ffs_softdep.c revision 141570
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12 *	1614 Oxford Street		mckusick@mckusick.com
13 *	Berkeley, CA 94709-1608		+1-510-843-9542
14 *	USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 141570 2005-02-09 12:22:16Z phk $");
43
44/*
45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46 */
47#ifndef DIAGNOSTIC
48#define DIAGNOSTIC
49#endif
50#ifndef DEBUG
51#define DEBUG
52#endif
53
54#include <sys/param.h>
55#include <sys/kernel.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/kdb.h>
60#include <sys/lock.h>
61#include <sys/malloc.h>
62#include <sys/mount.h>
63#include <sys/mutex.h>
64#include <sys/proc.h>
65#include <sys/stat.h>
66#include <sys/syslog.h>
67#include <sys/vnode.h>
68#include <sys/conf.h>
69#include <ufs/ufs/dir.h>
70#include <ufs/ufs/extattr.h>
71#include <ufs/ufs/quota.h>
72#include <ufs/ufs/inode.h>
73#include <ufs/ufs/ufsmount.h>
74#include <ufs/ffs/fs.h>
75#include <ufs/ffs/softdep.h>
76#include <ufs/ffs/ffs_extern.h>
77#include <ufs/ufs/ufs_extern.h>
78
79/*
80 * These definitions need to be adapted to the system to which
81 * this file is being ported.
82 */
83/*
84 * malloc types defined for the softdep system.
85 */
86static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
87static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
88static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
89static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
90static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
91static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
92static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
93static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
94static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
95static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
96static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
97static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
98static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
99static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block");
100static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes");
101
102#define M_SOFTDEP_FLAGS	(M_WAITOK | M_USE_RESERVE)
103
104#define	D_PAGEDEP	0
105#define	D_INODEDEP	1
106#define	D_NEWBLK	2
107#define	D_BMSAFEMAP	3
108#define	D_ALLOCDIRECT	4
109#define	D_INDIRDEP	5
110#define	D_ALLOCINDIR	6
111#define	D_FREEFRAG	7
112#define	D_FREEBLKS	8
113#define	D_FREEFILE	9
114#define	D_DIRADD	10
115#define	D_MKDIR		11
116#define	D_DIRREM	12
117#define	D_NEWDIRBLK	13
118#define	D_LAST		D_NEWDIRBLK
119
120/*
121 * translate from workitem type to memory type
122 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
123 */
124static struct malloc_type *memtype[] = {
125	M_PAGEDEP,
126	M_INODEDEP,
127	M_NEWBLK,
128	M_BMSAFEMAP,
129	M_ALLOCDIRECT,
130	M_INDIRDEP,
131	M_ALLOCINDIR,
132	M_FREEFRAG,
133	M_FREEBLKS,
134	M_FREEFILE,
135	M_DIRADD,
136	M_MKDIR,
137	M_DIRREM,
138	M_NEWDIRBLK
139};
140
141#define DtoM(type) (memtype[type])
142
143/*
144 * Names of malloc types.
145 */
146#define TYPENAME(type)  \
147	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
148/*
149 * End system adaptaion definitions.
150 */
151
152/*
153 * Forward declarations.
154 */
155struct inodedep_hashhead;
156struct newblk_hashhead;
157struct pagedep_hashhead;
158
159/*
160 * Internal function prototypes.
161 */
162static	void softdep_error(char *, int);
163static	void drain_output(struct vnode *);
164static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
165static	void clear_remove(struct thread *);
166static	void clear_inodedeps(struct thread *);
167static	int flush_pagedep_deps(struct vnode *, struct mount *,
168	    struct diraddhd *);
169static	int flush_inodedep_deps(struct fs *, ino_t);
170static	int flush_deplist(struct allocdirectlst *, int, int *);
171static	int handle_written_filepage(struct pagedep *, struct buf *);
172static  void diradd_inode_written(struct diradd *, struct inodedep *);
173static	int handle_written_inodeblock(struct inodedep *, struct buf *);
174static	void handle_allocdirect_partdone(struct allocdirect *);
175static	void handle_allocindir_partdone(struct allocindir *);
176static	void initiate_write_filepage(struct pagedep *, struct buf *);
177static	void handle_written_mkdir(struct mkdir *, int);
178static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
179static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
180static	void handle_workitem_freefile(struct freefile *);
181static	void handle_workitem_remove(struct dirrem *, struct vnode *);
182static	struct dirrem *newdirrem(struct buf *, struct inode *,
183	    struct inode *, int, struct dirrem **);
184static	void free_diradd(struct diradd *);
185static	void free_allocindir(struct allocindir *, struct inodedep *);
186static	void free_newdirblk(struct newdirblk *);
187static	int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t,
188	    ufs2_daddr_t *);
189static	void deallocate_dependencies(struct buf *, struct inodedep *);
190static	void free_allocdirect(struct allocdirectlst *,
191	    struct allocdirect *, int);
192static	int check_inode_unwritten(struct inodedep *);
193static	int free_inodedep(struct inodedep *);
194static	void handle_workitem_freeblocks(struct freeblks *, int);
195static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
196static	void setup_allocindir_phase2(struct buf *, struct inode *,
197	    struct allocindir *);
198static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
199	    ufs2_daddr_t);
200static	void handle_workitem_freefrag(struct freefrag *);
201static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long);
202static	void allocdirect_merge(struct allocdirectlst *,
203	    struct allocdirect *, struct allocdirect *);
204static	struct bmsafemap *bmsafemap_lookup(struct buf *);
205static	int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t,
206	    struct newblk **);
207static	int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **);
208static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
209	    struct inodedep **);
210static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
211static	int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **);
212static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
213	    struct mount *mp, int, struct pagedep **);
214static	void pause_timer(void *);
215static	int request_cleanup(int);
216static	int process_worklist_item(struct mount *, int);
217static	void add_to_worklist(struct worklist *);
218
219/*
220 * Exported softdep operations.
221 */
222static	void softdep_disk_io_initiation(struct buf *);
223static	void softdep_disk_write_complete(struct buf *);
224static	void softdep_deallocate_dependencies(struct buf *);
225static	int softdep_count_dependencies(struct buf *bp, int);
226
227static struct mtx lk;
228MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
229
230#define ACQUIRE_LOCK(lk)		mtx_lock(lk)
231#define FREE_LOCK(lk)			mtx_unlock(lk)
232
233/*
234 * Worklist queue management.
235 * These routines require that the lock be held.
236 */
237#ifndef /* NOT */ DEBUG
238#define WORKLIST_INSERT(head, item) do {	\
239	(item)->wk_state |= ONWORKLIST;		\
240	LIST_INSERT_HEAD(head, item, wk_list);	\
241} while (0)
242#define WORKLIST_REMOVE(item) do {		\
243	(item)->wk_state &= ~ONWORKLIST;	\
244	LIST_REMOVE(item, wk_list);		\
245} while (0)
246#define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
247
248#else /* DEBUG */
249static	void worklist_insert(struct workhead *, struct worklist *);
250static	void worklist_remove(struct worklist *);
251static	void workitem_free(struct worklist *, int);
252
253#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
254#define WORKLIST_REMOVE(item) worklist_remove(item)
255#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
256
257static void
258worklist_insert(head, item)
259	struct workhead *head;
260	struct worklist *item;
261{
262
263	mtx_assert(&lk, MA_OWNED);
264	if (item->wk_state & ONWORKLIST)
265		panic("worklist_insert: already on list");
266	item->wk_state |= ONWORKLIST;
267	LIST_INSERT_HEAD(head, item, wk_list);
268}
269
270static void
271worklist_remove(item)
272	struct worklist *item;
273{
274
275	mtx_assert(&lk, MA_OWNED);
276	if ((item->wk_state & ONWORKLIST) == 0)
277		panic("worklist_remove: not on list");
278	item->wk_state &= ~ONWORKLIST;
279	LIST_REMOVE(item, wk_list);
280}
281
282static void
283workitem_free(item, type)
284	struct worklist *item;
285	int type;
286{
287
288	if (item->wk_state & ONWORKLIST)
289		panic("workitem_free: still on list");
290	if (item->wk_type != type)
291		panic("workitem_free: type mismatch");
292	FREE(item, DtoM(type));
293}
294#endif /* DEBUG */
295
296/*
297 * Workitem queue management
298 */
299static struct workhead softdep_workitem_pending;
300static struct worklist *worklist_tail;
301static int num_on_worklist;	/* number of worklist items to be processed */
302static int softdep_worklist_busy; /* 1 => trying to do unmount */
303static int softdep_worklist_req; /* serialized waiters */
304static int max_softdeps;	/* maximum number of structs before slowdown */
305static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
306static int tickdelay = 2;	/* number of ticks to pause during slowdown */
307static int proc_waiting;	/* tracks whether we have a timeout posted */
308static int *stat_countp;	/* statistic to count in proc_waiting timeout */
309static struct callout_handle handle; /* handle on posted proc_waiting timeout */
310static struct thread *filesys_syncer; /* proc of filesystem syncer process */
311static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
312#define FLUSH_INODES		1
313static int req_clear_remove;	/* syncer process flush some freeblks */
314#define FLUSH_REMOVE		2
315#define FLUSH_REMOVE_WAIT	3
316/*
317 * runtime statistics
318 */
319static int stat_worklist_push;	/* number of worklist cleanups */
320static int stat_blk_limit_push;	/* number of times block limit neared */
321static int stat_ino_limit_push;	/* number of times inode limit neared */
322static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
323static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
324static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
325static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
326static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
327static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
328static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
329#ifdef DEBUG
330#include <vm/vm.h>
331#include <sys/sysctl.h>
332SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
333SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
334SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, "");
335SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
336SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
337SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
338SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
339SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
340SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
341SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
342SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
343SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
344SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
345#endif /* DEBUG */
346
347/*
348 * Add an item to the end of the work queue.
349 * This routine requires that the lock be held.
350 * This is the only routine that adds items to the list.
351 * The following routine is the only one that removes items
352 * and does so in order from first to last.
353 */
354static void
355add_to_worklist(wk)
356	struct worklist *wk;
357{
358
359	mtx_assert(&lk, MA_OWNED);
360	if (wk->wk_state & ONWORKLIST)
361		panic("add_to_worklist: already on list");
362	wk->wk_state |= ONWORKLIST;
363	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
364		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
365	else
366		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
367	worklist_tail = wk;
368	num_on_worklist += 1;
369}
370
371/*
372 * Process that runs once per second to handle items in the background queue.
373 *
374 * Note that we ensure that everything is done in the order in which they
375 * appear in the queue. The code below depends on this property to ensure
376 * that blocks of a file are freed before the inode itself is freed. This
377 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
378 * until all the old ones have been purged from the dependency lists.
379 */
380int
381softdep_process_worklist(matchmnt)
382	struct mount *matchmnt;
383{
384	struct thread *td = curthread;
385	int cnt, matchcnt, loopcount;
386	long starttime;
387
388	/*
389	 * Record the process identifier of our caller so that we can give
390	 * this process preferential treatment in request_cleanup below.
391	 */
392	filesys_syncer = td;
393	matchcnt = 0;
394
395	/*
396	 * There is no danger of having multiple processes run this
397	 * code, but we have to single-thread it when softdep_flushfiles()
398	 * is in operation to get an accurate count of the number of items
399	 * related to its mount point that are in the list.
400	 */
401	ACQUIRE_LOCK(&lk);
402	if (matchmnt == NULL) {
403		if (softdep_worklist_busy < 0) {
404			FREE_LOCK(&lk);
405			return(-1);
406		}
407		softdep_worklist_busy += 1;
408	}
409
410	/*
411	 * If requested, try removing inode or removal dependencies.
412	 */
413	if (req_clear_inodedeps) {
414		clear_inodedeps(td);
415		req_clear_inodedeps -= 1;
416		wakeup_one(&proc_waiting);
417	}
418	if (req_clear_remove) {
419		clear_remove(td);
420		req_clear_remove -= 1;
421		wakeup_one(&proc_waiting);
422	}
423	loopcount = 1;
424	starttime = time_second;
425	while (num_on_worklist > 0) {
426		if ((cnt = process_worklist_item(matchmnt, 0)) == -1)
427			break;
428		else
429			matchcnt += cnt;
430
431		/*
432		 * If a umount operation wants to run the worklist
433		 * accurately, abort.
434		 */
435		if (softdep_worklist_req && matchmnt == NULL) {
436			matchcnt = -1;
437			break;
438		}
439
440		/*
441		 * If requested, try removing inode or removal dependencies.
442		 */
443		if (req_clear_inodedeps) {
444			clear_inodedeps(td);
445			req_clear_inodedeps -= 1;
446			wakeup_one(&proc_waiting);
447		}
448		if (req_clear_remove) {
449			clear_remove(td);
450			req_clear_remove -= 1;
451			wakeup_one(&proc_waiting);
452		}
453		/*
454		 * We do not generally want to stop for buffer space, but if
455		 * we are really being a buffer hog, we will stop and wait.
456		 */
457		if (loopcount++ % 128 == 0) {
458			FREE_LOCK(&lk);
459			bwillwrite();
460			ACQUIRE_LOCK(&lk);
461		}
462		/*
463		 * Never allow processing to run for more than one
464		 * second. Otherwise the other syncer tasks may get
465		 * excessively backlogged.
466		 */
467		if (starttime != time_second && matchmnt == NULL) {
468			matchcnt = -1;
469			break;
470		}
471	}
472	if (matchmnt == NULL) {
473		softdep_worklist_busy -= 1;
474		if (softdep_worklist_req && softdep_worklist_busy == 0)
475			wakeup(&softdep_worklist_req);
476	}
477	FREE_LOCK(&lk);
478	return (matchcnt);
479}
480
481/*
482 * Process one item on the worklist.
483 */
484static int
485process_worklist_item(matchmnt, flags)
486	struct mount *matchmnt;
487	int flags;
488{
489	struct worklist *wk, *wkend;
490	struct mount *mp;
491	struct vnode *vp;
492	int matchcnt = 0;
493
494	mtx_assert(&lk, MA_OWNED);
495	/*
496	 * If we are being called because of a process doing a
497	 * copy-on-write, then it is not safe to write as we may
498	 * recurse into the copy-on-write routine.
499	 */
500	if (curthread->td_pflags & TDP_COWINPROGRESS)
501		return (-1);
502	/*
503	 * Normally we just process each item on the worklist in order.
504	 * However, if we are in a situation where we cannot lock any
505	 * inodes, we have to skip over any dirrem requests whose
506	 * vnodes are resident and locked.
507	 */
508	vp = NULL;
509	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
510		if (wk->wk_state & INPROGRESS)
511			continue;
512		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
513			break;
514		wk->wk_state |= INPROGRESS;
515		FREE_LOCK(&lk);
516		ffs_vget(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum,
517		    LK_NOWAIT | LK_EXCLUSIVE, &vp);
518		ACQUIRE_LOCK(&lk);
519		wk->wk_state &= ~INPROGRESS;
520		if (vp != NULL)
521			break;
522	}
523	if (wk == 0)
524		return (-1);
525	/*
526	 * Remove the item to be processed. If we are removing the last
527	 * item on the list, we need to recalculate the tail pointer.
528	 * As this happens rarely and usually when the list is short,
529	 * we just run down the list to find it rather than tracking it
530	 * in the above loop.
531	 */
532	WORKLIST_REMOVE(wk);
533	if (wk == worklist_tail) {
534		LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list)
535			if (LIST_NEXT(wkend, wk_list) == NULL)
536				break;
537		worklist_tail = wkend;
538	}
539	num_on_worklist -= 1;
540	FREE_LOCK(&lk);
541	switch (wk->wk_type) {
542
543	case D_DIRREM:
544		/* removal of a directory entry */
545		mp = WK_DIRREM(wk)->dm_mnt;
546		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
547			panic("%s: dirrem on suspended filesystem",
548				"process_worklist_item");
549		if (mp == matchmnt)
550			matchcnt += 1;
551		handle_workitem_remove(WK_DIRREM(wk), vp);
552		break;
553
554	case D_FREEBLKS:
555		/* releasing blocks and/or fragments from a file */
556		mp = WK_FREEBLKS(wk)->fb_mnt;
557		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
558			panic("%s: freeblks on suspended filesystem",
559				"process_worklist_item");
560		if (mp == matchmnt)
561			matchcnt += 1;
562		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
563		break;
564
565	case D_FREEFRAG:
566		/* releasing a fragment when replaced as a file grows */
567		mp = WK_FREEFRAG(wk)->ff_mnt;
568		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
569			panic("%s: freefrag on suspended filesystem",
570				"process_worklist_item");
571		if (mp == matchmnt)
572			matchcnt += 1;
573		handle_workitem_freefrag(WK_FREEFRAG(wk));
574		break;
575
576	case D_FREEFILE:
577		/* releasing an inode when its link count drops to 0 */
578		mp = WK_FREEFILE(wk)->fx_mnt;
579		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
580			panic("%s: freefile on suspended filesystem",
581				"process_worklist_item");
582		if (mp == matchmnt)
583			matchcnt += 1;
584		handle_workitem_freefile(WK_FREEFILE(wk));
585		break;
586
587	default:
588		panic("%s_process_worklist: Unknown type %s",
589		    "softdep", TYPENAME(wk->wk_type));
590		/* NOTREACHED */
591	}
592	ACQUIRE_LOCK(&lk);
593	return (matchcnt);
594}
595
596/*
597 * Move dependencies from one buffer to another.
598 */
599void
600softdep_move_dependencies(oldbp, newbp)
601	struct buf *oldbp;
602	struct buf *newbp;
603{
604	struct worklist *wk, *wktail;
605
606	if (LIST_FIRST(&newbp->b_dep) != NULL)
607		panic("softdep_move_dependencies: need merge code");
608	wktail = 0;
609	ACQUIRE_LOCK(&lk);
610	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
611		LIST_REMOVE(wk, wk_list);
612		if (wktail == 0)
613			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
614		else
615			LIST_INSERT_AFTER(wktail, wk, wk_list);
616		wktail = wk;
617	}
618	FREE_LOCK(&lk);
619}
620
621/*
622 * Purge the work list of all items associated with a particular mount point.
623 */
624int
625softdep_flushworklist(oldmnt, countp, td)
626	struct mount *oldmnt;
627	int *countp;
628	struct thread *td;
629{
630	struct vnode *devvp;
631	int count, error = 0;
632
633	/*
634	 * Await our turn to clear out the queue, then serialize access.
635	 */
636	ACQUIRE_LOCK(&lk);
637	while (softdep_worklist_busy) {
638		softdep_worklist_req += 1;
639		msleep(&softdep_worklist_req, &lk, PRIBIO, "softflush", 0);
640		softdep_worklist_req -= 1;
641	}
642	softdep_worklist_busy = -1;
643	FREE_LOCK(&lk);
644	/*
645	 * Alternately flush the block device associated with the mount
646	 * point and process any dependencies that the flushing
647	 * creates. We continue until no more worklist dependencies
648	 * are found.
649	 */
650	*countp = 0;
651	devvp = VFSTOUFS(oldmnt)->um_devvp;
652	while ((count = softdep_process_worklist(oldmnt)) > 0) {
653		*countp += count;
654		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td);
655		error = VOP_FSYNC(devvp, MNT_WAIT, td);
656		VOP_UNLOCK(devvp, 0, td);
657		if (error)
658			break;
659	}
660	ACQUIRE_LOCK(&lk);
661	softdep_worklist_busy = 0;
662	if (softdep_worklist_req)
663		wakeup(&softdep_worklist_req);
664	FREE_LOCK(&lk);
665	return (error);
666}
667
668/*
669 * Flush all vnodes and worklist items associated with a specified mount point.
670 */
671int
672softdep_flushfiles(oldmnt, flags, td)
673	struct mount *oldmnt;
674	int flags;
675	struct thread *td;
676{
677	int error, count, loopcnt;
678
679	error = 0;
680
681	/*
682	 * Alternately flush the vnodes associated with the mount
683	 * point and process any dependencies that the flushing
684	 * creates. In theory, this loop can happen at most twice,
685	 * but we give it a few extra just to be sure.
686	 */
687	for (loopcnt = 10; loopcnt > 0; loopcnt--) {
688		/*
689		 * Do another flush in case any vnodes were brought in
690		 * as part of the cleanup operations.
691		 */
692		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
693			break;
694		if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 ||
695		    count == 0)
696			break;
697	}
698	/*
699	 * If we are unmounting then it is an error to fail. If we
700	 * are simply trying to downgrade to read-only, then filesystem
701	 * activity can keep us busy forever, so we just fail with EBUSY.
702	 */
703	if (loopcnt == 0) {
704		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
705			panic("softdep_flushfiles: looping");
706		error = EBUSY;
707	}
708	return (error);
709}
710
711/*
712 * Structure hashing.
713 *
714 * There are three types of structures that can be looked up:
715 *	1) pagedep structures identified by mount point, inode number,
716 *	   and logical block.
717 *	2) inodedep structures identified by mount point and inode number.
718 *	3) newblk structures identified by mount point and
719 *	   physical block number.
720 *
721 * The "pagedep" and "inodedep" dependency structures are hashed
722 * separately from the file blocks and inodes to which they correspond.
723 * This separation helps when the in-memory copy of an inode or
724 * file block must be replaced. It also obviates the need to access
725 * an inode or file page when simply updating (or de-allocating)
726 * dependency structures. Lookup of newblk structures is needed to
727 * find newly allocated blocks when trying to associate them with
728 * their allocdirect or allocindir structure.
729 *
730 * The lookup routines optionally create and hash a new instance when
731 * an existing entry is not found.
732 */
733#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
734#define NODELAY		0x0002	/* cannot do background work */
735
736/*
737 * Structures and routines associated with pagedep caching.
738 */
739LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
740u_long	pagedep_hash;		/* size of hash table - 1 */
741#define	PAGEDEP_HASH(mp, inum, lbn) \
742	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
743	    pagedep_hash])
744
745static int
746pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
747	struct pagedep_hashhead *pagedephd;
748	ino_t ino;
749	ufs_lbn_t lbn;
750	struct mount *mp;
751	int flags;
752	struct pagedep **pagedeppp;
753{
754	struct pagedep *pagedep;
755
756	LIST_FOREACH(pagedep, pagedephd, pd_hash)
757		if (ino == pagedep->pd_ino &&
758		    lbn == pagedep->pd_lbn &&
759		    mp == pagedep->pd_mnt)
760			break;
761	if (pagedep) {
762		*pagedeppp = pagedep;
763		if ((flags & DEPALLOC) != 0 &&
764		    (pagedep->pd_state & ONWORKLIST) == 0)
765			return (0);
766		return (1);
767	}
768	*pagedeppp = NULL;
769	return (0);
770}
771/*
772 * Look up a pagedep. Return 1 if found, 0 if not found or found
773 * when asked to allocate but not associated with any buffer.
774 * If not found, allocate if DEPALLOC flag is passed.
775 * Found or allocated entry is returned in pagedeppp.
776 * This routine must be called with splbio interrupts blocked.
777 */
778static int
779pagedep_lookup(ip, lbn, flags, pagedeppp)
780	struct inode *ip;
781	ufs_lbn_t lbn;
782	int flags;
783	struct pagedep **pagedeppp;
784{
785	struct pagedep *pagedep;
786	struct pagedep_hashhead *pagedephd;
787	struct mount *mp;
788	int ret;
789	int i;
790
791	mtx_assert(&lk, MA_OWNED);
792	mp = ITOV(ip)->v_mount;
793	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
794
795	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
796	if (*pagedeppp || (flags & DEPALLOC) == 0)
797		return (ret);
798	FREE_LOCK(&lk);
799	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep),
800	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
801	ACQUIRE_LOCK(&lk);
802	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
803	if (*pagedeppp) {
804		FREE(pagedep, M_PAGEDEP);
805		return (ret);
806	}
807	pagedep->pd_list.wk_type = D_PAGEDEP;
808	pagedep->pd_mnt = mp;
809	pagedep->pd_ino = ip->i_number;
810	pagedep->pd_lbn = lbn;
811	LIST_INIT(&pagedep->pd_dirremhd);
812	LIST_INIT(&pagedep->pd_pendinghd);
813	for (i = 0; i < DAHASHSZ; i++)
814		LIST_INIT(&pagedep->pd_diraddhd[i]);
815	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
816	*pagedeppp = pagedep;
817	return (0);
818}
819
820/*
821 * Structures and routines associated with inodedep caching.
822 */
823LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
824static u_long	inodedep_hash;	/* size of hash table - 1 */
825static long	num_inodedep;	/* number of inodedep allocated */
826#define	INODEDEP_HASH(fs, inum) \
827      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
828
829static int
830inodedep_find(inodedephd, fs, inum, inodedeppp)
831	struct inodedep_hashhead *inodedephd;
832	struct fs *fs;
833	ino_t inum;
834	struct inodedep **inodedeppp;
835{
836	struct inodedep *inodedep;
837
838	LIST_FOREACH(inodedep, inodedephd, id_hash)
839		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
840			break;
841	if (inodedep) {
842		*inodedeppp = inodedep;
843		return (1);
844	}
845	*inodedeppp = NULL;
846
847	return (0);
848}
849/*
850 * Look up an inodedep. Return 1 if found, 0 if not found.
851 * If not found, allocate if DEPALLOC flag is passed.
852 * Found or allocated entry is returned in inodedeppp.
853 * This routine must be called with splbio interrupts blocked.
854 */
855static int
856inodedep_lookup(fs, inum, flags, inodedeppp)
857	struct fs *fs;
858	ino_t inum;
859	int flags;
860	struct inodedep **inodedeppp;
861{
862	struct inodedep *inodedep;
863	struct inodedep_hashhead *inodedephd;
864
865	mtx_assert(&lk, MA_OWNED);
866	inodedephd = INODEDEP_HASH(fs, inum);
867
868	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
869		return (1);
870	if ((flags & DEPALLOC) == 0)
871		return (0);
872	/*
873	 * If we are over our limit, try to improve the situation.
874	 */
875	if (num_inodedep > max_softdeps  && (flags & NODELAY) == 0)
876		request_cleanup(FLUSH_INODES);
877	FREE_LOCK(&lk);
878	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
879		M_INODEDEP, M_SOFTDEP_FLAGS);
880	ACQUIRE_LOCK(&lk);
881	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
882		FREE(inodedep, M_INODEDEP);
883		return (1);
884	}
885	num_inodedep += 1;
886	inodedep->id_list.wk_type = D_INODEDEP;
887	inodedep->id_fs = fs;
888	inodedep->id_ino = inum;
889	inodedep->id_state = ALLCOMPLETE;
890	inodedep->id_nlinkdelta = 0;
891	inodedep->id_savedino1 = NULL;
892	inodedep->id_savedsize = -1;
893	inodedep->id_savedextsize = -1;
894	inodedep->id_buf = NULL;
895	LIST_INIT(&inodedep->id_pendinghd);
896	LIST_INIT(&inodedep->id_inowait);
897	LIST_INIT(&inodedep->id_bufwait);
898	TAILQ_INIT(&inodedep->id_inoupdt);
899	TAILQ_INIT(&inodedep->id_newinoupdt);
900	TAILQ_INIT(&inodedep->id_extupdt);
901	TAILQ_INIT(&inodedep->id_newextupdt);
902	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
903	*inodedeppp = inodedep;
904	return (0);
905}
906
907/*
908 * Structures and routines associated with newblk caching.
909 */
910LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
911u_long	newblk_hash;		/* size of hash table - 1 */
912#define	NEWBLK_HASH(fs, inum) \
913	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
914
915static int
916newblk_find(newblkhd, fs, newblkno, newblkpp)
917	struct newblk_hashhead *newblkhd;
918	struct fs *fs;
919	ufs2_daddr_t newblkno;
920	struct newblk **newblkpp;
921{
922	struct newblk *newblk;
923
924	LIST_FOREACH(newblk, newblkhd, nb_hash)
925		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
926			break;
927	if (newblk) {
928		*newblkpp = newblk;
929		return (1);
930	}
931	*newblkpp = NULL;
932	return (0);
933}
934
935/*
936 * Look up a newblk. Return 1 if found, 0 if not found.
937 * If not found, allocate if DEPALLOC flag is passed.
938 * Found or allocated entry is returned in newblkpp.
939 */
940static int
941newblk_lookup(fs, newblkno, flags, newblkpp)
942	struct fs *fs;
943	ufs2_daddr_t newblkno;
944	int flags;
945	struct newblk **newblkpp;
946{
947	struct newblk *newblk;
948	struct newblk_hashhead *newblkhd;
949
950	newblkhd = NEWBLK_HASH(fs, newblkno);
951	if (newblk_find(newblkhd, fs, newblkno, newblkpp))
952		return (1);
953	if ((flags & DEPALLOC) == 0)
954		return (0);
955	FREE_LOCK(&lk);
956	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
957		M_NEWBLK, M_SOFTDEP_FLAGS);
958	ACQUIRE_LOCK(&lk);
959	if (newblk_find(newblkhd, fs, newblkno, newblkpp)) {
960		FREE(newblk, M_NEWBLK);
961		return (1);
962	}
963	newblk->nb_state = 0;
964	newblk->nb_fs = fs;
965	newblk->nb_newblkno = newblkno;
966	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
967	*newblkpp = newblk;
968	return (0);
969}
970
971/*
972 * Executed during filesystem system initialization before
973 * mounting any filesystems.
974 */
975void
976softdep_initialize()
977{
978
979	LIST_INIT(&mkdirlisthd);
980	LIST_INIT(&softdep_workitem_pending);
981	max_softdeps = desiredvnodes * 4;
982	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
983	    &pagedep_hash);
984	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
985	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
986
987	/* hooks through which the main kernel code calls us */
988	softdep_process_worklist_hook = softdep_process_worklist;
989
990	/* initialise bioops hack */
991	bioops.io_start = softdep_disk_io_initiation;
992	bioops.io_complete = softdep_disk_write_complete;
993	bioops.io_deallocate = softdep_deallocate_dependencies;
994	bioops.io_countdeps = softdep_count_dependencies;
995}
996
997/*
998 * Executed after all filesystems have been unmounted during
999 * filesystem module unload.
1000 */
1001void
1002softdep_uninitialize()
1003{
1004
1005	softdep_process_worklist_hook = NULL;
1006	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
1007	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
1008	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
1009}
1010
1011/*
1012 * Called at mount time to notify the dependency code that a
1013 * filesystem wishes to use it.
1014 */
1015int
1016softdep_mount(devvp, mp, fs, cred)
1017	struct vnode *devvp;
1018	struct mount *mp;
1019	struct fs *fs;
1020	struct ucred *cred;
1021{
1022	struct csum_total cstotal;
1023	struct cg *cgp;
1024	struct buf *bp;
1025	int error, cyl;
1026
1027	mp->mnt_flag &= ~MNT_ASYNC;
1028	mp->mnt_flag |= MNT_SOFTDEP;
1029	/*
1030	 * When doing soft updates, the counters in the
1031	 * superblock may have gotten out of sync, so we have
1032	 * to scan the cylinder groups and recalculate them.
1033	 */
1034	if (fs->fs_clean != 0)
1035		return (0);
1036	bzero(&cstotal, sizeof cstotal);
1037	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1038		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1039		    fs->fs_cgsize, cred, &bp)) != 0) {
1040			brelse(bp);
1041			return (error);
1042		}
1043		cgp = (struct cg *)bp->b_data;
1044		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1045		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1046		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1047		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1048		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1049		brelse(bp);
1050	}
1051#ifdef DEBUG
1052	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1053		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
1054#endif
1055	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1056	return (0);
1057}
1058
1059/*
1060 * Protecting the freemaps (or bitmaps).
1061 *
1062 * To eliminate the need to execute fsck before mounting a filesystem
1063 * after a power failure, one must (conservatively) guarantee that the
1064 * on-disk copy of the bitmaps never indicate that a live inode or block is
1065 * free.  So, when a block or inode is allocated, the bitmap should be
1066 * updated (on disk) before any new pointers.  When a block or inode is
1067 * freed, the bitmap should not be updated until all pointers have been
1068 * reset.  The latter dependency is handled by the delayed de-allocation
1069 * approach described below for block and inode de-allocation.  The former
1070 * dependency is handled by calling the following procedure when a block or
1071 * inode is allocated. When an inode is allocated an "inodedep" is created
1072 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1073 * Each "inodedep" is also inserted into the hash indexing structure so
1074 * that any additional link additions can be made dependent on the inode
1075 * allocation.
1076 *
1077 * The ufs filesystem maintains a number of free block counts (e.g., per
1078 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1079 * in addition to the bitmaps.  These counts are used to improve efficiency
1080 * during allocation and therefore must be consistent with the bitmaps.
1081 * There is no convenient way to guarantee post-crash consistency of these
1082 * counts with simple update ordering, for two main reasons: (1) The counts
1083 * and bitmaps for a single cylinder group block are not in the same disk
1084 * sector.  If a disk write is interrupted (e.g., by power failure), one may
1085 * be written and the other not.  (2) Some of the counts are located in the
1086 * superblock rather than the cylinder group block. So, we focus our soft
1087 * updates implementation on protecting the bitmaps. When mounting a
1088 * filesystem, we recompute the auxiliary counts from the bitmaps.
1089 */
1090
1091/*
1092 * Called just after updating the cylinder group block to allocate an inode.
1093 */
1094void
1095softdep_setup_inomapdep(bp, ip, newinum)
1096	struct buf *bp;		/* buffer for cylgroup block with inode map */
1097	struct inode *ip;	/* inode related to allocation */
1098	ino_t newinum;		/* new inode number being allocated */
1099{
1100	struct inodedep *inodedep;
1101	struct bmsafemap *bmsafemap;
1102
1103	/*
1104	 * Create a dependency for the newly allocated inode.
1105	 * Panic if it already exists as something is seriously wrong.
1106	 * Otherwise add it to the dependency list for the buffer holding
1107	 * the cylinder group map from which it was allocated.
1108	 */
1109	ACQUIRE_LOCK(&lk);
1110	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep)))
1111		panic("softdep_setup_inomapdep: found inode");
1112	inodedep->id_buf = bp;
1113	inodedep->id_state &= ~DEPCOMPLETE;
1114	bmsafemap = bmsafemap_lookup(bp);
1115	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1116	FREE_LOCK(&lk);
1117}
1118
1119/*
1120 * Called just after updating the cylinder group block to
1121 * allocate block or fragment.
1122 */
1123void
1124softdep_setup_blkmapdep(bp, fs, newblkno)
1125	struct buf *bp;		/* buffer for cylgroup block with block map */
1126	struct fs *fs;		/* filesystem doing allocation */
1127	ufs2_daddr_t newblkno;	/* number of newly allocated block */
1128{
1129	struct newblk *newblk;
1130	struct bmsafemap *bmsafemap;
1131
1132	/*
1133	 * Create a dependency for the newly allocated block.
1134	 * Add it to the dependency list for the buffer holding
1135	 * the cylinder group map from which it was allocated.
1136	 */
1137	ACQUIRE_LOCK(&lk);
1138	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1139		panic("softdep_setup_blkmapdep: found block");
1140	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1141	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1142	FREE_LOCK(&lk);
1143}
1144
1145/*
1146 * Find the bmsafemap associated with a cylinder group buffer.
1147 * If none exists, create one. The buffer must be locked when
1148 * this routine is called and this routine must be called with
1149 * splbio interrupts blocked.
1150 */
1151static struct bmsafemap *
1152bmsafemap_lookup(bp)
1153	struct buf *bp;
1154{
1155	struct bmsafemap *bmsafemap;
1156	struct worklist *wk;
1157
1158	mtx_assert(&lk, MA_OWNED);
1159	LIST_FOREACH(wk, &bp->b_dep, wk_list)
1160		if (wk->wk_type == D_BMSAFEMAP)
1161			return (WK_BMSAFEMAP(wk));
1162	FREE_LOCK(&lk);
1163	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1164		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1165	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1166	bmsafemap->sm_list.wk_state = 0;
1167	bmsafemap->sm_buf = bp;
1168	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1169	LIST_INIT(&bmsafemap->sm_allocindirhd);
1170	LIST_INIT(&bmsafemap->sm_inodedephd);
1171	LIST_INIT(&bmsafemap->sm_newblkhd);
1172	ACQUIRE_LOCK(&lk);
1173	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1174	return (bmsafemap);
1175}
1176
1177/*
1178 * Direct block allocation dependencies.
1179 *
1180 * When a new block is allocated, the corresponding disk locations must be
1181 * initialized (with zeros or new data) before the on-disk inode points to
1182 * them.  Also, the freemap from which the block was allocated must be
1183 * updated (on disk) before the inode's pointer. These two dependencies are
1184 * independent of each other and are needed for all file blocks and indirect
1185 * blocks that are pointed to directly by the inode.  Just before the
1186 * "in-core" version of the inode is updated with a newly allocated block
1187 * number, a procedure (below) is called to setup allocation dependency
1188 * structures.  These structures are removed when the corresponding
1189 * dependencies are satisfied or when the block allocation becomes obsolete
1190 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1191 * fragment that gets upgraded).  All of these cases are handled in
1192 * procedures described later.
1193 *
1194 * When a file extension causes a fragment to be upgraded, either to a larger
1195 * fragment or to a full block, the on-disk location may change (if the
1196 * previous fragment could not simply be extended). In this case, the old
1197 * fragment must be de-allocated, but not until after the inode's pointer has
1198 * been updated. In most cases, this is handled by later procedures, which
1199 * will construct a "freefrag" structure to be added to the workitem queue
1200 * when the inode update is complete (or obsolete).  The main exception to
1201 * this is when an allocation occurs while a pending allocation dependency
1202 * (for the same block pointer) remains.  This case is handled in the main
1203 * allocation dependency setup procedure by immediately freeing the
1204 * unreferenced fragments.
1205 */
1206void
1207softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1208	struct inode *ip;	/* inode to which block is being added */
1209	ufs_lbn_t lbn;		/* block pointer within inode */
1210	ufs2_daddr_t newblkno;	/* disk block number being added */
1211	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1212	long newsize;		/* size of new block */
1213	long oldsize;		/* size of new block */
1214	struct buf *bp;		/* bp for allocated block */
1215{
1216	struct allocdirect *adp, *oldadp;
1217	struct allocdirectlst *adphead;
1218	struct bmsafemap *bmsafemap;
1219	struct inodedep *inodedep;
1220	struct pagedep *pagedep;
1221	struct newblk *newblk;
1222
1223	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1224		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1225	adp->ad_list.wk_type = D_ALLOCDIRECT;
1226	adp->ad_lbn = lbn;
1227	adp->ad_newblkno = newblkno;
1228	adp->ad_oldblkno = oldblkno;
1229	adp->ad_newsize = newsize;
1230	adp->ad_oldsize = oldsize;
1231	adp->ad_state = ATTACHED;
1232	LIST_INIT(&adp->ad_newdirblk);
1233	if (newblkno == oldblkno)
1234		adp->ad_freefrag = NULL;
1235	else
1236		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1237
1238	ACQUIRE_LOCK(&lk);
1239	if (lbn >= NDADDR) {
1240		/* allocating an indirect block */
1241		if (oldblkno != 0)
1242			panic("softdep_setup_allocdirect: non-zero indir");
1243	} else {
1244		/*
1245		 * Allocating a direct block.
1246		 *
1247		 * If we are allocating a directory block, then we must
1248		 * allocate an associated pagedep to track additions and
1249		 * deletions.
1250		 */
1251		if ((ip->i_mode & IFMT) == IFDIR &&
1252		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1253			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1254	}
1255	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1256		panic("softdep_setup_allocdirect: lost block");
1257	if (newblk->nb_state == DEPCOMPLETE) {
1258		adp->ad_state |= DEPCOMPLETE;
1259		adp->ad_buf = NULL;
1260	} else {
1261		bmsafemap = newblk->nb_bmsafemap;
1262		adp->ad_buf = bmsafemap->sm_buf;
1263		LIST_REMOVE(newblk, nb_deps);
1264		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1265	}
1266	LIST_REMOVE(newblk, nb_hash);
1267	FREE(newblk, M_NEWBLK);
1268
1269	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1270	adp->ad_inodedep = inodedep;
1271	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1272	/*
1273	 * The list of allocdirects must be kept in sorted and ascending
1274	 * order so that the rollback routines can quickly determine the
1275	 * first uncommitted block (the size of the file stored on disk
1276	 * ends at the end of the lowest committed fragment, or if there
1277	 * are no fragments, at the end of the highest committed block).
1278	 * Since files generally grow, the typical case is that the new
1279	 * block is to be added at the end of the list. We speed this
1280	 * special case by checking against the last allocdirect in the
1281	 * list before laboriously traversing the list looking for the
1282	 * insertion point.
1283	 */
1284	adphead = &inodedep->id_newinoupdt;
1285	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1286	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1287		/* insert at end of list */
1288		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1289		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1290			allocdirect_merge(adphead, adp, oldadp);
1291		FREE_LOCK(&lk);
1292		return;
1293	}
1294	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1295		if (oldadp->ad_lbn >= lbn)
1296			break;
1297	}
1298	if (oldadp == NULL)
1299		panic("softdep_setup_allocdirect: lost entry");
1300	/* insert in middle of list */
1301	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1302	if (oldadp->ad_lbn == lbn)
1303		allocdirect_merge(adphead, adp, oldadp);
1304	FREE_LOCK(&lk);
1305}
1306
1307/*
1308 * Replace an old allocdirect dependency with a newer one.
1309 * This routine must be called with splbio interrupts blocked.
1310 */
1311static void
1312allocdirect_merge(adphead, newadp, oldadp)
1313	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1314	struct allocdirect *newadp;	/* allocdirect being added */
1315	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1316{
1317	struct worklist *wk;
1318	struct freefrag *freefrag;
1319	struct newdirblk *newdirblk;
1320
1321	mtx_assert(&lk, MA_OWNED);
1322	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1323	    newadp->ad_oldsize != oldadp->ad_newsize ||
1324	    newadp->ad_lbn >= NDADDR)
1325		panic("%s %jd != new %jd || old size %ld != new %ld",
1326		    "allocdirect_merge: old blkno",
1327		    (intmax_t)newadp->ad_oldblkno,
1328		    (intmax_t)oldadp->ad_newblkno,
1329		    newadp->ad_oldsize, oldadp->ad_newsize);
1330	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1331	newadp->ad_oldsize = oldadp->ad_oldsize;
1332	/*
1333	 * If the old dependency had a fragment to free or had never
1334	 * previously had a block allocated, then the new dependency
1335	 * can immediately post its freefrag and adopt the old freefrag.
1336	 * This action is done by swapping the freefrag dependencies.
1337	 * The new dependency gains the old one's freefrag, and the
1338	 * old one gets the new one and then immediately puts it on
1339	 * the worklist when it is freed by free_allocdirect. It is
1340	 * not possible to do this swap when the old dependency had a
1341	 * non-zero size but no previous fragment to free. This condition
1342	 * arises when the new block is an extension of the old block.
1343	 * Here, the first part of the fragment allocated to the new
1344	 * dependency is part of the block currently claimed on disk by
1345	 * the old dependency, so cannot legitimately be freed until the
1346	 * conditions for the new dependency are fulfilled.
1347	 */
1348	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1349		freefrag = newadp->ad_freefrag;
1350		newadp->ad_freefrag = oldadp->ad_freefrag;
1351		oldadp->ad_freefrag = freefrag;
1352	}
1353	/*
1354	 * If we are tracking a new directory-block allocation,
1355	 * move it from the old allocdirect to the new allocdirect.
1356	 */
1357	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
1358		newdirblk = WK_NEWDIRBLK(wk);
1359		WORKLIST_REMOVE(&newdirblk->db_list);
1360		if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL)
1361			panic("allocdirect_merge: extra newdirblk");
1362		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
1363	}
1364	free_allocdirect(adphead, oldadp, 0);
1365}
1366
1367/*
1368 * Allocate a new freefrag structure if needed.
1369 */
1370static struct freefrag *
1371newfreefrag(ip, blkno, size)
1372	struct inode *ip;
1373	ufs2_daddr_t blkno;
1374	long size;
1375{
1376	struct freefrag *freefrag;
1377	struct fs *fs;
1378
1379	if (blkno == 0)
1380		return (NULL);
1381	fs = ip->i_fs;
1382	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1383		panic("newfreefrag: frag size");
1384	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1385		M_FREEFRAG, M_SOFTDEP_FLAGS);
1386	freefrag->ff_list.wk_type = D_FREEFRAG;
1387	freefrag->ff_state = 0;
1388	freefrag->ff_inum = ip->i_number;
1389	freefrag->ff_mnt = ITOV(ip)->v_mount;
1390	freefrag->ff_blkno = blkno;
1391	freefrag->ff_fragsize = size;
1392	return (freefrag);
1393}
1394
1395/*
1396 * This workitem de-allocates fragments that were replaced during
1397 * file block allocation.
1398 */
1399static void
1400handle_workitem_freefrag(freefrag)
1401	struct freefrag *freefrag;
1402{
1403	struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt);
1404
1405	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
1406	    freefrag->ff_fragsize, freefrag->ff_inum);
1407	FREE(freefrag, M_FREEFRAG);
1408}
1409
1410/*
1411 * Set up a dependency structure for an external attributes data block.
1412 * This routine follows much of the structure of softdep_setup_allocdirect.
1413 * See the description of softdep_setup_allocdirect above for details.
1414 */
1415void
1416softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1417	struct inode *ip;
1418	ufs_lbn_t lbn;
1419	ufs2_daddr_t newblkno;
1420	ufs2_daddr_t oldblkno;
1421	long newsize;
1422	long oldsize;
1423	struct buf *bp;
1424{
1425	struct allocdirect *adp, *oldadp;
1426	struct allocdirectlst *adphead;
1427	struct bmsafemap *bmsafemap;
1428	struct inodedep *inodedep;
1429	struct newblk *newblk;
1430
1431	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1432		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1433	adp->ad_list.wk_type = D_ALLOCDIRECT;
1434	adp->ad_lbn = lbn;
1435	adp->ad_newblkno = newblkno;
1436	adp->ad_oldblkno = oldblkno;
1437	adp->ad_newsize = newsize;
1438	adp->ad_oldsize = oldsize;
1439	adp->ad_state = ATTACHED | EXTDATA;
1440	LIST_INIT(&adp->ad_newdirblk);
1441	if (newblkno == oldblkno)
1442		adp->ad_freefrag = NULL;
1443	else
1444		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1445
1446	ACQUIRE_LOCK(&lk);
1447	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1448		panic("softdep_setup_allocext: lost block");
1449
1450	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1451	adp->ad_inodedep = inodedep;
1452
1453	if (newblk->nb_state == DEPCOMPLETE) {
1454		adp->ad_state |= DEPCOMPLETE;
1455		adp->ad_buf = NULL;
1456	} else {
1457		bmsafemap = newblk->nb_bmsafemap;
1458		adp->ad_buf = bmsafemap->sm_buf;
1459		LIST_REMOVE(newblk, nb_deps);
1460		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1461	}
1462	LIST_REMOVE(newblk, nb_hash);
1463	FREE(newblk, M_NEWBLK);
1464
1465	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1466	if (lbn >= NXADDR)
1467		panic("softdep_setup_allocext: lbn %lld > NXADDR",
1468		    (long long)lbn);
1469	/*
1470	 * The list of allocdirects must be kept in sorted and ascending
1471	 * order so that the rollback routines can quickly determine the
1472	 * first uncommitted block (the size of the file stored on disk
1473	 * ends at the end of the lowest committed fragment, or if there
1474	 * are no fragments, at the end of the highest committed block).
1475	 * Since files generally grow, the typical case is that the new
1476	 * block is to be added at the end of the list. We speed this
1477	 * special case by checking against the last allocdirect in the
1478	 * list before laboriously traversing the list looking for the
1479	 * insertion point.
1480	 */
1481	adphead = &inodedep->id_newextupdt;
1482	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1483	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1484		/* insert at end of list */
1485		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1486		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1487			allocdirect_merge(adphead, adp, oldadp);
1488		FREE_LOCK(&lk);
1489		return;
1490	}
1491	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1492		if (oldadp->ad_lbn >= lbn)
1493			break;
1494	}
1495	if (oldadp == NULL)
1496		panic("softdep_setup_allocext: lost entry");
1497	/* insert in middle of list */
1498	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1499	if (oldadp->ad_lbn == lbn)
1500		allocdirect_merge(adphead, adp, oldadp);
1501	FREE_LOCK(&lk);
1502}
1503
1504/*
1505 * Indirect block allocation dependencies.
1506 *
1507 * The same dependencies that exist for a direct block also exist when
1508 * a new block is allocated and pointed to by an entry in a block of
1509 * indirect pointers. The undo/redo states described above are also
1510 * used here. Because an indirect block contains many pointers that
1511 * may have dependencies, a second copy of the entire in-memory indirect
1512 * block is kept. The buffer cache copy is always completely up-to-date.
1513 * The second copy, which is used only as a source for disk writes,
1514 * contains only the safe pointers (i.e., those that have no remaining
1515 * update dependencies). The second copy is freed when all pointers
1516 * are safe. The cache is not allowed to replace indirect blocks with
1517 * pending update dependencies. If a buffer containing an indirect
1518 * block with dependencies is written, these routines will mark it
1519 * dirty again. It can only be successfully written once all the
1520 * dependencies are removed. The ffs_fsync routine in conjunction with
1521 * softdep_sync_metadata work together to get all the dependencies
1522 * removed so that a file can be successfully written to disk. Three
1523 * procedures are used when setting up indirect block pointer
1524 * dependencies. The division is necessary because of the organization
1525 * of the "balloc" routine and because of the distinction between file
1526 * pages and file metadata blocks.
1527 */
1528
1529/*
1530 * Allocate a new allocindir structure.
1531 */
1532static struct allocindir *
1533newallocindir(ip, ptrno, newblkno, oldblkno)
1534	struct inode *ip;	/* inode for file being extended */
1535	int ptrno;		/* offset of pointer in indirect block */
1536	ufs2_daddr_t newblkno;	/* disk block number being added */
1537	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1538{
1539	struct allocindir *aip;
1540
1541	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1542		M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO);
1543	aip->ai_list.wk_type = D_ALLOCINDIR;
1544	aip->ai_state = ATTACHED;
1545	aip->ai_offset = ptrno;
1546	aip->ai_newblkno = newblkno;
1547	aip->ai_oldblkno = oldblkno;
1548	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1549	return (aip);
1550}
1551
1552/*
1553 * Called just before setting an indirect block pointer
1554 * to a newly allocated file page.
1555 */
1556void
1557softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1558	struct inode *ip;	/* inode for file being extended */
1559	ufs_lbn_t lbn;		/* allocated block number within file */
1560	struct buf *bp;		/* buffer with indirect blk referencing page */
1561	int ptrno;		/* offset of pointer in indirect block */
1562	ufs2_daddr_t newblkno;	/* disk block number being added */
1563	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1564	struct buf *nbp;	/* buffer holding allocated page */
1565{
1566	struct allocindir *aip;
1567	struct pagedep *pagedep;
1568
1569	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1570	ACQUIRE_LOCK(&lk);
1571	/*
1572	 * If we are allocating a directory page, then we must
1573	 * allocate an associated pagedep to track additions and
1574	 * deletions.
1575	 */
1576	if ((ip->i_mode & IFMT) == IFDIR &&
1577	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1578		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1579	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1580	setup_allocindir_phase2(bp, ip, aip);
1581	FREE_LOCK(&lk);
1582}
1583
1584/*
1585 * Called just before setting an indirect block pointer to a
1586 * newly allocated indirect block.
1587 */
1588void
1589softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
1590	struct buf *nbp;	/* newly allocated indirect block */
1591	struct inode *ip;	/* inode for file being extended */
1592	struct buf *bp;		/* indirect block referencing allocated block */
1593	int ptrno;		/* offset of pointer in indirect block */
1594	ufs2_daddr_t newblkno;	/* disk block number being added */
1595{
1596	struct allocindir *aip;
1597
1598	aip = newallocindir(ip, ptrno, newblkno, 0);
1599	ACQUIRE_LOCK(&lk);
1600	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1601	setup_allocindir_phase2(bp, ip, aip);
1602	FREE_LOCK(&lk);
1603}
1604
1605/*
1606 * Called to finish the allocation of the "aip" allocated
1607 * by one of the two routines above.
1608 */
1609static void
1610setup_allocindir_phase2(bp, ip, aip)
1611	struct buf *bp;		/* in-memory copy of the indirect block */
1612	struct inode *ip;	/* inode for file being extended */
1613	struct allocindir *aip;	/* allocindir allocated by the above routines */
1614{
1615	struct worklist *wk;
1616	struct indirdep *indirdep, *newindirdep;
1617	struct bmsafemap *bmsafemap;
1618	struct allocindir *oldaip;
1619	struct freefrag *freefrag;
1620	struct newblk *newblk;
1621	ufs2_daddr_t blkno;
1622
1623	mtx_assert(&lk, MA_OWNED);
1624	if (bp->b_lblkno >= 0)
1625		panic("setup_allocindir_phase2: not indir blk");
1626	for (indirdep = NULL, newindirdep = NULL; ; ) {
1627		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1628			if (wk->wk_type != D_INDIRDEP)
1629				continue;
1630			indirdep = WK_INDIRDEP(wk);
1631			break;
1632		}
1633		if (indirdep == NULL && newindirdep) {
1634			indirdep = newindirdep;
1635			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
1636			newindirdep = NULL;
1637		}
1638		if (indirdep) {
1639			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1640			    &newblk) == 0)
1641				panic("setup_allocindir: lost block");
1642			if (newblk->nb_state == DEPCOMPLETE) {
1643				aip->ai_state |= DEPCOMPLETE;
1644				aip->ai_buf = NULL;
1645			} else {
1646				bmsafemap = newblk->nb_bmsafemap;
1647				aip->ai_buf = bmsafemap->sm_buf;
1648				LIST_REMOVE(newblk, nb_deps);
1649				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1650				    aip, ai_deps);
1651			}
1652			LIST_REMOVE(newblk, nb_hash);
1653			FREE(newblk, M_NEWBLK);
1654			aip->ai_indirdep = indirdep;
1655			/*
1656			 * Check to see if there is an existing dependency
1657			 * for this block. If there is, merge the old
1658			 * dependency into the new one.
1659			 */
1660			if (aip->ai_oldblkno == 0)
1661				oldaip = NULL;
1662			else
1663
1664				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1665					if (oldaip->ai_offset == aip->ai_offset)
1666						break;
1667			freefrag = NULL;
1668			if (oldaip != NULL) {
1669				if (oldaip->ai_newblkno != aip->ai_oldblkno)
1670					panic("setup_allocindir_phase2: blkno");
1671				aip->ai_oldblkno = oldaip->ai_oldblkno;
1672				freefrag = aip->ai_freefrag;
1673				aip->ai_freefrag = oldaip->ai_freefrag;
1674				oldaip->ai_freefrag = NULL;
1675				free_allocindir(oldaip, NULL);
1676			}
1677			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1678			if (ip->i_ump->um_fstype == UFS1)
1679				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
1680				    [aip->ai_offset] = aip->ai_oldblkno;
1681			else
1682				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
1683				    [aip->ai_offset] = aip->ai_oldblkno;
1684			FREE_LOCK(&lk);
1685			if (freefrag != NULL)
1686				handle_workitem_freefrag(freefrag);
1687		} else
1688			FREE_LOCK(&lk);
1689		if (newindirdep) {
1690			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1691			brelse(newindirdep->ir_savebp);
1692			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1693		}
1694		if (indirdep) {
1695			ACQUIRE_LOCK(&lk);
1696			break;
1697		}
1698		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1699			M_INDIRDEP, M_SOFTDEP_FLAGS);
1700		newindirdep->ir_list.wk_type = D_INDIRDEP;
1701		newindirdep->ir_state = ATTACHED;
1702		if (ip->i_ump->um_fstype == UFS1)
1703			newindirdep->ir_state |= UFS1FMT;
1704		LIST_INIT(&newindirdep->ir_deplisthd);
1705		LIST_INIT(&newindirdep->ir_donehd);
1706		if (bp->b_blkno == bp->b_lblkno) {
1707			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
1708			    NULL, NULL);
1709			bp->b_blkno = blkno;
1710		}
1711		newindirdep->ir_savebp =
1712		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
1713		BUF_KERNPROC(newindirdep->ir_savebp);
1714		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1715		ACQUIRE_LOCK(&lk);
1716	}
1717}
1718
1719/*
1720 * Block de-allocation dependencies.
1721 *
1722 * When blocks are de-allocated, the on-disk pointers must be nullified before
1723 * the blocks are made available for use by other files.  (The true
1724 * requirement is that old pointers must be nullified before new on-disk
1725 * pointers are set.  We chose this slightly more stringent requirement to
1726 * reduce complexity.) Our implementation handles this dependency by updating
1727 * the inode (or indirect block) appropriately but delaying the actual block
1728 * de-allocation (i.e., freemap and free space count manipulation) until
1729 * after the updated versions reach stable storage.  After the disk is
1730 * updated, the blocks can be safely de-allocated whenever it is convenient.
1731 * This implementation handles only the common case of reducing a file's
1732 * length to zero. Other cases are handled by the conventional synchronous
1733 * write approach.
1734 *
1735 * The ffs implementation with which we worked double-checks
1736 * the state of the block pointers and file size as it reduces
1737 * a file's length.  Some of this code is replicated here in our
1738 * soft updates implementation.  The freeblks->fb_chkcnt field is
1739 * used to transfer a part of this information to the procedure
1740 * that eventually de-allocates the blocks.
1741 *
1742 * This routine should be called from the routine that shortens
1743 * a file's length, before the inode's size or block pointers
1744 * are modified. It will save the block pointer information for
1745 * later release and zero the inode so that the calling routine
1746 * can release it.
1747 */
1748void
1749softdep_setup_freeblocks(ip, length, flags)
1750	struct inode *ip;	/* The inode whose length is to be reduced */
1751	off_t length;		/* The new length for the file */
1752	int flags;		/* IO_EXT and/or IO_NORMAL */
1753{
1754	struct freeblks *freeblks;
1755	struct inodedep *inodedep;
1756	struct allocdirect *adp;
1757	struct vnode *vp;
1758	struct buf *bp;
1759	struct fs *fs;
1760	ufs2_daddr_t extblocks, datablocks;
1761	int i, delay, error;
1762
1763	fs = ip->i_fs;
1764	if (length != 0)
1765		panic("softdep_setup_freeblocks: non-zero length");
1766	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1767		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
1768	freeblks->fb_list.wk_type = D_FREEBLKS;
1769	freeblks->fb_uid = ip->i_uid;
1770	freeblks->fb_previousinum = ip->i_number;
1771	freeblks->fb_devvp = ip->i_devvp;
1772	freeblks->fb_mnt = ITOV(ip)->v_mount;
1773	extblocks = 0;
1774	if (fs->fs_magic == FS_UFS2_MAGIC)
1775		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
1776	datablocks = DIP(ip, i_blocks) - extblocks;
1777	if ((flags & IO_NORMAL) == 0) {
1778		freeblks->fb_oldsize = 0;
1779		freeblks->fb_chkcnt = 0;
1780	} else {
1781		freeblks->fb_oldsize = ip->i_size;
1782		ip->i_size = 0;
1783		DIP_SET(ip, i_size, 0);
1784		freeblks->fb_chkcnt = datablocks;
1785		for (i = 0; i < NDADDR; i++) {
1786			freeblks->fb_dblks[i] = DIP(ip, i_db[i]);
1787			DIP_SET(ip, i_db[i], 0);
1788		}
1789		for (i = 0; i < NIADDR; i++) {
1790			freeblks->fb_iblks[i] = DIP(ip, i_ib[i]);
1791			DIP_SET(ip, i_ib[i], 0);
1792		}
1793		/*
1794		 * If the file was removed, then the space being freed was
1795		 * accounted for then (see softdep_filereleased()). If the
1796		 * file is merely being truncated, then we account for it now.
1797		 */
1798		if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
1799			UFS_LOCK(ip->i_ump);
1800			fs->fs_pendingblocks += datablocks;
1801			UFS_UNLOCK(ip->i_ump);
1802		}
1803	}
1804	if ((flags & IO_EXT) == 0) {
1805		freeblks->fb_oldextsize = 0;
1806	} else {
1807		freeblks->fb_oldextsize = ip->i_din2->di_extsize;
1808		ip->i_din2->di_extsize = 0;
1809		freeblks->fb_chkcnt += extblocks;
1810		for (i = 0; i < NXADDR; i++) {
1811			freeblks->fb_eblks[i] = ip->i_din2->di_extb[i];
1812			ip->i_din2->di_extb[i] = 0;
1813		}
1814	}
1815	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
1816	/*
1817	 * Push the zero'ed inode to to its disk buffer so that we are free
1818	 * to delete its dependencies below. Once the dependencies are gone
1819	 * the buffer can be safely released.
1820	 */
1821	if ((error = bread(ip->i_devvp,
1822	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
1823	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
1824		brelse(bp);
1825		softdep_error("softdep_setup_freeblocks", error);
1826	}
1827	if (ip->i_ump->um_fstype == UFS1)
1828		*((struct ufs1_dinode *)bp->b_data +
1829		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
1830	else
1831		*((struct ufs2_dinode *)bp->b_data +
1832		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
1833	/*
1834	 * Find and eliminate any inode dependencies.
1835	 */
1836	ACQUIRE_LOCK(&lk);
1837	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1838	if ((inodedep->id_state & IOSTARTED) != 0)
1839		panic("softdep_setup_freeblocks: inode busy");
1840	/*
1841	 * Add the freeblks structure to the list of operations that
1842	 * must await the zero'ed inode being written to disk. If we
1843	 * still have a bitmap dependency (delay == 0), then the inode
1844	 * has never been written to disk, so we can process the
1845	 * freeblks below once we have deleted the dependencies.
1846	 */
1847	delay = (inodedep->id_state & DEPCOMPLETE);
1848	if (delay)
1849		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1850	/*
1851	 * Because the file length has been truncated to zero, any
1852	 * pending block allocation dependency structures associated
1853	 * with this inode are obsolete and can simply be de-allocated.
1854	 * We must first merge the two dependency lists to get rid of
1855	 * any duplicate freefrag structures, then purge the merged list.
1856	 * If we still have a bitmap dependency, then the inode has never
1857	 * been written to disk, so we can free any fragments without delay.
1858	 */
1859	if (flags & IO_NORMAL) {
1860		merge_inode_lists(&inodedep->id_newinoupdt,
1861		    &inodedep->id_inoupdt);
1862		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1863			free_allocdirect(&inodedep->id_inoupdt, adp, delay);
1864	}
1865	if (flags & IO_EXT) {
1866		merge_inode_lists(&inodedep->id_newextupdt,
1867		    &inodedep->id_extupdt);
1868		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
1869			free_allocdirect(&inodedep->id_extupdt, adp, delay);
1870	}
1871	FREE_LOCK(&lk);
1872	bdwrite(bp);
1873	/*
1874	 * We must wait for any I/O in progress to finish so that
1875	 * all potential buffers on the dirty list will be visible.
1876	 * Once they are all there, walk the list and get rid of
1877	 * any dependencies.
1878	 */
1879	vp = ITOV(ip);
1880	VI_LOCK(vp);
1881	drain_output(vp);
1882restart:
1883	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
1884		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
1885		    ((flags & IO_NORMAL) == 0 &&
1886		      (bp->b_xflags & BX_ALTDATA) == 0))
1887			continue;
1888		if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL)
1889			goto restart;
1890		VI_UNLOCK(vp);
1891		ACQUIRE_LOCK(&lk);
1892		(void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
1893		deallocate_dependencies(bp, inodedep);
1894		FREE_LOCK(&lk);
1895		bp->b_flags |= B_INVAL | B_NOCACHE;
1896		brelse(bp);
1897		VI_LOCK(vp);
1898		goto restart;
1899	}
1900	VI_UNLOCK(vp);
1901	ACQUIRE_LOCK(&lk);
1902	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1903		(void) free_inodedep(inodedep);
1904	FREE_LOCK(&lk);
1905	/*
1906	 * If the inode has never been written to disk (delay == 0),
1907	 * then we can process the freeblks now that we have deleted
1908	 * the dependencies.
1909	 */
1910	if (!delay)
1911		handle_workitem_freeblocks(freeblks, 0);
1912}
1913
1914/*
1915 * Reclaim any dependency structures from a buffer that is about to
1916 * be reallocated to a new vnode. The buffer must be locked, thus,
1917 * no I/O completion operations can occur while we are manipulating
1918 * its associated dependencies. The mutex is held so that other I/O's
1919 * associated with related dependencies do not occur.
1920 */
1921static void
1922deallocate_dependencies(bp, inodedep)
1923	struct buf *bp;
1924	struct inodedep *inodedep;
1925{
1926	struct worklist *wk;
1927	struct indirdep *indirdep;
1928	struct allocindir *aip;
1929	struct pagedep *pagedep;
1930	struct dirrem *dirrem;
1931	struct diradd *dap;
1932	int i;
1933
1934	mtx_assert(&lk, MA_OWNED);
1935	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1936		switch (wk->wk_type) {
1937
1938		case D_INDIRDEP:
1939			indirdep = WK_INDIRDEP(wk);
1940			/*
1941			 * None of the indirect pointers will ever be visible,
1942			 * so they can simply be tossed. GOINGAWAY ensures
1943			 * that allocated pointers will be saved in the buffer
1944			 * cache until they are freed. Note that they will
1945			 * only be able to be found by their physical address
1946			 * since the inode mapping the logical address will
1947			 * be gone. The save buffer used for the safe copy
1948			 * was allocated in setup_allocindir_phase2 using
1949			 * the physical address so it could be used for this
1950			 * purpose. Hence we swap the safe copy with the real
1951			 * copy, allowing the safe copy to be freed and holding
1952			 * on to the real copy for later use in indir_trunc.
1953			 */
1954			if (indirdep->ir_state & GOINGAWAY)
1955				panic("deallocate_dependencies: already gone");
1956			indirdep->ir_state |= GOINGAWAY;
1957			VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1;
1958			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
1959				free_allocindir(aip, inodedep);
1960			if (bp->b_lblkno >= 0 ||
1961			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
1962				panic("deallocate_dependencies: not indir");
1963			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1964			    bp->b_bcount);
1965			WORKLIST_REMOVE(wk);
1966			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
1967			continue;
1968
1969		case D_PAGEDEP:
1970			pagedep = WK_PAGEDEP(wk);
1971			/*
1972			 * None of the directory additions will ever be
1973			 * visible, so they can simply be tossed.
1974			 */
1975			for (i = 0; i < DAHASHSZ; i++)
1976				while ((dap =
1977				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
1978					free_diradd(dap);
1979			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
1980				free_diradd(dap);
1981			/*
1982			 * Copy any directory remove dependencies to the list
1983			 * to be processed after the zero'ed inode is written.
1984			 * If the inode has already been written, then they
1985			 * can be dumped directly onto the work list.
1986			 */
1987			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1988				LIST_REMOVE(dirrem, dm_next);
1989				dirrem->dm_dirinum = pagedep->pd_ino;
1990				if (inodedep == NULL ||
1991				    (inodedep->id_state & ALLCOMPLETE) ==
1992				     ALLCOMPLETE)
1993					add_to_worklist(&dirrem->dm_list);
1994				else
1995					WORKLIST_INSERT(&inodedep->id_bufwait,
1996					    &dirrem->dm_list);
1997			}
1998			if ((pagedep->pd_state & NEWBLOCK) != 0) {
1999				LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
2000					if (wk->wk_type == D_NEWDIRBLK &&
2001					    WK_NEWDIRBLK(wk)->db_pagedep ==
2002					      pagedep)
2003						break;
2004				if (wk != NULL) {
2005					WORKLIST_REMOVE(wk);
2006					free_newdirblk(WK_NEWDIRBLK(wk));
2007				} else
2008					panic("deallocate_dependencies: "
2009					      "lost pagedep");
2010			}
2011			WORKLIST_REMOVE(&pagedep->pd_list);
2012			LIST_REMOVE(pagedep, pd_hash);
2013			WORKITEM_FREE(pagedep, D_PAGEDEP);
2014			continue;
2015
2016		case D_ALLOCINDIR:
2017			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2018			continue;
2019
2020		case D_ALLOCDIRECT:
2021		case D_INODEDEP:
2022			panic("deallocate_dependencies: Unexpected type %s",
2023			    TYPENAME(wk->wk_type));
2024			/* NOTREACHED */
2025
2026		default:
2027			panic("deallocate_dependencies: Unknown type %s",
2028			    TYPENAME(wk->wk_type));
2029			/* NOTREACHED */
2030		}
2031	}
2032}
2033
2034/*
2035 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2036 * This routine must be called with splbio interrupts blocked.
2037 */
2038static void
2039free_allocdirect(adphead, adp, delay)
2040	struct allocdirectlst *adphead;
2041	struct allocdirect *adp;
2042	int delay;
2043{
2044	struct newdirblk *newdirblk;
2045	struct worklist *wk;
2046
2047	mtx_assert(&lk, MA_OWNED);
2048	if ((adp->ad_state & DEPCOMPLETE) == 0)
2049		LIST_REMOVE(adp, ad_deps);
2050	TAILQ_REMOVE(adphead, adp, ad_next);
2051	if ((adp->ad_state & COMPLETE) == 0)
2052		WORKLIST_REMOVE(&adp->ad_list);
2053	if (adp->ad_freefrag != NULL) {
2054		if (delay)
2055			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2056			    &adp->ad_freefrag->ff_list);
2057		else
2058			add_to_worklist(&adp->ad_freefrag->ff_list);
2059	}
2060	if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
2061		newdirblk = WK_NEWDIRBLK(wk);
2062		WORKLIST_REMOVE(&newdirblk->db_list);
2063		if (LIST_FIRST(&adp->ad_newdirblk) != NULL)
2064			panic("free_allocdirect: extra newdirblk");
2065		if (delay)
2066			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2067			    &newdirblk->db_list);
2068		else
2069			free_newdirblk(newdirblk);
2070	}
2071	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2072}
2073
2074/*
2075 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
2076 * This routine must be called with splbio interrupts blocked.
2077 */
2078static void
2079free_newdirblk(newdirblk)
2080	struct newdirblk *newdirblk;
2081{
2082	struct pagedep *pagedep;
2083	struct diradd *dap;
2084	int i;
2085
2086	mtx_assert(&lk, MA_OWNED);
2087	/*
2088	 * If the pagedep is still linked onto the directory buffer
2089	 * dependency chain, then some of the entries on the
2090	 * pd_pendinghd list may not be committed to disk yet. In
2091	 * this case, we will simply clear the NEWBLOCK flag and
2092	 * let the pd_pendinghd list be processed when the pagedep
2093	 * is next written. If the pagedep is no longer on the buffer
2094	 * dependency chain, then all the entries on the pd_pending
2095	 * list are committed to disk and we can free them here.
2096	 */
2097	pagedep = newdirblk->db_pagedep;
2098	pagedep->pd_state &= ~NEWBLOCK;
2099	if ((pagedep->pd_state & ONWORKLIST) == 0)
2100		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2101			free_diradd(dap);
2102	/*
2103	 * If no dependencies remain, the pagedep will be freed.
2104	 */
2105	for (i = 0; i < DAHASHSZ; i++)
2106		if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
2107			break;
2108	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
2109		LIST_REMOVE(pagedep, pd_hash);
2110		WORKITEM_FREE(pagedep, D_PAGEDEP);
2111	}
2112	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2113}
2114
2115/*
2116 * Prepare an inode to be freed. The actual free operation is not
2117 * done until the zero'ed inode has been written to disk.
2118 */
2119void
2120softdep_freefile(pvp, ino, mode)
2121	struct vnode *pvp;
2122	ino_t ino;
2123	int mode;
2124{
2125	struct inode *ip = VTOI(pvp);
2126	struct inodedep *inodedep;
2127	struct freefile *freefile;
2128
2129	/*
2130	 * This sets up the inode de-allocation dependency.
2131	 */
2132	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2133		M_FREEFILE, M_SOFTDEP_FLAGS);
2134	freefile->fx_list.wk_type = D_FREEFILE;
2135	freefile->fx_list.wk_state = 0;
2136	freefile->fx_mode = mode;
2137	freefile->fx_oldinum = ino;
2138	freefile->fx_devvp = ip->i_devvp;
2139	freefile->fx_mnt = ITOV(ip)->v_mount;
2140	if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2141		UFS_LOCK(ip->i_ump);
2142		ip->i_fs->fs_pendinginodes += 1;
2143		UFS_UNLOCK(ip->i_ump);
2144	}
2145
2146	/*
2147	 * If the inodedep does not exist, then the zero'ed inode has
2148	 * been written to disk. If the allocated inode has never been
2149	 * written to disk, then the on-disk inode is zero'ed. In either
2150	 * case we can free the file immediately.
2151	 */
2152	ACQUIRE_LOCK(&lk);
2153	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2154	    check_inode_unwritten(inodedep)) {
2155		FREE_LOCK(&lk);
2156		handle_workitem_freefile(freefile);
2157		return;
2158	}
2159	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2160	FREE_LOCK(&lk);
2161}
2162
2163/*
2164 * Check to see if an inode has never been written to disk. If
2165 * so free the inodedep and return success, otherwise return failure.
2166 * This routine must be called with splbio interrupts blocked.
2167 *
2168 * If we still have a bitmap dependency, then the inode has never
2169 * been written to disk. Drop the dependency as it is no longer
2170 * necessary since the inode is being deallocated. We set the
2171 * ALLCOMPLETE flags since the bitmap now properly shows that the
2172 * inode is not allocated. Even if the inode is actively being
2173 * written, it has been rolled back to its zero'ed state, so we
2174 * are ensured that a zero inode is what is on the disk. For short
2175 * lived files, this change will usually result in removing all the
2176 * dependencies from the inode so that it can be freed immediately.
2177 */
2178static int
2179check_inode_unwritten(inodedep)
2180	struct inodedep *inodedep;
2181{
2182
2183	mtx_assert(&lk, MA_OWNED);
2184	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2185	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2186	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2187	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2188	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2189	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2190	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2191	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2192	    inodedep->id_nlinkdelta != 0)
2193		return (0);
2194	inodedep->id_state |= ALLCOMPLETE;
2195	LIST_REMOVE(inodedep, id_deps);
2196	inodedep->id_buf = NULL;
2197	if (inodedep->id_state & ONWORKLIST)
2198		WORKLIST_REMOVE(&inodedep->id_list);
2199	if (inodedep->id_savedino1 != NULL) {
2200		FREE(inodedep->id_savedino1, M_SAVEDINO);
2201		inodedep->id_savedino1 = NULL;
2202	}
2203	if (free_inodedep(inodedep) == 0)
2204		panic("check_inode_unwritten: busy inode");
2205	return (1);
2206}
2207
2208/*
2209 * Try to free an inodedep structure. Return 1 if it could be freed.
2210 */
2211static int
2212free_inodedep(inodedep)
2213	struct inodedep *inodedep;
2214{
2215
2216	mtx_assert(&lk, MA_OWNED);
2217	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2218	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2219	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2220	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2221	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2222	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2223	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2224	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2225	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2226	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL)
2227		return (0);
2228	LIST_REMOVE(inodedep, id_hash);
2229	WORKITEM_FREE(inodedep, D_INODEDEP);
2230	num_inodedep -= 1;
2231	return (1);
2232}
2233
2234/*
2235 * This workitem routine performs the block de-allocation.
2236 * The workitem is added to the pending list after the updated
2237 * inode block has been written to disk.  As mentioned above,
2238 * checks regarding the number of blocks de-allocated (compared
2239 * to the number of blocks allocated for the file) are also
2240 * performed in this function.
2241 */
2242static void
2243handle_workitem_freeblocks(freeblks, flags)
2244	struct freeblks *freeblks;
2245	int flags;
2246{
2247	struct inode *ip;
2248	struct vnode *vp;
2249	struct fs *fs;
2250	struct ufsmount *ump;
2251	int i, nblocks, level, bsize;
2252	ufs2_daddr_t bn, blocksreleased = 0;
2253	int error, allerror = 0;
2254	ufs_lbn_t baselbns[NIADDR], tmpval;
2255	int fs_pendingblocks;
2256
2257	ump = VFSTOUFS(freeblks->fb_mnt);
2258	fs = ump->um_fs;
2259	fs_pendingblocks = 0;
2260	tmpval = 1;
2261	baselbns[0] = NDADDR;
2262	for (i = 1; i < NIADDR; i++) {
2263		tmpval *= NINDIR(fs);
2264		baselbns[i] = baselbns[i - 1] + tmpval;
2265	}
2266	nblocks = btodb(fs->fs_bsize);
2267	blocksreleased = 0;
2268	/*
2269	 * Release all extended attribute blocks or frags.
2270	 */
2271	if (freeblks->fb_oldextsize > 0) {
2272		for (i = (NXADDR - 1); i >= 0; i--) {
2273			if ((bn = freeblks->fb_eblks[i]) == 0)
2274				continue;
2275			bsize = sblksize(fs, freeblks->fb_oldextsize, i);
2276			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2277			    freeblks->fb_previousinum);
2278			blocksreleased += btodb(bsize);
2279		}
2280	}
2281	/*
2282	 * Release all data blocks or frags.
2283	 */
2284	if (freeblks->fb_oldsize > 0) {
2285		/*
2286		 * Indirect blocks first.
2287		 */
2288		for (level = (NIADDR - 1); level >= 0; level--) {
2289			if ((bn = freeblks->fb_iblks[level]) == 0)
2290				continue;
2291			if ((error = indir_trunc(freeblks, fsbtodb(fs, bn),
2292			    level, baselbns[level], &blocksreleased)) == 0)
2293				allerror = error;
2294			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn,
2295			    fs->fs_bsize, freeblks->fb_previousinum);
2296			fs_pendingblocks += nblocks;
2297			blocksreleased += nblocks;
2298		}
2299		/*
2300		 * All direct blocks or frags.
2301		 */
2302		for (i = (NDADDR - 1); i >= 0; i--) {
2303			if ((bn = freeblks->fb_dblks[i]) == 0)
2304				continue;
2305			bsize = sblksize(fs, freeblks->fb_oldsize, i);
2306			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2307			    freeblks->fb_previousinum);
2308			fs_pendingblocks += btodb(bsize);
2309			blocksreleased += btodb(bsize);
2310		}
2311	}
2312	UFS_LOCK(ump);
2313	fs->fs_pendingblocks -= fs_pendingblocks;
2314	UFS_UNLOCK(ump);
2315	/*
2316	 * If we still have not finished background cleanup, then check
2317	 * to see if the block count needs to be adjusted.
2318	 */
2319	if (freeblks->fb_chkcnt != blocksreleased &&
2320	    (fs->fs_flags & FS_UNCLEAN) != 0 &&
2321	    ffs_vget(freeblks->fb_mnt, freeblks->fb_previousinum,
2322	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) {
2323		ip = VTOI(vp);
2324		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \
2325		    freeblks->fb_chkcnt - blocksreleased);
2326		ip->i_flag |= IN_CHANGE;
2327		vput(vp);
2328	}
2329
2330#ifdef DIAGNOSTIC
2331	if (freeblks->fb_chkcnt != blocksreleased &&
2332	    ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
2333		printf("handle_workitem_freeblocks: block count\n");
2334	if (allerror)
2335		softdep_error("handle_workitem_freeblks", allerror);
2336#endif /* DIAGNOSTIC */
2337
2338	WORKITEM_FREE(freeblks, D_FREEBLKS);
2339}
2340
2341/*
2342 * Release blocks associated with the inode ip and stored in the indirect
2343 * block dbn. If level is greater than SINGLE, the block is an indirect block
2344 * and recursive calls to indirtrunc must be used to cleanse other indirect
2345 * blocks.
2346 */
2347static int
2348indir_trunc(freeblks, dbn, level, lbn, countp)
2349	struct freeblks *freeblks;
2350	ufs2_daddr_t dbn;
2351	int level;
2352	ufs_lbn_t lbn;
2353	ufs2_daddr_t *countp;
2354{
2355	struct buf *bp;
2356	struct fs *fs;
2357	struct worklist *wk;
2358	struct indirdep *indirdep;
2359	struct ufsmount *ump;
2360	ufs1_daddr_t *bap1 = 0;
2361	ufs2_daddr_t nb, *bap2 = 0;
2362	ufs_lbn_t lbnadd;
2363	int i, nblocks, ufs1fmt;
2364	int error, allerror = 0;
2365	int fs_pendingblocks;
2366
2367	ump = VFSTOUFS(freeblks->fb_mnt);
2368	fs = ump->um_fs;
2369	fs_pendingblocks = 0;
2370	lbnadd = 1;
2371	for (i = level; i > 0; i--)
2372		lbnadd *= NINDIR(fs);
2373	/*
2374	 * Get buffer of block pointers to be freed. This routine is not
2375	 * called until the zero'ed inode has been written, so it is safe
2376	 * to free blocks as they are encountered. Because the inode has
2377	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2378	 * have to use the on-disk address and the block device for the
2379	 * filesystem to look them up. If the file was deleted before its
2380	 * indirect blocks were all written to disk, the routine that set
2381	 * us up (deallocate_dependencies) will have arranged to leave
2382	 * a complete copy of the indirect block in memory for our use.
2383	 * Otherwise we have to read the blocks in from the disk.
2384	 */
2385#ifdef notyet
2386	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
2387	    GB_NOCREAT);
2388#else
2389	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
2390#endif
2391	ACQUIRE_LOCK(&lk);
2392	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2393		if (wk->wk_type != D_INDIRDEP ||
2394		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2395		    (indirdep->ir_state & GOINGAWAY) == 0)
2396			panic("indir_trunc: lost indirdep");
2397		WORKLIST_REMOVE(wk);
2398		WORKITEM_FREE(indirdep, D_INDIRDEP);
2399		if (LIST_FIRST(&bp->b_dep) != NULL)
2400			panic("indir_trunc: dangling dep");
2401		VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1;
2402		FREE_LOCK(&lk);
2403	} else {
2404#ifdef notyet
2405		if (bp)
2406			brelse(bp);
2407#endif
2408		FREE_LOCK(&lk);
2409		error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
2410		    NOCRED, &bp);
2411		if (error) {
2412			brelse(bp);
2413			return (error);
2414		}
2415	}
2416	/*
2417	 * Recursively free indirect blocks.
2418	 */
2419	if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) {
2420		ufs1fmt = 1;
2421		bap1 = (ufs1_daddr_t *)bp->b_data;
2422	} else {
2423		ufs1fmt = 0;
2424		bap2 = (ufs2_daddr_t *)bp->b_data;
2425	}
2426	nblocks = btodb(fs->fs_bsize);
2427	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2428		if (ufs1fmt)
2429			nb = bap1[i];
2430		else
2431			nb = bap2[i];
2432		if (nb == 0)
2433			continue;
2434		if (level != 0) {
2435			if ((error = indir_trunc(freeblks, fsbtodb(fs, nb),
2436			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2437				allerror = error;
2438		}
2439		ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize,
2440		    freeblks->fb_previousinum);
2441		fs_pendingblocks += nblocks;
2442		*countp += nblocks;
2443	}
2444	UFS_LOCK(ump);
2445	fs->fs_pendingblocks -= fs_pendingblocks;
2446	UFS_UNLOCK(ump);
2447	bp->b_flags |= B_INVAL | B_NOCACHE;
2448	brelse(bp);
2449	return (allerror);
2450}
2451
2452/*
2453 * Free an allocindir.
2454 * This routine must be called with splbio interrupts blocked.
2455 */
2456static void
2457free_allocindir(aip, inodedep)
2458	struct allocindir *aip;
2459	struct inodedep *inodedep;
2460{
2461	struct freefrag *freefrag;
2462
2463	mtx_assert(&lk, MA_OWNED);
2464	if ((aip->ai_state & DEPCOMPLETE) == 0)
2465		LIST_REMOVE(aip, ai_deps);
2466	if (aip->ai_state & ONWORKLIST)
2467		WORKLIST_REMOVE(&aip->ai_list);
2468	LIST_REMOVE(aip, ai_next);
2469	if ((freefrag = aip->ai_freefrag) != NULL) {
2470		if (inodedep == NULL)
2471			add_to_worklist(&freefrag->ff_list);
2472		else
2473			WORKLIST_INSERT(&inodedep->id_bufwait,
2474			    &freefrag->ff_list);
2475	}
2476	WORKITEM_FREE(aip, D_ALLOCINDIR);
2477}
2478
2479/*
2480 * Directory entry addition dependencies.
2481 *
2482 * When adding a new directory entry, the inode (with its incremented link
2483 * count) must be written to disk before the directory entry's pointer to it.
2484 * Also, if the inode is newly allocated, the corresponding freemap must be
2485 * updated (on disk) before the directory entry's pointer. These requirements
2486 * are met via undo/redo on the directory entry's pointer, which consists
2487 * simply of the inode number.
2488 *
2489 * As directory entries are added and deleted, the free space within a
2490 * directory block can become fragmented.  The ufs filesystem will compact
2491 * a fragmented directory block to make space for a new entry. When this
2492 * occurs, the offsets of previously added entries change. Any "diradd"
2493 * dependency structures corresponding to these entries must be updated with
2494 * the new offsets.
2495 */
2496
2497/*
2498 * This routine is called after the in-memory inode's link
2499 * count has been incremented, but before the directory entry's
2500 * pointer to the inode has been set.
2501 */
2502int
2503softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
2504	struct buf *bp;		/* buffer containing directory block */
2505	struct inode *dp;	/* inode for directory */
2506	off_t diroffset;	/* offset of new entry in directory */
2507	ino_t newinum;		/* inode referenced by new directory entry */
2508	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2509	int isnewblk;		/* entry is in a newly allocated block */
2510{
2511	int offset;		/* offset of new entry within directory block */
2512	ufs_lbn_t lbn;		/* block in directory containing new entry */
2513	struct fs *fs;
2514	struct diradd *dap;
2515	struct allocdirect *adp;
2516	struct pagedep *pagedep;
2517	struct inodedep *inodedep;
2518	struct newdirblk *newdirblk = 0;
2519	struct mkdir *mkdir1, *mkdir2;
2520
2521	/*
2522	 * Whiteouts have no dependencies.
2523	 */
2524	if (newinum == WINO) {
2525		if (newdirbp != NULL)
2526			bdwrite(newdirbp);
2527		return (0);
2528	}
2529
2530	fs = dp->i_fs;
2531	lbn = lblkno(fs, diroffset);
2532	offset = blkoff(fs, diroffset);
2533	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2534		M_SOFTDEP_FLAGS|M_ZERO);
2535	dap->da_list.wk_type = D_DIRADD;
2536	dap->da_offset = offset;
2537	dap->da_newinum = newinum;
2538	dap->da_state = ATTACHED;
2539	if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
2540		MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk),
2541		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
2542		newdirblk->db_list.wk_type = D_NEWDIRBLK;
2543		newdirblk->db_state = 0;
2544	}
2545	if (newdirbp == NULL) {
2546		dap->da_state |= DEPCOMPLETE;
2547		ACQUIRE_LOCK(&lk);
2548	} else {
2549		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2550		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2551		    M_SOFTDEP_FLAGS);
2552		mkdir1->md_list.wk_type = D_MKDIR;
2553		mkdir1->md_state = MKDIR_BODY;
2554		mkdir1->md_diradd = dap;
2555		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2556		    M_SOFTDEP_FLAGS);
2557		mkdir2->md_list.wk_type = D_MKDIR;
2558		mkdir2->md_state = MKDIR_PARENT;
2559		mkdir2->md_diradd = dap;
2560		/*
2561		 * Dependency on "." and ".." being written to disk.
2562		 */
2563		mkdir1->md_buf = newdirbp;
2564		ACQUIRE_LOCK(&lk);
2565		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2566		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
2567		FREE_LOCK(&lk);
2568		bdwrite(newdirbp);
2569		/*
2570		 * Dependency on link count increase for parent directory
2571		 */
2572		ACQUIRE_LOCK(&lk);
2573		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0
2574		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2575			dap->da_state &= ~MKDIR_PARENT;
2576			WORKITEM_FREE(mkdir2, D_MKDIR);
2577		} else {
2578			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2579			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2580		}
2581	}
2582	/*
2583	 * Link into parent directory pagedep to await its being written.
2584	 */
2585	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2586		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2587	dap->da_pagedep = pagedep;
2588	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2589	    da_pdlist);
2590	/*
2591	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2592	 * is not yet written. If it is written, do the post-inode write
2593	 * processing to put it on the id_pendinghd list.
2594	 */
2595	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2596	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2597		diradd_inode_written(dap, inodedep);
2598	else
2599		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2600	if (isnewblk) {
2601		/*
2602		 * Directories growing into indirect blocks are rare
2603		 * enough and the frequency of new block allocation
2604		 * in those cases even more rare, that we choose not
2605		 * to bother tracking them. Rather we simply force the
2606		 * new directory entry to disk.
2607		 */
2608		if (lbn >= NDADDR) {
2609			FREE_LOCK(&lk);
2610			/*
2611			 * We only have a new allocation when at the
2612			 * beginning of a new block, not when we are
2613			 * expanding into an existing block.
2614			 */
2615			if (blkoff(fs, diroffset) == 0)
2616				return (1);
2617			return (0);
2618		}
2619		/*
2620		 * We only have a new allocation when at the beginning
2621		 * of a new fragment, not when we are expanding into an
2622		 * existing fragment. Also, there is nothing to do if we
2623		 * are already tracking this block.
2624		 */
2625		if (fragoff(fs, diroffset) != 0) {
2626			FREE_LOCK(&lk);
2627			return (0);
2628		}
2629		if ((pagedep->pd_state & NEWBLOCK) != 0) {
2630			FREE_LOCK(&lk);
2631			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2632			return (0);
2633		}
2634		/*
2635		 * Find our associated allocdirect and have it track us.
2636		 */
2637		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0)
2638			panic("softdep_setup_directory_add: lost inodedep");
2639		adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
2640		if (adp == NULL || adp->ad_lbn != lbn)
2641			panic("softdep_setup_directory_add: lost entry");
2642		pagedep->pd_state |= NEWBLOCK;
2643		newdirblk->db_pagedep = pagedep;
2644		WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
2645	}
2646	FREE_LOCK(&lk);
2647	return (0);
2648}
2649
2650/*
2651 * This procedure is called to change the offset of a directory
2652 * entry when compacting a directory block which must be owned
2653 * exclusively by the caller. Note that the actual entry movement
2654 * must be done in this procedure to ensure that no I/O completions
2655 * occur while the move is in progress.
2656 */
2657void
2658softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
2659	struct inode *dp;	/* inode for directory */
2660	caddr_t base;		/* address of dp->i_offset */
2661	caddr_t oldloc;		/* address of old directory location */
2662	caddr_t newloc;		/* address of new directory location */
2663	int entrysize;		/* size of directory entry */
2664{
2665	int offset, oldoffset, newoffset;
2666	struct pagedep *pagedep;
2667	struct diradd *dap;
2668	ufs_lbn_t lbn;
2669
2670	ACQUIRE_LOCK(&lk);
2671	lbn = lblkno(dp->i_fs, dp->i_offset);
2672	offset = blkoff(dp->i_fs, dp->i_offset);
2673	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2674		goto done;
2675	oldoffset = offset + (oldloc - base);
2676	newoffset = offset + (newloc - base);
2677
2678	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2679		if (dap->da_offset != oldoffset)
2680			continue;
2681		dap->da_offset = newoffset;
2682		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2683			break;
2684		LIST_REMOVE(dap, da_pdlist);
2685		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2686		    dap, da_pdlist);
2687		break;
2688	}
2689	if (dap == NULL) {
2690
2691		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2692			if (dap->da_offset == oldoffset) {
2693				dap->da_offset = newoffset;
2694				break;
2695			}
2696		}
2697	}
2698done:
2699	bcopy(oldloc, newloc, entrysize);
2700	FREE_LOCK(&lk);
2701}
2702
2703/*
2704 * Free a diradd dependency structure. This routine must be called
2705 * with splbio interrupts blocked.
2706 */
2707static void
2708free_diradd(dap)
2709	struct diradd *dap;
2710{
2711	struct dirrem *dirrem;
2712	struct pagedep *pagedep;
2713	struct inodedep *inodedep;
2714	struct mkdir *mkdir, *nextmd;
2715
2716	mtx_assert(&lk, MA_OWNED);
2717	WORKLIST_REMOVE(&dap->da_list);
2718	LIST_REMOVE(dap, da_pdlist);
2719	if ((dap->da_state & DIRCHG) == 0) {
2720		pagedep = dap->da_pagedep;
2721	} else {
2722		dirrem = dap->da_previous;
2723		pagedep = dirrem->dm_pagedep;
2724		dirrem->dm_dirinum = pagedep->pd_ino;
2725		add_to_worklist(&dirrem->dm_list);
2726	}
2727	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2728	    0, &inodedep) != 0)
2729		(void) free_inodedep(inodedep);
2730	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2731		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2732			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2733			if (mkdir->md_diradd != dap)
2734				continue;
2735			dap->da_state &= ~mkdir->md_state;
2736			WORKLIST_REMOVE(&mkdir->md_list);
2737			LIST_REMOVE(mkdir, md_mkdirs);
2738			WORKITEM_FREE(mkdir, D_MKDIR);
2739		}
2740		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
2741			panic("free_diradd: unfound ref");
2742	}
2743	WORKITEM_FREE(dap, D_DIRADD);
2744}
2745
2746/*
2747 * Directory entry removal dependencies.
2748 *
2749 * When removing a directory entry, the entry's inode pointer must be
2750 * zero'ed on disk before the corresponding inode's link count is decremented
2751 * (possibly freeing the inode for re-use). This dependency is handled by
2752 * updating the directory entry but delaying the inode count reduction until
2753 * after the directory block has been written to disk. After this point, the
2754 * inode count can be decremented whenever it is convenient.
2755 */
2756
2757/*
2758 * This routine should be called immediately after removing
2759 * a directory entry.  The inode's link count should not be
2760 * decremented by the calling procedure -- the soft updates
2761 * code will do this task when it is safe.
2762 */
2763void
2764softdep_setup_remove(bp, dp, ip, isrmdir)
2765	struct buf *bp;		/* buffer containing directory block */
2766	struct inode *dp;	/* inode for the directory being modified */
2767	struct inode *ip;	/* inode for directory entry being removed */
2768	int isrmdir;		/* indicates if doing RMDIR */
2769{
2770	struct dirrem *dirrem, *prevdirrem;
2771
2772	/*
2773	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2774	 */
2775	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2776
2777	/*
2778	 * If the COMPLETE flag is clear, then there were no active
2779	 * entries and we want to roll back to a zeroed entry until
2780	 * the new inode is committed to disk. If the COMPLETE flag is
2781	 * set then we have deleted an entry that never made it to
2782	 * disk. If the entry we deleted resulted from a name change,
2783	 * then the old name still resides on disk. We cannot delete
2784	 * its inode (returned to us in prevdirrem) until the zeroed
2785	 * directory entry gets to disk. The new inode has never been
2786	 * referenced on the disk, so can be deleted immediately.
2787	 */
2788	if ((dirrem->dm_state & COMPLETE) == 0) {
2789		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2790		    dm_next);
2791		FREE_LOCK(&lk);
2792	} else {
2793		if (prevdirrem != NULL)
2794			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2795			    prevdirrem, dm_next);
2796		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2797		FREE_LOCK(&lk);
2798		handle_workitem_remove(dirrem, NULL);
2799	}
2800}
2801
2802/*
2803 * Allocate a new dirrem if appropriate and return it along with
2804 * its associated pagedep. Called without a lock, returns with lock.
2805 */
2806static long num_dirrem;		/* number of dirrem allocated */
2807static struct dirrem *
2808newdirrem(bp, dp, ip, isrmdir, prevdirremp)
2809	struct buf *bp;		/* buffer containing directory block */
2810	struct inode *dp;	/* inode for the directory being modified */
2811	struct inode *ip;	/* inode for directory entry being removed */
2812	int isrmdir;		/* indicates if doing RMDIR */
2813	struct dirrem **prevdirremp; /* previously referenced inode, if any */
2814{
2815	int offset;
2816	ufs_lbn_t lbn;
2817	struct diradd *dap;
2818	struct dirrem *dirrem;
2819	struct pagedep *pagedep;
2820
2821	/*
2822	 * Whiteouts have no deletion dependencies.
2823	 */
2824	if (ip == NULL)
2825		panic("newdirrem: whiteout");
2826	/*
2827	 * If we are over our limit, try to improve the situation.
2828	 * Limiting the number of dirrem structures will also limit
2829	 * the number of freefile and freeblks structures.
2830	 */
2831	ACQUIRE_LOCK(&lk);
2832	if (num_dirrem > max_softdeps / 2)
2833		(void) request_cleanup(FLUSH_REMOVE);
2834	num_dirrem += 1;
2835	FREE_LOCK(&lk);
2836	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2837		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
2838	dirrem->dm_list.wk_type = D_DIRREM;
2839	dirrem->dm_state = isrmdir ? RMDIR : 0;
2840	dirrem->dm_mnt = ITOV(ip)->v_mount;
2841	dirrem->dm_oldinum = ip->i_number;
2842	*prevdirremp = NULL;
2843
2844	ACQUIRE_LOCK(&lk);
2845	lbn = lblkno(dp->i_fs, dp->i_offset);
2846	offset = blkoff(dp->i_fs, dp->i_offset);
2847	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2848		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2849	dirrem->dm_pagedep = pagedep;
2850	/*
2851	 * Check for a diradd dependency for the same directory entry.
2852	 * If present, then both dependencies become obsolete and can
2853	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2854	 * list and the pd_pendinghd list.
2855	 */
2856
2857	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2858		if (dap->da_offset == offset)
2859			break;
2860	if (dap == NULL) {
2861
2862		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2863			if (dap->da_offset == offset)
2864				break;
2865		if (dap == NULL)
2866			return (dirrem);
2867	}
2868	/*
2869	 * Must be ATTACHED at this point.
2870	 */
2871	if ((dap->da_state & ATTACHED) == 0)
2872		panic("newdirrem: not ATTACHED");
2873	if (dap->da_newinum != ip->i_number)
2874		panic("newdirrem: inum %d should be %d",
2875		    ip->i_number, dap->da_newinum);
2876	/*
2877	 * If we are deleting a changed name that never made it to disk,
2878	 * then return the dirrem describing the previous inode (which
2879	 * represents the inode currently referenced from this entry on disk).
2880	 */
2881	if ((dap->da_state & DIRCHG) != 0) {
2882		*prevdirremp = dap->da_previous;
2883		dap->da_state &= ~DIRCHG;
2884		dap->da_pagedep = pagedep;
2885	}
2886	/*
2887	 * We are deleting an entry that never made it to disk.
2888	 * Mark it COMPLETE so we can delete its inode immediately.
2889	 */
2890	dirrem->dm_state |= COMPLETE;
2891	free_diradd(dap);
2892	return (dirrem);
2893}
2894
2895/*
2896 * Directory entry change dependencies.
2897 *
2898 * Changing an existing directory entry requires that an add operation
2899 * be completed first followed by a deletion. The semantics for the addition
2900 * are identical to the description of adding a new entry above except
2901 * that the rollback is to the old inode number rather than zero. Once
2902 * the addition dependency is completed, the removal is done as described
2903 * in the removal routine above.
2904 */
2905
2906/*
2907 * This routine should be called immediately after changing
2908 * a directory entry.  The inode's link count should not be
2909 * decremented by the calling procedure -- the soft updates
2910 * code will perform this task when it is safe.
2911 */
2912void
2913softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
2914	struct buf *bp;		/* buffer containing directory block */
2915	struct inode *dp;	/* inode for the directory being modified */
2916	struct inode *ip;	/* inode for directory entry being removed */
2917	ino_t newinum;		/* new inode number for changed entry */
2918	int isrmdir;		/* indicates if doing RMDIR */
2919{
2920	int offset;
2921	struct diradd *dap = NULL;
2922	struct dirrem *dirrem, *prevdirrem;
2923	struct pagedep *pagedep;
2924	struct inodedep *inodedep;
2925
2926	offset = blkoff(dp->i_fs, dp->i_offset);
2927
2928	/*
2929	 * Whiteouts do not need diradd dependencies.
2930	 */
2931	if (newinum != WINO) {
2932		MALLOC(dap, struct diradd *, sizeof(struct diradd),
2933		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
2934		dap->da_list.wk_type = D_DIRADD;
2935		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2936		dap->da_offset = offset;
2937		dap->da_newinum = newinum;
2938	}
2939
2940	/*
2941	 * Allocate a new dirrem and ACQUIRE_LOCK.
2942	 */
2943	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2944	pagedep = dirrem->dm_pagedep;
2945	/*
2946	 * The possible values for isrmdir:
2947	 *	0 - non-directory file rename
2948	 *	1 - directory rename within same directory
2949	 *   inum - directory rename to new directory of given inode number
2950	 * When renaming to a new directory, we are both deleting and
2951	 * creating a new directory entry, so the link count on the new
2952	 * directory should not change. Thus we do not need the followup
2953	 * dirrem which is usually done in handle_workitem_remove. We set
2954	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2955	 * followup dirrem.
2956	 */
2957	if (isrmdir > 1)
2958		dirrem->dm_state |= DIRCHG;
2959
2960	/*
2961	 * Whiteouts have no additional dependencies,
2962	 * so just put the dirrem on the correct list.
2963	 */
2964	if (newinum == WINO) {
2965		if ((dirrem->dm_state & COMPLETE) == 0) {
2966			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2967			    dm_next);
2968		} else {
2969			dirrem->dm_dirinum = pagedep->pd_ino;
2970			add_to_worklist(&dirrem->dm_list);
2971		}
2972		FREE_LOCK(&lk);
2973		return;
2974	}
2975
2976	/*
2977	 * If the COMPLETE flag is clear, then there were no active
2978	 * entries and we want to roll back to the previous inode until
2979	 * the new inode is committed to disk. If the COMPLETE flag is
2980	 * set, then we have deleted an entry that never made it to disk.
2981	 * If the entry we deleted resulted from a name change, then the old
2982	 * inode reference still resides on disk. Any rollback that we do
2983	 * needs to be to that old inode (returned to us in prevdirrem). If
2984	 * the entry we deleted resulted from a create, then there is
2985	 * no entry on the disk, so we want to roll back to zero rather
2986	 * than the uncommitted inode. In either of the COMPLETE cases we
2987	 * want to immediately free the unwritten and unreferenced inode.
2988	 */
2989	if ((dirrem->dm_state & COMPLETE) == 0) {
2990		dap->da_previous = dirrem;
2991	} else {
2992		if (prevdirrem != NULL) {
2993			dap->da_previous = prevdirrem;
2994		} else {
2995			dap->da_state &= ~DIRCHG;
2996			dap->da_pagedep = pagedep;
2997		}
2998		dirrem->dm_dirinum = pagedep->pd_ino;
2999		add_to_worklist(&dirrem->dm_list);
3000	}
3001	/*
3002	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3003	 * is not yet written. If it is written, do the post-inode write
3004	 * processing to put it on the id_pendinghd list.
3005	 */
3006	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
3007	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3008		dap->da_state |= COMPLETE;
3009		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3010		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3011	} else {
3012		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
3013		    dap, da_pdlist);
3014		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3015	}
3016	FREE_LOCK(&lk);
3017}
3018
3019/*
3020 * Called whenever the link count on an inode is changed.
3021 * It creates an inode dependency so that the new reference(s)
3022 * to the inode cannot be committed to disk until the updated
3023 * inode has been written.
3024 */
3025void
3026softdep_change_linkcnt(ip)
3027	struct inode *ip;	/* the inode with the increased link count */
3028{
3029	struct inodedep *inodedep;
3030
3031	ACQUIRE_LOCK(&lk);
3032	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
3033	if (ip->i_nlink < ip->i_effnlink)
3034		panic("softdep_change_linkcnt: bad delta");
3035	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3036	FREE_LOCK(&lk);
3037}
3038
3039/*
3040 * Called when the effective link count and the reference count
3041 * on an inode drops to zero. At this point there are no names
3042 * referencing the file in the filesystem and no active file
3043 * references. The space associated with the file will be freed
3044 * as soon as the necessary soft dependencies are cleared.
3045 */
3046void
3047softdep_releasefile(ip)
3048	struct inode *ip;	/* inode with the zero effective link count */
3049{
3050	struct inodedep *inodedep;
3051	struct fs *fs;
3052	int extblocks;
3053
3054	if (ip->i_effnlink > 0)
3055		panic("softdep_filerelease: file still referenced");
3056	/*
3057	 * We may be called several times as the real reference count
3058	 * drops to zero. We only want to account for the space once.
3059	 */
3060	if (ip->i_flag & IN_SPACECOUNTED)
3061		return;
3062	/*
3063	 * We have to deactivate a snapshot otherwise copyonwrites may
3064	 * add blocks and the cleanup may remove blocks after we have
3065	 * tried to account for them.
3066	 */
3067	if ((ip->i_flags & SF_SNAPSHOT) != 0)
3068		ffs_snapremove(ITOV(ip));
3069	/*
3070	 * If we are tracking an nlinkdelta, we have to also remember
3071	 * whether we accounted for the freed space yet.
3072	 */
3073	ACQUIRE_LOCK(&lk);
3074	if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep)))
3075		inodedep->id_state |= SPACECOUNTED;
3076	FREE_LOCK(&lk);
3077	fs = ip->i_fs;
3078	extblocks = 0;
3079	if (fs->fs_magic == FS_UFS2_MAGIC)
3080		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
3081	UFS_LOCK(ip->i_ump);
3082	ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks;
3083	ip->i_fs->fs_pendinginodes += 1;
3084	UFS_UNLOCK(ip->i_ump);
3085	ip->i_flag |= IN_SPACECOUNTED;
3086}
3087
3088/*
3089 * This workitem decrements the inode's link count.
3090 * If the link count reaches zero, the file is removed.
3091 */
3092static void
3093handle_workitem_remove(dirrem, xp)
3094	struct dirrem *dirrem;
3095	struct vnode *xp;
3096{
3097	struct thread *td = curthread;
3098	struct inodedep *inodedep;
3099	struct vnode *vp;
3100	struct inode *ip;
3101	ino_t oldinum;
3102	int error;
3103
3104	if ((vp = xp) == NULL &&
3105	    (error = ffs_vget(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE,
3106	     &vp)) != 0) {
3107		softdep_error("handle_workitem_remove: vget", error);
3108		return;
3109	}
3110	ip = VTOI(vp);
3111	ACQUIRE_LOCK(&lk);
3112	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0)
3113		panic("handle_workitem_remove: lost inodedep");
3114	/*
3115	 * Normal file deletion.
3116	 */
3117	if ((dirrem->dm_state & RMDIR) == 0) {
3118		ip->i_nlink--;
3119		DIP_SET(ip, i_nlink, ip->i_nlink);
3120		ip->i_flag |= IN_CHANGE;
3121		if (ip->i_nlink < ip->i_effnlink)
3122			panic("handle_workitem_remove: bad file delta");
3123		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3124		num_dirrem -= 1;
3125		FREE_LOCK(&lk);
3126		vput(vp);
3127		WORKITEM_FREE(dirrem, D_DIRREM);
3128		return;
3129	}
3130	/*
3131	 * Directory deletion. Decrement reference count for both the
3132	 * just deleted parent directory entry and the reference for ".".
3133	 * Next truncate the directory to length zero. When the
3134	 * truncation completes, arrange to have the reference count on
3135	 * the parent decremented to account for the loss of "..".
3136	 */
3137	ip->i_nlink -= 2;
3138	DIP_SET(ip, i_nlink, ip->i_nlink);
3139	ip->i_flag |= IN_CHANGE;
3140	if (ip->i_nlink < ip->i_effnlink)
3141		panic("handle_workitem_remove: bad dir delta");
3142	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3143	FREE_LOCK(&lk);
3144	if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0)
3145		softdep_error("handle_workitem_remove: truncate", error);
3146	ACQUIRE_LOCK(&lk);
3147	/*
3148	 * Rename a directory to a new parent. Since, we are both deleting
3149	 * and creating a new directory entry, the link count on the new
3150	 * directory should not change. Thus we skip the followup dirrem.
3151	 */
3152	if (dirrem->dm_state & DIRCHG) {
3153		num_dirrem -= 1;
3154		FREE_LOCK(&lk);
3155		vput(vp);
3156		WORKITEM_FREE(dirrem, D_DIRREM);
3157		return;
3158	}
3159	/*
3160	 * If the inodedep does not exist, then the zero'ed inode has
3161	 * been written to disk. If the allocated inode has never been
3162	 * written to disk, then the on-disk inode is zero'ed. In either
3163	 * case we can remove the file immediately.
3164	 */
3165	dirrem->dm_state = 0;
3166	oldinum = dirrem->dm_oldinum;
3167	dirrem->dm_oldinum = dirrem->dm_dirinum;
3168	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
3169	    check_inode_unwritten(inodedep)) {
3170		FREE_LOCK(&lk);
3171		vput(vp);
3172		handle_workitem_remove(dirrem, NULL);
3173		return;
3174	}
3175	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3176	FREE_LOCK(&lk);
3177	vput(vp);
3178}
3179
3180/*
3181 * Inode de-allocation dependencies.
3182 *
3183 * When an inode's link count is reduced to zero, it can be de-allocated. We
3184 * found it convenient to postpone de-allocation until after the inode is
3185 * written to disk with its new link count (zero).  At this point, all of the
3186 * on-disk inode's block pointers are nullified and, with careful dependency
3187 * list ordering, all dependencies related to the inode will be satisfied and
3188 * the corresponding dependency structures de-allocated.  So, if/when the
3189 * inode is reused, there will be no mixing of old dependencies with new
3190 * ones.  This artificial dependency is set up by the block de-allocation
3191 * procedure above (softdep_setup_freeblocks) and completed by the
3192 * following procedure.
3193 */
3194static void
3195handle_workitem_freefile(freefile)
3196	struct freefile *freefile;
3197{
3198	struct fs *fs;
3199	struct inodedep *idp;
3200	struct ufsmount *ump;
3201	int error;
3202
3203	ump = VFSTOUFS(freefile->fx_mnt);
3204	fs = ump->um_fs;
3205#ifdef DEBUG
3206	ACQUIRE_LOCK(&lk);
3207	error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp);
3208	FREE_LOCK(&lk);
3209	if (error)
3210		panic("handle_workitem_freefile: inodedep survived");
3211#endif
3212	UFS_LOCK(ump);
3213	fs->fs_pendinginodes -= 1;
3214	UFS_UNLOCK(ump);
3215	if ((error = ffs_freefile(VFSTOUFS(freefile->fx_mnt), fs,
3216	    freefile->fx_devvp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3217		softdep_error("handle_workitem_freefile", error);
3218	WORKITEM_FREE(freefile, D_FREEFILE);
3219}
3220
3221int
3222softdep_disk_prewrite(struct buf *bp)
3223{
3224	int error;
3225	struct vnode *vp = bp->b_vp;
3226
3227	KASSERT(bp->b_iocmd == BIO_WRITE,
3228	    ("softdep_disk_prewrite on non-BIO_WRITE buffer"));
3229	if ((bp->b_flags & B_VALIDSUSPWRT) == 0 &&
3230	    bp->b_vp != NULL && bp->b_vp->v_mount != NULL &&
3231	    (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0)
3232		panic("softdep_disk_prewrite: bad I/O");
3233	bp->b_flags &= ~B_VALIDSUSPWRT;
3234	if (LIST_FIRST(&bp->b_dep) != NULL)
3235		buf_start(bp);
3236	mp_fixme("This should require the vnode lock.");
3237	if ((vp->v_vflag & VV_COPYONWRITE) &&
3238	    vp->v_rdev->si_snapdata != NULL &&
3239	    (error = (ffs_copyonwrite)(vp, bp)) != 0 &&
3240	    error != EOPNOTSUPP) {
3241		bp->b_error = error;
3242		bp->b_ioflags |= BIO_ERROR;
3243		bufdone(bp);
3244		return (1);
3245	}
3246	return (0);
3247}
3248
3249
3250/*
3251 * Disk writes.
3252 *
3253 * The dependency structures constructed above are most actively used when file
3254 * system blocks are written to disk.  No constraints are placed on when a
3255 * block can be written, but unsatisfied update dependencies are made safe by
3256 * modifying (or replacing) the source memory for the duration of the disk
3257 * write.  When the disk write completes, the memory block is again brought
3258 * up-to-date.
3259 *
3260 * In-core inode structure reclamation.
3261 *
3262 * Because there are a finite number of "in-core" inode structures, they are
3263 * reused regularly.  By transferring all inode-related dependencies to the
3264 * in-memory inode block and indexing them separately (via "inodedep"s), we
3265 * can allow "in-core" inode structures to be reused at any time and avoid
3266 * any increase in contention.
3267 *
3268 * Called just before entering the device driver to initiate a new disk I/O.
3269 * The buffer must be locked, thus, no I/O completion operations can occur
3270 * while we are manipulating its associated dependencies.
3271 */
3272static void
3273softdep_disk_io_initiation(bp)
3274	struct buf *bp;		/* structure describing disk write to occur */
3275{
3276	struct worklist *wk, *nextwk;
3277	struct indirdep *indirdep;
3278	struct inodedep *inodedep;
3279
3280	/*
3281	 * We only care about write operations. There should never
3282	 * be dependencies for reads.
3283	 */
3284	if (bp->b_iocmd != BIO_WRITE)
3285		panic("softdep_disk_io_initiation: not write");
3286	ACQUIRE_LOCK(&lk);
3287	/*
3288	 * Do any necessary pre-I/O processing.
3289	 */
3290	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, nextwk) {
3291		switch (wk->wk_type) {
3292
3293		case D_PAGEDEP:
3294			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3295			continue;
3296
3297		case D_INODEDEP:
3298			inodedep = WK_INODEDEP(wk);
3299			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
3300				initiate_write_inodeblock_ufs1(inodedep, bp);
3301			else
3302				initiate_write_inodeblock_ufs2(inodedep, bp);
3303			continue;
3304
3305		case D_INDIRDEP:
3306			indirdep = WK_INDIRDEP(wk);
3307			if (indirdep->ir_state & GOINGAWAY)
3308				panic("disk_io_initiation: indirdep gone");
3309			/*
3310			 * If there are no remaining dependencies, this
3311			 * will be writing the real pointers, so the
3312			 * dependency can be freed.
3313			 */
3314			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3315				struct buf *bp;
3316
3317				bp = indirdep->ir_savebp;
3318				bp->b_flags |= B_INVAL | B_NOCACHE;
3319				/* inline expand WORKLIST_REMOVE(wk); */
3320				wk->wk_state &= ~ONWORKLIST;
3321				LIST_REMOVE(wk, wk_list);
3322				WORKITEM_FREE(indirdep, D_INDIRDEP);
3323				FREE_LOCK(&lk);
3324				brelse(bp);
3325				ACQUIRE_LOCK(&lk);
3326				continue;
3327			}
3328			/*
3329			 * Replace up-to-date version with safe version.
3330			 */
3331			FREE_LOCK(&lk);
3332			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3333			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3334			ACQUIRE_LOCK(&lk);
3335			indirdep->ir_state &= ~ATTACHED;
3336			indirdep->ir_state |= UNDONE;
3337			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3338			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3339			    bp->b_bcount);
3340			continue;
3341
3342		case D_MKDIR:
3343		case D_BMSAFEMAP:
3344		case D_ALLOCDIRECT:
3345		case D_ALLOCINDIR:
3346			continue;
3347
3348		default:
3349			panic("handle_disk_io_initiation: Unexpected type %s",
3350			    TYPENAME(wk->wk_type));
3351			/* NOTREACHED */
3352		}
3353	}
3354	FREE_LOCK(&lk);
3355}
3356
3357/*
3358 * Called from within the procedure above to deal with unsatisfied
3359 * allocation dependencies in a directory. The buffer must be locked,
3360 * thus, no I/O completion operations can occur while we are
3361 * manipulating its associated dependencies.
3362 */
3363static void
3364initiate_write_filepage(pagedep, bp)
3365	struct pagedep *pagedep;
3366	struct buf *bp;
3367{
3368	struct diradd *dap;
3369	struct direct *ep;
3370	int i;
3371
3372	if (pagedep->pd_state & IOSTARTED) {
3373		/*
3374		 * This can only happen if there is a driver that does not
3375		 * understand chaining. Here biodone will reissue the call
3376		 * to strategy for the incomplete buffers.
3377		 */
3378		printf("initiate_write_filepage: already started\n");
3379		return;
3380	}
3381	pagedep->pd_state |= IOSTARTED;
3382	for (i = 0; i < DAHASHSZ; i++) {
3383		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3384			ep = (struct direct *)
3385			    ((char *)bp->b_data + dap->da_offset);
3386			if (ep->d_ino != dap->da_newinum)
3387				panic("%s: dir inum %d != new %d",
3388				    "initiate_write_filepage",
3389				    ep->d_ino, dap->da_newinum);
3390			if (dap->da_state & DIRCHG)
3391				ep->d_ino = dap->da_previous->dm_oldinum;
3392			else
3393				ep->d_ino = 0;
3394			dap->da_state &= ~ATTACHED;
3395			dap->da_state |= UNDONE;
3396		}
3397	}
3398}
3399
3400/*
3401 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
3402 * Note that any bug fixes made to this routine must be done in the
3403 * version found below.
3404 *
3405 * Called from within the procedure above to deal with unsatisfied
3406 * allocation dependencies in an inodeblock. The buffer must be
3407 * locked, thus, no I/O completion operations can occur while we
3408 * are manipulating its associated dependencies.
3409 */
3410static void
3411initiate_write_inodeblock_ufs1(inodedep, bp)
3412	struct inodedep *inodedep;
3413	struct buf *bp;			/* The inode block */
3414{
3415	struct allocdirect *adp, *lastadp;
3416	struct ufs1_dinode *dp;
3417	struct fs *fs;
3418	ufs_lbn_t i, prevlbn = 0;
3419	int deplist;
3420
3421	if (inodedep->id_state & IOSTARTED)
3422		panic("initiate_write_inodeblock_ufs1: already started");
3423	inodedep->id_state |= IOSTARTED;
3424	fs = inodedep->id_fs;
3425	dp = (struct ufs1_dinode *)bp->b_data +
3426	    ino_to_fsbo(fs, inodedep->id_ino);
3427	/*
3428	 * If the bitmap is not yet written, then the allocated
3429	 * inode cannot be written to disk.
3430	 */
3431	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3432		if (inodedep->id_savedino1 != NULL)
3433			panic("initiate_write_inodeblock_ufs1: I/O underway");
3434		FREE_LOCK(&lk);
3435		MALLOC(inodedep->id_savedino1, struct ufs1_dinode *,
3436		    sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS);
3437		ACQUIRE_LOCK(&lk);
3438		*inodedep->id_savedino1 = *dp;
3439		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3440		return;
3441	}
3442	/*
3443	 * If no dependencies, then there is nothing to roll back.
3444	 */
3445	inodedep->id_savedsize = dp->di_size;
3446	inodedep->id_savedextsize = 0;
3447	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3448		return;
3449	/*
3450	 * Set the dependencies to busy.
3451	 */
3452	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3453	     adp = TAILQ_NEXT(adp, ad_next)) {
3454#ifdef DIAGNOSTIC
3455		if (deplist != 0 && prevlbn >= adp->ad_lbn)
3456			panic("softdep_write_inodeblock: lbn order");
3457		prevlbn = adp->ad_lbn;
3458		if (adp->ad_lbn < NDADDR &&
3459		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
3460			panic("%s: direct pointer #%jd mismatch %d != %jd",
3461			    "softdep_write_inodeblock",
3462			    (intmax_t)adp->ad_lbn,
3463			    dp->di_db[adp->ad_lbn],
3464			    (intmax_t)adp->ad_newblkno);
3465		if (adp->ad_lbn >= NDADDR &&
3466		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
3467			panic("%s: indirect pointer #%jd mismatch %d != %jd",
3468			    "softdep_write_inodeblock",
3469			    (intmax_t)adp->ad_lbn - NDADDR,
3470			    dp->di_ib[adp->ad_lbn - NDADDR],
3471			    (intmax_t)adp->ad_newblkno);
3472		deplist |= 1 << adp->ad_lbn;
3473		if ((adp->ad_state & ATTACHED) == 0)
3474			panic("softdep_write_inodeblock: Unknown state 0x%x",
3475			    adp->ad_state);
3476#endif /* DIAGNOSTIC */
3477		adp->ad_state &= ~ATTACHED;
3478		adp->ad_state |= UNDONE;
3479	}
3480	/*
3481	 * The on-disk inode cannot claim to be any larger than the last
3482	 * fragment that has been written. Otherwise, the on-disk inode
3483	 * might have fragments that were not the last block in the file
3484	 * which would corrupt the filesystem.
3485	 */
3486	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3487	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3488		if (adp->ad_lbn >= NDADDR)
3489			break;
3490		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3491		/* keep going until hitting a rollback to a frag */
3492		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3493			continue;
3494		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3495		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3496#ifdef DIAGNOSTIC
3497			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
3498				panic("softdep_write_inodeblock: lost dep1");
3499#endif /* DIAGNOSTIC */
3500			dp->di_db[i] = 0;
3501		}
3502		for (i = 0; i < NIADDR; i++) {
3503#ifdef DIAGNOSTIC
3504			if (dp->di_ib[i] != 0 &&
3505			    (deplist & ((1 << NDADDR) << i)) == 0)
3506				panic("softdep_write_inodeblock: lost dep2");
3507#endif /* DIAGNOSTIC */
3508			dp->di_ib[i] = 0;
3509		}
3510		return;
3511	}
3512	/*
3513	 * If we have zero'ed out the last allocated block of the file,
3514	 * roll back the size to the last currently allocated block.
3515	 * We know that this last allocated block is a full-sized as
3516	 * we already checked for fragments in the loop above.
3517	 */
3518	if (lastadp != NULL &&
3519	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3520		for (i = lastadp->ad_lbn; i >= 0; i--)
3521			if (dp->di_db[i] != 0)
3522				break;
3523		dp->di_size = (i + 1) * fs->fs_bsize;
3524	}
3525	/*
3526	 * The only dependencies are for indirect blocks.
3527	 *
3528	 * The file size for indirect block additions is not guaranteed.
3529	 * Such a guarantee would be non-trivial to achieve. The conventional
3530	 * synchronous write implementation also does not make this guarantee.
3531	 * Fsck should catch and fix discrepancies. Arguably, the file size
3532	 * can be over-estimated without destroying integrity when the file
3533	 * moves into the indirect blocks (i.e., is large). If we want to
3534	 * postpone fsck, we are stuck with this argument.
3535	 */
3536	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3537		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3538}
3539
3540/*
3541 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
3542 * Note that any bug fixes made to this routine must be done in the
3543 * version found above.
3544 *
3545 * Called from within the procedure above to deal with unsatisfied
3546 * allocation dependencies in an inodeblock. The buffer must be
3547 * locked, thus, no I/O completion operations can occur while we
3548 * are manipulating its associated dependencies.
3549 */
3550static void
3551initiate_write_inodeblock_ufs2(inodedep, bp)
3552	struct inodedep *inodedep;
3553	struct buf *bp;			/* The inode block */
3554{
3555	struct allocdirect *adp, *lastadp;
3556	struct ufs2_dinode *dp;
3557	struct fs *fs;
3558	ufs_lbn_t i, prevlbn = 0;
3559	int deplist;
3560
3561	if (inodedep->id_state & IOSTARTED)
3562		panic("initiate_write_inodeblock_ufs2: already started");
3563	inodedep->id_state |= IOSTARTED;
3564	fs = inodedep->id_fs;
3565	dp = (struct ufs2_dinode *)bp->b_data +
3566	    ino_to_fsbo(fs, inodedep->id_ino);
3567	/*
3568	 * If the bitmap is not yet written, then the allocated
3569	 * inode cannot be written to disk.
3570	 */
3571	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3572		if (inodedep->id_savedino2 != NULL)
3573			panic("initiate_write_inodeblock_ufs2: I/O underway");
3574		FREE_LOCK(&lk);
3575		MALLOC(inodedep->id_savedino2, struct ufs2_dinode *,
3576		    sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS);
3577		ACQUIRE_LOCK(&lk);
3578		*inodedep->id_savedino2 = *dp;
3579		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
3580		return;
3581	}
3582	/*
3583	 * If no dependencies, then there is nothing to roll back.
3584	 */
3585	inodedep->id_savedsize = dp->di_size;
3586	inodedep->id_savedextsize = dp->di_extsize;
3587	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL &&
3588	    TAILQ_FIRST(&inodedep->id_extupdt) == NULL)
3589		return;
3590	/*
3591	 * Set the ext data dependencies to busy.
3592	 */
3593	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
3594	     adp = TAILQ_NEXT(adp, ad_next)) {
3595#ifdef DIAGNOSTIC
3596		if (deplist != 0 && prevlbn >= adp->ad_lbn)
3597			panic("softdep_write_inodeblock: lbn order");
3598		prevlbn = adp->ad_lbn;
3599		if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno)
3600			panic("%s: direct pointer #%jd mismatch %jd != %jd",
3601			    "softdep_write_inodeblock",
3602			    (intmax_t)adp->ad_lbn,
3603			    (intmax_t)dp->di_extb[adp->ad_lbn],
3604			    (intmax_t)adp->ad_newblkno);
3605		deplist |= 1 << adp->ad_lbn;
3606		if ((adp->ad_state & ATTACHED) == 0)
3607			panic("softdep_write_inodeblock: Unknown state 0x%x",
3608			    adp->ad_state);
3609#endif /* DIAGNOSTIC */
3610		adp->ad_state &= ~ATTACHED;
3611		adp->ad_state |= UNDONE;
3612	}
3613	/*
3614	 * The on-disk inode cannot claim to be any larger than the last
3615	 * fragment that has been written. Otherwise, the on-disk inode
3616	 * might have fragments that were not the last block in the ext
3617	 * data which would corrupt the filesystem.
3618	 */
3619	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
3620	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3621		dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno;
3622		/* keep going until hitting a rollback to a frag */
3623		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3624			continue;
3625		dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3626		for (i = adp->ad_lbn + 1; i < NXADDR; i++) {
3627#ifdef DIAGNOSTIC
3628			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
3629				panic("softdep_write_inodeblock: lost dep1");
3630#endif /* DIAGNOSTIC */
3631			dp->di_extb[i] = 0;
3632		}
3633		lastadp = NULL;
3634		break;
3635	}
3636	/*
3637	 * If we have zero'ed out the last allocated block of the ext
3638	 * data, roll back the size to the last currently allocated block.
3639	 * We know that this last allocated block is a full-sized as
3640	 * we already checked for fragments in the loop above.
3641	 */
3642	if (lastadp != NULL &&
3643	    dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3644		for (i = lastadp->ad_lbn; i >= 0; i--)
3645			if (dp->di_extb[i] != 0)
3646				break;
3647		dp->di_extsize = (i + 1) * fs->fs_bsize;
3648	}
3649	/*
3650	 * Set the file data dependencies to busy.
3651	 */
3652	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3653	     adp = TAILQ_NEXT(adp, ad_next)) {
3654#ifdef DIAGNOSTIC
3655		if (deplist != 0 && prevlbn >= adp->ad_lbn)
3656			panic("softdep_write_inodeblock: lbn order");
3657		prevlbn = adp->ad_lbn;
3658		if (adp->ad_lbn < NDADDR &&
3659		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
3660			panic("%s: direct pointer #%jd mismatch %jd != %jd",
3661			    "softdep_write_inodeblock",
3662			    (intmax_t)adp->ad_lbn,
3663			    (intmax_t)dp->di_db[adp->ad_lbn],
3664			    (intmax_t)adp->ad_newblkno);
3665		if (adp->ad_lbn >= NDADDR &&
3666		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
3667			panic("%s indirect pointer #%jd mismatch %jd != %jd",
3668			    "softdep_write_inodeblock:",
3669			    (intmax_t)adp->ad_lbn - NDADDR,
3670			    (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR],
3671			    (intmax_t)adp->ad_newblkno);
3672		deplist |= 1 << adp->ad_lbn;
3673		if ((adp->ad_state & ATTACHED) == 0)
3674			panic("softdep_write_inodeblock: Unknown state 0x%x",
3675			    adp->ad_state);
3676#endif /* DIAGNOSTIC */
3677		adp->ad_state &= ~ATTACHED;
3678		adp->ad_state |= UNDONE;
3679	}
3680	/*
3681	 * The on-disk inode cannot claim to be any larger than the last
3682	 * fragment that has been written. Otherwise, the on-disk inode
3683	 * might have fragments that were not the last block in the file
3684	 * which would corrupt the filesystem.
3685	 */
3686	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3687	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3688		if (adp->ad_lbn >= NDADDR)
3689			break;
3690		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3691		/* keep going until hitting a rollback to a frag */
3692		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3693			continue;
3694		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3695		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3696#ifdef DIAGNOSTIC
3697			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
3698				panic("softdep_write_inodeblock: lost dep2");
3699#endif /* DIAGNOSTIC */
3700			dp->di_db[i] = 0;
3701		}
3702		for (i = 0; i < NIADDR; i++) {
3703#ifdef DIAGNOSTIC
3704			if (dp->di_ib[i] != 0 &&
3705			    (deplist & ((1 << NDADDR) << i)) == 0)
3706				panic("softdep_write_inodeblock: lost dep3");
3707#endif /* DIAGNOSTIC */
3708			dp->di_ib[i] = 0;
3709		}
3710		return;
3711	}
3712	/*
3713	 * If we have zero'ed out the last allocated block of the file,
3714	 * roll back the size to the last currently allocated block.
3715	 * We know that this last allocated block is a full-sized as
3716	 * we already checked for fragments in the loop above.
3717	 */
3718	if (lastadp != NULL &&
3719	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3720		for (i = lastadp->ad_lbn; i >= 0; i--)
3721			if (dp->di_db[i] != 0)
3722				break;
3723		dp->di_size = (i + 1) * fs->fs_bsize;
3724	}
3725	/*
3726	 * The only dependencies are for indirect blocks.
3727	 *
3728	 * The file size for indirect block additions is not guaranteed.
3729	 * Such a guarantee would be non-trivial to achieve. The conventional
3730	 * synchronous write implementation also does not make this guarantee.
3731	 * Fsck should catch and fix discrepancies. Arguably, the file size
3732	 * can be over-estimated without destroying integrity when the file
3733	 * moves into the indirect blocks (i.e., is large). If we want to
3734	 * postpone fsck, we are stuck with this argument.
3735	 */
3736	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3737		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3738}
3739
3740/*
3741 * This routine is called during the completion interrupt
3742 * service routine for a disk write (from the procedure called
3743 * by the device driver to inform the filesystem caches of
3744 * a request completion).  It should be called early in this
3745 * procedure, before the block is made available to other
3746 * processes or other routines are called.
3747 */
3748static void
3749softdep_disk_write_complete(bp)
3750	struct buf *bp;		/* describes the completed disk write */
3751{
3752	struct worklist *wk;
3753	struct worklist *owk;
3754	struct workhead reattach;
3755	struct newblk *newblk;
3756	struct allocindir *aip;
3757	struct allocdirect *adp;
3758	struct indirdep *indirdep;
3759	struct inodedep *inodedep;
3760	struct bmsafemap *bmsafemap;
3761
3762	/*
3763	 * If an error occurred while doing the write, then the data
3764	 * has not hit the disk and the dependencies cannot be unrolled.
3765	 */
3766	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
3767		return;
3768	LIST_INIT(&reattach);
3769	/*
3770	 * This lock must not be released anywhere in this code segment.
3771	 */
3772	ACQUIRE_LOCK(&lk);
3773	owk = NULL;
3774	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3775		WORKLIST_REMOVE(wk);
3776		if (wk == owk)
3777			panic("duplicate worklist: %p\n", wk);
3778		owk = wk;
3779		switch (wk->wk_type) {
3780
3781		case D_PAGEDEP:
3782			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3783				WORKLIST_INSERT(&reattach, wk);
3784			continue;
3785
3786		case D_INODEDEP:
3787			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3788				WORKLIST_INSERT(&reattach, wk);
3789			continue;
3790
3791		case D_BMSAFEMAP:
3792			bmsafemap = WK_BMSAFEMAP(wk);
3793			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3794				newblk->nb_state |= DEPCOMPLETE;
3795				newblk->nb_bmsafemap = NULL;
3796				LIST_REMOVE(newblk, nb_deps);
3797			}
3798			while ((adp =
3799			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3800				adp->ad_state |= DEPCOMPLETE;
3801				adp->ad_buf = NULL;
3802				LIST_REMOVE(adp, ad_deps);
3803				handle_allocdirect_partdone(adp);
3804			}
3805			while ((aip =
3806			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3807				aip->ai_state |= DEPCOMPLETE;
3808				aip->ai_buf = NULL;
3809				LIST_REMOVE(aip, ai_deps);
3810				handle_allocindir_partdone(aip);
3811			}
3812			while ((inodedep =
3813			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3814				inodedep->id_state |= DEPCOMPLETE;
3815				LIST_REMOVE(inodedep, id_deps);
3816				inodedep->id_buf = NULL;
3817			}
3818			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3819			continue;
3820
3821		case D_MKDIR:
3822			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3823			continue;
3824
3825		case D_ALLOCDIRECT:
3826			adp = WK_ALLOCDIRECT(wk);
3827			adp->ad_state |= COMPLETE;
3828			handle_allocdirect_partdone(adp);
3829			continue;
3830
3831		case D_ALLOCINDIR:
3832			aip = WK_ALLOCINDIR(wk);
3833			aip->ai_state |= COMPLETE;
3834			handle_allocindir_partdone(aip);
3835			continue;
3836
3837		case D_INDIRDEP:
3838			indirdep = WK_INDIRDEP(wk);
3839			if (indirdep->ir_state & GOINGAWAY)
3840				panic("disk_write_complete: indirdep gone");
3841			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3842			FREE(indirdep->ir_saveddata, M_INDIRDEP);
3843			indirdep->ir_saveddata = 0;
3844			indirdep->ir_state &= ~UNDONE;
3845			indirdep->ir_state |= ATTACHED;
3846			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3847				handle_allocindir_partdone(aip);
3848				if (aip == LIST_FIRST(&indirdep->ir_donehd))
3849					panic("disk_write_complete: not gone");
3850			}
3851			WORKLIST_INSERT(&reattach, wk);
3852			if ((bp->b_flags & B_DELWRI) == 0)
3853				stat_indir_blk_ptrs++;
3854			bdirty(bp);
3855			continue;
3856
3857		default:
3858			panic("handle_disk_write_complete: Unknown type %s",
3859			    TYPENAME(wk->wk_type));
3860			/* NOTREACHED */
3861		}
3862	}
3863	/*
3864	 * Reattach any requests that must be redone.
3865	 */
3866	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3867		WORKLIST_REMOVE(wk);
3868		WORKLIST_INSERT(&bp->b_dep, wk);
3869	}
3870	FREE_LOCK(&lk);
3871}
3872
3873/*
3874 * Called from within softdep_disk_write_complete above. Note that
3875 * this routine is always called from interrupt level with further
3876 * splbio interrupts blocked.
3877 */
3878static void
3879handle_allocdirect_partdone(adp)
3880	struct allocdirect *adp;	/* the completed allocdirect */
3881{
3882	struct allocdirectlst *listhead;
3883	struct allocdirect *listadp;
3884	struct inodedep *inodedep;
3885	long bsize, delay;
3886
3887	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3888		return;
3889	if (adp->ad_buf != NULL)
3890		panic("handle_allocdirect_partdone: dangling dep");
3891	/*
3892	 * The on-disk inode cannot claim to be any larger than the last
3893	 * fragment that has been written. Otherwise, the on-disk inode
3894	 * might have fragments that were not the last block in the file
3895	 * which would corrupt the filesystem. Thus, we cannot free any
3896	 * allocdirects after one whose ad_oldblkno claims a fragment as
3897	 * these blocks must be rolled back to zero before writing the inode.
3898	 * We check the currently active set of allocdirects in id_inoupdt
3899	 * or id_extupdt as appropriate.
3900	 */
3901	inodedep = adp->ad_inodedep;
3902	bsize = inodedep->id_fs->fs_bsize;
3903	if (adp->ad_state & EXTDATA)
3904		listhead = &inodedep->id_extupdt;
3905	else
3906		listhead = &inodedep->id_inoupdt;
3907	TAILQ_FOREACH(listadp, listhead, ad_next) {
3908		/* found our block */
3909		if (listadp == adp)
3910			break;
3911		/* continue if ad_oldlbn is not a fragment */
3912		if (listadp->ad_oldsize == 0 ||
3913		    listadp->ad_oldsize == bsize)
3914			continue;
3915		/* hit a fragment */
3916		return;
3917	}
3918	/*
3919	 * If we have reached the end of the current list without
3920	 * finding the just finished dependency, then it must be
3921	 * on the future dependency list. Future dependencies cannot
3922	 * be freed until they are moved to the current list.
3923	 */
3924	if (listadp == NULL) {
3925#ifdef DEBUG
3926		if (adp->ad_state & EXTDATA)
3927			listhead = &inodedep->id_newextupdt;
3928		else
3929			listhead = &inodedep->id_newinoupdt;
3930		TAILQ_FOREACH(listadp, listhead, ad_next)
3931			/* found our block */
3932			if (listadp == adp)
3933				break;
3934		if (listadp == NULL)
3935			panic("handle_allocdirect_partdone: lost dep");
3936#endif /* DEBUG */
3937		return;
3938	}
3939	/*
3940	 * If we have found the just finished dependency, then free
3941	 * it along with anything that follows it that is complete.
3942	 * If the inode still has a bitmap dependency, then it has
3943	 * never been written to disk, hence the on-disk inode cannot
3944	 * reference the old fragment so we can free it without delay.
3945	 */
3946	delay = (inodedep->id_state & DEPCOMPLETE);
3947	for (; adp; adp = listadp) {
3948		listadp = TAILQ_NEXT(adp, ad_next);
3949		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3950			return;
3951		free_allocdirect(listhead, adp, delay);
3952	}
3953}
3954
3955/*
3956 * Called from within softdep_disk_write_complete above. Note that
3957 * this routine is always called from interrupt level with further
3958 * splbio interrupts blocked.
3959 */
3960static void
3961handle_allocindir_partdone(aip)
3962	struct allocindir *aip;		/* the completed allocindir */
3963{
3964	struct indirdep *indirdep;
3965
3966	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3967		return;
3968	if (aip->ai_buf != NULL)
3969		panic("handle_allocindir_partdone: dangling dependency");
3970	indirdep = aip->ai_indirdep;
3971	if (indirdep->ir_state & UNDONE) {
3972		LIST_REMOVE(aip, ai_next);
3973		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3974		return;
3975	}
3976	if (indirdep->ir_state & UFS1FMT)
3977		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3978		    aip->ai_newblkno;
3979	else
3980		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3981		    aip->ai_newblkno;
3982	LIST_REMOVE(aip, ai_next);
3983	if (aip->ai_freefrag != NULL)
3984		add_to_worklist(&aip->ai_freefrag->ff_list);
3985	WORKITEM_FREE(aip, D_ALLOCINDIR);
3986}
3987
3988/*
3989 * Called from within softdep_disk_write_complete above to restore
3990 * in-memory inode block contents to their most up-to-date state. Note
3991 * that this routine is always called from interrupt level with further
3992 * splbio interrupts blocked.
3993 */
3994static int
3995handle_written_inodeblock(inodedep, bp)
3996	struct inodedep *inodedep;
3997	struct buf *bp;		/* buffer containing the inode block */
3998{
3999	struct worklist *wk, *filefree;
4000	struct allocdirect *adp, *nextadp;
4001	struct ufs1_dinode *dp1 = NULL;
4002	struct ufs2_dinode *dp2 = NULL;
4003	int hadchanges, fstype;
4004
4005	if ((inodedep->id_state & IOSTARTED) == 0)
4006		panic("handle_written_inodeblock: not started");
4007	inodedep->id_state &= ~IOSTARTED;
4008	inodedep->id_state |= COMPLETE;
4009	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
4010		fstype = UFS1;
4011		dp1 = (struct ufs1_dinode *)bp->b_data +
4012		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4013	} else {
4014		fstype = UFS2;
4015		dp2 = (struct ufs2_dinode *)bp->b_data +
4016		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4017	}
4018	/*
4019	 * If we had to rollback the inode allocation because of
4020	 * bitmaps being incomplete, then simply restore it.
4021	 * Keep the block dirty so that it will not be reclaimed until
4022	 * all associated dependencies have been cleared and the
4023	 * corresponding updates written to disk.
4024	 */
4025	if (inodedep->id_savedino1 != NULL) {
4026		if (fstype == UFS1)
4027			*dp1 = *inodedep->id_savedino1;
4028		else
4029			*dp2 = *inodedep->id_savedino2;
4030		FREE(inodedep->id_savedino1, M_SAVEDINO);
4031		inodedep->id_savedino1 = NULL;
4032		if ((bp->b_flags & B_DELWRI) == 0)
4033			stat_inode_bitmap++;
4034		bdirty(bp);
4035		return (1);
4036	}
4037	/*
4038	 * Roll forward anything that had to be rolled back before
4039	 * the inode could be updated.
4040	 */
4041	hadchanges = 0;
4042	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
4043		nextadp = TAILQ_NEXT(adp, ad_next);
4044		if (adp->ad_state & ATTACHED)
4045			panic("handle_written_inodeblock: new entry");
4046		if (fstype == UFS1) {
4047			if (adp->ad_lbn < NDADDR) {
4048				if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4049					panic("%s %s #%jd mismatch %d != %jd",
4050					    "handle_written_inodeblock:",
4051					    "direct pointer",
4052					    (intmax_t)adp->ad_lbn,
4053					    dp1->di_db[adp->ad_lbn],
4054					    (intmax_t)adp->ad_oldblkno);
4055				dp1->di_db[adp->ad_lbn] = adp->ad_newblkno;
4056			} else {
4057				if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0)
4058					panic("%s: %s #%jd allocated as %d",
4059					    "handle_written_inodeblock",
4060					    "indirect pointer",
4061					    (intmax_t)adp->ad_lbn - NDADDR,
4062					    dp1->di_ib[adp->ad_lbn - NDADDR]);
4063				dp1->di_ib[adp->ad_lbn - NDADDR] =
4064				    adp->ad_newblkno;
4065			}
4066		} else {
4067			if (adp->ad_lbn < NDADDR) {
4068				if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4069					panic("%s: %s #%jd %s %jd != %jd",
4070					    "handle_written_inodeblock",
4071					    "direct pointer",
4072					    (intmax_t)adp->ad_lbn, "mismatch",
4073					    (intmax_t)dp2->di_db[adp->ad_lbn],
4074					    (intmax_t)adp->ad_oldblkno);
4075				dp2->di_db[adp->ad_lbn] = adp->ad_newblkno;
4076			} else {
4077				if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0)
4078					panic("%s: %s #%jd allocated as %jd",
4079					    "handle_written_inodeblock",
4080					    "indirect pointer",
4081					    (intmax_t)adp->ad_lbn - NDADDR,
4082					    (intmax_t)
4083					    dp2->di_ib[adp->ad_lbn - NDADDR]);
4084				dp2->di_ib[adp->ad_lbn - NDADDR] =
4085				    adp->ad_newblkno;
4086			}
4087		}
4088		adp->ad_state &= ~UNDONE;
4089		adp->ad_state |= ATTACHED;
4090		hadchanges = 1;
4091	}
4092	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
4093		nextadp = TAILQ_NEXT(adp, ad_next);
4094		if (adp->ad_state & ATTACHED)
4095			panic("handle_written_inodeblock: new entry");
4096		if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno)
4097			panic("%s: direct pointers #%jd %s %jd != %jd",
4098			    "handle_written_inodeblock",
4099			    (intmax_t)adp->ad_lbn, "mismatch",
4100			    (intmax_t)dp2->di_extb[adp->ad_lbn],
4101			    (intmax_t)adp->ad_oldblkno);
4102		dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno;
4103		adp->ad_state &= ~UNDONE;
4104		adp->ad_state |= ATTACHED;
4105		hadchanges = 1;
4106	}
4107	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
4108		stat_direct_blk_ptrs++;
4109	/*
4110	 * Reset the file size to its most up-to-date value.
4111	 */
4112	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
4113		panic("handle_written_inodeblock: bad size");
4114	if (fstype == UFS1) {
4115		if (dp1->di_size != inodedep->id_savedsize) {
4116			dp1->di_size = inodedep->id_savedsize;
4117			hadchanges = 1;
4118		}
4119	} else {
4120		if (dp2->di_size != inodedep->id_savedsize) {
4121			dp2->di_size = inodedep->id_savedsize;
4122			hadchanges = 1;
4123		}
4124		if (dp2->di_extsize != inodedep->id_savedextsize) {
4125			dp2->di_extsize = inodedep->id_savedextsize;
4126			hadchanges = 1;
4127		}
4128	}
4129	inodedep->id_savedsize = -1;
4130	inodedep->id_savedextsize = -1;
4131	/*
4132	 * If there were any rollbacks in the inode block, then it must be
4133	 * marked dirty so that its will eventually get written back in
4134	 * its correct form.
4135	 */
4136	if (hadchanges)
4137		bdirty(bp);
4138	/*
4139	 * Process any allocdirects that completed during the update.
4140	 */
4141	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
4142		handle_allocdirect_partdone(adp);
4143	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
4144		handle_allocdirect_partdone(adp);
4145	/*
4146	 * Process deallocations that were held pending until the
4147	 * inode had been written to disk. Freeing of the inode
4148	 * is delayed until after all blocks have been freed to
4149	 * avoid creation of new <vfsid, inum, lbn> triples
4150	 * before the old ones have been deleted.
4151	 */
4152	filefree = NULL;
4153	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
4154		WORKLIST_REMOVE(wk);
4155		switch (wk->wk_type) {
4156
4157		case D_FREEFILE:
4158			/*
4159			 * We defer adding filefree to the worklist until
4160			 * all other additions have been made to ensure
4161			 * that it will be done after all the old blocks
4162			 * have been freed.
4163			 */
4164			if (filefree != NULL)
4165				panic("handle_written_inodeblock: filefree");
4166			filefree = wk;
4167			continue;
4168
4169		case D_MKDIR:
4170			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
4171			continue;
4172
4173		case D_DIRADD:
4174			diradd_inode_written(WK_DIRADD(wk), inodedep);
4175			continue;
4176
4177		case D_FREEBLKS:
4178		case D_FREEFRAG:
4179		case D_DIRREM:
4180			add_to_worklist(wk);
4181			continue;
4182
4183		case D_NEWDIRBLK:
4184			free_newdirblk(WK_NEWDIRBLK(wk));
4185			continue;
4186
4187		default:
4188			panic("handle_written_inodeblock: Unknown type %s",
4189			    TYPENAME(wk->wk_type));
4190			/* NOTREACHED */
4191		}
4192	}
4193	if (filefree != NULL) {
4194		if (free_inodedep(inodedep) == 0)
4195			panic("handle_written_inodeblock: live inodedep");
4196		add_to_worklist(filefree);
4197		return (0);
4198	}
4199
4200	/*
4201	 * If no outstanding dependencies, free it.
4202	 */
4203	if (free_inodedep(inodedep) ||
4204	    (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
4205	     TAILQ_FIRST(&inodedep->id_extupdt) == 0))
4206		return (0);
4207	return (hadchanges);
4208}
4209
4210/*
4211 * Process a diradd entry after its dependent inode has been written.
4212 * This routine must be called with splbio interrupts blocked.
4213 */
4214static void
4215diradd_inode_written(dap, inodedep)
4216	struct diradd *dap;
4217	struct inodedep *inodedep;
4218{
4219	struct pagedep *pagedep;
4220
4221	dap->da_state |= COMPLETE;
4222	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4223		if (dap->da_state & DIRCHG)
4224			pagedep = dap->da_previous->dm_pagedep;
4225		else
4226			pagedep = dap->da_pagedep;
4227		LIST_REMOVE(dap, da_pdlist);
4228		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4229	}
4230	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
4231}
4232
4233/*
4234 * Handle the completion of a mkdir dependency.
4235 */
4236static void
4237handle_written_mkdir(mkdir, type)
4238	struct mkdir *mkdir;
4239	int type;
4240{
4241	struct diradd *dap;
4242	struct pagedep *pagedep;
4243
4244	if (mkdir->md_state != type)
4245		panic("handle_written_mkdir: bad type");
4246	dap = mkdir->md_diradd;
4247	dap->da_state &= ~type;
4248	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
4249		dap->da_state |= DEPCOMPLETE;
4250	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4251		if (dap->da_state & DIRCHG)
4252			pagedep = dap->da_previous->dm_pagedep;
4253		else
4254			pagedep = dap->da_pagedep;
4255		LIST_REMOVE(dap, da_pdlist);
4256		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4257	}
4258	LIST_REMOVE(mkdir, md_mkdirs);
4259	WORKITEM_FREE(mkdir, D_MKDIR);
4260}
4261
4262/*
4263 * Called from within softdep_disk_write_complete above.
4264 * A write operation was just completed. Removed inodes can
4265 * now be freed and associated block pointers may be committed.
4266 * Note that this routine is always called from interrupt level
4267 * with further splbio interrupts blocked.
4268 */
4269static int
4270handle_written_filepage(pagedep, bp)
4271	struct pagedep *pagedep;
4272	struct buf *bp;		/* buffer containing the written page */
4273{
4274	struct dirrem *dirrem;
4275	struct diradd *dap, *nextdap;
4276	struct direct *ep;
4277	int i, chgs;
4278
4279	if ((pagedep->pd_state & IOSTARTED) == 0)
4280		panic("handle_written_filepage: not started");
4281	pagedep->pd_state &= ~IOSTARTED;
4282	/*
4283	 * Process any directory removals that have been committed.
4284	 */
4285	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
4286		LIST_REMOVE(dirrem, dm_next);
4287		dirrem->dm_dirinum = pagedep->pd_ino;
4288		add_to_worklist(&dirrem->dm_list);
4289	}
4290	/*
4291	 * Free any directory additions that have been committed.
4292	 * If it is a newly allocated block, we have to wait until
4293	 * the on-disk directory inode claims the new block.
4294	 */
4295	if ((pagedep->pd_state & NEWBLOCK) == 0)
4296		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
4297			free_diradd(dap);
4298	/*
4299	 * Uncommitted directory entries must be restored.
4300	 */
4301	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
4302		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
4303		     dap = nextdap) {
4304			nextdap = LIST_NEXT(dap, da_pdlist);
4305			if (dap->da_state & ATTACHED)
4306				panic("handle_written_filepage: attached");
4307			ep = (struct direct *)
4308			    ((char *)bp->b_data + dap->da_offset);
4309			ep->d_ino = dap->da_newinum;
4310			dap->da_state &= ~UNDONE;
4311			dap->da_state |= ATTACHED;
4312			chgs = 1;
4313			/*
4314			 * If the inode referenced by the directory has
4315			 * been written out, then the dependency can be
4316			 * moved to the pending list.
4317			 */
4318			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4319				LIST_REMOVE(dap, da_pdlist);
4320				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
4321				    da_pdlist);
4322			}
4323		}
4324	}
4325	/*
4326	 * If there were any rollbacks in the directory, then it must be
4327	 * marked dirty so that its will eventually get written back in
4328	 * its correct form.
4329	 */
4330	if (chgs) {
4331		if ((bp->b_flags & B_DELWRI) == 0)
4332			stat_dir_entry++;
4333		bdirty(bp);
4334		return (1);
4335	}
4336	/*
4337	 * If we are not waiting for a new directory block to be
4338	 * claimed by its inode, then the pagedep will be freed.
4339	 * Otherwise it will remain to track any new entries on
4340	 * the page in case they are fsync'ed.
4341	 */
4342	if ((pagedep->pd_state & NEWBLOCK) == 0) {
4343		LIST_REMOVE(pagedep, pd_hash);
4344		WORKITEM_FREE(pagedep, D_PAGEDEP);
4345	}
4346	return (0);
4347}
4348
4349/*
4350 * Writing back in-core inode structures.
4351 *
4352 * The filesystem only accesses an inode's contents when it occupies an
4353 * "in-core" inode structure.  These "in-core" structures are separate from
4354 * the page frames used to cache inode blocks.  Only the latter are
4355 * transferred to/from the disk.  So, when the updated contents of the
4356 * "in-core" inode structure are copied to the corresponding in-memory inode
4357 * block, the dependencies are also transferred.  The following procedure is
4358 * called when copying a dirty "in-core" inode to a cached inode block.
4359 */
4360
4361/*
4362 * Called when an inode is loaded from disk. If the effective link count
4363 * differed from the actual link count when it was last flushed, then we
4364 * need to ensure that the correct effective link count is put back.
4365 */
4366void
4367softdep_load_inodeblock(ip)
4368	struct inode *ip;	/* the "in_core" copy of the inode */
4369{
4370	struct inodedep *inodedep;
4371
4372	/*
4373	 * Check for alternate nlink count.
4374	 */
4375	ip->i_effnlink = ip->i_nlink;
4376	ACQUIRE_LOCK(&lk);
4377	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4378		FREE_LOCK(&lk);
4379		return;
4380	}
4381	ip->i_effnlink -= inodedep->id_nlinkdelta;
4382	if (inodedep->id_state & SPACECOUNTED)
4383		ip->i_flag |= IN_SPACECOUNTED;
4384	FREE_LOCK(&lk);
4385}
4386
4387/*
4388 * This routine is called just before the "in-core" inode
4389 * information is to be copied to the in-memory inode block.
4390 * Recall that an inode block contains several inodes. If
4391 * the force flag is set, then the dependencies will be
4392 * cleared so that the update can always be made. Note that
4393 * the buffer is locked when this routine is called, so we
4394 * will never be in the middle of writing the inode block
4395 * to disk.
4396 */
4397void
4398softdep_update_inodeblock(ip, bp, waitfor)
4399	struct inode *ip;	/* the "in_core" copy of the inode */
4400	struct buf *bp;		/* the buffer containing the inode block */
4401	int waitfor;		/* nonzero => update must be allowed */
4402{
4403	struct inodedep *inodedep;
4404	struct worklist *wk;
4405	struct buf *ibp;
4406	int error;
4407
4408	/*
4409	 * If the effective link count is not equal to the actual link
4410	 * count, then we must track the difference in an inodedep while
4411	 * the inode is (potentially) tossed out of the cache. Otherwise,
4412	 * if there is no existing inodedep, then there are no dependencies
4413	 * to track.
4414	 */
4415	ACQUIRE_LOCK(&lk);
4416	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4417		FREE_LOCK(&lk);
4418		if (ip->i_effnlink != ip->i_nlink)
4419			panic("softdep_update_inodeblock: bad link count");
4420		return;
4421	}
4422	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
4423		panic("softdep_update_inodeblock: bad delta");
4424	/*
4425	 * Changes have been initiated. Anything depending on these
4426	 * changes cannot occur until this inode has been written.
4427	 */
4428	inodedep->id_state &= ~COMPLETE;
4429	if ((inodedep->id_state & ONWORKLIST) == 0)
4430		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
4431	/*
4432	 * Any new dependencies associated with the incore inode must
4433	 * now be moved to the list associated with the buffer holding
4434	 * the in-memory copy of the inode. Once merged process any
4435	 * allocdirects that are completed by the merger.
4436	 */
4437	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
4438	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4439		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4440	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
4441	if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL)
4442		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt));
4443	/*
4444	 * Now that the inode has been pushed into the buffer, the
4445	 * operations dependent on the inode being written to disk
4446	 * can be moved to the id_bufwait so that they will be
4447	 * processed when the buffer I/O completes.
4448	 */
4449	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4450		WORKLIST_REMOVE(wk);
4451		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4452	}
4453	/*
4454	 * Newly allocated inodes cannot be written until the bitmap
4455	 * that allocates them have been written (indicated by
4456	 * DEPCOMPLETE being set in id_state). If we are doing a
4457	 * forced sync (e.g., an fsync on a file), we force the bitmap
4458	 * to be written so that the update can be done.
4459	 */
4460	if (waitfor == 0) {
4461		FREE_LOCK(&lk);
4462		return;
4463	}
4464retry:
4465	if ((inodedep->id_state & DEPCOMPLETE) != 0) {
4466		FREE_LOCK(&lk);
4467		return;
4468	}
4469	ibp = inodedep->id_buf;
4470	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
4471	if (ibp == NULL) {
4472		/*
4473		 * If ibp came back as NULL, the dependency could have been
4474		 * freed while we slept.  Look it up again, and check to see
4475		 * that it has completed.
4476		 */
4477		if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0)
4478			goto retry;
4479		FREE_LOCK(&lk);
4480		return;
4481	}
4482	FREE_LOCK(&lk);
4483	if ((error = bwrite(ibp)) != 0)
4484		softdep_error("softdep_update_inodeblock: bwrite", error);
4485}
4486
4487/*
4488 * Merge the a new inode dependency list (such as id_newinoupdt) into an
4489 * old inode dependency list (such as id_inoupdt). This routine must be
4490 * called with splbio interrupts blocked.
4491 */
4492static void
4493merge_inode_lists(newlisthead, oldlisthead)
4494	struct allocdirectlst *newlisthead;
4495	struct allocdirectlst *oldlisthead;
4496{
4497	struct allocdirect *listadp, *newadp;
4498
4499	newadp = TAILQ_FIRST(newlisthead);
4500	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
4501		if (listadp->ad_lbn < newadp->ad_lbn) {
4502			listadp = TAILQ_NEXT(listadp, ad_next);
4503			continue;
4504		}
4505		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4506		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4507		if (listadp->ad_lbn == newadp->ad_lbn) {
4508			allocdirect_merge(oldlisthead, newadp,
4509			    listadp);
4510			listadp = newadp;
4511		}
4512		newadp = TAILQ_FIRST(newlisthead);
4513	}
4514	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
4515		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4516		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
4517	}
4518}
4519
4520/*
4521 * If we are doing an fsync, then we must ensure that any directory
4522 * entries for the inode have been written after the inode gets to disk.
4523 */
4524int
4525softdep_fsync(vp)
4526	struct vnode *vp;	/* the "in_core" copy of the inode */
4527{
4528	struct inodedep *inodedep;
4529	struct pagedep *pagedep;
4530	struct worklist *wk;
4531	struct diradd *dap;
4532	struct mount *mnt;
4533	struct vnode *pvp;
4534	struct inode *ip;
4535	struct buf *bp;
4536	struct fs *fs;
4537	struct thread *td = curthread;
4538	int error, flushparent;
4539	ino_t parentino;
4540	ufs_lbn_t lbn;
4541
4542	ip = VTOI(vp);
4543	fs = ip->i_fs;
4544	ACQUIRE_LOCK(&lk);
4545	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4546		FREE_LOCK(&lk);
4547		return (0);
4548	}
4549	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4550	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4551	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
4552	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
4553	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4554	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL)
4555		panic("softdep_fsync: pending ops");
4556	for (error = 0, flushparent = 0; ; ) {
4557		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4558			break;
4559		if (wk->wk_type != D_DIRADD)
4560			panic("softdep_fsync: Unexpected type %s",
4561			    TYPENAME(wk->wk_type));
4562		dap = WK_DIRADD(wk);
4563		/*
4564		 * Flush our parent if this directory entry has a MKDIR_PARENT
4565		 * dependency or is contained in a newly allocated block.
4566		 */
4567		if (dap->da_state & DIRCHG)
4568			pagedep = dap->da_previous->dm_pagedep;
4569		else
4570			pagedep = dap->da_pagedep;
4571		mnt = pagedep->pd_mnt;
4572		parentino = pagedep->pd_ino;
4573		lbn = pagedep->pd_lbn;
4574		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
4575			panic("softdep_fsync: dirty");
4576		if ((dap->da_state & MKDIR_PARENT) ||
4577		    (pagedep->pd_state & NEWBLOCK))
4578			flushparent = 1;
4579		else
4580			flushparent = 0;
4581		/*
4582		 * If we are being fsync'ed as part of vgone'ing this vnode,
4583		 * then we will not be able to release and recover the
4584		 * vnode below, so we just have to give up on writing its
4585		 * directory entry out. It will eventually be written, just
4586		 * not now, but then the user was not asking to have it
4587		 * written, so we are not breaking any promises.
4588		 */
4589		if (vp->v_iflag & VI_XLOCK)
4590			break;
4591		/*
4592		 * We prevent deadlock by always fetching inodes from the
4593		 * root, moving down the directory tree. Thus, when fetching
4594		 * our parent directory, we first try to get the lock. If
4595		 * that fails, we must unlock ourselves before requesting
4596		 * the lock on our parent. See the comment in ufs_lookup
4597		 * for details on possible races.
4598		 */
4599		FREE_LOCK(&lk);
4600		if (ffs_vget(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) {
4601			VOP_UNLOCK(vp, 0, td);
4602			error = ffs_vget(mnt, parentino, LK_EXCLUSIVE, &pvp);
4603			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
4604			if (error != 0)
4605				return (error);
4606		}
4607		/*
4608		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
4609		 * that are contained in direct blocks will be resolved by
4610		 * doing a ffs_update. Pagedeps contained in indirect blocks
4611		 * may require a complete sync'ing of the directory. So, we
4612		 * try the cheap and fast ffs_update first, and if that fails,
4613		 * then we do the slower ffs_syncvnode of the directory.
4614		 */
4615		if (flushparent) {
4616			if ((error = ffs_update(pvp, 1)) != 0) {
4617				vput(pvp);
4618				return (error);
4619			}
4620			if ((pagedep->pd_state & NEWBLOCK) &&
4621			    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
4622				vput(pvp);
4623				return (error);
4624			}
4625		}
4626		/*
4627		 * Flush directory page containing the inode's name.
4628		 */
4629		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
4630		    &bp);
4631		if (error == 0)
4632			error = bwrite(bp);
4633		else
4634			brelse(bp);
4635		vput(pvp);
4636		if (error != 0)
4637			return (error);
4638		ACQUIRE_LOCK(&lk);
4639		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4640			break;
4641	}
4642	FREE_LOCK(&lk);
4643	return (0);
4644}
4645
4646/*
4647 * Flush all the dirty bitmaps associated with the block device
4648 * before flushing the rest of the dirty blocks so as to reduce
4649 * the number of dependencies that will have to be rolled back.
4650 */
4651void
4652softdep_fsync_mountdev(vp)
4653	struct vnode *vp;
4654{
4655	struct buf *bp, *nbp;
4656	struct worklist *wk;
4657
4658	if (!vn_isdisk(vp, NULL))
4659		panic("softdep_fsync_mountdev: vnode not a disk");
4660	ACQUIRE_LOCK(&lk);
4661	VI_LOCK(vp);
4662	TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) {
4663		/*
4664		 * If it is already scheduled, skip to the next buffer.
4665		 */
4666		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
4667			continue;
4668
4669		if ((bp->b_flags & B_DELWRI) == 0)
4670			panic("softdep_fsync_mountdev: not dirty");
4671		/*
4672		 * We are only interested in bitmaps with outstanding
4673		 * dependencies.
4674		 */
4675		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4676		    wk->wk_type != D_BMSAFEMAP ||
4677		    (bp->b_vflags & BV_BKGRDINPROG)) {
4678			BUF_UNLOCK(bp);
4679			continue;
4680		}
4681		VI_UNLOCK(vp);
4682		FREE_LOCK(&lk);
4683		bremfree(bp);
4684		(void) bawrite(bp);
4685		ACQUIRE_LOCK(&lk);
4686		/*
4687		 * Since we may have slept during the I/O, we need
4688		 * to start from a known point.
4689		 */
4690		VI_LOCK(vp);
4691		nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
4692	}
4693	FREE_LOCK(&lk);
4694	drain_output(vp);
4695	VI_UNLOCK(vp);
4696}
4697
4698/*
4699 * This routine is called when we are trying to synchronously flush a
4700 * file. This routine must eliminate any filesystem metadata dependencies
4701 * so that the syncing routine can succeed by pushing the dirty blocks
4702 * associated with the file. If any I/O errors occur, they are returned.
4703 */
4704int
4705softdep_sync_metadata(struct vnode *vp)
4706{
4707	struct pagedep *pagedep;
4708	struct allocdirect *adp;
4709	struct allocindir *aip;
4710	struct buf *bp, *nbp;
4711	struct worklist *wk;
4712	int i, error, waitfor;
4713
4714	if (!DOINGSOFTDEP(vp))
4715		return (0);
4716	/*
4717	 * Ensure that any direct block dependencies have been cleared.
4718	 */
4719	ACQUIRE_LOCK(&lk);
4720	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4721		FREE_LOCK(&lk);
4722		return (error);
4723	}
4724	FREE_LOCK(&lk);
4725	/*
4726	 * For most files, the only metadata dependencies are the
4727	 * cylinder group maps that allocate their inode or blocks.
4728	 * The block allocation dependencies can be found by traversing
4729	 * the dependency lists for any buffers that remain on their
4730	 * dirty buffer list. The inode allocation dependency will
4731	 * be resolved when the inode is updated with MNT_WAIT.
4732	 * This work is done in two passes. The first pass grabs most
4733	 * of the buffers and begins asynchronously writing them. The
4734	 * only way to wait for these asynchronous writes is to sleep
4735	 * on the filesystem vnode which may stay busy for a long time
4736	 * if the filesystem is active. So, instead, we make a second
4737	 * pass over the dependencies blocking on each write. In the
4738	 * usual case we will be blocking against a write that we
4739	 * initiated, so when it is done the dependency will have been
4740	 * resolved. Thus the second pass is expected to end quickly.
4741	 */
4742	waitfor = MNT_NOWAIT;
4743
4744top:
4745	/*
4746	 * We must wait for any I/O in progress to finish so that
4747	 * all potential buffers on the dirty list will be visible.
4748	 */
4749	VI_LOCK(vp);
4750	drain_output(vp);
4751	while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) {
4752		bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT);
4753		if (bp)
4754			break;
4755	}
4756	VI_UNLOCK(vp);
4757	if (bp == NULL)
4758		return (0);
4759loop:
4760	/* While syncing snapshots, we must allow recursive lookups */
4761	bp->b_lock.lk_flags |= LK_CANRECURSE;
4762	ACQUIRE_LOCK(&lk);
4763	/*
4764	 * As we hold the buffer locked, none of its dependencies
4765	 * will disappear.
4766	 */
4767	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4768		switch (wk->wk_type) {
4769
4770		case D_ALLOCDIRECT:
4771			adp = WK_ALLOCDIRECT(wk);
4772			if (adp->ad_state & DEPCOMPLETE)
4773				continue;
4774			nbp = adp->ad_buf;
4775			nbp = getdirtybuf(nbp, &lk, waitfor);
4776			if (nbp == NULL)
4777				continue;
4778			FREE_LOCK(&lk);
4779			if (waitfor == MNT_NOWAIT) {
4780				bawrite(nbp);
4781			} else if ((error = bwrite(nbp)) != 0) {
4782				break;
4783			}
4784			ACQUIRE_LOCK(&lk);
4785			continue;
4786
4787		case D_ALLOCINDIR:
4788			aip = WK_ALLOCINDIR(wk);
4789			if (aip->ai_state & DEPCOMPLETE)
4790				continue;
4791			nbp = aip->ai_buf;
4792			nbp = getdirtybuf(nbp, &lk, waitfor);
4793			if (nbp == NULL)
4794				continue;
4795			FREE_LOCK(&lk);
4796			if (waitfor == MNT_NOWAIT) {
4797				bawrite(nbp);
4798			} else if ((error = bwrite(nbp)) != 0) {
4799				break;
4800			}
4801			ACQUIRE_LOCK(&lk);
4802			continue;
4803
4804		case D_INDIRDEP:
4805		restart:
4806
4807			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4808				if (aip->ai_state & DEPCOMPLETE)
4809					continue;
4810				nbp = aip->ai_buf;
4811				nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
4812				if (nbp == NULL)
4813					goto restart;
4814				FREE_LOCK(&lk);
4815				if ((error = bwrite(nbp)) != 0) {
4816					break;
4817				}
4818				ACQUIRE_LOCK(&lk);
4819				goto restart;
4820			}
4821			continue;
4822
4823		case D_INODEDEP:
4824			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4825			    WK_INODEDEP(wk)->id_ino)) != 0) {
4826				FREE_LOCK(&lk);
4827				break;
4828			}
4829			continue;
4830
4831		case D_PAGEDEP:
4832			/*
4833			 * We are trying to sync a directory that may
4834			 * have dependencies on both its own metadata
4835			 * and/or dependencies on the inodes of any
4836			 * recently allocated files. We walk its diradd
4837			 * lists pushing out the associated inode.
4838			 */
4839			pagedep = WK_PAGEDEP(wk);
4840			for (i = 0; i < DAHASHSZ; i++) {
4841				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4842					continue;
4843				if ((error =
4844				    flush_pagedep_deps(vp, pagedep->pd_mnt,
4845						&pagedep->pd_diraddhd[i]))) {
4846					FREE_LOCK(&lk);
4847					break;
4848				}
4849			}
4850			continue;
4851
4852		case D_MKDIR:
4853			/*
4854			 * This case should never happen if the vnode has
4855			 * been properly sync'ed. However, if this function
4856			 * is used at a place where the vnode has not yet
4857			 * been sync'ed, this dependency can show up. So,
4858			 * rather than panic, just flush it.
4859			 */
4860			nbp = WK_MKDIR(wk)->md_buf;
4861			nbp = getdirtybuf(nbp, &lk, waitfor);
4862			if (nbp == NULL)
4863				continue;
4864			FREE_LOCK(&lk);
4865			if (waitfor == MNT_NOWAIT) {
4866				bawrite(nbp);
4867			} else if ((error = bwrite(nbp)) != 0) {
4868				break;
4869			}
4870			ACQUIRE_LOCK(&lk);
4871			continue;
4872
4873		case D_BMSAFEMAP:
4874			/*
4875			 * This case should never happen if the vnode has
4876			 * been properly sync'ed. However, if this function
4877			 * is used at a place where the vnode has not yet
4878			 * been sync'ed, this dependency can show up. So,
4879			 * rather than panic, just flush it.
4880			 */
4881			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4882			nbp = getdirtybuf(nbp, &lk, waitfor);
4883			if (nbp == NULL)
4884				continue;
4885			FREE_LOCK(&lk);
4886			if (waitfor == MNT_NOWAIT) {
4887				bawrite(nbp);
4888			} else if ((error = bwrite(nbp)) != 0) {
4889				break;
4890			}
4891			ACQUIRE_LOCK(&lk);
4892			continue;
4893
4894		default:
4895			panic("softdep_sync_metadata: Unknown type %s",
4896			    TYPENAME(wk->wk_type));
4897			/* NOTREACHED */
4898		}
4899		/* We reach here only in error and unlocked */
4900		if (error == 0)
4901			panic("softdep_sync_metadata: zero error");
4902		bp->b_lock.lk_flags &= ~LK_CANRECURSE;
4903		bawrite(bp);
4904		return (error);
4905	}
4906	FREE_LOCK(&lk);
4907	VI_LOCK(vp);
4908	while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
4909		nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT);
4910		if (nbp)
4911			break;
4912	}
4913	VI_UNLOCK(vp);
4914	bp->b_lock.lk_flags &= ~LK_CANRECURSE;
4915	bawrite(bp);
4916	if (nbp != NULL) {
4917		bp = nbp;
4918		goto loop;
4919	}
4920	/*
4921	 * The brief unlock is to allow any pent up dependency
4922	 * processing to be done. Then proceed with the second pass.
4923	 */
4924	if (waitfor == MNT_NOWAIT) {
4925		waitfor = MNT_WAIT;
4926		goto top;
4927	}
4928
4929	/*
4930	 * If we have managed to get rid of all the dirty buffers,
4931	 * then we are done. For certain directories and block
4932	 * devices, we may need to do further work.
4933	 *
4934	 * We must wait for any I/O in progress to finish so that
4935	 * all potential buffers on the dirty list will be visible.
4936	 */
4937	VI_LOCK(vp);
4938	drain_output(vp);
4939	VI_UNLOCK(vp);
4940	return (0);
4941}
4942
4943/*
4944 * Flush the dependencies associated with an inodedep.
4945 * Called with splbio blocked.
4946 */
4947static int
4948flush_inodedep_deps(fs, ino)
4949	struct fs *fs;
4950	ino_t ino;
4951{
4952	struct inodedep *inodedep;
4953	int error, waitfor;
4954
4955	/*
4956	 * This work is done in two passes. The first pass grabs most
4957	 * of the buffers and begins asynchronously writing them. The
4958	 * only way to wait for these asynchronous writes is to sleep
4959	 * on the filesystem vnode which may stay busy for a long time
4960	 * if the filesystem is active. So, instead, we make a second
4961	 * pass over the dependencies blocking on each write. In the
4962	 * usual case we will be blocking against a write that we
4963	 * initiated, so when it is done the dependency will have been
4964	 * resolved. Thus the second pass is expected to end quickly.
4965	 * We give a brief window at the top of the loop to allow
4966	 * any pending I/O to complete.
4967	 */
4968	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
4969		if (error)
4970			return (error);
4971		FREE_LOCK(&lk);
4972		ACQUIRE_LOCK(&lk);
4973		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4974			return (0);
4975		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
4976		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
4977		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
4978		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
4979			continue;
4980		/*
4981		 * If pass2, we are done, otherwise do pass 2.
4982		 */
4983		if (waitfor == MNT_WAIT)
4984			break;
4985		waitfor = MNT_WAIT;
4986	}
4987	/*
4988	 * Try freeing inodedep in case all dependencies have been removed.
4989	 */
4990	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4991		(void) free_inodedep(inodedep);
4992	return (0);
4993}
4994
4995/*
4996 * Flush an inode dependency list.
4997 * Called with splbio blocked.
4998 */
4999static int
5000flush_deplist(listhead, waitfor, errorp)
5001	struct allocdirectlst *listhead;
5002	int waitfor;
5003	int *errorp;
5004{
5005	struct allocdirect *adp;
5006	struct buf *bp;
5007
5008	mtx_assert(&lk, MA_OWNED);
5009	TAILQ_FOREACH(adp, listhead, ad_next) {
5010		if (adp->ad_state & DEPCOMPLETE)
5011			continue;
5012		bp = adp->ad_buf;
5013		bp = getdirtybuf(bp, &lk, waitfor);
5014		if (bp == NULL) {
5015			if (waitfor == MNT_NOWAIT)
5016				continue;
5017			return (1);
5018		}
5019		FREE_LOCK(&lk);
5020		if (waitfor == MNT_NOWAIT) {
5021			bawrite(bp);
5022		} else if ((*errorp = bwrite(bp)) != 0) {
5023			ACQUIRE_LOCK(&lk);
5024			return (1);
5025		}
5026		ACQUIRE_LOCK(&lk);
5027		return (1);
5028	}
5029	return (0);
5030}
5031
5032/*
5033 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
5034 * Called with splbio blocked.
5035 */
5036static int
5037flush_pagedep_deps(pvp, mp, diraddhdp)
5038	struct vnode *pvp;
5039	struct mount *mp;
5040	struct diraddhd *diraddhdp;
5041{
5042	struct inodedep *inodedep;
5043	struct ufsmount *ump;
5044	struct diradd *dap;
5045	struct vnode *vp;
5046	int error = 0;
5047	struct buf *bp;
5048	ino_t inum;
5049
5050	ump = VFSTOUFS(mp);
5051	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
5052		/*
5053		 * Flush ourselves if this directory entry
5054		 * has a MKDIR_PARENT dependency.
5055		 */
5056		if (dap->da_state & MKDIR_PARENT) {
5057			FREE_LOCK(&lk);
5058			if ((error = ffs_update(pvp, 1)) != 0)
5059				break;
5060			ACQUIRE_LOCK(&lk);
5061			/*
5062			 * If that cleared dependencies, go on to next.
5063			 */
5064			if (dap != LIST_FIRST(diraddhdp))
5065				continue;
5066			if (dap->da_state & MKDIR_PARENT)
5067				panic("flush_pagedep_deps: MKDIR_PARENT");
5068		}
5069		/*
5070		 * A newly allocated directory must have its "." and
5071		 * ".." entries written out before its name can be
5072		 * committed in its parent. We do not want or need
5073		 * the full semantics of a synchronous ffs_syncvnode as
5074		 * that may end up here again, once for each directory
5075		 * level in the filesystem. Instead, we push the blocks
5076		 * and wait for them to clear. We have to fsync twice
5077		 * because the first call may choose to defer blocks
5078		 * that still have dependencies, but deferral will
5079		 * happen at most once.
5080		 */
5081		inum = dap->da_newinum;
5082		if (dap->da_state & MKDIR_BODY) {
5083			FREE_LOCK(&lk);
5084			if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp)))
5085				break;
5086			if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) ||
5087			    (error=ffs_syncvnode(vp, MNT_NOWAIT))) {
5088				vput(vp);
5089				break;
5090			}
5091			VI_LOCK(vp);
5092			drain_output(vp);
5093			VI_UNLOCK(vp);
5094			vput(vp);
5095			ACQUIRE_LOCK(&lk);
5096			/*
5097			 * If that cleared dependencies, go on to next.
5098			 */
5099			if (dap != LIST_FIRST(diraddhdp))
5100				continue;
5101			if (dap->da_state & MKDIR_BODY)
5102				panic("flush_pagedep_deps: MKDIR_BODY");
5103		}
5104		/*
5105		 * Flush the inode on which the directory entry depends.
5106		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
5107		 * the only remaining dependency is that the updated inode
5108		 * count must get pushed to disk. The inode has already
5109		 * been pushed into its inode buffer (via VOP_UPDATE) at
5110		 * the time of the reference count change. So we need only
5111		 * locate that buffer, ensure that there will be no rollback
5112		 * caused by a bitmap dependency, then write the inode buffer.
5113		 */
5114retry:
5115		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0)
5116			panic("flush_pagedep_deps: lost inode");
5117		/*
5118		 * If the inode still has bitmap dependencies,
5119		 * push them to disk.
5120		 */
5121		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5122			bp = inodedep->id_buf;
5123			bp = getdirtybuf(bp, &lk, MNT_WAIT);
5124			if (bp == NULL)
5125				goto retry;
5126			FREE_LOCK(&lk);
5127			if ((error = bwrite(bp)) != 0)
5128				break;
5129			ACQUIRE_LOCK(&lk);
5130			if (dap != LIST_FIRST(diraddhdp))
5131				continue;
5132		}
5133		/*
5134		 * If the inode is still sitting in a buffer waiting
5135		 * to be written, push it to disk.
5136		 */
5137		FREE_LOCK(&lk);
5138		if ((error = bread(ump->um_devvp,
5139		    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
5140		    (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) {
5141			brelse(bp);
5142			break;
5143		}
5144		if ((error = bwrite(bp)) != 0)
5145			break;
5146		ACQUIRE_LOCK(&lk);
5147		/*
5148		 * If we have failed to get rid of all the dependencies
5149		 * then something is seriously wrong.
5150		 */
5151		if (dap == LIST_FIRST(diraddhdp))
5152			panic("flush_pagedep_deps: flush failed");
5153	}
5154	if (error)
5155		ACQUIRE_LOCK(&lk);
5156	return (error);
5157}
5158
5159/*
5160 * A large burst of file addition or deletion activity can drive the
5161 * memory load excessively high. First attempt to slow things down
5162 * using the techniques below. If that fails, this routine requests
5163 * the offending operations to fall back to running synchronously
5164 * until the memory load returns to a reasonable level.
5165 */
5166int
5167softdep_slowdown(vp)
5168	struct vnode *vp;
5169{
5170	int max_softdeps_hard;
5171
5172	max_softdeps_hard = max_softdeps * 11 / 10;
5173	if (num_dirrem < max_softdeps_hard / 2 &&
5174	    num_inodedep < max_softdeps_hard &&
5175	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps)
5176  		return (0);
5177	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps)
5178		speedup_syncer();
5179	stat_sync_limit_hit += 1;
5180	return (1);
5181}
5182
5183/*
5184 * Called by the allocation routines when they are about to fail
5185 * in the hope that we can free up some disk space.
5186 *
5187 * First check to see if the work list has anything on it. If it has,
5188 * clean up entries until we successfully free some space. Because this
5189 * process holds inodes locked, we cannot handle any remove requests
5190 * that might block on a locked inode as that could lead to deadlock.
5191 * If the worklist yields no free space, encourage the syncer daemon
5192 * to help us. In no event will we try for longer than tickdelay seconds.
5193 */
5194int
5195softdep_request_cleanup(fs, vp)
5196	struct fs *fs;
5197	struct vnode *vp;
5198{
5199	struct ufsmount *ump;
5200	long starttime;
5201	ufs2_daddr_t needed;
5202	int error;
5203
5204	ump = VTOI(vp)->i_ump;
5205	mtx_assert(UFS_MTX(ump), MA_OWNED);
5206	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
5207	starttime = time_second + tickdelay;
5208	/*
5209	 * If we are being called because of a process doing a
5210	 * copy-on-write, then it is not safe to update the vnode
5211	 * as we may recurse into the copy-on-write routine.
5212	 */
5213	if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
5214		UFS_UNLOCK(ump);
5215		error = ffs_update(vp, 1);
5216		UFS_LOCK(ump);
5217		if (error != 0)
5218			return (0);
5219	}
5220	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
5221		if (time_second > starttime)
5222			return (0);
5223		UFS_UNLOCK(ump);
5224		ACQUIRE_LOCK(&lk);
5225		if (num_on_worklist > 0 &&
5226		    process_worklist_item(NULL, LK_NOWAIT) != -1) {
5227			stat_worklist_push += 1;
5228			FREE_LOCK(&lk);
5229			UFS_LOCK(ump);
5230			continue;
5231		}
5232		request_cleanup(FLUSH_REMOVE_WAIT);
5233		FREE_LOCK(&lk);
5234		UFS_LOCK(ump);
5235	}
5236	return (1);
5237}
5238
5239/*
5240 * If memory utilization has gotten too high, deliberately slow things
5241 * down and speed up the I/O processing.
5242 */
5243static int
5244request_cleanup(resource)
5245	int resource;
5246{
5247	struct thread *td = curthread;
5248
5249	mtx_assert(&lk, MA_OWNED);
5250	/*
5251	 * We never hold up the filesystem syncer process.
5252	 */
5253	if (td == filesys_syncer)
5254		return (0);
5255	/*
5256	 * First check to see if the work list has gotten backlogged.
5257	 * If it has, co-opt this process to help clean up two entries.
5258	 * Because this process may hold inodes locked, we cannot
5259	 * handle any remove requests that might block on a locked
5260	 * inode as that could lead to deadlock.
5261	 */
5262	if (num_on_worklist > max_softdeps / 10) {
5263		process_worklist_item(NULL, LK_NOWAIT);
5264		process_worklist_item(NULL, LK_NOWAIT);
5265		stat_worklist_push += 2;
5266		return(1);
5267	}
5268	/*
5269	 * Next, we attempt to speed up the syncer process. If that
5270	 * is successful, then we allow the process to continue.
5271	 */
5272	if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT)
5273		return(0);
5274	/*
5275	 * If we are resource constrained on inode dependencies, try
5276	 * flushing some dirty inodes. Otherwise, we are constrained
5277	 * by file deletions, so try accelerating flushes of directories
5278	 * with removal dependencies. We would like to do the cleanup
5279	 * here, but we probably hold an inode locked at this point and
5280	 * that might deadlock against one that we try to clean. So,
5281	 * the best that we can do is request the syncer daemon to do
5282	 * the cleanup for us.
5283	 */
5284	switch (resource) {
5285
5286	case FLUSH_INODES:
5287		stat_ino_limit_push += 1;
5288		req_clear_inodedeps += 1;
5289		stat_countp = &stat_ino_limit_hit;
5290		break;
5291
5292	case FLUSH_REMOVE:
5293	case FLUSH_REMOVE_WAIT:
5294		stat_blk_limit_push += 1;
5295		req_clear_remove += 1;
5296		stat_countp = &stat_blk_limit_hit;
5297		break;
5298
5299	default:
5300		panic("request_cleanup: unknown type");
5301	}
5302	/*
5303	 * Hopefully the syncer daemon will catch up and awaken us.
5304	 * We wait at most tickdelay before proceeding in any case.
5305	 */
5306	proc_waiting += 1;
5307	if (handle.callout == NULL)
5308		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5309	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
5310	proc_waiting -= 1;
5311	return (1);
5312}
5313
5314/*
5315 * Awaken processes pausing in request_cleanup and clear proc_waiting
5316 * to indicate that there is no longer a timer running.
5317 */
5318static void
5319pause_timer(arg)
5320	void *arg;
5321{
5322
5323	ACQUIRE_LOCK(&lk);
5324	*stat_countp += 1;
5325	wakeup_one(&proc_waiting);
5326	if (proc_waiting > 0)
5327		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5328	else
5329		handle.callout = NULL;
5330	FREE_LOCK(&lk);
5331}
5332
5333/*
5334 * Flush out a directory with at least one removal dependency in an effort to
5335 * reduce the number of dirrem, freefile, and freeblks dependency structures.
5336 */
5337static void
5338clear_remove(td)
5339	struct thread *td;
5340{
5341	struct pagedep_hashhead *pagedephd;
5342	struct pagedep *pagedep;
5343	static int next = 0;
5344	struct mount *mp;
5345	struct vnode *vp;
5346	int error, cnt;
5347	ino_t ino;
5348
5349	mtx_assert(&lk, MA_OWNED);
5350
5351	for (cnt = 0; cnt < pagedep_hash; cnt++) {
5352		pagedephd = &pagedep_hashtbl[next++];
5353		if (next >= pagedep_hash)
5354			next = 0;
5355		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
5356			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
5357				continue;
5358			mp = pagedep->pd_mnt;
5359			ino = pagedep->pd_ino;
5360			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5361				continue;
5362			FREE_LOCK(&lk);
5363			if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) {
5364				softdep_error("clear_remove: vget", error);
5365				vn_finished_write(mp);
5366				ACQUIRE_LOCK(&lk);
5367				return;
5368			}
5369			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
5370				softdep_error("clear_remove: fsync", error);
5371			VI_LOCK(vp);
5372			drain_output(vp);
5373			VI_UNLOCK(vp);
5374			vput(vp);
5375			vn_finished_write(mp);
5376			ACQUIRE_LOCK(&lk);
5377			return;
5378		}
5379	}
5380}
5381
5382/*
5383 * Clear out a block of dirty inodes in an effort to reduce
5384 * the number of inodedep dependency structures.
5385 */
5386static void
5387clear_inodedeps(td)
5388	struct thread *td;
5389{
5390	struct inodedep_hashhead *inodedephd;
5391	struct inodedep *inodedep;
5392	static int next = 0;
5393	struct mount *mp;
5394	struct vnode *vp;
5395	struct fs *fs;
5396	int error, cnt;
5397	ino_t firstino, lastino, ino;
5398
5399	mtx_assert(&lk, MA_OWNED);
5400	/*
5401	 * Pick a random inode dependency to be cleared.
5402	 * We will then gather up all the inodes in its block
5403	 * that have dependencies and flush them out.
5404	 */
5405	for (cnt = 0; cnt < inodedep_hash; cnt++) {
5406		inodedephd = &inodedep_hashtbl[next++];
5407		if (next >= inodedep_hash)
5408			next = 0;
5409		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
5410			break;
5411	}
5412	if (inodedep == NULL)
5413		return;
5414	/*
5415	 * Ugly code to find mount point given pointer to superblock.
5416	 */
5417	fs = inodedep->id_fs;
5418	TAILQ_FOREACH(mp, &mountlist, mnt_list)
5419		if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
5420			break;
5421	/*
5422	 * Find the last inode in the block with dependencies.
5423	 */
5424	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5425	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5426		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
5427			break;
5428	/*
5429	 * Asynchronously push all but the last inode with dependencies.
5430	 * Synchronously push the last inode with dependencies to ensure
5431	 * that the inode block gets written to free up the inodedeps.
5432	 */
5433	for (ino = firstino; ino <= lastino; ino++) {
5434		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
5435			continue;
5436		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5437			continue;
5438		FREE_LOCK(&lk);
5439		if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) {
5440			softdep_error("clear_inodedeps: vget", error);
5441			vn_finished_write(mp);
5442			ACQUIRE_LOCK(&lk);
5443			return;
5444		}
5445		if (ino == lastino) {
5446			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
5447				softdep_error("clear_inodedeps: fsync1", error);
5448		} else {
5449			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
5450				softdep_error("clear_inodedeps: fsync2", error);
5451			VI_LOCK(vp);
5452			drain_output(vp);
5453			VI_UNLOCK(vp);
5454		}
5455		vput(vp);
5456		vn_finished_write(mp);
5457		ACQUIRE_LOCK(&lk);
5458	}
5459}
5460
5461/*
5462 * Function to determine if the buffer has outstanding dependencies
5463 * that will cause a roll-back if the buffer is written. If wantcount
5464 * is set, return number of dependencies, otherwise just yes or no.
5465 */
5466static int
5467softdep_count_dependencies(bp, wantcount)
5468	struct buf *bp;
5469	int wantcount;
5470{
5471	struct worklist *wk;
5472	struct inodedep *inodedep;
5473	struct indirdep *indirdep;
5474	struct allocindir *aip;
5475	struct pagedep *pagedep;
5476	struct diradd *dap;
5477	int i, retval;
5478
5479	retval = 0;
5480	ACQUIRE_LOCK(&lk);
5481	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5482		switch (wk->wk_type) {
5483
5484		case D_INODEDEP:
5485			inodedep = WK_INODEDEP(wk);
5486			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5487				/* bitmap allocation dependency */
5488				retval += 1;
5489				if (!wantcount)
5490					goto out;
5491			}
5492			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5493				/* direct block pointer dependency */
5494				retval += 1;
5495				if (!wantcount)
5496					goto out;
5497			}
5498			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
5499				/* direct block pointer dependency */
5500				retval += 1;
5501				if (!wantcount)
5502					goto out;
5503			}
5504			continue;
5505
5506		case D_INDIRDEP:
5507			indirdep = WK_INDIRDEP(wk);
5508
5509			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5510				/* indirect block pointer dependency */
5511				retval += 1;
5512				if (!wantcount)
5513					goto out;
5514			}
5515			continue;
5516
5517		case D_PAGEDEP:
5518			pagedep = WK_PAGEDEP(wk);
5519			for (i = 0; i < DAHASHSZ; i++) {
5520
5521				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5522					/* directory entry dependency */
5523					retval += 1;
5524					if (!wantcount)
5525						goto out;
5526				}
5527			}
5528			continue;
5529
5530		case D_BMSAFEMAP:
5531		case D_ALLOCDIRECT:
5532		case D_ALLOCINDIR:
5533		case D_MKDIR:
5534			/* never a dependency on these blocks */
5535			continue;
5536
5537		default:
5538			panic("softdep_check_for_rollback: Unexpected type %s",
5539			    TYPENAME(wk->wk_type));
5540			/* NOTREACHED */
5541		}
5542	}
5543out:
5544	FREE_LOCK(&lk);
5545	return retval;
5546}
5547
5548/*
5549 * Acquire exclusive access to a buffer.
5550 * Must be called with a locked mtx parameter.
5551 * Return acquired buffer or NULL on failure.
5552 */
5553static struct buf *
5554getdirtybuf(bp, mtx, waitfor)
5555	struct buf *bp;
5556	struct mtx *mtx;
5557	int waitfor;
5558{
5559	int error;
5560
5561	mtx_assert(mtx, MA_OWNED);
5562	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
5563		if (waitfor != MNT_WAIT)
5564			return (NULL);
5565		error = BUF_LOCK(bp,
5566		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
5567		/*
5568		 * Even if we sucessfully acquire bp here, we have dropped
5569		 * mtx, which may violates our guarantee.
5570		 */
5571		if (error == 0)
5572			BUF_UNLOCK(bp);
5573		else if (error != ENOLCK)
5574			panic("getdirtybuf: inconsistent lock: %d", error);
5575		mtx_lock(mtx);
5576		return (NULL);
5577	}
5578	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
5579		BUF_UNLOCK(bp);
5580		if (waitfor != MNT_WAIT)
5581			return (NULL);
5582		/*
5583		 * The mtx argument must be bp->b_vp's mutex in
5584		 * this case.
5585		 */
5586#ifdef	DEBUG_VFS_LOCKS
5587		if (bp->b_vp->v_type != VCHR)
5588			ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf");
5589#endif
5590		bp->b_vflags |= BV_BKGRDWAIT;
5591		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
5592		return (NULL);
5593	}
5594	if ((bp->b_flags & B_DELWRI) == 0) {
5595		BUF_UNLOCK(bp);
5596		return (NULL);
5597	}
5598	bremfree(bp);
5599	return (bp);
5600}
5601
5602/*
5603 * Wait for pending output on a vnode to complete.
5604 * Must be called with vnode lock and interlock locked.
5605 *
5606 * XXX: Should just be a call to bufobj_wwait().
5607 */
5608static void
5609drain_output(vp)
5610	struct vnode *vp;
5611{
5612	ASSERT_VOP_LOCKED(vp, "drain_output");
5613	ASSERT_VI_LOCKED(vp, "drain_output");
5614
5615	while (vp->v_bufobj.bo_numoutput) {
5616		vp->v_bufobj.bo_flag |= BO_WWAIT;
5617		msleep((caddr_t)&vp->v_bufobj.bo_numoutput,
5618		    VI_MTX(vp), PRIBIO + 1, "drainvp", 0);
5619	}
5620}
5621
5622/*
5623 * Called whenever a buffer that is being invalidated or reallocated
5624 * contains dependencies. This should only happen if an I/O error has
5625 * occurred. The routine is called with the buffer locked.
5626 */
5627static void
5628softdep_deallocate_dependencies(bp)
5629	struct buf *bp;
5630{
5631
5632	if ((bp->b_ioflags & BIO_ERROR) == 0)
5633		panic("softdep_deallocate_dependencies: dangling deps");
5634	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
5635	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5636}
5637
5638/*
5639 * Function to handle asynchronous write errors in the filesystem.
5640 */
5641static void
5642softdep_error(func, error)
5643	char *func;
5644	int error;
5645{
5646
5647	/* XXX should do something better! */
5648	printf("%s: got error %d while accessing filesystem\n", func, error);
5649}
5650