
5135		 */
5136		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
5137		    wk->wk_type != D_BMSAFEMAP ||
5138		    (bp->b_vflags & BV_BKGRDINPROG)) {
5139			BUF_UNLOCK(bp);
5140			continue;
5141		}
5142		VI_UNLOCK(vp);
5143		FREE_LOCK(&lk);
5144		bremfree(bp);
5145		(void) bawrite(bp);
5146		goto restart;
5147	}
5148	FREE_LOCK(&lk);
5149	drain_output(vp);
5150	VI_UNLOCK(vp);
5151}
5152
5153/*
5154 * This routine is called when we are trying to synchronously flush a
5155 * file. This routine must eliminate any filesystem metadata dependencies
5156 * so that the syncing routine can succeed by pushing the dirty blocks
5157 * associated with the file. If any I/O errors occur, they are returned.
5158 */
5159int
5160softdep_sync_metadata(struct vnode *vp)
5161{
5162	struct pagedep *pagedep;
5163	struct allocdirect *adp;
5164	struct allocindir *aip;
5165	struct buf *bp, *nbp;
5166	struct worklist *wk;
5167	int i, error, waitfor;
5168
5169	if (!DOINGSOFTDEP(vp))
5170		return (0);
5171	/*
5172	 * Ensure that any direct block dependencies have been cleared.
5173	 */
5174	ACQUIRE_LOCK(&lk);
5175	if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) {
5176		FREE_LOCK(&lk);
5177		return (error);
5178	}
5179	FREE_LOCK(&lk);
5180	/*
5181	 * For most files, the only metadata dependencies are the
5182	 * cylinder group maps that allocate their inode or blocks.
5183	 * The block allocation dependencies can be found by traversing
5184	 * the dependency lists for any buffers that remain on their
5185	 * dirty buffer list. The inode allocation dependency will
5186	 * be resolved when the inode is updated with MNT_WAIT.
5187	 * This work is done in two passes. The first pass grabs most
5188	 * of the buffers and begins asynchronously writing them. The
5189	 * only way to wait for these asynchronous writes is to sleep
5190	 * on the filesystem vnode which may stay busy for a long time
5191	 * if the filesystem is active. So, instead, we make a second
5192	 * pass over the dependencies blocking on each write. In the
5193	 * usual case we will be blocking against a write that we
5194	 * initiated, so when it is done the dependency will have been
5195	 * resolved. Thus the second pass is expected to end quickly.
5196	 */
5197	waitfor = MNT_NOWAIT;
5198
5199top:
5200	/*
5201	 * We must wait for any I/O in progress to finish so that
5202	 * all potential buffers on the dirty list will be visible.
5203	 */
5204	VI_LOCK(vp);
5205	drain_output(vp);
5206	while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) {
5207		bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT);
5208		if (bp)
5209			break;
5210	}
5211	VI_UNLOCK(vp);
5212	if (bp == NULL)
5213		return (0);
5214loop:
5215	/* While syncing snapshots, we must allow recursive lookups */
5216	bp->b_lock.lk_flags |= LK_CANRECURSE;
5217	ACQUIRE_LOCK(&lk);
5218	/*
5219	 * As we hold the buffer locked, none of its dependencies
5220	 * will disappear.
5221	 */
5222	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5223		switch (wk->wk_type) {
5224
5225		case D_ALLOCDIRECT:
5226			adp = WK_ALLOCDIRECT(wk);
5227			if (adp->ad_state & DEPCOMPLETE)
5228				continue;
5229			nbp = adp->ad_buf;
5230			nbp = getdirtybuf(nbp, &lk, waitfor);
5231			if (nbp == NULL)
5232				continue;
5233			FREE_LOCK(&lk);
5234			if (waitfor == MNT_NOWAIT) {
5235				bawrite(nbp);
5236			} else if ((error = bwrite(nbp)) != 0) {
5237				break;
5238			}
5239			ACQUIRE_LOCK(&lk);
5240			continue;
5241
5242		case D_ALLOCINDIR:
5243			aip = WK_ALLOCINDIR(wk);
5244			if (aip->ai_state & DEPCOMPLETE)
5245				continue;
5246			nbp = aip->ai_buf;
5247			nbp = getdirtybuf(nbp, &lk, waitfor);
5248			if (nbp == NULL)
5249				continue;
5250			FREE_LOCK(&lk);
5251			if (waitfor == MNT_NOWAIT) {
5252				bawrite(nbp);
5253			} else if ((error = bwrite(nbp)) != 0) {
5254				break;
5255			}
5256			ACQUIRE_LOCK(&lk);
5257			continue;
5258
5259		case D_INDIRDEP:
5260		restart:
5261
5262			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
5263				if (aip->ai_state & DEPCOMPLETE)
5264					continue;
5265				nbp = aip->ai_buf;
5266				nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
5267				if (nbp == NULL)
5268					goto restart;
5269				FREE_LOCK(&lk);
5270				if ((error = bwrite(nbp)) != 0) {
5271					break;
5272				}
5273				ACQUIRE_LOCK(&lk);
5274				goto restart;
5275			}
5276			continue;
5277
5278		case D_INODEDEP:
5279			if ((error = flush_inodedep_deps(wk->wk_mp,
5280			    WK_INODEDEP(wk)->id_ino)) != 0) {
5281				FREE_LOCK(&lk);
5282				break;
5283			}
5284			continue;
5285
5286		case D_PAGEDEP:
5287			/*
5288			 * We are trying to sync a directory that may
5289			 * have dependencies on both its own metadata
5290			 * and/or dependencies on the inodes of any
5291			 * recently allocated files. We walk its diradd
5292			 * lists pushing out the associated inode.
5293			 */
5294			pagedep = WK_PAGEDEP(wk);
5295			for (i = 0; i < DAHASHSZ; i++) {
5296				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
5297					continue;
5298				if ((error =
5299				    flush_pagedep_deps(vp, wk->wk_mp,
5300						&pagedep->pd_diraddhd[i]))) {
5301					FREE_LOCK(&lk);
5302					break;
5303				}
5304			}
5305			continue;
5306
5307		case D_MKDIR:
5308			/*
5309			 * This case should never happen if the vnode has
5310			 * been properly sync'ed. However, if this function
5311			 * is used at a place where the vnode has not yet
5312			 * been sync'ed, this dependency can show up. So,
5313			 * rather than panic, just flush it.
5314			 */
5315			nbp = WK_MKDIR(wk)->md_buf;
5316			nbp = getdirtybuf(nbp, &lk, waitfor);
5317			if (nbp == NULL)
5318				continue;
5319			FREE_LOCK(&lk);
5320			if (waitfor == MNT_NOWAIT) {
5321				bawrite(nbp);
5322			} else if ((error = bwrite(nbp)) != 0) {
5323				break;
5324			}
5325			ACQUIRE_LOCK(&lk);
5326			continue;
5327
5328		case D_BMSAFEMAP:
5329			/*
5330			 * This case should never happen if the vnode has
5331			 * been properly sync'ed. However, if this function
5332			 * is used at a place where the vnode has not yet
5333			 * been sync'ed, this dependency can show up. So,
5334			 * rather than panic, just flush it.
5335			 */
5336			nbp = WK_BMSAFEMAP(wk)->sm_buf;
5337			nbp = getdirtybuf(nbp, &lk, waitfor);
5338			if (nbp == NULL)
5339				continue;
5340			FREE_LOCK(&lk);
5341			if (waitfor == MNT_NOWAIT) {
5342				bawrite(nbp);
5343			} else if ((error = bwrite(nbp)) != 0) {
5344				break;
5345			}
5346			ACQUIRE_LOCK(&lk);
5347			continue;
5348
5349		default:
5350			panic("softdep_sync_metadata: Unknown type %s",
5351			    TYPENAME(wk->wk_type));
5352			/* NOTREACHED */
5353		}
5354		/* We reach here only in error and unlocked */
5355		if (error == 0)
5356			panic("softdep_sync_metadata: zero error");
5357		bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5358		bawrite(bp);
5359		return (error);
5360	}
5361	FREE_LOCK(&lk);
5362	VI_LOCK(vp);
5363	while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
5364		nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT);
5365		if (nbp)
5366			break;
5367	}
5368	VI_UNLOCK(vp);
5369	bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5370	bawrite(bp);
5371	if (nbp != NULL) {
5372		bp = nbp;
5373		goto loop;
5374	}
5375	/*
5376	 * The brief unlock is to allow any pent up dependency
5377	 * processing to be done. Then proceed with the second pass.
5378	 */
5379	if (waitfor == MNT_NOWAIT) {
5380		waitfor = MNT_WAIT;
5381		goto top;
5382	}
5383
5384	/*
5385	 * If we have managed to get rid of all the dirty buffers,
5386	 * then we are done. For certain directories and block
5387	 * devices, we may need to do further work.
5388	 *
5389	 * We must wait for any I/O in progress to finish so that
5390	 * all potential buffers on the dirty list will be visible.
5391	 */
5392	VI_LOCK(vp);
5393	drain_output(vp);
5394	VI_UNLOCK(vp);
5395	return (0);
5396}
5397
5398/*
5399 * Flush the dependencies associated with an inodedep.
5400 * Called with splbio blocked.
5401 */
5402static int
5403flush_inodedep_deps(mp, ino)
5404	struct mount *mp;
5405	ino_t ino;
5406{
5407	struct inodedep *inodedep;
5408	int error, waitfor;
5409
5410	/*
5411	 * This work is done in two passes. The first pass grabs most
5412	 * of the buffers and begins asynchronously writing them. The
5413	 * only way to wait for these asynchronous writes is to sleep
5414	 * on the filesystem vnode which may stay busy for a long time
5415	 * if the filesystem is active. So, instead, we make a second
5416	 * pass over the dependencies blocking on each write. In the
5417	 * usual case we will be blocking against a write that we
5418	 * initiated, so when it is done the dependency will have been
5419	 * resolved. Thus the second pass is expected to end quickly.
5420	 * We give a brief window at the top of the loop to allow
5421	 * any pending I/O to complete.
5422	 */
5423	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
5424		if (error)
5425			return (error);
5426		FREE_LOCK(&lk);
5427		ACQUIRE_LOCK(&lk);
5428		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
5429			return (0);
5430		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
5431		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
5432		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
5433		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
5434			continue;
5435		/*
5436		 * If pass2, we are done, otherwise do pass 2.
5437		 */
5438		if (waitfor == MNT_WAIT)
5439			break;
5440		waitfor = MNT_WAIT;
5441	}
5442	/*
5443	 * Try freeing inodedep in case all dependencies have been removed.
5444	 */
5445	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
5446		(void) free_inodedep(inodedep);
5447	return (0);
5448}
5449
5450/*
5451 * Flush an inode dependency list.
5452 * Called with splbio blocked.
5453 */
5454static int
5455flush_deplist(listhead, waitfor, errorp)
5456	struct allocdirectlst *listhead;
5457	int waitfor;
5458	int *errorp;
5459{
5460	struct allocdirect *adp;
5461	struct buf *bp;
5462
5463	mtx_assert(&lk, MA_OWNED);
5464	TAILQ_FOREACH(adp, listhead, ad_next) {
5465		if (adp->ad_state & DEPCOMPLETE)
5466			continue;
5467		bp = adp->ad_buf;
5468		bp = getdirtybuf(bp, &lk, waitfor);
5469		if (bp == NULL) {
5470			if (waitfor == MNT_NOWAIT)
5471				continue;
5472			return (1);
5473		}
5474		FREE_LOCK(&lk);
5475		if (waitfor == MNT_NOWAIT) {
5476			bawrite(bp);
5477		} else if ((*errorp = bwrite(bp)) != 0) {
5478			ACQUIRE_LOCK(&lk);
5479			return (1);
5480		}
5481		ACQUIRE_LOCK(&lk);
5482		return (1);
5483	}
5484	return (0);
5485}
5486
5487/*
5488 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
5489 * Called with splbio blocked.
5490 */
5491static int
5492flush_pagedep_deps(pvp, mp, diraddhdp)
5493	struct vnode *pvp;
5494	struct mount *mp;
5495	struct diraddhd *diraddhdp;
5496{
5497	struct inodedep *inodedep;
5498	struct ufsmount *ump;
5499	struct diradd *dap;
5500	struct vnode *vp;
5501	int error = 0;
5502	struct buf *bp;
5503	ino_t inum;
5504	struct worklist *wk;
5505
5506	ump = VFSTOUFS(mp);
5507	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
5508		/*
5509		 * Flush ourselves if this directory entry
5510		 * has a MKDIR_PARENT dependency.
5511		 */
5512		if (dap->da_state & MKDIR_PARENT) {
5513			FREE_LOCK(&lk);
5514			if ((error = ffs_update(pvp, 1)) != 0)
5515				break;
5516			ACQUIRE_LOCK(&lk);
5517			/*
5518			 * If that cleared dependencies, go on to next.
5519			 */
5520			if (dap != LIST_FIRST(diraddhdp))
5521				continue;
5522			if (dap->da_state & MKDIR_PARENT)
5523				panic("flush_pagedep_deps: MKDIR_PARENT");
5524		}
5525		/*
5526		 * A newly allocated directory must have its "." and
5527		 * ".." entries written out before its name can be
5528		 * committed in its parent. We do not want or need
5529		 * the full semantics of a synchronous ffs_syncvnode as
5530		 * that may end up here again, once for each directory
5531		 * level in the filesystem. Instead, we push the blocks
5532		 * and wait for them to clear. We have to fsync twice
5533		 * because the first call may choose to defer blocks
5534		 * that still have dependencies, but deferral will
5535		 * happen at most once.
5536		 */
5537		inum = dap->da_newinum;
5538		if (dap->da_state & MKDIR_BODY) {
5539			FREE_LOCK(&lk);
5540			if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp)))
5541				break;
5542			if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) ||
5543			    (error=ffs_syncvnode(vp, MNT_NOWAIT))) {
5544				vput(vp);
5545				break;
5546			}
5547			VI_LOCK(vp);
5548			drain_output(vp);
5549			/*
5550			 * If first block is still dirty with a D_MKDIR
5551			 * dependency then it needs to be written now.
5552			 */
5553			for (;;) {
5554				error = 0;
5555				bp = gbincore(&vp->v_bufobj, 0);
5556				if (bp == NULL)
5557					break;	/* First block not present */
5558				error = BUF_LOCK(bp,
5559						 LK_EXCLUSIVE |
5560						 LK_SLEEPFAIL |
5561						 LK_INTERLOCK,
5562						 VI_MTX(vp));
5563				VI_LOCK(vp);
5564				if (error == ENOLCK)
5565					continue;	/* Slept, retry */
5566				if (error != 0)
5567					break;		/* Failed */
5568				if ((bp->b_flags & B_DELWRI) == 0) {
5569					BUF_UNLOCK(bp);
5570					break;	/* Buffer not dirty */
5571				}
5572				for (wk = LIST_FIRST(&bp->b_dep);
5573				     wk != NULL;
5574				     wk = LIST_NEXT(wk, wk_list))
5575					if (wk->wk_type == D_MKDIR)
5576						break;
5577				if (wk == NULL)
5578					BUF_UNLOCK(bp);	/* Dependency gone */
5579				else {
5580					/*
5581					 * D_MKDIR dependency remains,
5582					 * must write buffer to stable
5583					 * storage.
5584					 */
5585					VI_UNLOCK(vp);
5586					bremfree(bp);
5587					error = bwrite(bp);
5588					VI_LOCK(vp);
5589				}
5590				break;
5591			}
5592			VI_UNLOCK(vp);
5593			vput(vp);
5594			if (error != 0)
5595				break;	/* Flushing of first block failed */
5596			ACQUIRE_LOCK(&lk);
5597			/*
5598			 * If that cleared dependencies, go on to next.
5599			 */
5600			if (dap != LIST_FIRST(diraddhdp))
5601				continue;
5602			if (dap->da_state & MKDIR_BODY)
5603				panic("flush_pagedep_deps: MKDIR_BODY");
5604		}
5605		/*
5606		 * Flush the inode on which the directory entry depends.
5607		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
5608		 * the only remaining dependency is that the updated inode
5609		 * count must get pushed to disk. The inode has already
5610		 * been pushed into its inode buffer (via VOP_UPDATE) at
5611		 * the time of the reference count change. So we need only
5612		 * locate that buffer, ensure that there will be no rollback
5613		 * caused by a bitmap dependency, then write the inode buffer.
5614		 */
5615retry:
5616		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
5617			panic("flush_pagedep_deps: lost inode");
5618		/*
5619		 * If the inode still has bitmap dependencies,
5620		 * push them to disk.
5621		 */
5622		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5623			bp = inodedep->id_buf;
5624			bp = getdirtybuf(bp, &lk, MNT_WAIT);
5625			if (bp == NULL)
5626				goto retry;
5627			FREE_LOCK(&lk);
5628			if ((error = bwrite(bp)) != 0)
5629				break;
5630			ACQUIRE_LOCK(&lk);
5631			if (dap != LIST_FIRST(diraddhdp))
5632				continue;
5633		}
5634		/*
5635		 * If the inode is still sitting in a buffer waiting
5636		 * to be written, push it to disk.
5637		 */
5638		FREE_LOCK(&lk);
5639		if ((error = bread(ump->um_devvp,
5640		    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
5641		    (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) {
5642			brelse(bp);
5643			break;
5644		}
5645		if ((error = bwrite(bp)) != 0)
5646			break;
5647		ACQUIRE_LOCK(&lk);
5648		/*
5649		 * If we have failed to get rid of all the dependencies
5650		 * then something is seriously wrong.
5651		 */
5652		if (dap == LIST_FIRST(diraddhdp))
5653			panic("flush_pagedep_deps: flush failed");
5654	}
5655	if (error)
5656		ACQUIRE_LOCK(&lk);
5657	return (error);
5658}
5659
5660/*
5661 * A large burst of file addition or deletion activity can drive the
5662 * memory load excessively high. First attempt to slow things down
5663 * using the techniques below. If that fails, this routine requests
5664 * the offending operations to fall back to running synchronously
5665 * until the memory load returns to a reasonable level.
5666 */
5667int
5668softdep_slowdown(vp)
5669	struct vnode *vp;
5670{
5671	int max_softdeps_hard;
5672
5673	ACQUIRE_LOCK(&lk);
5674	max_softdeps_hard = max_softdeps * 11 / 10;
5675	if (num_dirrem < max_softdeps_hard / 2 &&
5676	    num_inodedep < max_softdeps_hard &&
5677	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) {
5678		FREE_LOCK(&lk);
5679  		return (0);
5680	}
5681	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps)
5682		softdep_speedup();
5683	stat_sync_limit_hit += 1;
5684	FREE_LOCK(&lk);
5685	return (1);
5686}
5687
5688/*
5689 * Called by the allocation routines when they are about to fail
5690 * in the hope that we can free up some disk space.
5691 *
5692 * First check to see if the work list has anything on it. If it has,
5693 * clean up entries until we successfully free some space. Because this
5694 * process holds inodes locked, we cannot handle any remove requests
5695 * that might block on a locked inode as that could lead to deadlock.
5696 * If the worklist yields no free space, encourage the syncer daemon
5697 * to help us. In no event will we try for longer than tickdelay seconds.
5698 */
5699int
5700softdep_request_cleanup(fs, vp)
5701	struct fs *fs;
5702	struct vnode *vp;
5703{
5704	struct ufsmount *ump;
5705	long starttime;
5706	ufs2_daddr_t needed;
5707	int error;
5708
5709	ump = VTOI(vp)->i_ump;
5710	mtx_assert(UFS_MTX(ump), MA_OWNED);
5711	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
5712	starttime = time_second + tickdelay;
5713	/*
5714	 * If we are being called because of a process doing a
5715	 * copy-on-write, then it is not safe to update the vnode
5716	 * as we may recurse into the copy-on-write routine.
5717	 */
5718	if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
5719		UFS_UNLOCK(ump);
5720		error = ffs_update(vp, 1);
5721		UFS_LOCK(ump);
5722		if (error != 0)
5723			return (0);
5724	}
5725	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
5726		if (time_second > starttime)
5727			return (0);
5728		UFS_UNLOCK(ump);
5729		ACQUIRE_LOCK(&lk);
5730		if (ump->softdep_on_worklist > 0 &&
5731		    process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) {
5732			stat_worklist_push += 1;
5733			FREE_LOCK(&lk);
5734			UFS_LOCK(ump);
5735			continue;
5736		}
5737		request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT);
5738		FREE_LOCK(&lk);
5739		UFS_LOCK(ump);
5740	}
5741	return (1);
5742}
5743
5744/*
5745 * If memory utilization has gotten too high, deliberately slow things
5746 * down and speed up the I/O processing.
5747 */
5748extern struct thread *syncertd;
5749static int
5750request_cleanup(mp, resource)
5751	struct mount *mp;
5752	int resource;
5753{
5754	struct thread *td = curthread;
5755	struct ufsmount *ump;
5756
5757	mtx_assert(&lk, MA_OWNED);
5758	/*
5759	 * We never hold up the filesystem syncer or buf daemon.
5760	 */
5761	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
5762		return (0);
5763	ump = VFSTOUFS(mp);
5764	/*
5765	 * First check to see if the work list has gotten backlogged.
5766	 * If it has, co-opt this process to help clean up two entries.
5767	 * Because this process may hold inodes locked, we cannot
5768	 * handle any remove requests that might block on a locked
5769	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
5770	 * to avoid recursively processing the worklist.
5771	 */
5772	if (ump->softdep_on_worklist > max_softdeps / 10) {
5773		td->td_pflags |= TDP_SOFTDEP;
5774		process_worklist_item(mp, LK_NOWAIT);
5775		process_worklist_item(mp, LK_NOWAIT);
5776		td->td_pflags &= ~TDP_SOFTDEP;
5777		stat_worklist_push += 2;
5778		return(1);
5779	}
5780	/*
5781	 * Next, we attempt to speed up the syncer process. If that
5782	 * is successful, then we allow the process to continue.
5783	 */
5784	if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT)
5785		return(0);
5786	/*
5787	 * If we are resource constrained on inode dependencies, try
5788	 * flushing some dirty inodes. Otherwise, we are constrained
5789	 * by file deletions, so try accelerating flushes of directories
5790	 * with removal dependencies. We would like to do the cleanup
5791	 * here, but we probably hold an inode locked at this point and
5792	 * that might deadlock against one that we try to clean. So,
5793	 * the best that we can do is request the syncer daemon to do
5794	 * the cleanup for us.
5795	 */
5796	switch (resource) {
5797
5798	case FLUSH_INODES:
5799		stat_ino_limit_push += 1;
5800		req_clear_inodedeps += 1;
5801		stat_countp = &stat_ino_limit_hit;
5802		break;
5803
5804	case FLUSH_REMOVE:
5805	case FLUSH_REMOVE_WAIT:
5806		stat_blk_limit_push += 1;
5807		req_clear_remove += 1;
5808		stat_countp = &stat_blk_limit_hit;
5809		break;
5810
5811	default:
5812		panic("request_cleanup: unknown type");
5813	}
5814	/*
5815	 * Hopefully the syncer daemon will catch up and awaken us.
5816	 * We wait at most tickdelay before proceeding in any case.
5817	 */
5818	proc_waiting += 1;
5819	if (handle.callout == NULL)
5820		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5821	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
5822	proc_waiting -= 1;
5823	return (1);
5824}
5825
5826/*
5827 * Awaken processes pausing in request_cleanup and clear proc_waiting
5828 * to indicate that there is no longer a timer running.
5829 */
5830static void
5831pause_timer(arg)
5832	void *arg;
5833{
5834
5835	ACQUIRE_LOCK(&lk);
5836	*stat_countp += 1;
5837	wakeup_one(&proc_waiting);
5838	if (proc_waiting > 0)
5839		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5840	else
5841		handle.callout = NULL;
5842	FREE_LOCK(&lk);
5843}
5844
5845/*
5846 * Flush out a directory with at least one removal dependency in an effort to
5847 * reduce the number of dirrem, freefile, and freeblks dependency structures.
5848 */
5849static void
5850clear_remove(td)
5851	struct thread *td;
5852{
5853	struct pagedep_hashhead *pagedephd;
5854	struct pagedep *pagedep;
5855	static int next = 0;
5856	struct mount *mp;
5857	struct vnode *vp;
5858	int error, cnt;
5859	ino_t ino;
5860
5861	mtx_assert(&lk, MA_OWNED);
5862
5863	for (cnt = 0; cnt < pagedep_hash; cnt++) {
5864		pagedephd = &pagedep_hashtbl[next++];
5865		if (next >= pagedep_hash)
5866			next = 0;
5867		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
5868			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
5869				continue;
5870			mp = pagedep->pd_list.wk_mp;
5871			ino = pagedep->pd_ino;
5872			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5873				continue;
5874			FREE_LOCK(&lk);
5875			if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) {
5876				softdep_error("clear_remove: vget", error);
5877				vn_finished_write(mp);
5878				ACQUIRE_LOCK(&lk);
5879				return;
5880			}
5881			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
5882				softdep_error("clear_remove: fsync", error);
5883			VI_LOCK(vp);
5884			drain_output(vp);
5885			VI_UNLOCK(vp);
5886			vput(vp);
5887			vn_finished_write(mp);
5888			ACQUIRE_LOCK(&lk);
5889			return;
5890		}
5891	}
5892}
5893
5894/*
5895 * Clear out a block of dirty inodes in an effort to reduce
5896 * the number of inodedep dependency structures.
5897 */
5898static void
5899clear_inodedeps(td)
5900	struct thread *td;
5901{
5902	struct inodedep_hashhead *inodedephd;
5903	struct inodedep *inodedep;
5904	static int next = 0;
5905	struct mount *mp;
5906	struct vnode *vp;
5907	struct fs *fs;
5908	int error, cnt;
5909	ino_t firstino, lastino, ino;
5910
5911	mtx_assert(&lk, MA_OWNED);
5912	/*
5913	 * Pick a random inode dependency to be cleared.
5914	 * We will then gather up all the inodes in its block
5915	 * that have dependencies and flush them out.
5916	 */
5917	for (cnt = 0; cnt < inodedep_hash; cnt++) {
5918		inodedephd = &inodedep_hashtbl[next++];
5919		if (next >= inodedep_hash)
5920			next = 0;
5921		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
5922			break;
5923	}
5924	if (inodedep == NULL)
5925		return;
5926	fs = inodedep->id_fs;
5927	mp = inodedep->id_list.wk_mp;
5928	/*
5929	 * Find the last inode in the block with dependencies.
5930	 */
5931	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5932	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5933		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
5934			break;
5935	/*
5936	 * Asynchronously push all but the last inode with dependencies.
5937	 * Synchronously push the last inode with dependencies to ensure
5938	 * that the inode block gets written to free up the inodedeps.
5939	 */
5940	for (ino = firstino; ino <= lastino; ino++) {
5941		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
5942			continue;
5943		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5944			continue;
5945		FREE_LOCK(&lk);
5946		if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) {
5947			softdep_error("clear_inodedeps: vget", error);
5948			vn_finished_write(mp);
5949			ACQUIRE_LOCK(&lk);
5950			return;
5951		}
5952		if (ino == lastino) {
5953			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
5954				softdep_error("clear_inodedeps: fsync1", error);
5955		} else {
5956			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
5957				softdep_error("clear_inodedeps: fsync2", error);
5958			VI_LOCK(vp);
5959			drain_output(vp);
5960			VI_UNLOCK(vp);
5961		}
5962		vput(vp);
5963		vn_finished_write(mp);
5964		ACQUIRE_LOCK(&lk);
5965	}
5966}
5967
5968/*
5969 * Function to determine if the buffer has outstanding dependencies
5970 * that will cause a roll-back if the buffer is written. If wantcount
5971 * is set, return number of dependencies, otherwise just yes or no.
5972 */
5973static int
5974softdep_count_dependencies(bp, wantcount)
5975	struct buf *bp;
5976	int wantcount;
5977{
5978	struct worklist *wk;
5979	struct inodedep *inodedep;
5980	struct indirdep *indirdep;
5981	struct allocindir *aip;
5982	struct pagedep *pagedep;
5983	struct diradd *dap;
5984	int i, retval;
5985
5986	retval = 0;
5987	ACQUIRE_LOCK(&lk);
5988	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5989		switch (wk->wk_type) {
5990
5991		case D_INODEDEP:
5992			inodedep = WK_INODEDEP(wk);
5993			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5994				/* bitmap allocation dependency */
5995				retval += 1;
5996				if (!wantcount)
5997					goto out;
5998			}
5999			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
6000				/* direct block pointer dependency */
6001				retval += 1;
6002				if (!wantcount)
6003					goto out;
6004			}
6005			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
6006				/* direct block pointer dependency */
6007				retval += 1;
6008				if (!wantcount)
6009					goto out;
6010			}
6011			continue;
6012
6013		case D_INDIRDEP:
6014			indirdep = WK_INDIRDEP(wk);
6015
6016			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
6017				/* indirect block pointer dependency */
6018				retval += 1;
6019				if (!wantcount)
6020					goto out;
6021			}
6022			continue;
6023
6024		case D_PAGEDEP:
6025			pagedep = WK_PAGEDEP(wk);
6026			for (i = 0; i < DAHASHSZ; i++) {
6027
6028				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
6029					/* directory entry dependency */
6030					retval += 1;
6031					if (!wantcount)
6032						goto out;
6033				}
6034			}
6035			continue;
6036
6037		case D_BMSAFEMAP:
6038		case D_ALLOCDIRECT:
6039		case D_ALLOCINDIR:
6040		case D_MKDIR:
6041			/* never a dependency on these blocks */
6042			continue;
6043
6044		default:
6045			panic("softdep_check_for_rollback: Unexpected type %s",
6046			    TYPENAME(wk->wk_type));
6047			/* NOTREACHED */
6048		}
6049	}
6050out:
6051	FREE_LOCK(&lk);
6052	return retval;
6053}
6054
6055/*
6056 * Acquire exclusive access to a buffer.
6057 * Must be called with a locked mtx parameter.
6058 * Return acquired buffer or NULL on failure.
6059 */
6060static struct buf *
6061getdirtybuf(bp, mtx, waitfor)
6062	struct buf *bp;
6063	struct mtx *mtx;
6064	int waitfor;
6065{
6066	int error;
6067
6068	mtx_assert(mtx, MA_OWNED);
6069	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
6070		if (waitfor != MNT_WAIT)
6071			return (NULL);
6072		error = BUF_LOCK(bp,
6073		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
6074		/*
6075		 * Even if we sucessfully acquire bp here, we have dropped
6076		 * mtx, which may violates our guarantee.
6077		 */
6078		if (error == 0)
6079			BUF_UNLOCK(bp);
6080		else if (error != ENOLCK)
6081			panic("getdirtybuf: inconsistent lock: %d", error);
6082		mtx_lock(mtx);
6083		return (NULL);
6084	}
6085	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
6086		if (mtx == &lk && waitfor == MNT_WAIT) {
6087			mtx_unlock(mtx);
6088			BO_LOCK(bp->b_bufobj);
6089			BUF_UNLOCK(bp);
6090			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
6091				bp->b_vflags |= BV_BKGRDWAIT;
6092				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
6093				       PRIBIO | PDROP, "getbuf", 0);
6094			} else
6095				BO_UNLOCK(bp->b_bufobj);
6096			mtx_lock(mtx);
6097			return (NULL);
6098		}
6099		BUF_UNLOCK(bp);
6100		if (waitfor != MNT_WAIT)
6101			return (NULL);
6102		/*
6103		 * The mtx argument must be bp->b_vp's mutex in
6104		 * this case.
6105		 */
6106#ifdef	DEBUG_VFS_LOCKS
6107		if (bp->b_vp->v_type != VCHR)
6108			ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf");
6109#endif
6110		bp->b_vflags |= BV_BKGRDWAIT;
6111		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
6112		return (NULL);
6113	}
6114	if ((bp->b_flags & B_DELWRI) == 0) {
6115		BUF_UNLOCK(bp);
6116		return (NULL);
6117	}
6118	bremfree(bp);
6119	return (bp);
6120}
6121
6122
6123/*
6124 * Check if it is safe to suspend the file system now.  On entry,
6125 * the vnode interlock for devvp should be held.  Return 0 with
6126 * the mount interlock held if the file system can be suspended now,
6127 * otherwise return EAGAIN with the mount interlock held.
6128 */
6129int
6130softdep_check_suspend(struct mount *mp,
6131		      struct vnode *devvp,
6132		      int softdep_deps,
6133		      int softdep_accdeps,
6134		      int secondary_writes,
6135		      int secondary_accwrites)
6136{
6137	struct bufobj *bo;
6138	struct ufsmount *ump;
6139	int error;
6140
6141	ASSERT_VI_LOCKED(devvp, "softdep_check_suspend");
6142	ump = VFSTOUFS(mp);
6143	bo = &devvp->v_bufobj;
6144
6145	for (;;) {
6146		if (!TRY_ACQUIRE_LOCK(&lk)) {
6147			VI_UNLOCK(devvp);
6148			ACQUIRE_LOCK(&lk);
6149			FREE_LOCK(&lk);
6150			VI_LOCK(devvp);
6151			continue;
6152		}
6153		if (!MNT_ITRYLOCK(mp)) {
6154			FREE_LOCK(&lk);
6155			VI_UNLOCK(devvp);
6156			MNT_ILOCK(mp);
6157			MNT_IUNLOCK(mp);
6158			VI_LOCK(devvp);
6159			continue;
6160		}
6161		if (mp->mnt_secondary_writes != 0) {
6162			FREE_LOCK(&lk);
6163			VI_UNLOCK(devvp);
6164			msleep(&mp->mnt_secondary_writes,
6165			       MNT_MTX(mp),
6166			       (PUSER - 1) | PDROP, "secwr", 0);
6167			VI_LOCK(devvp);
6168			continue;
6169		}
6170		break;
6171	}
6172
6173	/*
6174	 * Reasons for needing more work before suspend:
6175	 * - Dirty buffers on devvp.
6176	 * - Softdep activity occurred after start of vnode sync loop
6177	 * - Secondary writes occurred after start of vnode sync loop
6178	 */
6179	error = 0;
6180	if (bo->bo_numoutput > 0 ||
6181	    bo->bo_dirty.bv_cnt > 0 ||
6182	    softdep_deps != 0 ||
6183	    ump->softdep_deps != 0 ||
6184	    softdep_accdeps != ump->softdep_accdeps ||
6185	    secondary_writes != 0 ||
6186	    mp->mnt_secondary_writes != 0 ||
6187	    secondary_accwrites != mp->mnt_secondary_accwrites)
6188		error = EAGAIN;
6189	FREE_LOCK(&lk);
6190	VI_UNLOCK(devvp);
6191	return (error);
6192}
6193
6194
6195/*
6196 * Get the number of dependency structures for the file system, both
6197 * the current number and the total number allocated.  These will
6198 * later be used to detect that softdep processing has occurred.
6199 */
6200void
6201softdep_get_depcounts(struct mount *mp,
6202		      int *softdep_depsp,
6203		      int *softdep_accdepsp)
6204{
6205	struct ufsmount *ump;
6206
6207	ump = VFSTOUFS(mp);
6208	ACQUIRE_LOCK(&lk);
6209	*softdep_depsp = ump->softdep_deps;
6210	*softdep_accdepsp = ump->softdep_accdeps;
6211	FREE_LOCK(&lk);
6212}
6213
6214/*
6215 * Wait for pending output on a vnode to complete.
6216 * Must be called with vnode lock and interlock locked.
6217 *
6218 * XXX: Should just be a call to bufobj_wwait().
6219 */
6220static void
6221drain_output(vp)
6222	struct vnode *vp;
6223{
6224	ASSERT_VOP_LOCKED(vp, "drain_output");
6225	ASSERT_VI_LOCKED(vp, "drain_output");
6226
6227	while (vp->v_bufobj.bo_numoutput) {
6228		vp->v_bufobj.bo_flag |= BO_WWAIT;
6229		msleep((caddr_t)&vp->v_bufobj.bo_numoutput,
6230		    VI_MTX(vp), PRIBIO + 1, "drainvp", 0);
6231	}
6232}
6233
6234/*
6235 * Called whenever a buffer that is being invalidated or reallocated
6236 * contains dependencies. This should only happen if an I/O error has
6237 * occurred. The routine is called with the buffer locked.
6238 */
6239static void
6240softdep_deallocate_dependencies(bp)
6241	struct buf *bp;
6242{
6243
6244	if ((bp->b_ioflags & BIO_ERROR) == 0)
6245		panic("softdep_deallocate_dependencies: dangling deps");
6246	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
6247	panic("softdep_deallocate_dependencies: unrecovered I/O error");
6248}
6249
6250/*
6251 * Function to handle asynchronous write errors in the filesystem.
6252 */
6253static void
6254softdep_error(func, error)
6255	char *func;
6256	int error;
6257{
6258
6259	/* XXX should do something better! */
6260	printf("%s: got error %d while accessing filesystem\n", func, error);
6261}
6262
6263#endif /* SOFTUPDATES */
6264