ffs_softdep.c revision 140709
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12 *	1614 Oxford Street		mckusick@mckusick.com
13 *	Berkeley, CA 94709-1608		+1-510-843-9542
14 *	USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 140709 2005-01-24 10:18:31Z jeff $");
43
44/*
45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46 */
47#ifndef DIAGNOSTIC
48#define DIAGNOSTIC
49#endif
50#ifndef DEBUG
51#define DEBUG
52#endif
53
54#include <sys/param.h>
55#include <sys/kernel.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/kdb.h>
60#include <sys/lock.h>
61#include <sys/malloc.h>
62#include <sys/mount.h>
63#include <sys/mutex.h>
64#include <sys/proc.h>
65#include <sys/stat.h>
66#include <sys/syslog.h>
67#include <sys/vnode.h>
68#include <sys/conf.h>
69#include <ufs/ufs/dir.h>
70#include <ufs/ufs/extattr.h>
71#include <ufs/ufs/quota.h>
72#include <ufs/ufs/inode.h>
73#include <ufs/ufs/ufsmount.h>
74#include <ufs/ffs/fs.h>
75#include <ufs/ffs/softdep.h>
76#include <ufs/ffs/ffs_extern.h>
77#include <ufs/ufs/ufs_extern.h>
78
79/*
80 * These definitions need to be adapted to the system to which
81 * this file is being ported.
82 */
83/*
84 * malloc types defined for the softdep system.
85 */
86static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
87static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
88static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
89static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
90static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
91static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
92static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
93static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
94static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
95static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
96static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
97static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
98static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
99static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block");
100
101#define M_SOFTDEP_FLAGS	(M_WAITOK | M_USE_RESERVE)
102
103#define	D_PAGEDEP	0
104#define	D_INODEDEP	1
105#define	D_NEWBLK	2
106#define	D_BMSAFEMAP	3
107#define	D_ALLOCDIRECT	4
108#define	D_INDIRDEP	5
109#define	D_ALLOCINDIR	6
110#define	D_FREEFRAG	7
111#define	D_FREEBLKS	8
112#define	D_FREEFILE	9
113#define	D_DIRADD	10
114#define	D_MKDIR		11
115#define	D_DIRREM	12
116#define	D_NEWDIRBLK	13
117#define	D_LAST		D_NEWDIRBLK
118
119/*
120 * translate from workitem type to memory type
121 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
122 */
123static struct malloc_type *memtype[] = {
124	M_PAGEDEP,
125	M_INODEDEP,
126	M_NEWBLK,
127	M_BMSAFEMAP,
128	M_ALLOCDIRECT,
129	M_INDIRDEP,
130	M_ALLOCINDIR,
131	M_FREEFRAG,
132	M_FREEBLKS,
133	M_FREEFILE,
134	M_DIRADD,
135	M_MKDIR,
136	M_DIRREM,
137	M_NEWDIRBLK
138};
139
140#define DtoM(type) (memtype[type])
141
142/*
143 * Names of malloc types.
144 */
145#define TYPENAME(type)  \
146	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
147/*
148 * End system adaptaion definitions.
149 */
150
151/*
152 * Forward declarations.
153 */
154struct inodedep_hashhead;
155struct newblk_hashhead;
156struct pagedep_hashhead;
157
158/*
159 * Internal function prototypes.
160 */
161static	void softdep_error(char *, int);
162static	void drain_output(struct vnode *);
163static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
164static	void clear_remove(struct thread *);
165static	void clear_inodedeps(struct thread *);
166static	int flush_pagedep_deps(struct vnode *, struct mount *,
167	    struct diraddhd *);
168static	int flush_inodedep_deps(struct fs *, ino_t);
169static	int flush_deplist(struct allocdirectlst *, int, int *);
170static	int handle_written_filepage(struct pagedep *, struct buf *);
171static  void diradd_inode_written(struct diradd *, struct inodedep *);
172static	int handle_written_inodeblock(struct inodedep *, struct buf *);
173static	void handle_allocdirect_partdone(struct allocdirect *);
174static	void handle_allocindir_partdone(struct allocindir *);
175static	void initiate_write_filepage(struct pagedep *, struct buf *);
176static	void handle_written_mkdir(struct mkdir *, int);
177static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
178static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
179static	void handle_workitem_freefile(struct freefile *);
180static	void handle_workitem_remove(struct dirrem *, struct vnode *);
181static	struct dirrem *newdirrem(struct buf *, struct inode *,
182	    struct inode *, int, struct dirrem **);
183static	void free_diradd(struct diradd *);
184static	void free_allocindir(struct allocindir *, struct inodedep *);
185static	void free_newdirblk(struct newdirblk *);
186static	int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t,
187	    ufs2_daddr_t *);
188static	void deallocate_dependencies(struct buf *, struct inodedep *);
189static	void free_allocdirect(struct allocdirectlst *,
190	    struct allocdirect *, int);
191static	int check_inode_unwritten(struct inodedep *);
192static	int free_inodedep(struct inodedep *);
193static	void handle_workitem_freeblocks(struct freeblks *, int);
194static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
195static	void setup_allocindir_phase2(struct buf *, struct inode *,
196	    struct allocindir *);
197static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
198	    ufs2_daddr_t);
199static	void handle_workitem_freefrag(struct freefrag *);
200static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long);
201static	void allocdirect_merge(struct allocdirectlst *,
202	    struct allocdirect *, struct allocdirect *);
203static	struct bmsafemap *bmsafemap_lookup(struct buf *);
204static	int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t,
205	    struct newblk **);
206static	int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **);
207static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
208	    struct inodedep **);
209static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
210static	int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **);
211static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
212	    struct mount *mp, int, struct pagedep **);
213static	void pause_timer(void *);
214static	int request_cleanup(int);
215static	int process_worklist_item(struct mount *, int);
216static	void add_to_worklist(struct worklist *);
217
218/*
219 * Exported softdep operations.
220 */
221static	void softdep_disk_io_initiation(struct buf *);
222static	void softdep_disk_write_complete(struct buf *);
223static	void softdep_deallocate_dependencies(struct buf *);
224static	void softdep_move_dependencies(struct buf *, struct buf *);
225static	int softdep_count_dependencies(struct buf *bp, int);
226
227static struct mtx lk;
228MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
229
230#define ACQUIRE_LOCK(lk)		mtx_lock(lk)
231#define FREE_LOCK(lk)			mtx_unlock(lk)
232
233/*
234 * Worklist queue management.
235 * These routines require that the lock be held.
236 */
237#ifndef /* NOT */ DEBUG
238#define WORKLIST_INSERT(head, item) do {	\
239	(item)->wk_state |= ONWORKLIST;		\
240	LIST_INSERT_HEAD(head, item, wk_list);	\
241} while (0)
242#define WORKLIST_REMOVE(item) do {		\
243	(item)->wk_state &= ~ONWORKLIST;	\
244	LIST_REMOVE(item, wk_list);		\
245} while (0)
246#define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
247
248#else /* DEBUG */
249static	void worklist_insert(struct workhead *, struct worklist *);
250static	void worklist_remove(struct worklist *);
251static	void workitem_free(struct worklist *, int);
252
253#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
254#define WORKLIST_REMOVE(item) worklist_remove(item)
255#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
256
257static void
258worklist_insert(head, item)
259	struct workhead *head;
260	struct worklist *item;
261{
262
263	mtx_assert(&lk, MA_OWNED);
264	if (item->wk_state & ONWORKLIST)
265		panic("worklist_insert: already on list");
266	item->wk_state |= ONWORKLIST;
267	LIST_INSERT_HEAD(head, item, wk_list);
268}
269
270static void
271worklist_remove(item)
272	struct worklist *item;
273{
274
275	mtx_assert(&lk, MA_OWNED);
276	if ((item->wk_state & ONWORKLIST) == 0)
277		panic("worklist_remove: not on list");
278	item->wk_state &= ~ONWORKLIST;
279	LIST_REMOVE(item, wk_list);
280}
281
282static void
283workitem_free(item, type)
284	struct worklist *item;
285	int type;
286{
287
288	if (item->wk_state & ONWORKLIST)
289		panic("workitem_free: still on list");
290	if (item->wk_type != type)
291		panic("workitem_free: type mismatch");
292	FREE(item, DtoM(type));
293}
294#endif /* DEBUG */
295
296/*
297 * Workitem queue management
298 */
299static struct workhead softdep_workitem_pending;
300static struct worklist *worklist_tail;
301static int num_on_worklist;	/* number of worklist items to be processed */
302static int softdep_worklist_busy; /* 1 => trying to do unmount */
303static int softdep_worklist_req; /* serialized waiters */
304static int max_softdeps;	/* maximum number of structs before slowdown */
305static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
306static int tickdelay = 2;	/* number of ticks to pause during slowdown */
307static int proc_waiting;	/* tracks whether we have a timeout posted */
308static int *stat_countp;	/* statistic to count in proc_waiting timeout */
309static struct callout_handle handle; /* handle on posted proc_waiting timeout */
310static struct thread *filesys_syncer; /* proc of filesystem syncer process */
311static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
312#define FLUSH_INODES		1
313static int req_clear_remove;	/* syncer process flush some freeblks */
314#define FLUSH_REMOVE		2
315#define FLUSH_REMOVE_WAIT	3
316/*
317 * runtime statistics
318 */
319static int stat_worklist_push;	/* number of worklist cleanups */
320static int stat_blk_limit_push;	/* number of times block limit neared */
321static int stat_ino_limit_push;	/* number of times inode limit neared */
322static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
323static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
324static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
325static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
326static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
327static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
328static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
329#ifdef DEBUG
330#include <vm/vm.h>
331#include <sys/sysctl.h>
332SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
333SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
334SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, "");
335SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
336SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
337SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
338SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
339SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
340SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
341SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
342SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
343SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
344SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
345#endif /* DEBUG */
346
347/*
348 * Add an item to the end of the work queue.
349 * This routine requires that the lock be held.
350 * This is the only routine that adds items to the list.
351 * The following routine is the only one that removes items
352 * and does so in order from first to last.
353 */
354static void
355add_to_worklist(wk)
356	struct worklist *wk;
357{
358
359	mtx_assert(&lk, MA_OWNED);
360	if (wk->wk_state & ONWORKLIST)
361		panic("add_to_worklist: already on list");
362	wk->wk_state |= ONWORKLIST;
363	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
364		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
365	else
366		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
367	worklist_tail = wk;
368	num_on_worklist += 1;
369}
370
371/*
372 * Process that runs once per second to handle items in the background queue.
373 *
374 * Note that we ensure that everything is done in the order in which they
375 * appear in the queue. The code below depends on this property to ensure
376 * that blocks of a file are freed before the inode itself is freed. This
377 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
378 * until all the old ones have been purged from the dependency lists.
379 */
380int
381softdep_process_worklist(matchmnt)
382	struct mount *matchmnt;
383{
384	struct thread *td = curthread;
385	int cnt, matchcnt, loopcount;
386	long starttime;
387
388	/*
389	 * Record the process identifier of our caller so that we can give
390	 * this process preferential treatment in request_cleanup below.
391	 */
392	filesys_syncer = td;
393	matchcnt = 0;
394
395	/*
396	 * There is no danger of having multiple processes run this
397	 * code, but we have to single-thread it when softdep_flushfiles()
398	 * is in operation to get an accurate count of the number of items
399	 * related to its mount point that are in the list.
400	 */
401	ACQUIRE_LOCK(&lk);
402	if (matchmnt == NULL) {
403		if (softdep_worklist_busy < 0) {
404			FREE_LOCK(&lk);
405			return(-1);
406		}
407		softdep_worklist_busy += 1;
408	}
409
410	/*
411	 * If requested, try removing inode or removal dependencies.
412	 */
413	if (req_clear_inodedeps) {
414		clear_inodedeps(td);
415		req_clear_inodedeps -= 1;
416		wakeup_one(&proc_waiting);
417	}
418	if (req_clear_remove) {
419		clear_remove(td);
420		req_clear_remove -= 1;
421		wakeup_one(&proc_waiting);
422	}
423	loopcount = 1;
424	starttime = time_second;
425	while (num_on_worklist > 0) {
426		if ((cnt = process_worklist_item(matchmnt, 0)) == -1)
427			break;
428		else
429			matchcnt += cnt;
430
431		/*
432		 * If a umount operation wants to run the worklist
433		 * accurately, abort.
434		 */
435		if (softdep_worklist_req && matchmnt == NULL) {
436			matchcnt = -1;
437			break;
438		}
439
440		/*
441		 * If requested, try removing inode or removal dependencies.
442		 */
443		if (req_clear_inodedeps) {
444			clear_inodedeps(td);
445			req_clear_inodedeps -= 1;
446			wakeup_one(&proc_waiting);
447		}
448		if (req_clear_remove) {
449			clear_remove(td);
450			req_clear_remove -= 1;
451			wakeup_one(&proc_waiting);
452		}
453		/*
454		 * We do not generally want to stop for buffer space, but if
455		 * we are really being a buffer hog, we will stop and wait.
456		 */
457		if (loopcount++ % 128 == 0) {
458			FREE_LOCK(&lk);
459			bwillwrite();
460			ACQUIRE_LOCK(&lk);
461		}
462		/*
463		 * Never allow processing to run for more than one
464		 * second. Otherwise the other syncer tasks may get
465		 * excessively backlogged.
466		 */
467		if (starttime != time_second && matchmnt == NULL) {
468			matchcnt = -1;
469			break;
470		}
471	}
472	if (matchmnt == NULL) {
473		softdep_worklist_busy -= 1;
474		if (softdep_worklist_req && softdep_worklist_busy == 0)
475			wakeup(&softdep_worklist_req);
476	}
477	FREE_LOCK(&lk);
478	return (matchcnt);
479}
480
481/*
482 * Process one item on the worklist.
483 */
484static int
485process_worklist_item(matchmnt, flags)
486	struct mount *matchmnt;
487	int flags;
488{
489	struct worklist *wk, *wkend;
490	struct mount *mp;
491	struct vnode *vp;
492	int matchcnt = 0;
493
494	mtx_assert(&lk, MA_OWNED);
495	/*
496	 * If we are being called because of a process doing a
497	 * copy-on-write, then it is not safe to write as we may
498	 * recurse into the copy-on-write routine.
499	 */
500	if (curthread->td_pflags & TDP_COWINPROGRESS)
501		return (-1);
502	/*
503	 * Normally we just process each item on the worklist in order.
504	 * However, if we are in a situation where we cannot lock any
505	 * inodes, we have to skip over any dirrem requests whose
506	 * vnodes are resident and locked.
507	 */
508	vp = NULL;
509	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
510		if (wk->wk_state & INPROGRESS)
511			continue;
512		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
513			break;
514		wk->wk_state |= INPROGRESS;
515		FREE_LOCK(&lk);
516		VFS_VGET(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum,
517		    LK_NOWAIT | LK_EXCLUSIVE, &vp);
518		ACQUIRE_LOCK(&lk);
519		wk->wk_state &= ~INPROGRESS;
520		if (vp != NULL)
521			break;
522	}
523	if (wk == 0)
524		return (-1);
525	/*
526	 * Remove the item to be processed. If we are removing the last
527	 * item on the list, we need to recalculate the tail pointer.
528	 * As this happens rarely and usually when the list is short,
529	 * we just run down the list to find it rather than tracking it
530	 * in the above loop.
531	 */
532	WORKLIST_REMOVE(wk);
533	if (wk == worklist_tail) {
534		LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list)
535			if (LIST_NEXT(wkend, wk_list) == NULL)
536				break;
537		worklist_tail = wkend;
538	}
539	num_on_worklist -= 1;
540	FREE_LOCK(&lk);
541	switch (wk->wk_type) {
542
543	case D_DIRREM:
544		/* removal of a directory entry */
545		mp = WK_DIRREM(wk)->dm_mnt;
546		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
547			panic("%s: dirrem on suspended filesystem",
548				"process_worklist_item");
549		if (mp == matchmnt)
550			matchcnt += 1;
551		handle_workitem_remove(WK_DIRREM(wk), vp);
552		break;
553
554	case D_FREEBLKS:
555		/* releasing blocks and/or fragments from a file */
556		mp = WK_FREEBLKS(wk)->fb_mnt;
557		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
558			panic("%s: freeblks on suspended filesystem",
559				"process_worklist_item");
560		if (mp == matchmnt)
561			matchcnt += 1;
562		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
563		break;
564
565	case D_FREEFRAG:
566		/* releasing a fragment when replaced as a file grows */
567		mp = WK_FREEFRAG(wk)->ff_mnt;
568		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
569			panic("%s: freefrag on suspended filesystem",
570				"process_worklist_item");
571		if (mp == matchmnt)
572			matchcnt += 1;
573		handle_workitem_freefrag(WK_FREEFRAG(wk));
574		break;
575
576	case D_FREEFILE:
577		/* releasing an inode when its link count drops to 0 */
578		mp = WK_FREEFILE(wk)->fx_mnt;
579		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
580			panic("%s: freefile on suspended filesystem",
581				"process_worklist_item");
582		if (mp == matchmnt)
583			matchcnt += 1;
584		handle_workitem_freefile(WK_FREEFILE(wk));
585		break;
586
587	default:
588		panic("%s_process_worklist: Unknown type %s",
589		    "softdep", TYPENAME(wk->wk_type));
590		/* NOTREACHED */
591	}
592	ACQUIRE_LOCK(&lk);
593	return (matchcnt);
594}
595
596/*
597 * Move dependencies from one buffer to another.
598 */
599static void
600softdep_move_dependencies(oldbp, newbp)
601	struct buf *oldbp;
602	struct buf *newbp;
603{
604	struct worklist *wk, *wktail;
605
606	if (LIST_FIRST(&newbp->b_dep) != NULL)
607		panic("softdep_move_dependencies: need merge code");
608	wktail = 0;
609	ACQUIRE_LOCK(&lk);
610	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
611		LIST_REMOVE(wk, wk_list);
612		if (wktail == 0)
613			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
614		else
615			LIST_INSERT_AFTER(wktail, wk, wk_list);
616		wktail = wk;
617	}
618	FREE_LOCK(&lk);
619}
620
621/*
622 * Purge the work list of all items associated with a particular mount point.
623 */
624int
625softdep_flushworklist(oldmnt, countp, td)
626	struct mount *oldmnt;
627	int *countp;
628	struct thread *td;
629{
630	struct vnode *devvp;
631	int count, error = 0;
632
633	/*
634	 * Await our turn to clear out the queue, then serialize access.
635	 */
636	ACQUIRE_LOCK(&lk);
637	while (softdep_worklist_busy) {
638		softdep_worklist_req += 1;
639		msleep(&softdep_worklist_req, &lk, PRIBIO, "softflush", 0);
640		softdep_worklist_req -= 1;
641	}
642	softdep_worklist_busy = -1;
643	FREE_LOCK(&lk);
644	/*
645	 * Alternately flush the block device associated with the mount
646	 * point and process any dependencies that the flushing
647	 * creates. We continue until no more worklist dependencies
648	 * are found.
649	 */
650	*countp = 0;
651	devvp = VFSTOUFS(oldmnt)->um_devvp;
652	while ((count = softdep_process_worklist(oldmnt)) > 0) {
653		*countp += count;
654		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td);
655		error = VOP_FSYNC(devvp, MNT_WAIT, td);
656		VOP_UNLOCK(devvp, 0, td);
657		if (error)
658			break;
659	}
660	ACQUIRE_LOCK(&lk);
661	softdep_worklist_busy = 0;
662	if (softdep_worklist_req)
663		wakeup(&softdep_worklist_req);
664	FREE_LOCK(&lk);
665	return (error);
666}
667
668/*
669 * Flush all vnodes and worklist items associated with a specified mount point.
670 */
671int
672softdep_flushfiles(oldmnt, flags, td)
673	struct mount *oldmnt;
674	int flags;
675	struct thread *td;
676{
677	int error, count, loopcnt;
678
679	error = 0;
680
681	/*
682	 * Alternately flush the vnodes associated with the mount
683	 * point and process any dependencies that the flushing
684	 * creates. In theory, this loop can happen at most twice,
685	 * but we give it a few extra just to be sure.
686	 */
687	for (loopcnt = 10; loopcnt > 0; loopcnt--) {
688		/*
689		 * Do another flush in case any vnodes were brought in
690		 * as part of the cleanup operations.
691		 */
692		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
693			break;
694		if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 ||
695		    count == 0)
696			break;
697	}
698	/*
699	 * If we are unmounting then it is an error to fail. If we
700	 * are simply trying to downgrade to read-only, then filesystem
701	 * activity can keep us busy forever, so we just fail with EBUSY.
702	 */
703	if (loopcnt == 0) {
704		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
705			panic("softdep_flushfiles: looping");
706		error = EBUSY;
707	}
708	return (error);
709}
710
711/*
712 * Structure hashing.
713 *
714 * There are three types of structures that can be looked up:
715 *	1) pagedep structures identified by mount point, inode number,
716 *	   and logical block.
717 *	2) inodedep structures identified by mount point and inode number.
718 *	3) newblk structures identified by mount point and
719 *	   physical block number.
720 *
721 * The "pagedep" and "inodedep" dependency structures are hashed
722 * separately from the file blocks and inodes to which they correspond.
723 * This separation helps when the in-memory copy of an inode or
724 * file block must be replaced. It also obviates the need to access
725 * an inode or file page when simply updating (or de-allocating)
726 * dependency structures. Lookup of newblk structures is needed to
727 * find newly allocated blocks when trying to associate them with
728 * their allocdirect or allocindir structure.
729 *
730 * The lookup routines optionally create and hash a new instance when
731 * an existing entry is not found.
732 */
733#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
734#define NODELAY		0x0002	/* cannot do background work */
735
736/*
737 * Structures and routines associated with pagedep caching.
738 */
739LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
740u_long	pagedep_hash;		/* size of hash table - 1 */
741#define	PAGEDEP_HASH(mp, inum, lbn) \
742	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
743	    pagedep_hash])
744
745static int
746pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
747	struct pagedep_hashhead *pagedephd;
748	ino_t ino;
749	ufs_lbn_t lbn;
750	struct mount *mp;
751	int flags;
752	struct pagedep **pagedeppp;
753{
754	struct pagedep *pagedep;
755
756	LIST_FOREACH(pagedep, pagedephd, pd_hash)
757		if (ino == pagedep->pd_ino &&
758		    lbn == pagedep->pd_lbn &&
759		    mp == pagedep->pd_mnt)
760			break;
761	if (pagedep) {
762		*pagedeppp = pagedep;
763		if ((flags & DEPALLOC) != 0 &&
764		    (pagedep->pd_state & ONWORKLIST) == 0)
765			return (0);
766		return (1);
767	}
768	*pagedeppp = NULL;
769	return (0);
770}
771/*
772 * Look up a pagedep. Return 1 if found, 0 if not found or found
773 * when asked to allocate but not associated with any buffer.
774 * If not found, allocate if DEPALLOC flag is passed.
775 * Found or allocated entry is returned in pagedeppp.
776 * This routine must be called with splbio interrupts blocked.
777 */
778static int
779pagedep_lookup(ip, lbn, flags, pagedeppp)
780	struct inode *ip;
781	ufs_lbn_t lbn;
782	int flags;
783	struct pagedep **pagedeppp;
784{
785	struct pagedep *pagedep;
786	struct pagedep_hashhead *pagedephd;
787	struct mount *mp;
788	int ret;
789	int i;
790
791	mtx_assert(&lk, MA_OWNED);
792	mp = ITOV(ip)->v_mount;
793	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
794
795	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
796	if (*pagedeppp || (flags & DEPALLOC) == 0)
797		return (ret);
798	FREE_LOCK(&lk);
799	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep),
800	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
801	ACQUIRE_LOCK(&lk);
802	ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
803	if (*pagedeppp) {
804		FREE(pagedep, M_PAGEDEP);
805		return (ret);
806	}
807	pagedep->pd_list.wk_type = D_PAGEDEP;
808	pagedep->pd_mnt = mp;
809	pagedep->pd_ino = ip->i_number;
810	pagedep->pd_lbn = lbn;
811	LIST_INIT(&pagedep->pd_dirremhd);
812	LIST_INIT(&pagedep->pd_pendinghd);
813	for (i = 0; i < DAHASHSZ; i++)
814		LIST_INIT(&pagedep->pd_diraddhd[i]);
815	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
816	*pagedeppp = pagedep;
817	return (0);
818}
819
820/*
821 * Structures and routines associated with inodedep caching.
822 */
823LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
824static u_long	inodedep_hash;	/* size of hash table - 1 */
825static long	num_inodedep;	/* number of inodedep allocated */
826#define	INODEDEP_HASH(fs, inum) \
827      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
828
829static int
830inodedep_find(inodedephd, fs, inum, inodedeppp)
831	struct inodedep_hashhead *inodedephd;
832	struct fs *fs;
833	ino_t inum;
834	struct inodedep **inodedeppp;
835{
836	struct inodedep *inodedep;
837
838	LIST_FOREACH(inodedep, inodedephd, id_hash)
839		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
840			break;
841	if (inodedep) {
842		*inodedeppp = inodedep;
843		return (1);
844	}
845	*inodedeppp = NULL;
846
847	return (0);
848}
849/*
850 * Look up an inodedep. Return 1 if found, 0 if not found.
851 * If not found, allocate if DEPALLOC flag is passed.
852 * Found or allocated entry is returned in inodedeppp.
853 * This routine must be called with splbio interrupts blocked.
854 */
855static int
856inodedep_lookup(fs, inum, flags, inodedeppp)
857	struct fs *fs;
858	ino_t inum;
859	int flags;
860	struct inodedep **inodedeppp;
861{
862	struct inodedep *inodedep;
863	struct inodedep_hashhead *inodedephd;
864
865	mtx_assert(&lk, MA_OWNED);
866	inodedephd = INODEDEP_HASH(fs, inum);
867
868	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
869		return (1);
870	if ((flags & DEPALLOC) == 0)
871		return (0);
872	/*
873	 * If we are over our limit, try to improve the situation.
874	 */
875	if (num_inodedep > max_softdeps  && (flags & NODELAY) == 0)
876		request_cleanup(FLUSH_INODES);
877	FREE_LOCK(&lk);
878	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
879		M_INODEDEP, M_SOFTDEP_FLAGS);
880	ACQUIRE_LOCK(&lk);
881	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
882		FREE(inodedep, M_INODEDEP);
883		return (1);
884	}
885	num_inodedep += 1;
886	inodedep->id_list.wk_type = D_INODEDEP;
887	inodedep->id_fs = fs;
888	inodedep->id_ino = inum;
889	inodedep->id_state = ALLCOMPLETE;
890	inodedep->id_nlinkdelta = 0;
891	inodedep->id_savedino1 = NULL;
892	inodedep->id_savedsize = -1;
893	inodedep->id_savedextsize = -1;
894	inodedep->id_buf = NULL;
895	LIST_INIT(&inodedep->id_pendinghd);
896	LIST_INIT(&inodedep->id_inowait);
897	LIST_INIT(&inodedep->id_bufwait);
898	TAILQ_INIT(&inodedep->id_inoupdt);
899	TAILQ_INIT(&inodedep->id_newinoupdt);
900	TAILQ_INIT(&inodedep->id_extupdt);
901	TAILQ_INIT(&inodedep->id_newextupdt);
902	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
903	*inodedeppp = inodedep;
904	return (0);
905}
906
907/*
908 * Structures and routines associated with newblk caching.
909 */
910LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
911u_long	newblk_hash;		/* size of hash table - 1 */
912#define	NEWBLK_HASH(fs, inum) \
913	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
914
915static int
916newblk_find(newblkhd, fs, newblkno, newblkpp)
917	struct newblk_hashhead *newblkhd;
918	struct fs *fs;
919	ufs2_daddr_t newblkno;
920	struct newblk **newblkpp;
921{
922	struct newblk *newblk;
923
924	LIST_FOREACH(newblk, newblkhd, nb_hash)
925		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
926			break;
927	if (newblk) {
928		*newblkpp = newblk;
929		return (1);
930	}
931	*newblkpp = NULL;
932	return (0);
933}
934
935/*
936 * Look up a newblk. Return 1 if found, 0 if not found.
937 * If not found, allocate if DEPALLOC flag is passed.
938 * Found or allocated entry is returned in newblkpp.
939 */
940static int
941newblk_lookup(fs, newblkno, flags, newblkpp)
942	struct fs *fs;
943	ufs2_daddr_t newblkno;
944	int flags;
945	struct newblk **newblkpp;
946{
947	struct newblk *newblk;
948	struct newblk_hashhead *newblkhd;
949
950	newblkhd = NEWBLK_HASH(fs, newblkno);
951	if (newblk_find(newblkhd, fs, newblkno, newblkpp))
952		return (1);
953	if ((flags & DEPALLOC) == 0)
954		return (0);
955	FREE_LOCK(&lk);
956	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
957		M_NEWBLK, M_SOFTDEP_FLAGS);
958	ACQUIRE_LOCK(&lk);
959	if (newblk_find(newblkhd, fs, newblkno, newblkpp)) {
960		FREE(newblk, M_NEWBLK);
961		return (1);
962	}
963	newblk->nb_state = 0;
964	newblk->nb_fs = fs;
965	newblk->nb_newblkno = newblkno;
966	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
967	*newblkpp = newblk;
968	return (0);
969}
970
971/*
972 * Executed during filesystem system initialization before
973 * mounting any filesystems.
974 */
975void
976softdep_initialize()
977{
978
979	LIST_INIT(&mkdirlisthd);
980	LIST_INIT(&softdep_workitem_pending);
981	max_softdeps = desiredvnodes * 4;
982	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
983	    &pagedep_hash);
984	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
985	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
986
987	/* hooks through which the main kernel code calls us */
988	softdep_process_worklist_hook = softdep_process_worklist;
989	softdep_fsync_hook = softdep_fsync;
990
991	/* initialise bioops hack */
992	bioops.io_start = softdep_disk_io_initiation;
993	bioops.io_complete = softdep_disk_write_complete;
994	bioops.io_deallocate = softdep_deallocate_dependencies;
995	bioops.io_movedeps = softdep_move_dependencies;
996	bioops.io_countdeps = softdep_count_dependencies;
997}
998
999/*
1000 * Executed after all filesystems have been unmounted during
1001 * filesystem module unload.
1002 */
1003void
1004softdep_uninitialize()
1005{
1006
1007	softdep_process_worklist_hook = NULL;
1008	softdep_fsync_hook = NULL;
1009	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
1010	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
1011	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
1012}
1013
1014/*
1015 * Called at mount time to notify the dependency code that a
1016 * filesystem wishes to use it.
1017 */
1018int
1019softdep_mount(devvp, mp, fs, cred)
1020	struct vnode *devvp;
1021	struct mount *mp;
1022	struct fs *fs;
1023	struct ucred *cred;
1024{
1025	struct csum_total cstotal;
1026	struct cg *cgp;
1027	struct buf *bp;
1028	int error, cyl;
1029
1030	mp->mnt_flag &= ~MNT_ASYNC;
1031	mp->mnt_flag |= MNT_SOFTDEP;
1032	/*
1033	 * When doing soft updates, the counters in the
1034	 * superblock may have gotten out of sync, so we have
1035	 * to scan the cylinder groups and recalculate them.
1036	 */
1037	if (fs->fs_clean != 0)
1038		return (0);
1039	bzero(&cstotal, sizeof cstotal);
1040	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1041		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1042		    fs->fs_cgsize, cred, &bp)) != 0) {
1043			brelse(bp);
1044			return (error);
1045		}
1046		cgp = (struct cg *)bp->b_data;
1047		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1048		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1049		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1050		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1051		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1052		brelse(bp);
1053	}
1054#ifdef DEBUG
1055	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1056		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
1057#endif
1058	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1059	return (0);
1060}
1061
1062/*
1063 * Protecting the freemaps (or bitmaps).
1064 *
1065 * To eliminate the need to execute fsck before mounting a filesystem
1066 * after a power failure, one must (conservatively) guarantee that the
1067 * on-disk copy of the bitmaps never indicate that a live inode or block is
1068 * free.  So, when a block or inode is allocated, the bitmap should be
1069 * updated (on disk) before any new pointers.  When a block or inode is
1070 * freed, the bitmap should not be updated until all pointers have been
1071 * reset.  The latter dependency is handled by the delayed de-allocation
1072 * approach described below for block and inode de-allocation.  The former
1073 * dependency is handled by calling the following procedure when a block or
1074 * inode is allocated. When an inode is allocated an "inodedep" is created
1075 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1076 * Each "inodedep" is also inserted into the hash indexing structure so
1077 * that any additional link additions can be made dependent on the inode
1078 * allocation.
1079 *
1080 * The ufs filesystem maintains a number of free block counts (e.g., per
1081 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1082 * in addition to the bitmaps.  These counts are used to improve efficiency
1083 * during allocation and therefore must be consistent with the bitmaps.
1084 * There is no convenient way to guarantee post-crash consistency of these
1085 * counts with simple update ordering, for two main reasons: (1) The counts
1086 * and bitmaps for a single cylinder group block are not in the same disk
1087 * sector.  If a disk write is interrupted (e.g., by power failure), one may
1088 * be written and the other not.  (2) Some of the counts are located in the
1089 * superblock rather than the cylinder group block. So, we focus our soft
1090 * updates implementation on protecting the bitmaps. When mounting a
1091 * filesystem, we recompute the auxiliary counts from the bitmaps.
1092 */
1093
1094/*
1095 * Called just after updating the cylinder group block to allocate an inode.
1096 */
1097void
1098softdep_setup_inomapdep(bp, ip, newinum)
1099	struct buf *bp;		/* buffer for cylgroup block with inode map */
1100	struct inode *ip;	/* inode related to allocation */
1101	ino_t newinum;		/* new inode number being allocated */
1102{
1103	struct inodedep *inodedep;
1104	struct bmsafemap *bmsafemap;
1105
1106	/*
1107	 * Create a dependency for the newly allocated inode.
1108	 * Panic if it already exists as something is seriously wrong.
1109	 * Otherwise add it to the dependency list for the buffer holding
1110	 * the cylinder group map from which it was allocated.
1111	 */
1112	ACQUIRE_LOCK(&lk);
1113	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep)))
1114		panic("softdep_setup_inomapdep: found inode");
1115	inodedep->id_buf = bp;
1116	inodedep->id_state &= ~DEPCOMPLETE;
1117	bmsafemap = bmsafemap_lookup(bp);
1118	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1119	FREE_LOCK(&lk);
1120}
1121
1122/*
1123 * Called just after updating the cylinder group block to
1124 * allocate block or fragment.
1125 */
1126void
1127softdep_setup_blkmapdep(bp, fs, newblkno)
1128	struct buf *bp;		/* buffer for cylgroup block with block map */
1129	struct fs *fs;		/* filesystem doing allocation */
1130	ufs2_daddr_t newblkno;	/* number of newly allocated block */
1131{
1132	struct newblk *newblk;
1133	struct bmsafemap *bmsafemap;
1134
1135	/*
1136	 * Create a dependency for the newly allocated block.
1137	 * Add it to the dependency list for the buffer holding
1138	 * the cylinder group map from which it was allocated.
1139	 */
1140	ACQUIRE_LOCK(&lk);
1141	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1142		panic("softdep_setup_blkmapdep: found block");
1143	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1144	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1145	FREE_LOCK(&lk);
1146}
1147
1148/*
1149 * Find the bmsafemap associated with a cylinder group buffer.
1150 * If none exists, create one. The buffer must be locked when
1151 * this routine is called and this routine must be called with
1152 * splbio interrupts blocked.
1153 */
1154static struct bmsafemap *
1155bmsafemap_lookup(bp)
1156	struct buf *bp;
1157{
1158	struct bmsafemap *bmsafemap;
1159	struct worklist *wk;
1160
1161	mtx_assert(&lk, MA_OWNED);
1162	LIST_FOREACH(wk, &bp->b_dep, wk_list)
1163		if (wk->wk_type == D_BMSAFEMAP)
1164			return (WK_BMSAFEMAP(wk));
1165	FREE_LOCK(&lk);
1166	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1167		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1168	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1169	bmsafemap->sm_list.wk_state = 0;
1170	bmsafemap->sm_buf = bp;
1171	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1172	LIST_INIT(&bmsafemap->sm_allocindirhd);
1173	LIST_INIT(&bmsafemap->sm_inodedephd);
1174	LIST_INIT(&bmsafemap->sm_newblkhd);
1175	ACQUIRE_LOCK(&lk);
1176	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1177	return (bmsafemap);
1178}
1179
1180/*
1181 * Direct block allocation dependencies.
1182 *
1183 * When a new block is allocated, the corresponding disk locations must be
1184 * initialized (with zeros or new data) before the on-disk inode points to
1185 * them.  Also, the freemap from which the block was allocated must be
1186 * updated (on disk) before the inode's pointer. These two dependencies are
1187 * independent of each other and are needed for all file blocks and indirect
1188 * blocks that are pointed to directly by the inode.  Just before the
1189 * "in-core" version of the inode is updated with a newly allocated block
1190 * number, a procedure (below) is called to setup allocation dependency
1191 * structures.  These structures are removed when the corresponding
1192 * dependencies are satisfied or when the block allocation becomes obsolete
1193 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1194 * fragment that gets upgraded).  All of these cases are handled in
1195 * procedures described later.
1196 *
1197 * When a file extension causes a fragment to be upgraded, either to a larger
1198 * fragment or to a full block, the on-disk location may change (if the
1199 * previous fragment could not simply be extended). In this case, the old
1200 * fragment must be de-allocated, but not until after the inode's pointer has
1201 * been updated. In most cases, this is handled by later procedures, which
1202 * will construct a "freefrag" structure to be added to the workitem queue
1203 * when the inode update is complete (or obsolete).  The main exception to
1204 * this is when an allocation occurs while a pending allocation dependency
1205 * (for the same block pointer) remains.  This case is handled in the main
1206 * allocation dependency setup procedure by immediately freeing the
1207 * unreferenced fragments.
1208 */
1209void
1210softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1211	struct inode *ip;	/* inode to which block is being added */
1212	ufs_lbn_t lbn;		/* block pointer within inode */
1213	ufs2_daddr_t newblkno;	/* disk block number being added */
1214	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1215	long newsize;		/* size of new block */
1216	long oldsize;		/* size of new block */
1217	struct buf *bp;		/* bp for allocated block */
1218{
1219	struct allocdirect *adp, *oldadp;
1220	struct allocdirectlst *adphead;
1221	struct bmsafemap *bmsafemap;
1222	struct inodedep *inodedep;
1223	struct pagedep *pagedep;
1224	struct newblk *newblk;
1225
1226	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1227		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1228	adp->ad_list.wk_type = D_ALLOCDIRECT;
1229	adp->ad_lbn = lbn;
1230	adp->ad_newblkno = newblkno;
1231	adp->ad_oldblkno = oldblkno;
1232	adp->ad_newsize = newsize;
1233	adp->ad_oldsize = oldsize;
1234	adp->ad_state = ATTACHED;
1235	LIST_INIT(&adp->ad_newdirblk);
1236	if (newblkno == oldblkno)
1237		adp->ad_freefrag = NULL;
1238	else
1239		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1240
1241	ACQUIRE_LOCK(&lk);
1242	if (lbn >= NDADDR) {
1243		/* allocating an indirect block */
1244		if (oldblkno != 0)
1245			panic("softdep_setup_allocdirect: non-zero indir");
1246	} else {
1247		/*
1248		 * Allocating a direct block.
1249		 *
1250		 * If we are allocating a directory block, then we must
1251		 * allocate an associated pagedep to track additions and
1252		 * deletions.
1253		 */
1254		if ((ip->i_mode & IFMT) == IFDIR &&
1255		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1256			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1257	}
1258	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1259		panic("softdep_setup_allocdirect: lost block");
1260	if (newblk->nb_state == DEPCOMPLETE) {
1261		adp->ad_state |= DEPCOMPLETE;
1262		adp->ad_buf = NULL;
1263	} else {
1264		bmsafemap = newblk->nb_bmsafemap;
1265		adp->ad_buf = bmsafemap->sm_buf;
1266		LIST_REMOVE(newblk, nb_deps);
1267		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1268	}
1269	LIST_REMOVE(newblk, nb_hash);
1270	FREE(newblk, M_NEWBLK);
1271
1272	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1273	adp->ad_inodedep = inodedep;
1274	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1275	/*
1276	 * The list of allocdirects must be kept in sorted and ascending
1277	 * order so that the rollback routines can quickly determine the
1278	 * first uncommitted block (the size of the file stored on disk
1279	 * ends at the end of the lowest committed fragment, or if there
1280	 * are no fragments, at the end of the highest committed block).
1281	 * Since files generally grow, the typical case is that the new
1282	 * block is to be added at the end of the list. We speed this
1283	 * special case by checking against the last allocdirect in the
1284	 * list before laboriously traversing the list looking for the
1285	 * insertion point.
1286	 */
1287	adphead = &inodedep->id_newinoupdt;
1288	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1289	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1290		/* insert at end of list */
1291		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1292		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1293			allocdirect_merge(adphead, adp, oldadp);
1294		FREE_LOCK(&lk);
1295		return;
1296	}
1297	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1298		if (oldadp->ad_lbn >= lbn)
1299			break;
1300	}
1301	if (oldadp == NULL)
1302		panic("softdep_setup_allocdirect: lost entry");
1303	/* insert in middle of list */
1304	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1305	if (oldadp->ad_lbn == lbn)
1306		allocdirect_merge(adphead, adp, oldadp);
1307	FREE_LOCK(&lk);
1308}
1309
1310/*
1311 * Replace an old allocdirect dependency with a newer one.
1312 * This routine must be called with splbio interrupts blocked.
1313 */
1314static void
1315allocdirect_merge(adphead, newadp, oldadp)
1316	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1317	struct allocdirect *newadp;	/* allocdirect being added */
1318	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1319{
1320	struct worklist *wk;
1321	struct freefrag *freefrag;
1322	struct newdirblk *newdirblk;
1323
1324	mtx_assert(&lk, MA_OWNED);
1325	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1326	    newadp->ad_oldsize != oldadp->ad_newsize ||
1327	    newadp->ad_lbn >= NDADDR)
1328		panic("%s %jd != new %jd || old size %ld != new %ld",
1329		    "allocdirect_merge: old blkno",
1330		    (intmax_t)newadp->ad_oldblkno,
1331		    (intmax_t)oldadp->ad_newblkno,
1332		    newadp->ad_oldsize, oldadp->ad_newsize);
1333	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1334	newadp->ad_oldsize = oldadp->ad_oldsize;
1335	/*
1336	 * If the old dependency had a fragment to free or had never
1337	 * previously had a block allocated, then the new dependency
1338	 * can immediately post its freefrag and adopt the old freefrag.
1339	 * This action is done by swapping the freefrag dependencies.
1340	 * The new dependency gains the old one's freefrag, and the
1341	 * old one gets the new one and then immediately puts it on
1342	 * the worklist when it is freed by free_allocdirect. It is
1343	 * not possible to do this swap when the old dependency had a
1344	 * non-zero size but no previous fragment to free. This condition
1345	 * arises when the new block is an extension of the old block.
1346	 * Here, the first part of the fragment allocated to the new
1347	 * dependency is part of the block currently claimed on disk by
1348	 * the old dependency, so cannot legitimately be freed until the
1349	 * conditions for the new dependency are fulfilled.
1350	 */
1351	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1352		freefrag = newadp->ad_freefrag;
1353		newadp->ad_freefrag = oldadp->ad_freefrag;
1354		oldadp->ad_freefrag = freefrag;
1355	}
1356	/*
1357	 * If we are tracking a new directory-block allocation,
1358	 * move it from the old allocdirect to the new allocdirect.
1359	 */
1360	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
1361		newdirblk = WK_NEWDIRBLK(wk);
1362		WORKLIST_REMOVE(&newdirblk->db_list);
1363		if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL)
1364			panic("allocdirect_merge: extra newdirblk");
1365		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
1366	}
1367	free_allocdirect(adphead, oldadp, 0);
1368}
1369
1370/*
1371 * Allocate a new freefrag structure if needed.
1372 */
1373static struct freefrag *
1374newfreefrag(ip, blkno, size)
1375	struct inode *ip;
1376	ufs2_daddr_t blkno;
1377	long size;
1378{
1379	struct freefrag *freefrag;
1380	struct fs *fs;
1381
1382	if (blkno == 0)
1383		return (NULL);
1384	fs = ip->i_fs;
1385	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1386		panic("newfreefrag: frag size");
1387	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1388		M_FREEFRAG, M_SOFTDEP_FLAGS);
1389	freefrag->ff_list.wk_type = D_FREEFRAG;
1390	freefrag->ff_state = 0;
1391	freefrag->ff_inum = ip->i_number;
1392	freefrag->ff_mnt = ITOV(ip)->v_mount;
1393	freefrag->ff_blkno = blkno;
1394	freefrag->ff_fragsize = size;
1395	return (freefrag);
1396}
1397
1398/*
1399 * This workitem de-allocates fragments that were replaced during
1400 * file block allocation.
1401 */
1402static void
1403handle_workitem_freefrag(freefrag)
1404	struct freefrag *freefrag;
1405{
1406	struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt);
1407
1408	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
1409	    freefrag->ff_fragsize, freefrag->ff_inum);
1410	FREE(freefrag, M_FREEFRAG);
1411}
1412
1413/*
1414 * Set up a dependency structure for an external attributes data block.
1415 * This routine follows much of the structure of softdep_setup_allocdirect.
1416 * See the description of softdep_setup_allocdirect above for details.
1417 */
1418void
1419softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1420	struct inode *ip;
1421	ufs_lbn_t lbn;
1422	ufs2_daddr_t newblkno;
1423	ufs2_daddr_t oldblkno;
1424	long newsize;
1425	long oldsize;
1426	struct buf *bp;
1427{
1428	struct allocdirect *adp, *oldadp;
1429	struct allocdirectlst *adphead;
1430	struct bmsafemap *bmsafemap;
1431	struct inodedep *inodedep;
1432	struct newblk *newblk;
1433
1434	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1435		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1436	adp->ad_list.wk_type = D_ALLOCDIRECT;
1437	adp->ad_lbn = lbn;
1438	adp->ad_newblkno = newblkno;
1439	adp->ad_oldblkno = oldblkno;
1440	adp->ad_newsize = newsize;
1441	adp->ad_oldsize = oldsize;
1442	adp->ad_state = ATTACHED | EXTDATA;
1443	LIST_INIT(&adp->ad_newdirblk);
1444	if (newblkno == oldblkno)
1445		adp->ad_freefrag = NULL;
1446	else
1447		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1448
1449	ACQUIRE_LOCK(&lk);
1450	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1451		panic("softdep_setup_allocext: lost block");
1452
1453	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1454	adp->ad_inodedep = inodedep;
1455
1456	if (newblk->nb_state == DEPCOMPLETE) {
1457		adp->ad_state |= DEPCOMPLETE;
1458		adp->ad_buf = NULL;
1459	} else {
1460		bmsafemap = newblk->nb_bmsafemap;
1461		adp->ad_buf = bmsafemap->sm_buf;
1462		LIST_REMOVE(newblk, nb_deps);
1463		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1464	}
1465	LIST_REMOVE(newblk, nb_hash);
1466	FREE(newblk, M_NEWBLK);
1467
1468	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1469	if (lbn >= NXADDR)
1470		panic("softdep_setup_allocext: lbn %lld > NXADDR",
1471		    (long long)lbn);
1472	/*
1473	 * The list of allocdirects must be kept in sorted and ascending
1474	 * order so that the rollback routines can quickly determine the
1475	 * first uncommitted block (the size of the file stored on disk
1476	 * ends at the end of the lowest committed fragment, or if there
1477	 * are no fragments, at the end of the highest committed block).
1478	 * Since files generally grow, the typical case is that the new
1479	 * block is to be added at the end of the list. We speed this
1480	 * special case by checking against the last allocdirect in the
1481	 * list before laboriously traversing the list looking for the
1482	 * insertion point.
1483	 */
1484	adphead = &inodedep->id_newextupdt;
1485	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1486	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1487		/* insert at end of list */
1488		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1489		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1490			allocdirect_merge(adphead, adp, oldadp);
1491		FREE_LOCK(&lk);
1492		return;
1493	}
1494	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1495		if (oldadp->ad_lbn >= lbn)
1496			break;
1497	}
1498	if (oldadp == NULL)
1499		panic("softdep_setup_allocext: lost entry");
1500	/* insert in middle of list */
1501	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1502	if (oldadp->ad_lbn == lbn)
1503		allocdirect_merge(adphead, adp, oldadp);
1504	FREE_LOCK(&lk);
1505}
1506
1507/*
1508 * Indirect block allocation dependencies.
1509 *
1510 * The same dependencies that exist for a direct block also exist when
1511 * a new block is allocated and pointed to by an entry in a block of
1512 * indirect pointers. The undo/redo states described above are also
1513 * used here. Because an indirect block contains many pointers that
1514 * may have dependencies, a second copy of the entire in-memory indirect
1515 * block is kept. The buffer cache copy is always completely up-to-date.
1516 * The second copy, which is used only as a source for disk writes,
1517 * contains only the safe pointers (i.e., those that have no remaining
1518 * update dependencies). The second copy is freed when all pointers
1519 * are safe. The cache is not allowed to replace indirect blocks with
1520 * pending update dependencies. If a buffer containing an indirect
1521 * block with dependencies is written, these routines will mark it
1522 * dirty again. It can only be successfully written once all the
1523 * dependencies are removed. The ffs_fsync routine in conjunction with
1524 * softdep_sync_metadata work together to get all the dependencies
1525 * removed so that a file can be successfully written to disk. Three
1526 * procedures are used when setting up indirect block pointer
1527 * dependencies. The division is necessary because of the organization
1528 * of the "balloc" routine and because of the distinction between file
1529 * pages and file metadata blocks.
1530 */
1531
1532/*
1533 * Allocate a new allocindir structure.
1534 */
1535static struct allocindir *
1536newallocindir(ip, ptrno, newblkno, oldblkno)
1537	struct inode *ip;	/* inode for file being extended */
1538	int ptrno;		/* offset of pointer in indirect block */
1539	ufs2_daddr_t newblkno;	/* disk block number being added */
1540	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1541{
1542	struct allocindir *aip;
1543
1544	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1545		M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO);
1546	aip->ai_list.wk_type = D_ALLOCINDIR;
1547	aip->ai_state = ATTACHED;
1548	aip->ai_offset = ptrno;
1549	aip->ai_newblkno = newblkno;
1550	aip->ai_oldblkno = oldblkno;
1551	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1552	return (aip);
1553}
1554
1555/*
1556 * Called just before setting an indirect block pointer
1557 * to a newly allocated file page.
1558 */
1559void
1560softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1561	struct inode *ip;	/* inode for file being extended */
1562	ufs_lbn_t lbn;		/* allocated block number within file */
1563	struct buf *bp;		/* buffer with indirect blk referencing page */
1564	int ptrno;		/* offset of pointer in indirect block */
1565	ufs2_daddr_t newblkno;	/* disk block number being added */
1566	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1567	struct buf *nbp;	/* buffer holding allocated page */
1568{
1569	struct allocindir *aip;
1570	struct pagedep *pagedep;
1571
1572	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1573	ACQUIRE_LOCK(&lk);
1574	/*
1575	 * If we are allocating a directory page, then we must
1576	 * allocate an associated pagedep to track additions and
1577	 * deletions.
1578	 */
1579	if ((ip->i_mode & IFMT) == IFDIR &&
1580	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1581		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1582	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1583	setup_allocindir_phase2(bp, ip, aip);
1584	FREE_LOCK(&lk);
1585}
1586
1587/*
1588 * Called just before setting an indirect block pointer to a
1589 * newly allocated indirect block.
1590 */
1591void
1592softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
1593	struct buf *nbp;	/* newly allocated indirect block */
1594	struct inode *ip;	/* inode for file being extended */
1595	struct buf *bp;		/* indirect block referencing allocated block */
1596	int ptrno;		/* offset of pointer in indirect block */
1597	ufs2_daddr_t newblkno;	/* disk block number being added */
1598{
1599	struct allocindir *aip;
1600
1601	aip = newallocindir(ip, ptrno, newblkno, 0);
1602	ACQUIRE_LOCK(&lk);
1603	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1604	setup_allocindir_phase2(bp, ip, aip);
1605	FREE_LOCK(&lk);
1606}
1607
1608/*
1609 * Called to finish the allocation of the "aip" allocated
1610 * by one of the two routines above.
1611 */
1612static void
1613setup_allocindir_phase2(bp, ip, aip)
1614	struct buf *bp;		/* in-memory copy of the indirect block */
1615	struct inode *ip;	/* inode for file being extended */
1616	struct allocindir *aip;	/* allocindir allocated by the above routines */
1617{
1618	struct worklist *wk;
1619	struct indirdep *indirdep, *newindirdep;
1620	struct bmsafemap *bmsafemap;
1621	struct allocindir *oldaip;
1622	struct freefrag *freefrag;
1623	struct newblk *newblk;
1624	ufs2_daddr_t blkno;
1625
1626	mtx_assert(&lk, MA_OWNED);
1627	if (bp->b_lblkno >= 0)
1628		panic("setup_allocindir_phase2: not indir blk");
1629	for (indirdep = NULL, newindirdep = NULL; ; ) {
1630		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1631			if (wk->wk_type != D_INDIRDEP)
1632				continue;
1633			indirdep = WK_INDIRDEP(wk);
1634			break;
1635		}
1636		if (indirdep == NULL && newindirdep) {
1637			indirdep = newindirdep;
1638			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
1639			newindirdep = NULL;
1640		}
1641		if (indirdep) {
1642			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1643			    &newblk) == 0)
1644				panic("setup_allocindir: lost block");
1645			if (newblk->nb_state == DEPCOMPLETE) {
1646				aip->ai_state |= DEPCOMPLETE;
1647				aip->ai_buf = NULL;
1648			} else {
1649				bmsafemap = newblk->nb_bmsafemap;
1650				aip->ai_buf = bmsafemap->sm_buf;
1651				LIST_REMOVE(newblk, nb_deps);
1652				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1653				    aip, ai_deps);
1654			}
1655			LIST_REMOVE(newblk, nb_hash);
1656			FREE(newblk, M_NEWBLK);
1657			aip->ai_indirdep = indirdep;
1658			/*
1659			 * Check to see if there is an existing dependency
1660			 * for this block. If there is, merge the old
1661			 * dependency into the new one.
1662			 */
1663			if (aip->ai_oldblkno == 0)
1664				oldaip = NULL;
1665			else
1666
1667				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1668					if (oldaip->ai_offset == aip->ai_offset)
1669						break;
1670			freefrag = NULL;
1671			if (oldaip != NULL) {
1672				if (oldaip->ai_newblkno != aip->ai_oldblkno)
1673					panic("setup_allocindir_phase2: blkno");
1674				aip->ai_oldblkno = oldaip->ai_oldblkno;
1675				freefrag = aip->ai_freefrag;
1676				aip->ai_freefrag = oldaip->ai_freefrag;
1677				oldaip->ai_freefrag = NULL;
1678				free_allocindir(oldaip, NULL);
1679			}
1680			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1681			if (ip->i_ump->um_fstype == UFS1)
1682				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
1683				    [aip->ai_offset] = aip->ai_oldblkno;
1684			else
1685				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
1686				    [aip->ai_offset] = aip->ai_oldblkno;
1687			FREE_LOCK(&lk);
1688			if (freefrag != NULL)
1689				handle_workitem_freefrag(freefrag);
1690		} else
1691			FREE_LOCK(&lk);
1692		if (newindirdep) {
1693			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1694			brelse(newindirdep->ir_savebp);
1695			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1696		}
1697		if (indirdep) {
1698			ACQUIRE_LOCK(&lk);
1699			break;
1700		}
1701		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1702			M_INDIRDEP, M_SOFTDEP_FLAGS);
1703		newindirdep->ir_list.wk_type = D_INDIRDEP;
1704		newindirdep->ir_state = ATTACHED;
1705		if (ip->i_ump->um_fstype == UFS1)
1706			newindirdep->ir_state |= UFS1FMT;
1707		LIST_INIT(&newindirdep->ir_deplisthd);
1708		LIST_INIT(&newindirdep->ir_donehd);
1709		if (bp->b_blkno == bp->b_lblkno) {
1710			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
1711			    NULL, NULL);
1712			bp->b_blkno = blkno;
1713		}
1714		newindirdep->ir_savebp =
1715		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
1716		BUF_KERNPROC(newindirdep->ir_savebp);
1717		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1718		ACQUIRE_LOCK(&lk);
1719	}
1720}
1721
1722/*
1723 * Block de-allocation dependencies.
1724 *
1725 * When blocks are de-allocated, the on-disk pointers must be nullified before
1726 * the blocks are made available for use by other files.  (The true
1727 * requirement is that old pointers must be nullified before new on-disk
1728 * pointers are set.  We chose this slightly more stringent requirement to
1729 * reduce complexity.) Our implementation handles this dependency by updating
1730 * the inode (or indirect block) appropriately but delaying the actual block
1731 * de-allocation (i.e., freemap and free space count manipulation) until
1732 * after the updated versions reach stable storage.  After the disk is
1733 * updated, the blocks can be safely de-allocated whenever it is convenient.
1734 * This implementation handles only the common case of reducing a file's
1735 * length to zero. Other cases are handled by the conventional synchronous
1736 * write approach.
1737 *
1738 * The ffs implementation with which we worked double-checks
1739 * the state of the block pointers and file size as it reduces
1740 * a file's length.  Some of this code is replicated here in our
1741 * soft updates implementation.  The freeblks->fb_chkcnt field is
1742 * used to transfer a part of this information to the procedure
1743 * that eventually de-allocates the blocks.
1744 *
1745 * This routine should be called from the routine that shortens
1746 * a file's length, before the inode's size or block pointers
1747 * are modified. It will save the block pointer information for
1748 * later release and zero the inode so that the calling routine
1749 * can release it.
1750 */
1751void
1752softdep_setup_freeblocks(ip, length, flags)
1753	struct inode *ip;	/* The inode whose length is to be reduced */
1754	off_t length;		/* The new length for the file */
1755	int flags;		/* IO_EXT and/or IO_NORMAL */
1756{
1757	struct freeblks *freeblks;
1758	struct inodedep *inodedep;
1759	struct allocdirect *adp;
1760	struct vnode *vp;
1761	struct buf *bp;
1762	struct fs *fs;
1763	ufs2_daddr_t extblocks, datablocks;
1764	int i, delay, error;
1765
1766	fs = ip->i_fs;
1767	if (length != 0)
1768		panic("softdep_setup_freeblocks: non-zero length");
1769	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1770		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
1771	freeblks->fb_list.wk_type = D_FREEBLKS;
1772	freeblks->fb_uid = ip->i_uid;
1773	freeblks->fb_previousinum = ip->i_number;
1774	freeblks->fb_devvp = ip->i_devvp;
1775	freeblks->fb_mnt = ITOV(ip)->v_mount;
1776	extblocks = 0;
1777	if (fs->fs_magic == FS_UFS2_MAGIC)
1778		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
1779	datablocks = DIP(ip, i_blocks) - extblocks;
1780	if ((flags & IO_NORMAL) == 0) {
1781		freeblks->fb_oldsize = 0;
1782		freeblks->fb_chkcnt = 0;
1783	} else {
1784		freeblks->fb_oldsize = ip->i_size;
1785		ip->i_size = 0;
1786		DIP_SET(ip, i_size, 0);
1787		freeblks->fb_chkcnt = datablocks;
1788		for (i = 0; i < NDADDR; i++) {
1789			freeblks->fb_dblks[i] = DIP(ip, i_db[i]);
1790			DIP_SET(ip, i_db[i], 0);
1791		}
1792		for (i = 0; i < NIADDR; i++) {
1793			freeblks->fb_iblks[i] = DIP(ip, i_ib[i]);
1794			DIP_SET(ip, i_ib[i], 0);
1795		}
1796		/*
1797		 * If the file was removed, then the space being freed was
1798		 * accounted for then (see softdep_filereleased()). If the
1799		 * file is merely being truncated, then we account for it now.
1800		 */
1801		if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
1802			UFS_LOCK(ip->i_ump);
1803			fs->fs_pendingblocks += datablocks;
1804			UFS_UNLOCK(ip->i_ump);
1805		}
1806	}
1807	if ((flags & IO_EXT) == 0) {
1808		freeblks->fb_oldextsize = 0;
1809	} else {
1810		freeblks->fb_oldextsize = ip->i_din2->di_extsize;
1811		ip->i_din2->di_extsize = 0;
1812		freeblks->fb_chkcnt += extblocks;
1813		for (i = 0; i < NXADDR; i++) {
1814			freeblks->fb_eblks[i] = ip->i_din2->di_extb[i];
1815			ip->i_din2->di_extb[i] = 0;
1816		}
1817	}
1818	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
1819	/*
1820	 * Push the zero'ed inode to to its disk buffer so that we are free
1821	 * to delete its dependencies below. Once the dependencies are gone
1822	 * the buffer can be safely released.
1823	 */
1824	if ((error = bread(ip->i_devvp,
1825	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
1826	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
1827		brelse(bp);
1828		softdep_error("softdep_setup_freeblocks", error);
1829	}
1830	if (ip->i_ump->um_fstype == UFS1)
1831		*((struct ufs1_dinode *)bp->b_data +
1832		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
1833	else
1834		*((struct ufs2_dinode *)bp->b_data +
1835		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
1836	/*
1837	 * Find and eliminate any inode dependencies.
1838	 */
1839	ACQUIRE_LOCK(&lk);
1840	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1841	if ((inodedep->id_state & IOSTARTED) != 0)
1842		panic("softdep_setup_freeblocks: inode busy");
1843	/*
1844	 * Add the freeblks structure to the list of operations that
1845	 * must await the zero'ed inode being written to disk. If we
1846	 * still have a bitmap dependency (delay == 0), then the inode
1847	 * has never been written to disk, so we can process the
1848	 * freeblks below once we have deleted the dependencies.
1849	 */
1850	delay = (inodedep->id_state & DEPCOMPLETE);
1851	if (delay)
1852		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1853	/*
1854	 * Because the file length has been truncated to zero, any
1855	 * pending block allocation dependency structures associated
1856	 * with this inode are obsolete and can simply be de-allocated.
1857	 * We must first merge the two dependency lists to get rid of
1858	 * any duplicate freefrag structures, then purge the merged list.
1859	 * If we still have a bitmap dependency, then the inode has never
1860	 * been written to disk, so we can free any fragments without delay.
1861	 */
1862	if (flags & IO_NORMAL) {
1863		merge_inode_lists(&inodedep->id_newinoupdt,
1864		    &inodedep->id_inoupdt);
1865		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1866			free_allocdirect(&inodedep->id_inoupdt, adp, delay);
1867	}
1868	if (flags & IO_EXT) {
1869		merge_inode_lists(&inodedep->id_newextupdt,
1870		    &inodedep->id_extupdt);
1871		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
1872			free_allocdirect(&inodedep->id_extupdt, adp, delay);
1873	}
1874	FREE_LOCK(&lk);
1875	bdwrite(bp);
1876	/*
1877	 * We must wait for any I/O in progress to finish so that
1878	 * all potential buffers on the dirty list will be visible.
1879	 * Once they are all there, walk the list and get rid of
1880	 * any dependencies.
1881	 */
1882	vp = ITOV(ip);
1883	VI_LOCK(vp);
1884	drain_output(vp);
1885restart:
1886	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
1887		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
1888		    ((flags & IO_NORMAL) == 0 &&
1889		      (bp->b_xflags & BX_ALTDATA) == 0))
1890			continue;
1891		if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL)
1892			goto restart;
1893		VI_UNLOCK(vp);
1894		ACQUIRE_LOCK(&lk);
1895		(void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
1896		deallocate_dependencies(bp, inodedep);
1897		FREE_LOCK(&lk);
1898		bp->b_flags |= B_INVAL | B_NOCACHE;
1899		brelse(bp);
1900		VI_LOCK(vp);
1901		goto restart;
1902	}
1903	VI_UNLOCK(vp);
1904	ACQUIRE_LOCK(&lk);
1905	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1906		(void) free_inodedep(inodedep);
1907	FREE_LOCK(&lk);
1908	/*
1909	 * If the inode has never been written to disk (delay == 0),
1910	 * then we can process the freeblks now that we have deleted
1911	 * the dependencies.
1912	 */
1913	if (!delay)
1914		handle_workitem_freeblocks(freeblks, 0);
1915}
1916
1917/*
1918 * Reclaim any dependency structures from a buffer that is about to
1919 * be reallocated to a new vnode. The buffer must be locked, thus,
1920 * no I/O completion operations can occur while we are manipulating
1921 * its associated dependencies. The mutex is held so that other I/O's
1922 * associated with related dependencies do not occur.
1923 */
1924static void
1925deallocate_dependencies(bp, inodedep)
1926	struct buf *bp;
1927	struct inodedep *inodedep;
1928{
1929	struct worklist *wk;
1930	struct indirdep *indirdep;
1931	struct allocindir *aip;
1932	struct pagedep *pagedep;
1933	struct dirrem *dirrem;
1934	struct diradd *dap;
1935	int i;
1936
1937	mtx_assert(&lk, MA_OWNED);
1938	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1939		switch (wk->wk_type) {
1940
1941		case D_INDIRDEP:
1942			indirdep = WK_INDIRDEP(wk);
1943			/*
1944			 * None of the indirect pointers will ever be visible,
1945			 * so they can simply be tossed. GOINGAWAY ensures
1946			 * that allocated pointers will be saved in the buffer
1947			 * cache until they are freed. Note that they will
1948			 * only be able to be found by their physical address
1949			 * since the inode mapping the logical address will
1950			 * be gone. The save buffer used for the safe copy
1951			 * was allocated in setup_allocindir_phase2 using
1952			 * the physical address so it could be used for this
1953			 * purpose. Hence we swap the safe copy with the real
1954			 * copy, allowing the safe copy to be freed and holding
1955			 * on to the real copy for later use in indir_trunc.
1956			 */
1957			if (indirdep->ir_state & GOINGAWAY)
1958				panic("deallocate_dependencies: already gone");
1959			indirdep->ir_state |= GOINGAWAY;
1960			VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1;
1961			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
1962				free_allocindir(aip, inodedep);
1963			if (bp->b_lblkno >= 0 ||
1964			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
1965				panic("deallocate_dependencies: not indir");
1966			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1967			    bp->b_bcount);
1968			WORKLIST_REMOVE(wk);
1969			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
1970			continue;
1971
1972		case D_PAGEDEP:
1973			pagedep = WK_PAGEDEP(wk);
1974			/*
1975			 * None of the directory additions will ever be
1976			 * visible, so they can simply be tossed.
1977			 */
1978			for (i = 0; i < DAHASHSZ; i++)
1979				while ((dap =
1980				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
1981					free_diradd(dap);
1982			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
1983				free_diradd(dap);
1984			/*
1985			 * Copy any directory remove dependencies to the list
1986			 * to be processed after the zero'ed inode is written.
1987			 * If the inode has already been written, then they
1988			 * can be dumped directly onto the work list.
1989			 */
1990			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1991				LIST_REMOVE(dirrem, dm_next);
1992				dirrem->dm_dirinum = pagedep->pd_ino;
1993				if (inodedep == NULL ||
1994				    (inodedep->id_state & ALLCOMPLETE) ==
1995				     ALLCOMPLETE)
1996					add_to_worklist(&dirrem->dm_list);
1997				else
1998					WORKLIST_INSERT(&inodedep->id_bufwait,
1999					    &dirrem->dm_list);
2000			}
2001			if ((pagedep->pd_state & NEWBLOCK) != 0) {
2002				LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
2003					if (wk->wk_type == D_NEWDIRBLK &&
2004					    WK_NEWDIRBLK(wk)->db_pagedep ==
2005					      pagedep)
2006						break;
2007				if (wk != NULL) {
2008					WORKLIST_REMOVE(wk);
2009					free_newdirblk(WK_NEWDIRBLK(wk));
2010				} else
2011					panic("deallocate_dependencies: "
2012					      "lost pagedep");
2013			}
2014			WORKLIST_REMOVE(&pagedep->pd_list);
2015			LIST_REMOVE(pagedep, pd_hash);
2016			WORKITEM_FREE(pagedep, D_PAGEDEP);
2017			continue;
2018
2019		case D_ALLOCINDIR:
2020			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2021			continue;
2022
2023		case D_ALLOCDIRECT:
2024		case D_INODEDEP:
2025			panic("deallocate_dependencies: Unexpected type %s",
2026			    TYPENAME(wk->wk_type));
2027			/* NOTREACHED */
2028
2029		default:
2030			panic("deallocate_dependencies: Unknown type %s",
2031			    TYPENAME(wk->wk_type));
2032			/* NOTREACHED */
2033		}
2034	}
2035}
2036
2037/*
2038 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2039 * This routine must be called with splbio interrupts blocked.
2040 */
2041static void
2042free_allocdirect(adphead, adp, delay)
2043	struct allocdirectlst *adphead;
2044	struct allocdirect *adp;
2045	int delay;
2046{
2047	struct newdirblk *newdirblk;
2048	struct worklist *wk;
2049
2050	mtx_assert(&lk, MA_OWNED);
2051	if ((adp->ad_state & DEPCOMPLETE) == 0)
2052		LIST_REMOVE(adp, ad_deps);
2053	TAILQ_REMOVE(adphead, adp, ad_next);
2054	if ((adp->ad_state & COMPLETE) == 0)
2055		WORKLIST_REMOVE(&adp->ad_list);
2056	if (adp->ad_freefrag != NULL) {
2057		if (delay)
2058			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2059			    &adp->ad_freefrag->ff_list);
2060		else
2061			add_to_worklist(&adp->ad_freefrag->ff_list);
2062	}
2063	if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
2064		newdirblk = WK_NEWDIRBLK(wk);
2065		WORKLIST_REMOVE(&newdirblk->db_list);
2066		if (LIST_FIRST(&adp->ad_newdirblk) != NULL)
2067			panic("free_allocdirect: extra newdirblk");
2068		if (delay)
2069			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2070			    &newdirblk->db_list);
2071		else
2072			free_newdirblk(newdirblk);
2073	}
2074	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2075}
2076
2077/*
2078 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
2079 * This routine must be called with splbio interrupts blocked.
2080 */
2081static void
2082free_newdirblk(newdirblk)
2083	struct newdirblk *newdirblk;
2084{
2085	struct pagedep *pagedep;
2086	struct diradd *dap;
2087	int i;
2088
2089	mtx_assert(&lk, MA_OWNED);
2090	/*
2091	 * If the pagedep is still linked onto the directory buffer
2092	 * dependency chain, then some of the entries on the
2093	 * pd_pendinghd list may not be committed to disk yet. In
2094	 * this case, we will simply clear the NEWBLOCK flag and
2095	 * let the pd_pendinghd list be processed when the pagedep
2096	 * is next written. If the pagedep is no longer on the buffer
2097	 * dependency chain, then all the entries on the pd_pending
2098	 * list are committed to disk and we can free them here.
2099	 */
2100	pagedep = newdirblk->db_pagedep;
2101	pagedep->pd_state &= ~NEWBLOCK;
2102	if ((pagedep->pd_state & ONWORKLIST) == 0)
2103		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2104			free_diradd(dap);
2105	/*
2106	 * If no dependencies remain, the pagedep will be freed.
2107	 */
2108	for (i = 0; i < DAHASHSZ; i++)
2109		if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
2110			break;
2111	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
2112		LIST_REMOVE(pagedep, pd_hash);
2113		WORKITEM_FREE(pagedep, D_PAGEDEP);
2114	}
2115	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2116}
2117
2118/*
2119 * Prepare an inode to be freed. The actual free operation is not
2120 * done until the zero'ed inode has been written to disk.
2121 */
2122void
2123softdep_freefile(pvp, ino, mode)
2124	struct vnode *pvp;
2125	ino_t ino;
2126	int mode;
2127{
2128	struct inode *ip = VTOI(pvp);
2129	struct inodedep *inodedep;
2130	struct freefile *freefile;
2131
2132	/*
2133	 * This sets up the inode de-allocation dependency.
2134	 */
2135	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2136		M_FREEFILE, M_SOFTDEP_FLAGS);
2137	freefile->fx_list.wk_type = D_FREEFILE;
2138	freefile->fx_list.wk_state = 0;
2139	freefile->fx_mode = mode;
2140	freefile->fx_oldinum = ino;
2141	freefile->fx_devvp = ip->i_devvp;
2142	freefile->fx_mnt = ITOV(ip)->v_mount;
2143	if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2144		UFS_LOCK(ip->i_ump);
2145		ip->i_fs->fs_pendinginodes += 1;
2146		UFS_UNLOCK(ip->i_ump);
2147	}
2148
2149	/*
2150	 * If the inodedep does not exist, then the zero'ed inode has
2151	 * been written to disk. If the allocated inode has never been
2152	 * written to disk, then the on-disk inode is zero'ed. In either
2153	 * case we can free the file immediately.
2154	 */
2155	ACQUIRE_LOCK(&lk);
2156	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2157	    check_inode_unwritten(inodedep)) {
2158		FREE_LOCK(&lk);
2159		handle_workitem_freefile(freefile);
2160		return;
2161	}
2162	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2163	FREE_LOCK(&lk);
2164}
2165
2166/*
2167 * Check to see if an inode has never been written to disk. If
2168 * so free the inodedep and return success, otherwise return failure.
2169 * This routine must be called with splbio interrupts blocked.
2170 *
2171 * If we still have a bitmap dependency, then the inode has never
2172 * been written to disk. Drop the dependency as it is no longer
2173 * necessary since the inode is being deallocated. We set the
2174 * ALLCOMPLETE flags since the bitmap now properly shows that the
2175 * inode is not allocated. Even if the inode is actively being
2176 * written, it has been rolled back to its zero'ed state, so we
2177 * are ensured that a zero inode is what is on the disk. For short
2178 * lived files, this change will usually result in removing all the
2179 * dependencies from the inode so that it can be freed immediately.
2180 */
2181static int
2182check_inode_unwritten(inodedep)
2183	struct inodedep *inodedep;
2184{
2185
2186	mtx_assert(&lk, MA_OWNED);
2187	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2188	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2189	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2190	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2191	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2192	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2193	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2194	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2195	    inodedep->id_nlinkdelta != 0)
2196		return (0);
2197	inodedep->id_state |= ALLCOMPLETE;
2198	LIST_REMOVE(inodedep, id_deps);
2199	inodedep->id_buf = NULL;
2200	if (inodedep->id_state & ONWORKLIST)
2201		WORKLIST_REMOVE(&inodedep->id_list);
2202	if (inodedep->id_savedino1 != NULL) {
2203		FREE(inodedep->id_savedino1, M_INODEDEP);
2204		inodedep->id_savedino1 = NULL;
2205	}
2206	if (free_inodedep(inodedep) == 0)
2207		panic("check_inode_unwritten: busy inode");
2208	return (1);
2209}
2210
2211/*
2212 * Try to free an inodedep structure. Return 1 if it could be freed.
2213 */
2214static int
2215free_inodedep(inodedep)
2216	struct inodedep *inodedep;
2217{
2218
2219	mtx_assert(&lk, MA_OWNED);
2220	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2221	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2222	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2223	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2224	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2225	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2226	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2227	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2228	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2229	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL)
2230		return (0);
2231	LIST_REMOVE(inodedep, id_hash);
2232	WORKITEM_FREE(inodedep, D_INODEDEP);
2233	num_inodedep -= 1;
2234	return (1);
2235}
2236
2237/*
2238 * This workitem routine performs the block de-allocation.
2239 * The workitem is added to the pending list after the updated
2240 * inode block has been written to disk.  As mentioned above,
2241 * checks regarding the number of blocks de-allocated (compared
2242 * to the number of blocks allocated for the file) are also
2243 * performed in this function.
2244 */
2245static void
2246handle_workitem_freeblocks(freeblks, flags)
2247	struct freeblks *freeblks;
2248	int flags;
2249{
2250	struct inode *ip;
2251	struct vnode *vp;
2252	struct fs *fs;
2253	struct ufsmount *ump;
2254	int i, nblocks, level, bsize;
2255	ufs2_daddr_t bn, blocksreleased = 0;
2256	int error, allerror = 0;
2257	ufs_lbn_t baselbns[NIADDR], tmpval;
2258	int fs_pendingblocks;
2259
2260	ump = VFSTOUFS(freeblks->fb_mnt);
2261	fs = ump->um_fs;
2262	fs_pendingblocks = 0;
2263	tmpval = 1;
2264	baselbns[0] = NDADDR;
2265	for (i = 1; i < NIADDR; i++) {
2266		tmpval *= NINDIR(fs);
2267		baselbns[i] = baselbns[i - 1] + tmpval;
2268	}
2269	nblocks = btodb(fs->fs_bsize);
2270	blocksreleased = 0;
2271	/*
2272	 * Release all extended attribute blocks or frags.
2273	 */
2274	if (freeblks->fb_oldextsize > 0) {
2275		for (i = (NXADDR - 1); i >= 0; i--) {
2276			if ((bn = freeblks->fb_eblks[i]) == 0)
2277				continue;
2278			bsize = sblksize(fs, freeblks->fb_oldextsize, i);
2279			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2280			    freeblks->fb_previousinum);
2281			blocksreleased += btodb(bsize);
2282		}
2283	}
2284	/*
2285	 * Release all data blocks or frags.
2286	 */
2287	if (freeblks->fb_oldsize > 0) {
2288		/*
2289		 * Indirect blocks first.
2290		 */
2291		for (level = (NIADDR - 1); level >= 0; level--) {
2292			if ((bn = freeblks->fb_iblks[level]) == 0)
2293				continue;
2294			if ((error = indir_trunc(freeblks, fsbtodb(fs, bn),
2295			    level, baselbns[level], &blocksreleased)) == 0)
2296				allerror = error;
2297			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn,
2298			    fs->fs_bsize, freeblks->fb_previousinum);
2299			fs_pendingblocks += nblocks;
2300			blocksreleased += nblocks;
2301		}
2302		/*
2303		 * All direct blocks or frags.
2304		 */
2305		for (i = (NDADDR - 1); i >= 0; i--) {
2306			if ((bn = freeblks->fb_dblks[i]) == 0)
2307				continue;
2308			bsize = sblksize(fs, freeblks->fb_oldsize, i);
2309			ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2310			    freeblks->fb_previousinum);
2311			fs_pendingblocks += btodb(bsize);
2312			blocksreleased += btodb(bsize);
2313		}
2314	}
2315	UFS_LOCK(ump);
2316	fs->fs_pendingblocks -= fs_pendingblocks;
2317	UFS_UNLOCK(ump);
2318	/*
2319	 * If we still have not finished background cleanup, then check
2320	 * to see if the block count needs to be adjusted.
2321	 */
2322	if (freeblks->fb_chkcnt != blocksreleased &&
2323	    (fs->fs_flags & FS_UNCLEAN) != 0 &&
2324	    VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum,
2325	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) {
2326		ip = VTOI(vp);
2327		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \
2328		    freeblks->fb_chkcnt - blocksreleased);
2329		ip->i_flag |= IN_CHANGE;
2330		vput(vp);
2331	}
2332
2333#ifdef DIAGNOSTIC
2334	if (freeblks->fb_chkcnt != blocksreleased &&
2335	    ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
2336		printf("handle_workitem_freeblocks: block count\n");
2337	if (allerror)
2338		softdep_error("handle_workitem_freeblks", allerror);
2339#endif /* DIAGNOSTIC */
2340
2341	WORKITEM_FREE(freeblks, D_FREEBLKS);
2342}
2343
2344/*
2345 * Release blocks associated with the inode ip and stored in the indirect
2346 * block dbn. If level is greater than SINGLE, the block is an indirect block
2347 * and recursive calls to indirtrunc must be used to cleanse other indirect
2348 * blocks.
2349 */
2350static int
2351indir_trunc(freeblks, dbn, level, lbn, countp)
2352	struct freeblks *freeblks;
2353	ufs2_daddr_t dbn;
2354	int level;
2355	ufs_lbn_t lbn;
2356	ufs2_daddr_t *countp;
2357{
2358	struct buf *bp;
2359	struct fs *fs;
2360	struct worklist *wk;
2361	struct indirdep *indirdep;
2362	struct ufsmount *ump;
2363	ufs1_daddr_t *bap1 = 0;
2364	ufs2_daddr_t nb, *bap2 = 0;
2365	ufs_lbn_t lbnadd;
2366	int i, nblocks, ufs1fmt;
2367	int error, allerror = 0;
2368	int fs_pendingblocks;
2369
2370	ump = VFSTOUFS(freeblks->fb_mnt);
2371	fs = ump->um_fs;
2372	fs_pendingblocks = 0;
2373	lbnadd = 1;
2374	for (i = level; i > 0; i--)
2375		lbnadd *= NINDIR(fs);
2376	/*
2377	 * Get buffer of block pointers to be freed. This routine is not
2378	 * called until the zero'ed inode has been written, so it is safe
2379	 * to free blocks as they are encountered. Because the inode has
2380	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2381	 * have to use the on-disk address and the block device for the
2382	 * filesystem to look them up. If the file was deleted before its
2383	 * indirect blocks were all written to disk, the routine that set
2384	 * us up (deallocate_dependencies) will have arranged to leave
2385	 * a complete copy of the indirect block in memory for our use.
2386	 * Otherwise we have to read the blocks in from the disk.
2387	 */
2388#ifdef notyet
2389	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
2390	    GB_NOCREAT);
2391#else
2392	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
2393#endif
2394	ACQUIRE_LOCK(&lk);
2395	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2396		if (wk->wk_type != D_INDIRDEP ||
2397		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2398		    (indirdep->ir_state & GOINGAWAY) == 0)
2399			panic("indir_trunc: lost indirdep");
2400		WORKLIST_REMOVE(wk);
2401		WORKITEM_FREE(indirdep, D_INDIRDEP);
2402		if (LIST_FIRST(&bp->b_dep) != NULL)
2403			panic("indir_trunc: dangling dep");
2404		VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1;
2405		FREE_LOCK(&lk);
2406	} else {
2407#ifdef notyet
2408		if (bp)
2409			brelse(bp);
2410#endif
2411		FREE_LOCK(&lk);
2412		error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
2413		    NOCRED, &bp);
2414		if (error) {
2415			brelse(bp);
2416			return (error);
2417		}
2418	}
2419	/*
2420	 * Recursively free indirect blocks.
2421	 */
2422	if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) {
2423		ufs1fmt = 1;
2424		bap1 = (ufs1_daddr_t *)bp->b_data;
2425	} else {
2426		ufs1fmt = 0;
2427		bap2 = (ufs2_daddr_t *)bp->b_data;
2428	}
2429	nblocks = btodb(fs->fs_bsize);
2430	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2431		if (ufs1fmt)
2432			nb = bap1[i];
2433		else
2434			nb = bap2[i];
2435		if (nb == 0)
2436			continue;
2437		if (level != 0) {
2438			if ((error = indir_trunc(freeblks, fsbtodb(fs, nb),
2439			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2440				allerror = error;
2441		}
2442		ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize,
2443		    freeblks->fb_previousinum);
2444		fs_pendingblocks += nblocks;
2445		*countp += nblocks;
2446	}
2447	UFS_LOCK(ump);
2448	fs->fs_pendingblocks -= fs_pendingblocks;
2449	UFS_UNLOCK(ump);
2450	bp->b_flags |= B_INVAL | B_NOCACHE;
2451	brelse(bp);
2452	return (allerror);
2453}
2454
2455/*
2456 * Free an allocindir.
2457 * This routine must be called with splbio interrupts blocked.
2458 */
2459static void
2460free_allocindir(aip, inodedep)
2461	struct allocindir *aip;
2462	struct inodedep *inodedep;
2463{
2464	struct freefrag *freefrag;
2465
2466	mtx_assert(&lk, MA_OWNED);
2467	if ((aip->ai_state & DEPCOMPLETE) == 0)
2468		LIST_REMOVE(aip, ai_deps);
2469	if (aip->ai_state & ONWORKLIST)
2470		WORKLIST_REMOVE(&aip->ai_list);
2471	LIST_REMOVE(aip, ai_next);
2472	if ((freefrag = aip->ai_freefrag) != NULL) {
2473		if (inodedep == NULL)
2474			add_to_worklist(&freefrag->ff_list);
2475		else
2476			WORKLIST_INSERT(&inodedep->id_bufwait,
2477			    &freefrag->ff_list);
2478	}
2479	WORKITEM_FREE(aip, D_ALLOCINDIR);
2480}
2481
2482/*
2483 * Directory entry addition dependencies.
2484 *
2485 * When adding a new directory entry, the inode (with its incremented link
2486 * count) must be written to disk before the directory entry's pointer to it.
2487 * Also, if the inode is newly allocated, the corresponding freemap must be
2488 * updated (on disk) before the directory entry's pointer. These requirements
2489 * are met via undo/redo on the directory entry's pointer, which consists
2490 * simply of the inode number.
2491 *
2492 * As directory entries are added and deleted, the free space within a
2493 * directory block can become fragmented.  The ufs filesystem will compact
2494 * a fragmented directory block to make space for a new entry. When this
2495 * occurs, the offsets of previously added entries change. Any "diradd"
2496 * dependency structures corresponding to these entries must be updated with
2497 * the new offsets.
2498 */
2499
2500/*
2501 * This routine is called after the in-memory inode's link
2502 * count has been incremented, but before the directory entry's
2503 * pointer to the inode has been set.
2504 */
2505int
2506softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
2507	struct buf *bp;		/* buffer containing directory block */
2508	struct inode *dp;	/* inode for directory */
2509	off_t diroffset;	/* offset of new entry in directory */
2510	ino_t newinum;		/* inode referenced by new directory entry */
2511	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2512	int isnewblk;		/* entry is in a newly allocated block */
2513{
2514	int offset;		/* offset of new entry within directory block */
2515	ufs_lbn_t lbn;		/* block in directory containing new entry */
2516	struct fs *fs;
2517	struct diradd *dap;
2518	struct allocdirect *adp;
2519	struct pagedep *pagedep;
2520	struct inodedep *inodedep;
2521	struct newdirblk *newdirblk = 0;
2522	struct mkdir *mkdir1, *mkdir2;
2523
2524	/*
2525	 * Whiteouts have no dependencies.
2526	 */
2527	if (newinum == WINO) {
2528		if (newdirbp != NULL)
2529			bdwrite(newdirbp);
2530		return (0);
2531	}
2532
2533	fs = dp->i_fs;
2534	lbn = lblkno(fs, diroffset);
2535	offset = blkoff(fs, diroffset);
2536	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2537		M_SOFTDEP_FLAGS|M_ZERO);
2538	dap->da_list.wk_type = D_DIRADD;
2539	dap->da_offset = offset;
2540	dap->da_newinum = newinum;
2541	dap->da_state = ATTACHED;
2542	if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
2543		MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk),
2544		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
2545		newdirblk->db_list.wk_type = D_NEWDIRBLK;
2546		newdirblk->db_state = 0;
2547	}
2548	if (newdirbp == NULL) {
2549		dap->da_state |= DEPCOMPLETE;
2550		ACQUIRE_LOCK(&lk);
2551	} else {
2552		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2553		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2554		    M_SOFTDEP_FLAGS);
2555		mkdir1->md_list.wk_type = D_MKDIR;
2556		mkdir1->md_state = MKDIR_BODY;
2557		mkdir1->md_diradd = dap;
2558		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2559		    M_SOFTDEP_FLAGS);
2560		mkdir2->md_list.wk_type = D_MKDIR;
2561		mkdir2->md_state = MKDIR_PARENT;
2562		mkdir2->md_diradd = dap;
2563		/*
2564		 * Dependency on "." and ".." being written to disk.
2565		 */
2566		mkdir1->md_buf = newdirbp;
2567		ACQUIRE_LOCK(&lk);
2568		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2569		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
2570		FREE_LOCK(&lk);
2571		bdwrite(newdirbp);
2572		/*
2573		 * Dependency on link count increase for parent directory
2574		 */
2575		ACQUIRE_LOCK(&lk);
2576		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0
2577		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2578			dap->da_state &= ~MKDIR_PARENT;
2579			WORKITEM_FREE(mkdir2, D_MKDIR);
2580		} else {
2581			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2582			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2583		}
2584	}
2585	/*
2586	 * Link into parent directory pagedep to await its being written.
2587	 */
2588	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2589		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2590	dap->da_pagedep = pagedep;
2591	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2592	    da_pdlist);
2593	/*
2594	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2595	 * is not yet written. If it is written, do the post-inode write
2596	 * processing to put it on the id_pendinghd list.
2597	 */
2598	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2599	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2600		diradd_inode_written(dap, inodedep);
2601	else
2602		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2603	if (isnewblk) {
2604		/*
2605		 * Directories growing into indirect blocks are rare
2606		 * enough and the frequency of new block allocation
2607		 * in those cases even more rare, that we choose not
2608		 * to bother tracking them. Rather we simply force the
2609		 * new directory entry to disk.
2610		 */
2611		if (lbn >= NDADDR) {
2612			FREE_LOCK(&lk);
2613			/*
2614			 * We only have a new allocation when at the
2615			 * beginning of a new block, not when we are
2616			 * expanding into an existing block.
2617			 */
2618			if (blkoff(fs, diroffset) == 0)
2619				return (1);
2620			return (0);
2621		}
2622		/*
2623		 * We only have a new allocation when at the beginning
2624		 * of a new fragment, not when we are expanding into an
2625		 * existing fragment. Also, there is nothing to do if we
2626		 * are already tracking this block.
2627		 */
2628		if (fragoff(fs, diroffset) != 0) {
2629			FREE_LOCK(&lk);
2630			return (0);
2631		}
2632		if ((pagedep->pd_state & NEWBLOCK) != 0) {
2633			FREE_LOCK(&lk);
2634			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2635			return (0);
2636		}
2637		/*
2638		 * Find our associated allocdirect and have it track us.
2639		 */
2640		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0)
2641			panic("softdep_setup_directory_add: lost inodedep");
2642		adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
2643		if (adp == NULL || adp->ad_lbn != lbn)
2644			panic("softdep_setup_directory_add: lost entry");
2645		pagedep->pd_state |= NEWBLOCK;
2646		newdirblk->db_pagedep = pagedep;
2647		WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
2648	}
2649	FREE_LOCK(&lk);
2650	return (0);
2651}
2652
2653/*
2654 * This procedure is called to change the offset of a directory
2655 * entry when compacting a directory block which must be owned
2656 * exclusively by the caller. Note that the actual entry movement
2657 * must be done in this procedure to ensure that no I/O completions
2658 * occur while the move is in progress.
2659 */
2660void
2661softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
2662	struct inode *dp;	/* inode for directory */
2663	caddr_t base;		/* address of dp->i_offset */
2664	caddr_t oldloc;		/* address of old directory location */
2665	caddr_t newloc;		/* address of new directory location */
2666	int entrysize;		/* size of directory entry */
2667{
2668	int offset, oldoffset, newoffset;
2669	struct pagedep *pagedep;
2670	struct diradd *dap;
2671	ufs_lbn_t lbn;
2672
2673	ACQUIRE_LOCK(&lk);
2674	lbn = lblkno(dp->i_fs, dp->i_offset);
2675	offset = blkoff(dp->i_fs, dp->i_offset);
2676	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2677		goto done;
2678	oldoffset = offset + (oldloc - base);
2679	newoffset = offset + (newloc - base);
2680
2681	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2682		if (dap->da_offset != oldoffset)
2683			continue;
2684		dap->da_offset = newoffset;
2685		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2686			break;
2687		LIST_REMOVE(dap, da_pdlist);
2688		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2689		    dap, da_pdlist);
2690		break;
2691	}
2692	if (dap == NULL) {
2693
2694		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2695			if (dap->da_offset == oldoffset) {
2696				dap->da_offset = newoffset;
2697				break;
2698			}
2699		}
2700	}
2701done:
2702	bcopy(oldloc, newloc, entrysize);
2703	FREE_LOCK(&lk);
2704}
2705
2706/*
2707 * Free a diradd dependency structure. This routine must be called
2708 * with splbio interrupts blocked.
2709 */
2710static void
2711free_diradd(dap)
2712	struct diradd *dap;
2713{
2714	struct dirrem *dirrem;
2715	struct pagedep *pagedep;
2716	struct inodedep *inodedep;
2717	struct mkdir *mkdir, *nextmd;
2718
2719	mtx_assert(&lk, MA_OWNED);
2720	WORKLIST_REMOVE(&dap->da_list);
2721	LIST_REMOVE(dap, da_pdlist);
2722	if ((dap->da_state & DIRCHG) == 0) {
2723		pagedep = dap->da_pagedep;
2724	} else {
2725		dirrem = dap->da_previous;
2726		pagedep = dirrem->dm_pagedep;
2727		dirrem->dm_dirinum = pagedep->pd_ino;
2728		add_to_worklist(&dirrem->dm_list);
2729	}
2730	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2731	    0, &inodedep) != 0)
2732		(void) free_inodedep(inodedep);
2733	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2734		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2735			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2736			if (mkdir->md_diradd != dap)
2737				continue;
2738			dap->da_state &= ~mkdir->md_state;
2739			WORKLIST_REMOVE(&mkdir->md_list);
2740			LIST_REMOVE(mkdir, md_mkdirs);
2741			WORKITEM_FREE(mkdir, D_MKDIR);
2742		}
2743		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
2744			panic("free_diradd: unfound ref");
2745	}
2746	WORKITEM_FREE(dap, D_DIRADD);
2747}
2748
2749/*
2750 * Directory entry removal dependencies.
2751 *
2752 * When removing a directory entry, the entry's inode pointer must be
2753 * zero'ed on disk before the corresponding inode's link count is decremented
2754 * (possibly freeing the inode for re-use). This dependency is handled by
2755 * updating the directory entry but delaying the inode count reduction until
2756 * after the directory block has been written to disk. After this point, the
2757 * inode count can be decremented whenever it is convenient.
2758 */
2759
2760/*
2761 * This routine should be called immediately after removing
2762 * a directory entry.  The inode's link count should not be
2763 * decremented by the calling procedure -- the soft updates
2764 * code will do this task when it is safe.
2765 */
2766void
2767softdep_setup_remove(bp, dp, ip, isrmdir)
2768	struct buf *bp;		/* buffer containing directory block */
2769	struct inode *dp;	/* inode for the directory being modified */
2770	struct inode *ip;	/* inode for directory entry being removed */
2771	int isrmdir;		/* indicates if doing RMDIR */
2772{
2773	struct dirrem *dirrem, *prevdirrem;
2774
2775	/*
2776	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2777	 */
2778	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2779
2780	/*
2781	 * If the COMPLETE flag is clear, then there were no active
2782	 * entries and we want to roll back to a zeroed entry until
2783	 * the new inode is committed to disk. If the COMPLETE flag is
2784	 * set then we have deleted an entry that never made it to
2785	 * disk. If the entry we deleted resulted from a name change,
2786	 * then the old name still resides on disk. We cannot delete
2787	 * its inode (returned to us in prevdirrem) until the zeroed
2788	 * directory entry gets to disk. The new inode has never been
2789	 * referenced on the disk, so can be deleted immediately.
2790	 */
2791	if ((dirrem->dm_state & COMPLETE) == 0) {
2792		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2793		    dm_next);
2794		FREE_LOCK(&lk);
2795	} else {
2796		if (prevdirrem != NULL)
2797			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2798			    prevdirrem, dm_next);
2799		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2800		FREE_LOCK(&lk);
2801		handle_workitem_remove(dirrem, NULL);
2802	}
2803}
2804
2805/*
2806 * Allocate a new dirrem if appropriate and return it along with
2807 * its associated pagedep. Called without a lock, returns with lock.
2808 */
2809static long num_dirrem;		/* number of dirrem allocated */
2810static struct dirrem *
2811newdirrem(bp, dp, ip, isrmdir, prevdirremp)
2812	struct buf *bp;		/* buffer containing directory block */
2813	struct inode *dp;	/* inode for the directory being modified */
2814	struct inode *ip;	/* inode for directory entry being removed */
2815	int isrmdir;		/* indicates if doing RMDIR */
2816	struct dirrem **prevdirremp; /* previously referenced inode, if any */
2817{
2818	int offset;
2819	ufs_lbn_t lbn;
2820	struct diradd *dap;
2821	struct dirrem *dirrem;
2822	struct pagedep *pagedep;
2823
2824	/*
2825	 * Whiteouts have no deletion dependencies.
2826	 */
2827	if (ip == NULL)
2828		panic("newdirrem: whiteout");
2829	/*
2830	 * If we are over our limit, try to improve the situation.
2831	 * Limiting the number of dirrem structures will also limit
2832	 * the number of freefile and freeblks structures.
2833	 */
2834	ACQUIRE_LOCK(&lk);
2835	if (num_dirrem > max_softdeps / 2)
2836		(void) request_cleanup(FLUSH_REMOVE);
2837	num_dirrem += 1;
2838	FREE_LOCK(&lk);
2839	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2840		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
2841	dirrem->dm_list.wk_type = D_DIRREM;
2842	dirrem->dm_state = isrmdir ? RMDIR : 0;
2843	dirrem->dm_mnt = ITOV(ip)->v_mount;
2844	dirrem->dm_oldinum = ip->i_number;
2845	*prevdirremp = NULL;
2846
2847	ACQUIRE_LOCK(&lk);
2848	lbn = lblkno(dp->i_fs, dp->i_offset);
2849	offset = blkoff(dp->i_fs, dp->i_offset);
2850	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2851		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2852	dirrem->dm_pagedep = pagedep;
2853	/*
2854	 * Check for a diradd dependency for the same directory entry.
2855	 * If present, then both dependencies become obsolete and can
2856	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2857	 * list and the pd_pendinghd list.
2858	 */
2859
2860	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2861		if (dap->da_offset == offset)
2862			break;
2863	if (dap == NULL) {
2864
2865		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2866			if (dap->da_offset == offset)
2867				break;
2868		if (dap == NULL)
2869			return (dirrem);
2870	}
2871	/*
2872	 * Must be ATTACHED at this point.
2873	 */
2874	if ((dap->da_state & ATTACHED) == 0)
2875		panic("newdirrem: not ATTACHED");
2876	if (dap->da_newinum != ip->i_number)
2877		panic("newdirrem: inum %d should be %d",
2878		    ip->i_number, dap->da_newinum);
2879	/*
2880	 * If we are deleting a changed name that never made it to disk,
2881	 * then return the dirrem describing the previous inode (which
2882	 * represents the inode currently referenced from this entry on disk).
2883	 */
2884	if ((dap->da_state & DIRCHG) != 0) {
2885		*prevdirremp = dap->da_previous;
2886		dap->da_state &= ~DIRCHG;
2887		dap->da_pagedep = pagedep;
2888	}
2889	/*
2890	 * We are deleting an entry that never made it to disk.
2891	 * Mark it COMPLETE so we can delete its inode immediately.
2892	 */
2893	dirrem->dm_state |= COMPLETE;
2894	free_diradd(dap);
2895	return (dirrem);
2896}
2897
2898/*
2899 * Directory entry change dependencies.
2900 *
2901 * Changing an existing directory entry requires that an add operation
2902 * be completed first followed by a deletion. The semantics for the addition
2903 * are identical to the description of adding a new entry above except
2904 * that the rollback is to the old inode number rather than zero. Once
2905 * the addition dependency is completed, the removal is done as described
2906 * in the removal routine above.
2907 */
2908
2909/*
2910 * This routine should be called immediately after changing
2911 * a directory entry.  The inode's link count should not be
2912 * decremented by the calling procedure -- the soft updates
2913 * code will perform this task when it is safe.
2914 */
2915void
2916softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
2917	struct buf *bp;		/* buffer containing directory block */
2918	struct inode *dp;	/* inode for the directory being modified */
2919	struct inode *ip;	/* inode for directory entry being removed */
2920	ino_t newinum;		/* new inode number for changed entry */
2921	int isrmdir;		/* indicates if doing RMDIR */
2922{
2923	int offset;
2924	struct diradd *dap = NULL;
2925	struct dirrem *dirrem, *prevdirrem;
2926	struct pagedep *pagedep;
2927	struct inodedep *inodedep;
2928
2929	offset = blkoff(dp->i_fs, dp->i_offset);
2930
2931	/*
2932	 * Whiteouts do not need diradd dependencies.
2933	 */
2934	if (newinum != WINO) {
2935		MALLOC(dap, struct diradd *, sizeof(struct diradd),
2936		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
2937		dap->da_list.wk_type = D_DIRADD;
2938		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2939		dap->da_offset = offset;
2940		dap->da_newinum = newinum;
2941	}
2942
2943	/*
2944	 * Allocate a new dirrem and ACQUIRE_LOCK.
2945	 */
2946	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2947	pagedep = dirrem->dm_pagedep;
2948	/*
2949	 * The possible values for isrmdir:
2950	 *	0 - non-directory file rename
2951	 *	1 - directory rename within same directory
2952	 *   inum - directory rename to new directory of given inode number
2953	 * When renaming to a new directory, we are both deleting and
2954	 * creating a new directory entry, so the link count on the new
2955	 * directory should not change. Thus we do not need the followup
2956	 * dirrem which is usually done in handle_workitem_remove. We set
2957	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2958	 * followup dirrem.
2959	 */
2960	if (isrmdir > 1)
2961		dirrem->dm_state |= DIRCHG;
2962
2963	/*
2964	 * Whiteouts have no additional dependencies,
2965	 * so just put the dirrem on the correct list.
2966	 */
2967	if (newinum == WINO) {
2968		if ((dirrem->dm_state & COMPLETE) == 0) {
2969			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2970			    dm_next);
2971		} else {
2972			dirrem->dm_dirinum = pagedep->pd_ino;
2973			add_to_worklist(&dirrem->dm_list);
2974		}
2975		FREE_LOCK(&lk);
2976		return;
2977	}
2978
2979	/*
2980	 * If the COMPLETE flag is clear, then there were no active
2981	 * entries and we want to roll back to the previous inode until
2982	 * the new inode is committed to disk. If the COMPLETE flag is
2983	 * set, then we have deleted an entry that never made it to disk.
2984	 * If the entry we deleted resulted from a name change, then the old
2985	 * inode reference still resides on disk. Any rollback that we do
2986	 * needs to be to that old inode (returned to us in prevdirrem). If
2987	 * the entry we deleted resulted from a create, then there is
2988	 * no entry on the disk, so we want to roll back to zero rather
2989	 * than the uncommitted inode. In either of the COMPLETE cases we
2990	 * want to immediately free the unwritten and unreferenced inode.
2991	 */
2992	if ((dirrem->dm_state & COMPLETE) == 0) {
2993		dap->da_previous = dirrem;
2994	} else {
2995		if (prevdirrem != NULL) {
2996			dap->da_previous = prevdirrem;
2997		} else {
2998			dap->da_state &= ~DIRCHG;
2999			dap->da_pagedep = pagedep;
3000		}
3001		dirrem->dm_dirinum = pagedep->pd_ino;
3002		add_to_worklist(&dirrem->dm_list);
3003	}
3004	/*
3005	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3006	 * is not yet written. If it is written, do the post-inode write
3007	 * processing to put it on the id_pendinghd list.
3008	 */
3009	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
3010	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3011		dap->da_state |= COMPLETE;
3012		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3013		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3014	} else {
3015		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
3016		    dap, da_pdlist);
3017		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3018	}
3019	FREE_LOCK(&lk);
3020}
3021
3022/*
3023 * Called whenever the link count on an inode is changed.
3024 * It creates an inode dependency so that the new reference(s)
3025 * to the inode cannot be committed to disk until the updated
3026 * inode has been written.
3027 */
3028void
3029softdep_change_linkcnt(ip)
3030	struct inode *ip;	/* the inode with the increased link count */
3031{
3032	struct inodedep *inodedep;
3033
3034	ACQUIRE_LOCK(&lk);
3035	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
3036	if (ip->i_nlink < ip->i_effnlink)
3037		panic("softdep_change_linkcnt: bad delta");
3038	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3039	FREE_LOCK(&lk);
3040}
3041
3042/*
3043 * Called when the effective link count and the reference count
3044 * on an inode drops to zero. At this point there are no names
3045 * referencing the file in the filesystem and no active file
3046 * references. The space associated with the file will be freed
3047 * as soon as the necessary soft dependencies are cleared.
3048 */
3049void
3050softdep_releasefile(ip)
3051	struct inode *ip;	/* inode with the zero effective link count */
3052{
3053	struct inodedep *inodedep;
3054	struct fs *fs;
3055	int extblocks;
3056
3057	if (ip->i_effnlink > 0)
3058		panic("softdep_filerelease: file still referenced");
3059	/*
3060	 * We may be called several times as the real reference count
3061	 * drops to zero. We only want to account for the space once.
3062	 */
3063	if (ip->i_flag & IN_SPACECOUNTED)
3064		return;
3065	/*
3066	 * We have to deactivate a snapshot otherwise copyonwrites may
3067	 * add blocks and the cleanup may remove blocks after we have
3068	 * tried to account for them.
3069	 */
3070	if ((ip->i_flags & SF_SNAPSHOT) != 0)
3071		ffs_snapremove(ITOV(ip));
3072	/*
3073	 * If we are tracking an nlinkdelta, we have to also remember
3074	 * whether we accounted for the freed space yet.
3075	 */
3076	ACQUIRE_LOCK(&lk);
3077	if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep)))
3078		inodedep->id_state |= SPACECOUNTED;
3079	FREE_LOCK(&lk);
3080	fs = ip->i_fs;
3081	extblocks = 0;
3082	if (fs->fs_magic == FS_UFS2_MAGIC)
3083		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
3084	UFS_LOCK(ip->i_ump);
3085	ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks;
3086	ip->i_fs->fs_pendinginodes += 1;
3087	UFS_UNLOCK(ip->i_ump);
3088	ip->i_flag |= IN_SPACECOUNTED;
3089}
3090
3091/*
3092 * This workitem decrements the inode's link count.
3093 * If the link count reaches zero, the file is removed.
3094 */
3095static void
3096handle_workitem_remove(dirrem, xp)
3097	struct dirrem *dirrem;
3098	struct vnode *xp;
3099{
3100	struct thread *td = curthread;
3101	struct inodedep *inodedep;
3102	struct vnode *vp;
3103	struct inode *ip;
3104	ino_t oldinum;
3105	int error;
3106
3107	if ((vp = xp) == NULL &&
3108	    (error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE,
3109	     &vp)) != 0) {
3110		softdep_error("handle_workitem_remove: vget", error);
3111		return;
3112	}
3113	ip = VTOI(vp);
3114	ACQUIRE_LOCK(&lk);
3115	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0)
3116		panic("handle_workitem_remove: lost inodedep");
3117	/*
3118	 * Normal file deletion.
3119	 */
3120	if ((dirrem->dm_state & RMDIR) == 0) {
3121		ip->i_nlink--;
3122		DIP_SET(ip, i_nlink, ip->i_nlink);
3123		ip->i_flag |= IN_CHANGE;
3124		if (ip->i_nlink < ip->i_effnlink)
3125			panic("handle_workitem_remove: bad file delta");
3126		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3127		num_dirrem -= 1;
3128		FREE_LOCK(&lk);
3129		vput(vp);
3130		WORKITEM_FREE(dirrem, D_DIRREM);
3131		return;
3132	}
3133	/*
3134	 * Directory deletion. Decrement reference count for both the
3135	 * just deleted parent directory entry and the reference for ".".
3136	 * Next truncate the directory to length zero. When the
3137	 * truncation completes, arrange to have the reference count on
3138	 * the parent decremented to account for the loss of "..".
3139	 */
3140	ip->i_nlink -= 2;
3141	DIP_SET(ip, i_nlink, ip->i_nlink);
3142	ip->i_flag |= IN_CHANGE;
3143	if (ip->i_nlink < ip->i_effnlink)
3144		panic("handle_workitem_remove: bad dir delta");
3145	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3146	FREE_LOCK(&lk);
3147	if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_ucred, td)) != 0)
3148		softdep_error("handle_workitem_remove: truncate", error);
3149	ACQUIRE_LOCK(&lk);
3150	/*
3151	 * Rename a directory to a new parent. Since, we are both deleting
3152	 * and creating a new directory entry, the link count on the new
3153	 * directory should not change. Thus we skip the followup dirrem.
3154	 */
3155	if (dirrem->dm_state & DIRCHG) {
3156		num_dirrem -= 1;
3157		FREE_LOCK(&lk);
3158		vput(vp);
3159		WORKITEM_FREE(dirrem, D_DIRREM);
3160		return;
3161	}
3162	/*
3163	 * If the inodedep does not exist, then the zero'ed inode has
3164	 * been written to disk. If the allocated inode has never been
3165	 * written to disk, then the on-disk inode is zero'ed. In either
3166	 * case we can remove the file immediately.
3167	 */
3168	dirrem->dm_state = 0;
3169	oldinum = dirrem->dm_oldinum;
3170	dirrem->dm_oldinum = dirrem->dm_dirinum;
3171	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
3172	    check_inode_unwritten(inodedep)) {
3173		FREE_LOCK(&lk);
3174		vput(vp);
3175		handle_workitem_remove(dirrem, NULL);
3176		return;
3177	}
3178	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3179	FREE_LOCK(&lk);
3180	vput(vp);
3181}
3182
3183/*
3184 * Inode de-allocation dependencies.
3185 *
3186 * When an inode's link count is reduced to zero, it can be de-allocated. We
3187 * found it convenient to postpone de-allocation until after the inode is
3188 * written to disk with its new link count (zero).  At this point, all of the
3189 * on-disk inode's block pointers are nullified and, with careful dependency
3190 * list ordering, all dependencies related to the inode will be satisfied and
3191 * the corresponding dependency structures de-allocated.  So, if/when the
3192 * inode is reused, there will be no mixing of old dependencies with new
3193 * ones.  This artificial dependency is set up by the block de-allocation
3194 * procedure above (softdep_setup_freeblocks) and completed by the
3195 * following procedure.
3196 */
3197static void
3198handle_workitem_freefile(freefile)
3199	struct freefile *freefile;
3200{
3201	struct fs *fs;
3202	struct inodedep *idp;
3203	struct ufsmount *ump;
3204	int error;
3205
3206	ump = VFSTOUFS(freefile->fx_mnt);
3207	fs = ump->um_fs;
3208#ifdef DEBUG
3209	ACQUIRE_LOCK(&lk);
3210	error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp);
3211	FREE_LOCK(&lk);
3212	if (error)
3213		panic("handle_workitem_freefile: inodedep survived");
3214#endif
3215	UFS_LOCK(ump);
3216	fs->fs_pendinginodes -= 1;
3217	UFS_UNLOCK(ump);
3218	if ((error = ffs_freefile(VFSTOUFS(freefile->fx_mnt), fs,
3219	    freefile->fx_devvp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3220		softdep_error("handle_workitem_freefile", error);
3221	WORKITEM_FREE(freefile, D_FREEFILE);
3222}
3223
3224int
3225softdep_disk_prewrite(struct buf *bp)
3226{
3227	int error;
3228	struct vnode *vp = bp->b_vp;
3229
3230	KASSERT(bp->b_iocmd == BIO_WRITE,
3231	    ("softdep_disk_prewrite on non-BIO_WRITE buffer"));
3232	if ((bp->b_flags & B_VALIDSUSPWRT) == 0 &&
3233	    bp->b_vp != NULL && bp->b_vp->v_mount != NULL &&
3234	    (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0)
3235		panic("softdep_disk_prewrite: bad I/O");
3236	bp->b_flags &= ~B_VALIDSUSPWRT;
3237	if (LIST_FIRST(&bp->b_dep) != NULL)
3238		buf_start(bp);
3239	mp_fixme("This should require the vnode lock.");
3240	if ((vp->v_vflag & VV_COPYONWRITE) &&
3241	    vp->v_rdev->si_snapdata != NULL &&
3242	    (error = (ffs_copyonwrite)(vp, bp)) != 0 &&
3243	    error != EOPNOTSUPP) {
3244		bp->b_error = error;
3245		bp->b_ioflags |= BIO_ERROR;
3246		bufdone(bp);
3247		return (1);
3248	}
3249	return (0);
3250}
3251
3252
3253/*
3254 * Disk writes.
3255 *
3256 * The dependency structures constructed above are most actively used when file
3257 * system blocks are written to disk.  No constraints are placed on when a
3258 * block can be written, but unsatisfied update dependencies are made safe by
3259 * modifying (or replacing) the source memory for the duration of the disk
3260 * write.  When the disk write completes, the memory block is again brought
3261 * up-to-date.
3262 *
3263 * In-core inode structure reclamation.
3264 *
3265 * Because there are a finite number of "in-core" inode structures, they are
3266 * reused regularly.  By transferring all inode-related dependencies to the
3267 * in-memory inode block and indexing them separately (via "inodedep"s), we
3268 * can allow "in-core" inode structures to be reused at any time and avoid
3269 * any increase in contention.
3270 *
3271 * Called just before entering the device driver to initiate a new disk I/O.
3272 * The buffer must be locked, thus, no I/O completion operations can occur
3273 * while we are manipulating its associated dependencies.
3274 */
3275static void
3276softdep_disk_io_initiation(bp)
3277	struct buf *bp;		/* structure describing disk write to occur */
3278{
3279	struct worklist *wk, *nextwk;
3280	struct indirdep *indirdep;
3281	struct inodedep *inodedep;
3282
3283	/*
3284	 * We only care about write operations. There should never
3285	 * be dependencies for reads.
3286	 */
3287	if (bp->b_iocmd == BIO_READ)
3288		panic("softdep_disk_io_initiation: read");
3289	ACQUIRE_LOCK(&lk);
3290	/*
3291	 * Do any necessary pre-I/O processing.
3292	 */
3293	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) {
3294		nextwk = LIST_NEXT(wk, wk_list);
3295		switch (wk->wk_type) {
3296
3297		case D_PAGEDEP:
3298			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3299			continue;
3300
3301		case D_INODEDEP:
3302			inodedep = WK_INODEDEP(wk);
3303			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
3304				initiate_write_inodeblock_ufs1(inodedep, bp);
3305			else
3306				initiate_write_inodeblock_ufs2(inodedep, bp);
3307			continue;
3308
3309		case D_INDIRDEP:
3310			indirdep = WK_INDIRDEP(wk);
3311			if (indirdep->ir_state & GOINGAWAY)
3312				panic("disk_io_initiation: indirdep gone");
3313			/*
3314			 * If there are no remaining dependencies, this
3315			 * will be writing the real pointers, so the
3316			 * dependency can be freed.
3317			 */
3318			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3319				struct buf *bp;
3320
3321				bp = indirdep->ir_savebp;
3322				bp->b_flags |= B_INVAL | B_NOCACHE;
3323				/* inline expand WORKLIST_REMOVE(wk); */
3324				wk->wk_state &= ~ONWORKLIST;
3325				LIST_REMOVE(wk, wk_list);
3326				WORKITEM_FREE(indirdep, D_INDIRDEP);
3327				FREE_LOCK(&lk);
3328				brelse(bp);
3329				ACQUIRE_LOCK(&lk);
3330				continue;
3331			}
3332			/*
3333			 * Replace up-to-date version with safe version.
3334			 */
3335			FREE_LOCK(&lk);
3336			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3337			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3338			ACQUIRE_LOCK(&lk);
3339			indirdep->ir_state &= ~ATTACHED;
3340			indirdep->ir_state |= UNDONE;
3341			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3342			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3343			    bp->b_bcount);
3344			continue;
3345
3346		case D_MKDIR:
3347		case D_BMSAFEMAP:
3348		case D_ALLOCDIRECT:
3349		case D_ALLOCINDIR:
3350			continue;
3351
3352		default:
3353			panic("handle_disk_io_initiation: Unexpected type %s",
3354			    TYPENAME(wk->wk_type));
3355			/* NOTREACHED */
3356		}
3357	}
3358	FREE_LOCK(&lk);
3359}
3360
3361/*
3362 * Called from within the procedure above to deal with unsatisfied
3363 * allocation dependencies in a directory. The buffer must be locked,
3364 * thus, no I/O completion operations can occur while we are
3365 * manipulating its associated dependencies.
3366 */
3367static void
3368initiate_write_filepage(pagedep, bp)
3369	struct pagedep *pagedep;
3370	struct buf *bp;
3371{
3372	struct diradd *dap;
3373	struct direct *ep;
3374	int i;
3375
3376	if (pagedep->pd_state & IOSTARTED) {
3377		/*
3378		 * This can only happen if there is a driver that does not
3379		 * understand chaining. Here biodone will reissue the call
3380		 * to strategy for the incomplete buffers.
3381		 */
3382		printf("initiate_write_filepage: already started\n");
3383		return;
3384	}
3385	pagedep->pd_state |= IOSTARTED;
3386	for (i = 0; i < DAHASHSZ; i++) {
3387		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3388			ep = (struct direct *)
3389			    ((char *)bp->b_data + dap->da_offset);
3390			if (ep->d_ino != dap->da_newinum)
3391				panic("%s: dir inum %d != new %d",
3392				    "initiate_write_filepage",
3393				    ep->d_ino, dap->da_newinum);
3394			if (dap->da_state & DIRCHG)
3395				ep->d_ino = dap->da_previous->dm_oldinum;
3396			else
3397				ep->d_ino = 0;
3398			dap->da_state &= ~ATTACHED;
3399			dap->da_state |= UNDONE;
3400		}
3401	}
3402}
3403
3404/*
3405 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
3406 * Note that any bug fixes made to this routine must be done in the
3407 * version found below.
3408 *
3409 * Called from within the procedure above to deal with unsatisfied
3410 * allocation dependencies in an inodeblock. The buffer must be
3411 * locked, thus, no I/O completion operations can occur while we
3412 * are manipulating its associated dependencies.
3413 */
3414static void
3415initiate_write_inodeblock_ufs1(inodedep, bp)
3416	struct inodedep *inodedep;
3417	struct buf *bp;			/* The inode block */
3418{
3419	struct allocdirect *adp, *lastadp;
3420	struct ufs1_dinode *dp;
3421	struct fs *fs;
3422	ufs_lbn_t i, prevlbn = 0;
3423	int deplist;
3424
3425	if (inodedep->id_state & IOSTARTED)
3426		panic("initiate_write_inodeblock_ufs1: already started");
3427	inodedep->id_state |= IOSTARTED;
3428	fs = inodedep->id_fs;
3429	dp = (struct ufs1_dinode *)bp->b_data +
3430	    ino_to_fsbo(fs, inodedep->id_ino);
3431	/*
3432	 * If the bitmap is not yet written, then the allocated
3433	 * inode cannot be written to disk.
3434	 */
3435	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3436		if (inodedep->id_savedino1 != NULL)
3437			panic("initiate_write_inodeblock_ufs1: I/O underway");
3438		FREE_LOCK(&lk);
3439		MALLOC(inodedep->id_savedino1, struct ufs1_dinode *,
3440		    sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3441		ACQUIRE_LOCK(&lk);
3442		*inodedep->id_savedino1 = *dp;
3443		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3444		return;
3445	}
3446	/*
3447	 * If no dependencies, then there is nothing to roll back.
3448	 */
3449	inodedep->id_savedsize = dp->di_size;
3450	inodedep->id_savedextsize = 0;
3451	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3452		return;
3453	/*
3454	 * Set the dependencies to busy.
3455	 */
3456	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3457	     adp = TAILQ_NEXT(adp, ad_next)) {
3458#ifdef DIAGNOSTIC
3459		if (deplist != 0 && prevlbn >= adp->ad_lbn)
3460			panic("softdep_write_inodeblock: lbn order");
3461		prevlbn = adp->ad_lbn;
3462		if (adp->ad_lbn < NDADDR &&
3463		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
3464			panic("%s: direct pointer #%jd mismatch %d != %jd",
3465			    "softdep_write_inodeblock",
3466			    (intmax_t)adp->ad_lbn,
3467			    dp->di_db[adp->ad_lbn],
3468			    (intmax_t)adp->ad_newblkno);
3469		if (adp->ad_lbn >= NDADDR &&
3470		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
3471			panic("%s: indirect pointer #%jd mismatch %d != %jd",
3472			    "softdep_write_inodeblock",
3473			    (intmax_t)adp->ad_lbn - NDADDR,
3474			    dp->di_ib[adp->ad_lbn - NDADDR],
3475			    (intmax_t)adp->ad_newblkno);
3476		deplist |= 1 << adp->ad_lbn;
3477		if ((adp->ad_state & ATTACHED) == 0)
3478			panic("softdep_write_inodeblock: Unknown state 0x%x",
3479			    adp->ad_state);
3480#endif /* DIAGNOSTIC */
3481		adp->ad_state &= ~ATTACHED;
3482		adp->ad_state |= UNDONE;
3483	}
3484	/*
3485	 * The on-disk inode cannot claim to be any larger than the last
3486	 * fragment that has been written. Otherwise, the on-disk inode
3487	 * might have fragments that were not the last block in the file
3488	 * which would corrupt the filesystem.
3489	 */
3490	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3491	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3492		if (adp->ad_lbn >= NDADDR)
3493			break;
3494		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3495		/* keep going until hitting a rollback to a frag */
3496		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3497			continue;
3498		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3499		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3500#ifdef DIAGNOSTIC
3501			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
3502				panic("softdep_write_inodeblock: lost dep1");
3503#endif /* DIAGNOSTIC */
3504			dp->di_db[i] = 0;
3505		}
3506		for (i = 0; i < NIADDR; i++) {
3507#ifdef DIAGNOSTIC
3508			if (dp->di_ib[i] != 0 &&
3509			    (deplist & ((1 << NDADDR) << i)) == 0)
3510				panic("softdep_write_inodeblock: lost dep2");
3511#endif /* DIAGNOSTIC */
3512			dp->di_ib[i] = 0;
3513		}
3514		return;
3515	}
3516	/*
3517	 * If we have zero'ed out the last allocated block of the file,
3518	 * roll back the size to the last currently allocated block.
3519	 * We know that this last allocated block is a full-sized as
3520	 * we already checked for fragments in the loop above.
3521	 */
3522	if (lastadp != NULL &&
3523	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3524		for (i = lastadp->ad_lbn; i >= 0; i--)
3525			if (dp->di_db[i] != 0)
3526				break;
3527		dp->di_size = (i + 1) * fs->fs_bsize;
3528	}
3529	/*
3530	 * The only dependencies are for indirect blocks.
3531	 *
3532	 * The file size for indirect block additions is not guaranteed.
3533	 * Such a guarantee would be non-trivial to achieve. The conventional
3534	 * synchronous write implementation also does not make this guarantee.
3535	 * Fsck should catch and fix discrepancies. Arguably, the file size
3536	 * can be over-estimated without destroying integrity when the file
3537	 * moves into the indirect blocks (i.e., is large). If we want to
3538	 * postpone fsck, we are stuck with this argument.
3539	 */
3540	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3541		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3542}
3543
3544/*
3545 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
3546 * Note that any bug fixes made to this routine must be done in the
3547 * version found above.
3548 *
3549 * Called from within the procedure above to deal with unsatisfied
3550 * allocation dependencies in an inodeblock. The buffer must be
3551 * locked, thus, no I/O completion operations can occur while we
3552 * are manipulating its associated dependencies.
3553 */
3554static void
3555initiate_write_inodeblock_ufs2(inodedep, bp)
3556	struct inodedep *inodedep;
3557	struct buf *bp;			/* The inode block */
3558{
3559	struct allocdirect *adp, *lastadp;
3560	struct ufs2_dinode *dp;
3561	struct fs *fs;
3562	ufs_lbn_t i, prevlbn = 0;
3563	int deplist;
3564
3565	if (inodedep->id_state & IOSTARTED)
3566		panic("initiate_write_inodeblock_ufs2: already started");
3567	inodedep->id_state |= IOSTARTED;
3568	fs = inodedep->id_fs;
3569	dp = (struct ufs2_dinode *)bp->b_data +
3570	    ino_to_fsbo(fs, inodedep->id_ino);
3571	/*
3572	 * If the bitmap is not yet written, then the allocated
3573	 * inode cannot be written to disk.
3574	 */
3575	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3576		if (inodedep->id_savedino2 != NULL)
3577			panic("initiate_write_inodeblock_ufs2: I/O underway");
3578		FREE_LOCK(&lk);
3579		MALLOC(inodedep->id_savedino2, struct ufs2_dinode *,
3580		    sizeof(struct ufs2_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3581		ACQUIRE_LOCK(&lk);
3582		*inodedep->id_savedino2 = *dp;
3583		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
3584		return;
3585	}
3586	/*
3587	 * If no dependencies, then there is nothing to roll back.
3588	 */
3589	inodedep->id_savedsize = dp->di_size;
3590	inodedep->id_savedextsize = dp->di_extsize;
3591	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL &&
3592	    TAILQ_FIRST(&inodedep->id_extupdt) == NULL)
3593		return;
3594	/*
3595	 * Set the ext data dependencies to busy.
3596	 */
3597	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
3598	     adp = TAILQ_NEXT(adp, ad_next)) {
3599#ifdef DIAGNOSTIC
3600		if (deplist != 0 && prevlbn >= adp->ad_lbn)
3601			panic("softdep_write_inodeblock: lbn order");
3602		prevlbn = adp->ad_lbn;
3603		if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno)
3604			panic("%s: direct pointer #%jd mismatch %jd != %jd",
3605			    "softdep_write_inodeblock",
3606			    (intmax_t)adp->ad_lbn,
3607			    (intmax_t)dp->di_extb[adp->ad_lbn],
3608			    (intmax_t)adp->ad_newblkno);
3609		deplist |= 1 << adp->ad_lbn;
3610		if ((adp->ad_state & ATTACHED) == 0)
3611			panic("softdep_write_inodeblock: Unknown state 0x%x",
3612			    adp->ad_state);
3613#endif /* DIAGNOSTIC */
3614		adp->ad_state &= ~ATTACHED;
3615		adp->ad_state |= UNDONE;
3616	}
3617	/*
3618	 * The on-disk inode cannot claim to be any larger than the last
3619	 * fragment that has been written. Otherwise, the on-disk inode
3620	 * might have fragments that were not the last block in the ext
3621	 * data which would corrupt the filesystem.
3622	 */
3623	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
3624	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3625		dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno;
3626		/* keep going until hitting a rollback to a frag */
3627		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3628			continue;
3629		dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3630		for (i = adp->ad_lbn + 1; i < NXADDR; i++) {
3631#ifdef DIAGNOSTIC
3632			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
3633				panic("softdep_write_inodeblock: lost dep1");
3634#endif /* DIAGNOSTIC */
3635			dp->di_extb[i] = 0;
3636		}
3637		lastadp = NULL;
3638		break;
3639	}
3640	/*
3641	 * If we have zero'ed out the last allocated block of the ext
3642	 * data, roll back the size to the last currently allocated block.
3643	 * We know that this last allocated block is a full-sized as
3644	 * we already checked for fragments in the loop above.
3645	 */
3646	if (lastadp != NULL &&
3647	    dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3648		for (i = lastadp->ad_lbn; i >= 0; i--)
3649			if (dp->di_extb[i] != 0)
3650				break;
3651		dp->di_extsize = (i + 1) * fs->fs_bsize;
3652	}
3653	/*
3654	 * Set the file data dependencies to busy.
3655	 */
3656	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3657	     adp = TAILQ_NEXT(adp, ad_next)) {
3658#ifdef DIAGNOSTIC
3659		if (deplist != 0 && prevlbn >= adp->ad_lbn)
3660			panic("softdep_write_inodeblock: lbn order");
3661		prevlbn = adp->ad_lbn;
3662		if (adp->ad_lbn < NDADDR &&
3663		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
3664			panic("%s: direct pointer #%jd mismatch %jd != %jd",
3665			    "softdep_write_inodeblock",
3666			    (intmax_t)adp->ad_lbn,
3667			    (intmax_t)dp->di_db[adp->ad_lbn],
3668			    (intmax_t)adp->ad_newblkno);
3669		if (adp->ad_lbn >= NDADDR &&
3670		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
3671			panic("%s indirect pointer #%jd mismatch %jd != %jd",
3672			    "softdep_write_inodeblock:",
3673			    (intmax_t)adp->ad_lbn - NDADDR,
3674			    (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR],
3675			    (intmax_t)adp->ad_newblkno);
3676		deplist |= 1 << adp->ad_lbn;
3677		if ((adp->ad_state & ATTACHED) == 0)
3678			panic("softdep_write_inodeblock: Unknown state 0x%x",
3679			    adp->ad_state);
3680#endif /* DIAGNOSTIC */
3681		adp->ad_state &= ~ATTACHED;
3682		adp->ad_state |= UNDONE;
3683	}
3684	/*
3685	 * The on-disk inode cannot claim to be any larger than the last
3686	 * fragment that has been written. Otherwise, the on-disk inode
3687	 * might have fragments that were not the last block in the file
3688	 * which would corrupt the filesystem.
3689	 */
3690	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3691	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3692		if (adp->ad_lbn >= NDADDR)
3693			break;
3694		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3695		/* keep going until hitting a rollback to a frag */
3696		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3697			continue;
3698		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3699		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3700#ifdef DIAGNOSTIC
3701			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
3702				panic("softdep_write_inodeblock: lost dep2");
3703#endif /* DIAGNOSTIC */
3704			dp->di_db[i] = 0;
3705		}
3706		for (i = 0; i < NIADDR; i++) {
3707#ifdef DIAGNOSTIC
3708			if (dp->di_ib[i] != 0 &&
3709			    (deplist & ((1 << NDADDR) << i)) == 0)
3710				panic("softdep_write_inodeblock: lost dep3");
3711#endif /* DIAGNOSTIC */
3712			dp->di_ib[i] = 0;
3713		}
3714		return;
3715	}
3716	/*
3717	 * If we have zero'ed out the last allocated block of the file,
3718	 * roll back the size to the last currently allocated block.
3719	 * We know that this last allocated block is a full-sized as
3720	 * we already checked for fragments in the loop above.
3721	 */
3722	if (lastadp != NULL &&
3723	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3724		for (i = lastadp->ad_lbn; i >= 0; i--)
3725			if (dp->di_db[i] != 0)
3726				break;
3727		dp->di_size = (i + 1) * fs->fs_bsize;
3728	}
3729	/*
3730	 * The only dependencies are for indirect blocks.
3731	 *
3732	 * The file size for indirect block additions is not guaranteed.
3733	 * Such a guarantee would be non-trivial to achieve. The conventional
3734	 * synchronous write implementation also does not make this guarantee.
3735	 * Fsck should catch and fix discrepancies. Arguably, the file size
3736	 * can be over-estimated without destroying integrity when the file
3737	 * moves into the indirect blocks (i.e., is large). If we want to
3738	 * postpone fsck, we are stuck with this argument.
3739	 */
3740	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3741		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3742}
3743
3744/*
3745 * This routine is called during the completion interrupt
3746 * service routine for a disk write (from the procedure called
3747 * by the device driver to inform the filesystem caches of
3748 * a request completion).  It should be called early in this
3749 * procedure, before the block is made available to other
3750 * processes or other routines are called.
3751 */
3752static void
3753softdep_disk_write_complete(bp)
3754	struct buf *bp;		/* describes the completed disk write */
3755{
3756	struct worklist *wk;
3757	struct worklist *owk;
3758	struct workhead reattach;
3759	struct newblk *newblk;
3760	struct allocindir *aip;
3761	struct allocdirect *adp;
3762	struct indirdep *indirdep;
3763	struct inodedep *inodedep;
3764	struct bmsafemap *bmsafemap;
3765
3766	/*
3767	 * If an error occurred while doing the write, then the data
3768	 * has not hit the disk and the dependencies cannot be unrolled.
3769	 */
3770	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
3771		return;
3772	LIST_INIT(&reattach);
3773	/*
3774	 * This lock must not be released anywhere in this code segment.
3775	 */
3776	ACQUIRE_LOCK(&lk);
3777	owk = NULL;
3778	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3779		WORKLIST_REMOVE(wk);
3780		if (wk == owk)
3781			panic("duplicate worklist: %p\n", wk);
3782		owk = wk;
3783		switch (wk->wk_type) {
3784
3785		case D_PAGEDEP:
3786			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3787				WORKLIST_INSERT(&reattach, wk);
3788			continue;
3789
3790		case D_INODEDEP:
3791			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3792				WORKLIST_INSERT(&reattach, wk);
3793			continue;
3794
3795		case D_BMSAFEMAP:
3796			bmsafemap = WK_BMSAFEMAP(wk);
3797			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3798				newblk->nb_state |= DEPCOMPLETE;
3799				newblk->nb_bmsafemap = NULL;
3800				LIST_REMOVE(newblk, nb_deps);
3801			}
3802			while ((adp =
3803			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3804				adp->ad_state |= DEPCOMPLETE;
3805				adp->ad_buf = NULL;
3806				LIST_REMOVE(adp, ad_deps);
3807				handle_allocdirect_partdone(adp);
3808			}
3809			while ((aip =
3810			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3811				aip->ai_state |= DEPCOMPLETE;
3812				aip->ai_buf = NULL;
3813				LIST_REMOVE(aip, ai_deps);
3814				handle_allocindir_partdone(aip);
3815			}
3816			while ((inodedep =
3817			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3818				inodedep->id_state |= DEPCOMPLETE;
3819				LIST_REMOVE(inodedep, id_deps);
3820				inodedep->id_buf = NULL;
3821			}
3822			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3823			continue;
3824
3825		case D_MKDIR:
3826			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3827			continue;
3828
3829		case D_ALLOCDIRECT:
3830			adp = WK_ALLOCDIRECT(wk);
3831			adp->ad_state |= COMPLETE;
3832			handle_allocdirect_partdone(adp);
3833			continue;
3834
3835		case D_ALLOCINDIR:
3836			aip = WK_ALLOCINDIR(wk);
3837			aip->ai_state |= COMPLETE;
3838			handle_allocindir_partdone(aip);
3839			continue;
3840
3841		case D_INDIRDEP:
3842			indirdep = WK_INDIRDEP(wk);
3843			if (indirdep->ir_state & GOINGAWAY)
3844				panic("disk_write_complete: indirdep gone");
3845			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3846			FREE(indirdep->ir_saveddata, M_INDIRDEP);
3847			indirdep->ir_saveddata = 0;
3848			indirdep->ir_state &= ~UNDONE;
3849			indirdep->ir_state |= ATTACHED;
3850			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3851				handle_allocindir_partdone(aip);
3852				if (aip == LIST_FIRST(&indirdep->ir_donehd))
3853					panic("disk_write_complete: not gone");
3854			}
3855			WORKLIST_INSERT(&reattach, wk);
3856			if ((bp->b_flags & B_DELWRI) == 0)
3857				stat_indir_blk_ptrs++;
3858			bdirty(bp);
3859			continue;
3860
3861		default:
3862			panic("handle_disk_write_complete: Unknown type %s",
3863			    TYPENAME(wk->wk_type));
3864			/* NOTREACHED */
3865		}
3866	}
3867	/*
3868	 * Reattach any requests that must be redone.
3869	 */
3870	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3871		WORKLIST_REMOVE(wk);
3872		WORKLIST_INSERT(&bp->b_dep, wk);
3873	}
3874	FREE_LOCK(&lk);
3875}
3876
3877/*
3878 * Called from within softdep_disk_write_complete above. Note that
3879 * this routine is always called from interrupt level with further
3880 * splbio interrupts blocked.
3881 */
3882static void
3883handle_allocdirect_partdone(adp)
3884	struct allocdirect *adp;	/* the completed allocdirect */
3885{
3886	struct allocdirectlst *listhead;
3887	struct allocdirect *listadp;
3888	struct inodedep *inodedep;
3889	long bsize, delay;
3890
3891	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3892		return;
3893	if (adp->ad_buf != NULL)
3894		panic("handle_allocdirect_partdone: dangling dep");
3895	/*
3896	 * The on-disk inode cannot claim to be any larger than the last
3897	 * fragment that has been written. Otherwise, the on-disk inode
3898	 * might have fragments that were not the last block in the file
3899	 * which would corrupt the filesystem. Thus, we cannot free any
3900	 * allocdirects after one whose ad_oldblkno claims a fragment as
3901	 * these blocks must be rolled back to zero before writing the inode.
3902	 * We check the currently active set of allocdirects in id_inoupdt
3903	 * or id_extupdt as appropriate.
3904	 */
3905	inodedep = adp->ad_inodedep;
3906	bsize = inodedep->id_fs->fs_bsize;
3907	if (adp->ad_state & EXTDATA)
3908		listhead = &inodedep->id_extupdt;
3909	else
3910		listhead = &inodedep->id_inoupdt;
3911	TAILQ_FOREACH(listadp, listhead, ad_next) {
3912		/* found our block */
3913		if (listadp == adp)
3914			break;
3915		/* continue if ad_oldlbn is not a fragment */
3916		if (listadp->ad_oldsize == 0 ||
3917		    listadp->ad_oldsize == bsize)
3918			continue;
3919		/* hit a fragment */
3920		return;
3921	}
3922	/*
3923	 * If we have reached the end of the current list without
3924	 * finding the just finished dependency, then it must be
3925	 * on the future dependency list. Future dependencies cannot
3926	 * be freed until they are moved to the current list.
3927	 */
3928	if (listadp == NULL) {
3929#ifdef DEBUG
3930		if (adp->ad_state & EXTDATA)
3931			listhead = &inodedep->id_newextupdt;
3932		else
3933			listhead = &inodedep->id_newinoupdt;
3934		TAILQ_FOREACH(listadp, listhead, ad_next)
3935			/* found our block */
3936			if (listadp == adp)
3937				break;
3938		if (listadp == NULL)
3939			panic("handle_allocdirect_partdone: lost dep");
3940#endif /* DEBUG */
3941		return;
3942	}
3943	/*
3944	 * If we have found the just finished dependency, then free
3945	 * it along with anything that follows it that is complete.
3946	 * If the inode still has a bitmap dependency, then it has
3947	 * never been written to disk, hence the on-disk inode cannot
3948	 * reference the old fragment so we can free it without delay.
3949	 */
3950	delay = (inodedep->id_state & DEPCOMPLETE);
3951	for (; adp; adp = listadp) {
3952		listadp = TAILQ_NEXT(adp, ad_next);
3953		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3954			return;
3955		free_allocdirect(listhead, adp, delay);
3956	}
3957}
3958
3959/*
3960 * Called from within softdep_disk_write_complete above. Note that
3961 * this routine is always called from interrupt level with further
3962 * splbio interrupts blocked.
3963 */
3964static void
3965handle_allocindir_partdone(aip)
3966	struct allocindir *aip;		/* the completed allocindir */
3967{
3968	struct indirdep *indirdep;
3969
3970	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3971		return;
3972	if (aip->ai_buf != NULL)
3973		panic("handle_allocindir_partdone: dangling dependency");
3974	indirdep = aip->ai_indirdep;
3975	if (indirdep->ir_state & UNDONE) {
3976		LIST_REMOVE(aip, ai_next);
3977		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3978		return;
3979	}
3980	if (indirdep->ir_state & UFS1FMT)
3981		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3982		    aip->ai_newblkno;
3983	else
3984		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3985		    aip->ai_newblkno;
3986	LIST_REMOVE(aip, ai_next);
3987	if (aip->ai_freefrag != NULL)
3988		add_to_worklist(&aip->ai_freefrag->ff_list);
3989	WORKITEM_FREE(aip, D_ALLOCINDIR);
3990}
3991
3992/*
3993 * Called from within softdep_disk_write_complete above to restore
3994 * in-memory inode block contents to their most up-to-date state. Note
3995 * that this routine is always called from interrupt level with further
3996 * splbio interrupts blocked.
3997 */
3998static int
3999handle_written_inodeblock(inodedep, bp)
4000	struct inodedep *inodedep;
4001	struct buf *bp;		/* buffer containing the inode block */
4002{
4003	struct worklist *wk, *filefree;
4004	struct allocdirect *adp, *nextadp;
4005	struct ufs1_dinode *dp1 = NULL;
4006	struct ufs2_dinode *dp2 = NULL;
4007	int hadchanges, fstype;
4008
4009	if ((inodedep->id_state & IOSTARTED) == 0)
4010		panic("handle_written_inodeblock: not started");
4011	inodedep->id_state &= ~IOSTARTED;
4012	inodedep->id_state |= COMPLETE;
4013	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
4014		fstype = UFS1;
4015		dp1 = (struct ufs1_dinode *)bp->b_data +
4016		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4017	} else {
4018		fstype = UFS2;
4019		dp2 = (struct ufs2_dinode *)bp->b_data +
4020		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4021	}
4022	/*
4023	 * If we had to rollback the inode allocation because of
4024	 * bitmaps being incomplete, then simply restore it.
4025	 * Keep the block dirty so that it will not be reclaimed until
4026	 * all associated dependencies have been cleared and the
4027	 * corresponding updates written to disk.
4028	 */
4029	if (inodedep->id_savedino1 != NULL) {
4030		if (fstype == UFS1)
4031			*dp1 = *inodedep->id_savedino1;
4032		else
4033			*dp2 = *inodedep->id_savedino2;
4034		FREE(inodedep->id_savedino1, M_INODEDEP);
4035		inodedep->id_savedino1 = NULL;
4036		if ((bp->b_flags & B_DELWRI) == 0)
4037			stat_inode_bitmap++;
4038		bdirty(bp);
4039		return (1);
4040	}
4041	/*
4042	 * Roll forward anything that had to be rolled back before
4043	 * the inode could be updated.
4044	 */
4045	hadchanges = 0;
4046	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
4047		nextadp = TAILQ_NEXT(adp, ad_next);
4048		if (adp->ad_state & ATTACHED)
4049			panic("handle_written_inodeblock: new entry");
4050		if (fstype == UFS1) {
4051			if (adp->ad_lbn < NDADDR) {
4052				if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4053					panic("%s %s #%jd mismatch %d != %jd",
4054					    "handle_written_inodeblock:",
4055					    "direct pointer",
4056					    (intmax_t)adp->ad_lbn,
4057					    dp1->di_db[adp->ad_lbn],
4058					    (intmax_t)adp->ad_oldblkno);
4059				dp1->di_db[adp->ad_lbn] = adp->ad_newblkno;
4060			} else {
4061				if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0)
4062					panic("%s: %s #%jd allocated as %d",
4063					    "handle_written_inodeblock",
4064					    "indirect pointer",
4065					    (intmax_t)adp->ad_lbn - NDADDR,
4066					    dp1->di_ib[adp->ad_lbn - NDADDR]);
4067				dp1->di_ib[adp->ad_lbn - NDADDR] =
4068				    adp->ad_newblkno;
4069			}
4070		} else {
4071			if (adp->ad_lbn < NDADDR) {
4072				if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4073					panic("%s: %s #%jd %s %jd != %jd",
4074					    "handle_written_inodeblock",
4075					    "direct pointer",
4076					    (intmax_t)adp->ad_lbn, "mismatch",
4077					    (intmax_t)dp2->di_db[adp->ad_lbn],
4078					    (intmax_t)adp->ad_oldblkno);
4079				dp2->di_db[adp->ad_lbn] = adp->ad_newblkno;
4080			} else {
4081				if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0)
4082					panic("%s: %s #%jd allocated as %jd",
4083					    "handle_written_inodeblock",
4084					    "indirect pointer",
4085					    (intmax_t)adp->ad_lbn - NDADDR,
4086					    (intmax_t)
4087					    dp2->di_ib[adp->ad_lbn - NDADDR]);
4088				dp2->di_ib[adp->ad_lbn - NDADDR] =
4089				    adp->ad_newblkno;
4090			}
4091		}
4092		adp->ad_state &= ~UNDONE;
4093		adp->ad_state |= ATTACHED;
4094		hadchanges = 1;
4095	}
4096	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
4097		nextadp = TAILQ_NEXT(adp, ad_next);
4098		if (adp->ad_state & ATTACHED)
4099			panic("handle_written_inodeblock: new entry");
4100		if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno)
4101			panic("%s: direct pointers #%jd %s %jd != %jd",
4102			    "handle_written_inodeblock",
4103			    (intmax_t)adp->ad_lbn, "mismatch",
4104			    (intmax_t)dp2->di_extb[adp->ad_lbn],
4105			    (intmax_t)adp->ad_oldblkno);
4106		dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno;
4107		adp->ad_state &= ~UNDONE;
4108		adp->ad_state |= ATTACHED;
4109		hadchanges = 1;
4110	}
4111	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
4112		stat_direct_blk_ptrs++;
4113	/*
4114	 * Reset the file size to its most up-to-date value.
4115	 */
4116	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
4117		panic("handle_written_inodeblock: bad size");
4118	if (fstype == UFS1) {
4119		if (dp1->di_size != inodedep->id_savedsize) {
4120			dp1->di_size = inodedep->id_savedsize;
4121			hadchanges = 1;
4122		}
4123	} else {
4124		if (dp2->di_size != inodedep->id_savedsize) {
4125			dp2->di_size = inodedep->id_savedsize;
4126			hadchanges = 1;
4127		}
4128		if (dp2->di_extsize != inodedep->id_savedextsize) {
4129			dp2->di_extsize = inodedep->id_savedextsize;
4130			hadchanges = 1;
4131		}
4132	}
4133	inodedep->id_savedsize = -1;
4134	inodedep->id_savedextsize = -1;
4135	/*
4136	 * If there were any rollbacks in the inode block, then it must be
4137	 * marked dirty so that its will eventually get written back in
4138	 * its correct form.
4139	 */
4140	if (hadchanges)
4141		bdirty(bp);
4142	/*
4143	 * Process any allocdirects that completed during the update.
4144	 */
4145	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
4146		handle_allocdirect_partdone(adp);
4147	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
4148		handle_allocdirect_partdone(adp);
4149	/*
4150	 * Process deallocations that were held pending until the
4151	 * inode had been written to disk. Freeing of the inode
4152	 * is delayed until after all blocks have been freed to
4153	 * avoid creation of new <vfsid, inum, lbn> triples
4154	 * before the old ones have been deleted.
4155	 */
4156	filefree = NULL;
4157	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
4158		WORKLIST_REMOVE(wk);
4159		switch (wk->wk_type) {
4160
4161		case D_FREEFILE:
4162			/*
4163			 * We defer adding filefree to the worklist until
4164			 * all other additions have been made to ensure
4165			 * that it will be done after all the old blocks
4166			 * have been freed.
4167			 */
4168			if (filefree != NULL)
4169				panic("handle_written_inodeblock: filefree");
4170			filefree = wk;
4171			continue;
4172
4173		case D_MKDIR:
4174			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
4175			continue;
4176
4177		case D_DIRADD:
4178			diradd_inode_written(WK_DIRADD(wk), inodedep);
4179			continue;
4180
4181		case D_FREEBLKS:
4182		case D_FREEFRAG:
4183		case D_DIRREM:
4184			add_to_worklist(wk);
4185			continue;
4186
4187		case D_NEWDIRBLK:
4188			free_newdirblk(WK_NEWDIRBLK(wk));
4189			continue;
4190
4191		default:
4192			panic("handle_written_inodeblock: Unknown type %s",
4193			    TYPENAME(wk->wk_type));
4194			/* NOTREACHED */
4195		}
4196	}
4197	if (filefree != NULL) {
4198		if (free_inodedep(inodedep) == 0)
4199			panic("handle_written_inodeblock: live inodedep");
4200		add_to_worklist(filefree);
4201		return (0);
4202	}
4203
4204	/*
4205	 * If no outstanding dependencies, free it.
4206	 */
4207	if (free_inodedep(inodedep) ||
4208	    (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
4209	     TAILQ_FIRST(&inodedep->id_extupdt) == 0))
4210		return (0);
4211	return (hadchanges);
4212}
4213
4214/*
4215 * Process a diradd entry after its dependent inode has been written.
4216 * This routine must be called with splbio interrupts blocked.
4217 */
4218static void
4219diradd_inode_written(dap, inodedep)
4220	struct diradd *dap;
4221	struct inodedep *inodedep;
4222{
4223	struct pagedep *pagedep;
4224
4225	dap->da_state |= COMPLETE;
4226	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4227		if (dap->da_state & DIRCHG)
4228			pagedep = dap->da_previous->dm_pagedep;
4229		else
4230			pagedep = dap->da_pagedep;
4231		LIST_REMOVE(dap, da_pdlist);
4232		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4233	}
4234	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
4235}
4236
4237/*
4238 * Handle the completion of a mkdir dependency.
4239 */
4240static void
4241handle_written_mkdir(mkdir, type)
4242	struct mkdir *mkdir;
4243	int type;
4244{
4245	struct diradd *dap;
4246	struct pagedep *pagedep;
4247
4248	if (mkdir->md_state != type)
4249		panic("handle_written_mkdir: bad type");
4250	dap = mkdir->md_diradd;
4251	dap->da_state &= ~type;
4252	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
4253		dap->da_state |= DEPCOMPLETE;
4254	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4255		if (dap->da_state & DIRCHG)
4256			pagedep = dap->da_previous->dm_pagedep;
4257		else
4258			pagedep = dap->da_pagedep;
4259		LIST_REMOVE(dap, da_pdlist);
4260		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4261	}
4262	LIST_REMOVE(mkdir, md_mkdirs);
4263	WORKITEM_FREE(mkdir, D_MKDIR);
4264}
4265
4266/*
4267 * Called from within softdep_disk_write_complete above.
4268 * A write operation was just completed. Removed inodes can
4269 * now be freed and associated block pointers may be committed.
4270 * Note that this routine is always called from interrupt level
4271 * with further splbio interrupts blocked.
4272 */
4273static int
4274handle_written_filepage(pagedep, bp)
4275	struct pagedep *pagedep;
4276	struct buf *bp;		/* buffer containing the written page */
4277{
4278	struct dirrem *dirrem;
4279	struct diradd *dap, *nextdap;
4280	struct direct *ep;
4281	int i, chgs;
4282
4283	if ((pagedep->pd_state & IOSTARTED) == 0)
4284		panic("handle_written_filepage: not started");
4285	pagedep->pd_state &= ~IOSTARTED;
4286	/*
4287	 * Process any directory removals that have been committed.
4288	 */
4289	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
4290		LIST_REMOVE(dirrem, dm_next);
4291		dirrem->dm_dirinum = pagedep->pd_ino;
4292		add_to_worklist(&dirrem->dm_list);
4293	}
4294	/*
4295	 * Free any directory additions that have been committed.
4296	 * If it is a newly allocated block, we have to wait until
4297	 * the on-disk directory inode claims the new block.
4298	 */
4299	if ((pagedep->pd_state & NEWBLOCK) == 0)
4300		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
4301			free_diradd(dap);
4302	/*
4303	 * Uncommitted directory entries must be restored.
4304	 */
4305	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
4306		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
4307		     dap = nextdap) {
4308			nextdap = LIST_NEXT(dap, da_pdlist);
4309			if (dap->da_state & ATTACHED)
4310				panic("handle_written_filepage: attached");
4311			ep = (struct direct *)
4312			    ((char *)bp->b_data + dap->da_offset);
4313			ep->d_ino = dap->da_newinum;
4314			dap->da_state &= ~UNDONE;
4315			dap->da_state |= ATTACHED;
4316			chgs = 1;
4317			/*
4318			 * If the inode referenced by the directory has
4319			 * been written out, then the dependency can be
4320			 * moved to the pending list.
4321			 */
4322			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4323				LIST_REMOVE(dap, da_pdlist);
4324				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
4325				    da_pdlist);
4326			}
4327		}
4328	}
4329	/*
4330	 * If there were any rollbacks in the directory, then it must be
4331	 * marked dirty so that its will eventually get written back in
4332	 * its correct form.
4333	 */
4334	if (chgs) {
4335		if ((bp->b_flags & B_DELWRI) == 0)
4336			stat_dir_entry++;
4337		bdirty(bp);
4338		return (1);
4339	}
4340	/*
4341	 * If we are not waiting for a new directory block to be
4342	 * claimed by its inode, then the pagedep will be freed.
4343	 * Otherwise it will remain to track any new entries on
4344	 * the page in case they are fsync'ed.
4345	 */
4346	if ((pagedep->pd_state & NEWBLOCK) == 0) {
4347		LIST_REMOVE(pagedep, pd_hash);
4348		WORKITEM_FREE(pagedep, D_PAGEDEP);
4349	}
4350	return (0);
4351}
4352
4353/*
4354 * Writing back in-core inode structures.
4355 *
4356 * The filesystem only accesses an inode's contents when it occupies an
4357 * "in-core" inode structure.  These "in-core" structures are separate from
4358 * the page frames used to cache inode blocks.  Only the latter are
4359 * transferred to/from the disk.  So, when the updated contents of the
4360 * "in-core" inode structure are copied to the corresponding in-memory inode
4361 * block, the dependencies are also transferred.  The following procedure is
4362 * called when copying a dirty "in-core" inode to a cached inode block.
4363 */
4364
4365/*
4366 * Called when an inode is loaded from disk. If the effective link count
4367 * differed from the actual link count when it was last flushed, then we
4368 * need to ensure that the correct effective link count is put back.
4369 */
4370void
4371softdep_load_inodeblock(ip)
4372	struct inode *ip;	/* the "in_core" copy of the inode */
4373{
4374	struct inodedep *inodedep;
4375
4376	/*
4377	 * Check for alternate nlink count.
4378	 */
4379	ip->i_effnlink = ip->i_nlink;
4380	ACQUIRE_LOCK(&lk);
4381	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4382		FREE_LOCK(&lk);
4383		return;
4384	}
4385	ip->i_effnlink -= inodedep->id_nlinkdelta;
4386	if (inodedep->id_state & SPACECOUNTED)
4387		ip->i_flag |= IN_SPACECOUNTED;
4388	FREE_LOCK(&lk);
4389}
4390
4391/*
4392 * This routine is called just before the "in-core" inode
4393 * information is to be copied to the in-memory inode block.
4394 * Recall that an inode block contains several inodes. If
4395 * the force flag is set, then the dependencies will be
4396 * cleared so that the update can always be made. Note that
4397 * the buffer is locked when this routine is called, so we
4398 * will never be in the middle of writing the inode block
4399 * to disk.
4400 */
4401void
4402softdep_update_inodeblock(ip, bp, waitfor)
4403	struct inode *ip;	/* the "in_core" copy of the inode */
4404	struct buf *bp;		/* the buffer containing the inode block */
4405	int waitfor;		/* nonzero => update must be allowed */
4406{
4407	struct inodedep *inodedep;
4408	struct worklist *wk;
4409	struct buf *ibp;
4410	int error;
4411
4412	/*
4413	 * If the effective link count is not equal to the actual link
4414	 * count, then we must track the difference in an inodedep while
4415	 * the inode is (potentially) tossed out of the cache. Otherwise,
4416	 * if there is no existing inodedep, then there are no dependencies
4417	 * to track.
4418	 */
4419	ACQUIRE_LOCK(&lk);
4420	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4421		FREE_LOCK(&lk);
4422		if (ip->i_effnlink != ip->i_nlink)
4423			panic("softdep_update_inodeblock: bad link count");
4424		return;
4425	}
4426	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
4427		panic("softdep_update_inodeblock: bad delta");
4428	/*
4429	 * Changes have been initiated. Anything depending on these
4430	 * changes cannot occur until this inode has been written.
4431	 */
4432	inodedep->id_state &= ~COMPLETE;
4433	if ((inodedep->id_state & ONWORKLIST) == 0)
4434		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
4435	/*
4436	 * Any new dependencies associated with the incore inode must
4437	 * now be moved to the list associated with the buffer holding
4438	 * the in-memory copy of the inode. Once merged process any
4439	 * allocdirects that are completed by the merger.
4440	 */
4441	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
4442	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4443		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4444	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
4445	if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL)
4446		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt));
4447	/*
4448	 * Now that the inode has been pushed into the buffer, the
4449	 * operations dependent on the inode being written to disk
4450	 * can be moved to the id_bufwait so that they will be
4451	 * processed when the buffer I/O completes.
4452	 */
4453	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4454		WORKLIST_REMOVE(wk);
4455		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4456	}
4457	/*
4458	 * Newly allocated inodes cannot be written until the bitmap
4459	 * that allocates them have been written (indicated by
4460	 * DEPCOMPLETE being set in id_state). If we are doing a
4461	 * forced sync (e.g., an fsync on a file), we force the bitmap
4462	 * to be written so that the update can be done.
4463	 */
4464	if (waitfor == 0) {
4465		FREE_LOCK(&lk);
4466		return;
4467	}
4468retry:
4469	if ((inodedep->id_state & DEPCOMPLETE) != 0) {
4470		FREE_LOCK(&lk);
4471		return;
4472	}
4473	ibp = inodedep->id_buf;
4474	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
4475	if (ibp == NULL) {
4476		/*
4477		 * If ibp came back as NULL, the dependency could have been
4478		 * freed while we slept.  Look it up again, and check to see
4479		 * that it has completed.
4480		 */
4481		if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0)
4482			goto retry;
4483		FREE_LOCK(&lk);
4484		return;
4485	}
4486	FREE_LOCK(&lk);
4487	if ((error = bwrite(ibp)) != 0)
4488		softdep_error("softdep_update_inodeblock: bwrite", error);
4489}
4490
4491/*
4492 * Merge the a new inode dependency list (such as id_newinoupdt) into an
4493 * old inode dependency list (such as id_inoupdt). This routine must be
4494 * called with splbio interrupts blocked.
4495 */
4496static void
4497merge_inode_lists(newlisthead, oldlisthead)
4498	struct allocdirectlst *newlisthead;
4499	struct allocdirectlst *oldlisthead;
4500{
4501	struct allocdirect *listadp, *newadp;
4502
4503	newadp = TAILQ_FIRST(newlisthead);
4504	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
4505		if (listadp->ad_lbn < newadp->ad_lbn) {
4506			listadp = TAILQ_NEXT(listadp, ad_next);
4507			continue;
4508		}
4509		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4510		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4511		if (listadp->ad_lbn == newadp->ad_lbn) {
4512			allocdirect_merge(oldlisthead, newadp,
4513			    listadp);
4514			listadp = newadp;
4515		}
4516		newadp = TAILQ_FIRST(newlisthead);
4517	}
4518	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
4519		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4520		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
4521	}
4522}
4523
4524/*
4525 * If we are doing an fsync, then we must ensure that any directory
4526 * entries for the inode have been written after the inode gets to disk.
4527 */
4528int
4529softdep_fsync(vp)
4530	struct vnode *vp;	/* the "in_core" copy of the inode */
4531{
4532	struct inodedep *inodedep;
4533	struct pagedep *pagedep;
4534	struct worklist *wk;
4535	struct diradd *dap;
4536	struct mount *mnt;
4537	struct vnode *pvp;
4538	struct inode *ip;
4539	struct buf *bp;
4540	struct fs *fs;
4541	struct thread *td = curthread;
4542	int error, flushparent;
4543	ino_t parentino;
4544	ufs_lbn_t lbn;
4545
4546	ip = VTOI(vp);
4547	fs = ip->i_fs;
4548	ACQUIRE_LOCK(&lk);
4549	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4550		FREE_LOCK(&lk);
4551		return (0);
4552	}
4553	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4554	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4555	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
4556	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
4557	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4558	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL)
4559		panic("softdep_fsync: pending ops");
4560	for (error = 0, flushparent = 0; ; ) {
4561		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4562			break;
4563		if (wk->wk_type != D_DIRADD)
4564			panic("softdep_fsync: Unexpected type %s",
4565			    TYPENAME(wk->wk_type));
4566		dap = WK_DIRADD(wk);
4567		/*
4568		 * Flush our parent if this directory entry has a MKDIR_PARENT
4569		 * dependency or is contained in a newly allocated block.
4570		 */
4571		if (dap->da_state & DIRCHG)
4572			pagedep = dap->da_previous->dm_pagedep;
4573		else
4574			pagedep = dap->da_pagedep;
4575		mnt = pagedep->pd_mnt;
4576		parentino = pagedep->pd_ino;
4577		lbn = pagedep->pd_lbn;
4578		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
4579			panic("softdep_fsync: dirty");
4580		if ((dap->da_state & MKDIR_PARENT) ||
4581		    (pagedep->pd_state & NEWBLOCK))
4582			flushparent = 1;
4583		else
4584			flushparent = 0;
4585		/*
4586		 * If we are being fsync'ed as part of vgone'ing this vnode,
4587		 * then we will not be able to release and recover the
4588		 * vnode below, so we just have to give up on writing its
4589		 * directory entry out. It will eventually be written, just
4590		 * not now, but then the user was not asking to have it
4591		 * written, so we are not breaking any promises.
4592		 */
4593		if (vp->v_iflag & VI_XLOCK)
4594			break;
4595		/*
4596		 * We prevent deadlock by always fetching inodes from the
4597		 * root, moving down the directory tree. Thus, when fetching
4598		 * our parent directory, we first try to get the lock. If
4599		 * that fails, we must unlock ourselves before requesting
4600		 * the lock on our parent. See the comment in ufs_lookup
4601		 * for details on possible races.
4602		 */
4603		FREE_LOCK(&lk);
4604		if (VFS_VGET(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) {
4605			VOP_UNLOCK(vp, 0, td);
4606			error = VFS_VGET(mnt, parentino, LK_EXCLUSIVE, &pvp);
4607			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
4608			if (error != 0)
4609				return (error);
4610		}
4611		/*
4612		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
4613		 * that are contained in direct blocks will be resolved by
4614		 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks
4615		 * may require a complete sync'ing of the directory. So, we
4616		 * try the cheap and fast UFS_UPDATE first, and if that fails,
4617		 * then we do the slower VOP_FSYNC of the directory.
4618		 */
4619		if (flushparent) {
4620			if ((error = UFS_UPDATE(pvp, 1)) != 0) {
4621				vput(pvp);
4622				return (error);
4623			}
4624			if ((pagedep->pd_state & NEWBLOCK) &&
4625			    (error = VOP_FSYNC(pvp, MNT_WAIT, td))) {
4626				vput(pvp);
4627				return (error);
4628			}
4629		}
4630		/*
4631		 * Flush directory page containing the inode's name.
4632		 */
4633		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
4634		    &bp);
4635		if (error == 0)
4636			error = bwrite(bp);
4637		else
4638			brelse(bp);
4639		vput(pvp);
4640		if (error != 0)
4641			return (error);
4642		ACQUIRE_LOCK(&lk);
4643		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4644			break;
4645	}
4646	FREE_LOCK(&lk);
4647	return (0);
4648}
4649
4650/*
4651 * Flush all the dirty bitmaps associated with the block device
4652 * before flushing the rest of the dirty blocks so as to reduce
4653 * the number of dependencies that will have to be rolled back.
4654 */
4655void
4656softdep_fsync_mountdev(vp)
4657	struct vnode *vp;
4658{
4659	struct buf *bp, *nbp;
4660	struct worklist *wk;
4661
4662	if (!vn_isdisk(vp, NULL))
4663		panic("softdep_fsync_mountdev: vnode not a disk");
4664	ACQUIRE_LOCK(&lk);
4665	VI_LOCK(vp);
4666	TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) {
4667		/*
4668		 * If it is already scheduled, skip to the next buffer.
4669		 */
4670		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
4671			continue;
4672
4673		if ((bp->b_flags & B_DELWRI) == 0)
4674			panic("softdep_fsync_mountdev: not dirty");
4675		/*
4676		 * We are only interested in bitmaps with outstanding
4677		 * dependencies.
4678		 */
4679		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4680		    wk->wk_type != D_BMSAFEMAP ||
4681		    (bp->b_vflags & BV_BKGRDINPROG)) {
4682			BUF_UNLOCK(bp);
4683			continue;
4684		}
4685		VI_UNLOCK(vp);
4686		FREE_LOCK(&lk);
4687		bremfree(bp);
4688		(void) bawrite(bp);
4689		ACQUIRE_LOCK(&lk);
4690		/*
4691		 * Since we may have slept during the I/O, we need
4692		 * to start from a known point.
4693		 */
4694		VI_LOCK(vp);
4695		nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
4696	}
4697	FREE_LOCK(&lk);
4698	drain_output(vp);
4699	VI_UNLOCK(vp);
4700}
4701
4702/*
4703 * This routine is called when we are trying to synchronously flush a
4704 * file. This routine must eliminate any filesystem metadata dependencies
4705 * so that the syncing routine can succeed by pushing the dirty blocks
4706 * associated with the file. If any I/O errors occur, they are returned.
4707 */
4708int
4709softdep_sync_metadata(ap)
4710	struct vop_fsync_args /* {
4711		struct vnode *a_vp;
4712		struct ucred *a_cred;
4713		int a_waitfor;
4714		struct thread *a_td;
4715	} */ *ap;
4716{
4717	struct vnode *vp = ap->a_vp;
4718	struct pagedep *pagedep;
4719	struct allocdirect *adp;
4720	struct allocindir *aip;
4721	struct buf *bp, *nbp;
4722	struct worklist *wk;
4723	int i, error, waitfor;
4724
4725	if (!DOINGSOFTDEP(vp))
4726		return (0);
4727	/*
4728	 * Ensure that any direct block dependencies have been cleared.
4729	 */
4730	ACQUIRE_LOCK(&lk);
4731	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4732		FREE_LOCK(&lk);
4733		return (error);
4734	}
4735	FREE_LOCK(&lk);
4736	/*
4737	 * For most files, the only metadata dependencies are the
4738	 * cylinder group maps that allocate their inode or blocks.
4739	 * The block allocation dependencies can be found by traversing
4740	 * the dependency lists for any buffers that remain on their
4741	 * dirty buffer list. The inode allocation dependency will
4742	 * be resolved when the inode is updated with MNT_WAIT.
4743	 * This work is done in two passes. The first pass grabs most
4744	 * of the buffers and begins asynchronously writing them. The
4745	 * only way to wait for these asynchronous writes is to sleep
4746	 * on the filesystem vnode which may stay busy for a long time
4747	 * if the filesystem is active. So, instead, we make a second
4748	 * pass over the dependencies blocking on each write. In the
4749	 * usual case we will be blocking against a write that we
4750	 * initiated, so when it is done the dependency will have been
4751	 * resolved. Thus the second pass is expected to end quickly.
4752	 */
4753	waitfor = MNT_NOWAIT;
4754
4755top:
4756	/*
4757	 * We must wait for any I/O in progress to finish so that
4758	 * all potential buffers on the dirty list will be visible.
4759	 */
4760	VI_LOCK(vp);
4761	drain_output(vp);
4762	while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) {
4763		bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT);
4764		if (bp)
4765			break;
4766	}
4767	VI_UNLOCK(vp);
4768	if (bp == NULL)
4769		return (0);
4770loop:
4771	/* While syncing snapshots, we must allow recursive lookups */
4772	bp->b_lock.lk_flags |= LK_CANRECURSE;
4773	ACQUIRE_LOCK(&lk);
4774	/*
4775	 * As we hold the buffer locked, none of its dependencies
4776	 * will disappear.
4777	 */
4778	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4779		switch (wk->wk_type) {
4780
4781		case D_ALLOCDIRECT:
4782			adp = WK_ALLOCDIRECT(wk);
4783			if (adp->ad_state & DEPCOMPLETE)
4784				continue;
4785			nbp = adp->ad_buf;
4786			nbp = getdirtybuf(nbp, &lk, waitfor);
4787			if (nbp == NULL)
4788				continue;
4789			FREE_LOCK(&lk);
4790			if (waitfor == MNT_NOWAIT) {
4791				bawrite(nbp);
4792			} else if ((error = bwrite(nbp)) != 0) {
4793				break;
4794			}
4795			ACQUIRE_LOCK(&lk);
4796			continue;
4797
4798		case D_ALLOCINDIR:
4799			aip = WK_ALLOCINDIR(wk);
4800			if (aip->ai_state & DEPCOMPLETE)
4801				continue;
4802			nbp = aip->ai_buf;
4803			nbp = getdirtybuf(nbp, &lk, waitfor);
4804			if (nbp == NULL)
4805				continue;
4806			FREE_LOCK(&lk);
4807			if (waitfor == MNT_NOWAIT) {
4808				bawrite(nbp);
4809			} else if ((error = bwrite(nbp)) != 0) {
4810				break;
4811			}
4812			ACQUIRE_LOCK(&lk);
4813			continue;
4814
4815		case D_INDIRDEP:
4816		restart:
4817
4818			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4819				if (aip->ai_state & DEPCOMPLETE)
4820					continue;
4821				nbp = aip->ai_buf;
4822				nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
4823				if (nbp == NULL)
4824					goto restart;
4825				FREE_LOCK(&lk);
4826				if ((error = bwrite(nbp)) != 0) {
4827					break;
4828				}
4829				ACQUIRE_LOCK(&lk);
4830				goto restart;
4831			}
4832			continue;
4833
4834		case D_INODEDEP:
4835			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4836			    WK_INODEDEP(wk)->id_ino)) != 0) {
4837				FREE_LOCK(&lk);
4838				break;
4839			}
4840			continue;
4841
4842		case D_PAGEDEP:
4843			/*
4844			 * We are trying to sync a directory that may
4845			 * have dependencies on both its own metadata
4846			 * and/or dependencies on the inodes of any
4847			 * recently allocated files. We walk its diradd
4848			 * lists pushing out the associated inode.
4849			 */
4850			pagedep = WK_PAGEDEP(wk);
4851			for (i = 0; i < DAHASHSZ; i++) {
4852				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4853					continue;
4854				if ((error =
4855				    flush_pagedep_deps(vp, pagedep->pd_mnt,
4856						&pagedep->pd_diraddhd[i]))) {
4857					FREE_LOCK(&lk);
4858					break;
4859				}
4860			}
4861			continue;
4862
4863		case D_MKDIR:
4864			/*
4865			 * This case should never happen if the vnode has
4866			 * been properly sync'ed. However, if this function
4867			 * is used at a place where the vnode has not yet
4868			 * been sync'ed, this dependency can show up. So,
4869			 * rather than panic, just flush it.
4870			 */
4871			nbp = WK_MKDIR(wk)->md_buf;
4872			nbp = getdirtybuf(nbp, &lk, waitfor);
4873			if (nbp == NULL)
4874				continue;
4875			FREE_LOCK(&lk);
4876			if (waitfor == MNT_NOWAIT) {
4877				bawrite(nbp);
4878			} else if ((error = bwrite(nbp)) != 0) {
4879				break;
4880			}
4881			ACQUIRE_LOCK(&lk);
4882			continue;
4883
4884		case D_BMSAFEMAP:
4885			/*
4886			 * This case should never happen if the vnode has
4887			 * been properly sync'ed. However, if this function
4888			 * is used at a place where the vnode has not yet
4889			 * been sync'ed, this dependency can show up. So,
4890			 * rather than panic, just flush it.
4891			 */
4892			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4893			nbp = getdirtybuf(nbp, &lk, waitfor);
4894			if (nbp == NULL)
4895				continue;
4896			FREE_LOCK(&lk);
4897			if (waitfor == MNT_NOWAIT) {
4898				bawrite(nbp);
4899			} else if ((error = bwrite(nbp)) != 0) {
4900				break;
4901			}
4902			ACQUIRE_LOCK(&lk);
4903			continue;
4904
4905		default:
4906			panic("softdep_sync_metadata: Unknown type %s",
4907			    TYPENAME(wk->wk_type));
4908			/* NOTREACHED */
4909		}
4910		/* We reach here only in error and unlocked */
4911		if (error == 0)
4912			panic("softdep_sync_metadata: zero error");
4913		bp->b_lock.lk_flags &= ~LK_CANRECURSE;
4914		bawrite(bp);
4915		return (error);
4916	}
4917	FREE_LOCK(&lk);
4918	VI_LOCK(vp);
4919	while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
4920		nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT);
4921		if (nbp)
4922			break;
4923	}
4924	VI_UNLOCK(vp);
4925	bp->b_lock.lk_flags &= ~LK_CANRECURSE;
4926	bawrite(bp);
4927	if (nbp != NULL) {
4928		bp = nbp;
4929		goto loop;
4930	}
4931	/*
4932	 * The brief unlock is to allow any pent up dependency
4933	 * processing to be done. Then proceed with the second pass.
4934	 */
4935	if (waitfor == MNT_NOWAIT) {
4936		waitfor = MNT_WAIT;
4937		goto top;
4938	}
4939
4940	/*
4941	 * If we have managed to get rid of all the dirty buffers,
4942	 * then we are done. For certain directories and block
4943	 * devices, we may need to do further work.
4944	 *
4945	 * We must wait for any I/O in progress to finish so that
4946	 * all potential buffers on the dirty list will be visible.
4947	 */
4948	VI_LOCK(vp);
4949	drain_output(vp);
4950	VI_UNLOCK(vp);
4951	return (0);
4952}
4953
4954/*
4955 * Flush the dependencies associated with an inodedep.
4956 * Called with splbio blocked.
4957 */
4958static int
4959flush_inodedep_deps(fs, ino)
4960	struct fs *fs;
4961	ino_t ino;
4962{
4963	struct inodedep *inodedep;
4964	int error, waitfor;
4965
4966	/*
4967	 * This work is done in two passes. The first pass grabs most
4968	 * of the buffers and begins asynchronously writing them. The
4969	 * only way to wait for these asynchronous writes is to sleep
4970	 * on the filesystem vnode which may stay busy for a long time
4971	 * if the filesystem is active. So, instead, we make a second
4972	 * pass over the dependencies blocking on each write. In the
4973	 * usual case we will be blocking against a write that we
4974	 * initiated, so when it is done the dependency will have been
4975	 * resolved. Thus the second pass is expected to end quickly.
4976	 * We give a brief window at the top of the loop to allow
4977	 * any pending I/O to complete.
4978	 */
4979	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
4980		if (error)
4981			return (error);
4982		FREE_LOCK(&lk);
4983		ACQUIRE_LOCK(&lk);
4984		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4985			return (0);
4986		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
4987		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
4988		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
4989		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
4990			continue;
4991		/*
4992		 * If pass2, we are done, otherwise do pass 2.
4993		 */
4994		if (waitfor == MNT_WAIT)
4995			break;
4996		waitfor = MNT_WAIT;
4997	}
4998	/*
4999	 * Try freeing inodedep in case all dependencies have been removed.
5000	 */
5001	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
5002		(void) free_inodedep(inodedep);
5003	return (0);
5004}
5005
5006/*
5007 * Flush an inode dependency list.
5008 * Called with splbio blocked.
5009 */
5010static int
5011flush_deplist(listhead, waitfor, errorp)
5012	struct allocdirectlst *listhead;
5013	int waitfor;
5014	int *errorp;
5015{
5016	struct allocdirect *adp;
5017	struct buf *bp;
5018
5019	mtx_assert(&lk, MA_OWNED);
5020	TAILQ_FOREACH(adp, listhead, ad_next) {
5021		if (adp->ad_state & DEPCOMPLETE)
5022			continue;
5023		bp = adp->ad_buf;
5024		bp = getdirtybuf(bp, &lk, waitfor);
5025		if (bp == NULL) {
5026			if (waitfor == MNT_NOWAIT)
5027				continue;
5028			return (1);
5029		}
5030		FREE_LOCK(&lk);
5031		if (waitfor == MNT_NOWAIT) {
5032			bawrite(bp);
5033		} else if ((*errorp = bwrite(bp)) != 0) {
5034			ACQUIRE_LOCK(&lk);
5035			return (1);
5036		}
5037		ACQUIRE_LOCK(&lk);
5038		return (1);
5039	}
5040	return (0);
5041}
5042
5043/*
5044 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
5045 * Called with splbio blocked.
5046 */
5047static int
5048flush_pagedep_deps(pvp, mp, diraddhdp)
5049	struct vnode *pvp;
5050	struct mount *mp;
5051	struct diraddhd *diraddhdp;
5052{
5053	struct thread *td = curthread;
5054	struct inodedep *inodedep;
5055	struct ufsmount *ump;
5056	struct diradd *dap;
5057	struct vnode *vp;
5058	int error = 0;
5059	struct buf *bp;
5060	ino_t inum;
5061
5062	ump = VFSTOUFS(mp);
5063	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
5064		/*
5065		 * Flush ourselves if this directory entry
5066		 * has a MKDIR_PARENT dependency.
5067		 */
5068		if (dap->da_state & MKDIR_PARENT) {
5069			FREE_LOCK(&lk);
5070			if ((error = UFS_UPDATE(pvp, 1)) != 0)
5071				break;
5072			ACQUIRE_LOCK(&lk);
5073			/*
5074			 * If that cleared dependencies, go on to next.
5075			 */
5076			if (dap != LIST_FIRST(diraddhdp))
5077				continue;
5078			if (dap->da_state & MKDIR_PARENT)
5079				panic("flush_pagedep_deps: MKDIR_PARENT");
5080		}
5081		/*
5082		 * A newly allocated directory must have its "." and
5083		 * ".." entries written out before its name can be
5084		 * committed in its parent. We do not want or need
5085		 * the full semantics of a synchronous VOP_FSYNC as
5086		 * that may end up here again, once for each directory
5087		 * level in the filesystem. Instead, we push the blocks
5088		 * and wait for them to clear. We have to fsync twice
5089		 * because the first call may choose to defer blocks
5090		 * that still have dependencies, but deferral will
5091		 * happen at most once.
5092		 */
5093		inum = dap->da_newinum;
5094		if (dap->da_state & MKDIR_BODY) {
5095			FREE_LOCK(&lk);
5096			if ((error = VFS_VGET(mp, inum, LK_EXCLUSIVE, &vp)))
5097				break;
5098			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, td)) ||
5099			    (error=VOP_FSYNC(vp, MNT_NOWAIT, td))) {
5100				vput(vp);
5101				break;
5102			}
5103			VI_LOCK(vp);
5104			drain_output(vp);
5105			VI_UNLOCK(vp);
5106			vput(vp);
5107			ACQUIRE_LOCK(&lk);
5108			/*
5109			 * If that cleared dependencies, go on to next.
5110			 */
5111			if (dap != LIST_FIRST(diraddhdp))
5112				continue;
5113			if (dap->da_state & MKDIR_BODY)
5114				panic("flush_pagedep_deps: MKDIR_BODY");
5115		}
5116		/*
5117		 * Flush the inode on which the directory entry depends.
5118		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
5119		 * the only remaining dependency is that the updated inode
5120		 * count must get pushed to disk. The inode has already
5121		 * been pushed into its inode buffer (via VOP_UPDATE) at
5122		 * the time of the reference count change. So we need only
5123		 * locate that buffer, ensure that there will be no rollback
5124		 * caused by a bitmap dependency, then write the inode buffer.
5125		 */
5126retry:
5127		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0)
5128			panic("flush_pagedep_deps: lost inode");
5129		/*
5130		 * If the inode still has bitmap dependencies,
5131		 * push them to disk.
5132		 */
5133		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5134			bp = inodedep->id_buf;
5135			bp = getdirtybuf(bp, &lk, MNT_WAIT);
5136			if (bp == NULL)
5137				goto retry;
5138			FREE_LOCK(&lk);
5139			if ((error = bwrite(bp)) != 0)
5140				break;
5141			ACQUIRE_LOCK(&lk);
5142			if (dap != LIST_FIRST(diraddhdp))
5143				continue;
5144		}
5145		/*
5146		 * If the inode is still sitting in a buffer waiting
5147		 * to be written, push it to disk.
5148		 */
5149		FREE_LOCK(&lk);
5150		if ((error = bread(ump->um_devvp,
5151		    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
5152		    (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) {
5153			brelse(bp);
5154			break;
5155		}
5156		if ((error = bwrite(bp)) != 0)
5157			break;
5158		ACQUIRE_LOCK(&lk);
5159		/*
5160		 * If we have failed to get rid of all the dependencies
5161		 * then something is seriously wrong.
5162		 */
5163		if (dap == LIST_FIRST(diraddhdp))
5164			panic("flush_pagedep_deps: flush failed");
5165	}
5166	if (error)
5167		ACQUIRE_LOCK(&lk);
5168	return (error);
5169}
5170
5171/*
5172 * A large burst of file addition or deletion activity can drive the
5173 * memory load excessively high. First attempt to slow things down
5174 * using the techniques below. If that fails, this routine requests
5175 * the offending operations to fall back to running synchronously
5176 * until the memory load returns to a reasonable level.
5177 */
5178int
5179softdep_slowdown(vp)
5180	struct vnode *vp;
5181{
5182	int max_softdeps_hard;
5183
5184	max_softdeps_hard = max_softdeps * 11 / 10;
5185	if (num_dirrem < max_softdeps_hard / 2 &&
5186	    num_inodedep < max_softdeps_hard &&
5187	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps)
5188  		return (0);
5189	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps)
5190		speedup_syncer();
5191	stat_sync_limit_hit += 1;
5192	return (1);
5193}
5194
5195/*
5196 * Called by the allocation routines when they are about to fail
5197 * in the hope that we can free up some disk space.
5198 *
5199 * First check to see if the work list has anything on it. If it has,
5200 * clean up entries until we successfully free some space. Because this
5201 * process holds inodes locked, we cannot handle any remove requests
5202 * that might block on a locked inode as that could lead to deadlock.
5203 * If the worklist yields no free space, encourage the syncer daemon
5204 * to help us. In no event will we try for longer than tickdelay seconds.
5205 */
5206int
5207softdep_request_cleanup(fs, vp)
5208	struct fs *fs;
5209	struct vnode *vp;
5210{
5211	struct ufsmount *ump;
5212	long starttime;
5213	ufs2_daddr_t needed;
5214	int error;
5215
5216	ump = VTOI(vp)->i_ump;
5217	mtx_assert(UFS_MTX(ump), MA_OWNED);
5218	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
5219	starttime = time_second + tickdelay;
5220	/*
5221	 * If we are being called because of a process doing a
5222	 * copy-on-write, then it is not safe to update the vnode
5223	 * as we may recurse into the copy-on-write routine.
5224	 */
5225	if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
5226		UFS_UNLOCK(ump);
5227		error = UFS_UPDATE(vp, 1);
5228		UFS_LOCK(ump);
5229		if (error != 0)
5230			return (0);
5231	}
5232	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
5233		if (time_second > starttime)
5234			return (0);
5235		UFS_UNLOCK(ump);
5236		ACQUIRE_LOCK(&lk);
5237		if (num_on_worklist > 0 &&
5238		    process_worklist_item(NULL, LK_NOWAIT) != -1) {
5239			stat_worklist_push += 1;
5240			FREE_LOCK(&lk);
5241			UFS_LOCK(ump);
5242			continue;
5243		}
5244		request_cleanup(FLUSH_REMOVE_WAIT);
5245		FREE_LOCK(&lk);
5246		UFS_LOCK(ump);
5247	}
5248	return (1);
5249}
5250
5251/*
5252 * If memory utilization has gotten too high, deliberately slow things
5253 * down and speed up the I/O processing.
5254 */
5255static int
5256request_cleanup(resource)
5257	int resource;
5258{
5259	struct thread *td = curthread;
5260
5261	mtx_assert(&lk, MA_OWNED);
5262	/*
5263	 * We never hold up the filesystem syncer process.
5264	 */
5265	if (td == filesys_syncer)
5266		return (0);
5267	/*
5268	 * First check to see if the work list has gotten backlogged.
5269	 * If it has, co-opt this process to help clean up two entries.
5270	 * Because this process may hold inodes locked, we cannot
5271	 * handle any remove requests that might block on a locked
5272	 * inode as that could lead to deadlock.
5273	 */
5274	if (num_on_worklist > max_softdeps / 10) {
5275		process_worklist_item(NULL, LK_NOWAIT);
5276		process_worklist_item(NULL, LK_NOWAIT);
5277		stat_worklist_push += 2;
5278		return(1);
5279	}
5280	/*
5281	 * Next, we attempt to speed up the syncer process. If that
5282	 * is successful, then we allow the process to continue.
5283	 */
5284	if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT)
5285		return(0);
5286	/*
5287	 * If we are resource constrained on inode dependencies, try
5288	 * flushing some dirty inodes. Otherwise, we are constrained
5289	 * by file deletions, so try accelerating flushes of directories
5290	 * with removal dependencies. We would like to do the cleanup
5291	 * here, but we probably hold an inode locked at this point and
5292	 * that might deadlock against one that we try to clean. So,
5293	 * the best that we can do is request the syncer daemon to do
5294	 * the cleanup for us.
5295	 */
5296	switch (resource) {
5297
5298	case FLUSH_INODES:
5299		stat_ino_limit_push += 1;
5300		req_clear_inodedeps += 1;
5301		stat_countp = &stat_ino_limit_hit;
5302		break;
5303
5304	case FLUSH_REMOVE:
5305	case FLUSH_REMOVE_WAIT:
5306		stat_blk_limit_push += 1;
5307		req_clear_remove += 1;
5308		stat_countp = &stat_blk_limit_hit;
5309		break;
5310
5311	default:
5312		panic("request_cleanup: unknown type");
5313	}
5314	/*
5315	 * Hopefully the syncer daemon will catch up and awaken us.
5316	 * We wait at most tickdelay before proceeding in any case.
5317	 */
5318	proc_waiting += 1;
5319	if (handle.callout == NULL)
5320		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5321	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
5322	proc_waiting -= 1;
5323	return (1);
5324}
5325
5326/*
5327 * Awaken processes pausing in request_cleanup and clear proc_waiting
5328 * to indicate that there is no longer a timer running.
5329 */
5330static void
5331pause_timer(arg)
5332	void *arg;
5333{
5334
5335	ACQUIRE_LOCK(&lk);
5336	*stat_countp += 1;
5337	wakeup_one(&proc_waiting);
5338	if (proc_waiting > 0)
5339		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5340	else
5341		handle.callout = NULL;
5342	FREE_LOCK(&lk);
5343}
5344
5345/*
5346 * Flush out a directory with at least one removal dependency in an effort to
5347 * reduce the number of dirrem, freefile, and freeblks dependency structures.
5348 */
5349static void
5350clear_remove(td)
5351	struct thread *td;
5352{
5353	struct pagedep_hashhead *pagedephd;
5354	struct pagedep *pagedep;
5355	static int next = 0;
5356	struct mount *mp;
5357	struct vnode *vp;
5358	int error, cnt;
5359	ino_t ino;
5360
5361	mtx_assert(&lk, MA_OWNED);
5362
5363	for (cnt = 0; cnt < pagedep_hash; cnt++) {
5364		pagedephd = &pagedep_hashtbl[next++];
5365		if (next >= pagedep_hash)
5366			next = 0;
5367		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
5368			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
5369				continue;
5370			mp = pagedep->pd_mnt;
5371			ino = pagedep->pd_ino;
5372			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5373				continue;
5374			FREE_LOCK(&lk);
5375			if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp))) {
5376				softdep_error("clear_remove: vget", error);
5377				vn_finished_write(mp);
5378				ACQUIRE_LOCK(&lk);
5379				return;
5380			}
5381			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, td)))
5382				softdep_error("clear_remove: fsync", error);
5383			VI_LOCK(vp);
5384			drain_output(vp);
5385			VI_UNLOCK(vp);
5386			vput(vp);
5387			vn_finished_write(mp);
5388			ACQUIRE_LOCK(&lk);
5389			return;
5390		}
5391	}
5392}
5393
5394/*
5395 * Clear out a block of dirty inodes in an effort to reduce
5396 * the number of inodedep dependency structures.
5397 */
5398static void
5399clear_inodedeps(td)
5400	struct thread *td;
5401{
5402	struct inodedep_hashhead *inodedephd;
5403	struct inodedep *inodedep;
5404	static int next = 0;
5405	struct mount *mp;
5406	struct vnode *vp;
5407	struct fs *fs;
5408	int error, cnt;
5409	ino_t firstino, lastino, ino;
5410
5411	mtx_assert(&lk, MA_OWNED);
5412	/*
5413	 * Pick a random inode dependency to be cleared.
5414	 * We will then gather up all the inodes in its block
5415	 * that have dependencies and flush them out.
5416	 */
5417	for (cnt = 0; cnt < inodedep_hash; cnt++) {
5418		inodedephd = &inodedep_hashtbl[next++];
5419		if (next >= inodedep_hash)
5420			next = 0;
5421		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
5422			break;
5423	}
5424	if (inodedep == NULL)
5425		return;
5426	/*
5427	 * Ugly code to find mount point given pointer to superblock.
5428	 */
5429	fs = inodedep->id_fs;
5430	TAILQ_FOREACH(mp, &mountlist, mnt_list)
5431		if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
5432			break;
5433	/*
5434	 * Find the last inode in the block with dependencies.
5435	 */
5436	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5437	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5438		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
5439			break;
5440	/*
5441	 * Asynchronously push all but the last inode with dependencies.
5442	 * Synchronously push the last inode with dependencies to ensure
5443	 * that the inode block gets written to free up the inodedeps.
5444	 */
5445	for (ino = firstino; ino <= lastino; ino++) {
5446		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
5447			continue;
5448		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5449			continue;
5450		FREE_LOCK(&lk);
5451		if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp)) != 0) {
5452			softdep_error("clear_inodedeps: vget", error);
5453			vn_finished_write(mp);
5454			ACQUIRE_LOCK(&lk);
5455			return;
5456		}
5457		if (ino == lastino) {
5458			if ((error = VOP_FSYNC(vp, MNT_WAIT, td)))
5459				softdep_error("clear_inodedeps: fsync1", error);
5460		} else {
5461			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, td)))
5462				softdep_error("clear_inodedeps: fsync2", error);
5463			VI_LOCK(vp);
5464			drain_output(vp);
5465			VI_UNLOCK(vp);
5466		}
5467		vput(vp);
5468		vn_finished_write(mp);
5469		ACQUIRE_LOCK(&lk);
5470	}
5471}
5472
5473/*
5474 * Function to determine if the buffer has outstanding dependencies
5475 * that will cause a roll-back if the buffer is written. If wantcount
5476 * is set, return number of dependencies, otherwise just yes or no.
5477 */
5478static int
5479softdep_count_dependencies(bp, wantcount)
5480	struct buf *bp;
5481	int wantcount;
5482{
5483	struct worklist *wk;
5484	struct inodedep *inodedep;
5485	struct indirdep *indirdep;
5486	struct allocindir *aip;
5487	struct pagedep *pagedep;
5488	struct diradd *dap;
5489	int i, retval;
5490
5491	retval = 0;
5492	ACQUIRE_LOCK(&lk);
5493	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5494		switch (wk->wk_type) {
5495
5496		case D_INODEDEP:
5497			inodedep = WK_INODEDEP(wk);
5498			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5499				/* bitmap allocation dependency */
5500				retval += 1;
5501				if (!wantcount)
5502					goto out;
5503			}
5504			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5505				/* direct block pointer dependency */
5506				retval += 1;
5507				if (!wantcount)
5508					goto out;
5509			}
5510			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
5511				/* direct block pointer dependency */
5512				retval += 1;
5513				if (!wantcount)
5514					goto out;
5515			}
5516			continue;
5517
5518		case D_INDIRDEP:
5519			indirdep = WK_INDIRDEP(wk);
5520
5521			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5522				/* indirect block pointer dependency */
5523				retval += 1;
5524				if (!wantcount)
5525					goto out;
5526			}
5527			continue;
5528
5529		case D_PAGEDEP:
5530			pagedep = WK_PAGEDEP(wk);
5531			for (i = 0; i < DAHASHSZ; i++) {
5532
5533				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5534					/* directory entry dependency */
5535					retval += 1;
5536					if (!wantcount)
5537						goto out;
5538				}
5539			}
5540			continue;
5541
5542		case D_BMSAFEMAP:
5543		case D_ALLOCDIRECT:
5544		case D_ALLOCINDIR:
5545		case D_MKDIR:
5546			/* never a dependency on these blocks */
5547			continue;
5548
5549		default:
5550			panic("softdep_check_for_rollback: Unexpected type %s",
5551			    TYPENAME(wk->wk_type));
5552			/* NOTREACHED */
5553		}
5554	}
5555out:
5556	FREE_LOCK(&lk);
5557	return retval;
5558}
5559
5560/*
5561 * Acquire exclusive access to a buffer.
5562 * Must be called with a locked mtx parameter.
5563 * Return acquired buffer or NULL on failure.
5564 */
5565static struct buf *
5566getdirtybuf(bp, mtx, waitfor)
5567	struct buf *bp;
5568	struct mtx *mtx;
5569	int waitfor;
5570{
5571	int error;
5572
5573	mtx_assert(mtx, MA_OWNED);
5574	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
5575		if (waitfor != MNT_WAIT)
5576			return (NULL);
5577		error = BUF_LOCK(bp,
5578		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
5579		/*
5580		 * Even if we sucessfully acquire bp here, we have dropped
5581		 * mtx, which may violates our guarantee.
5582		 */
5583		if (error == 0)
5584			BUF_UNLOCK(bp);
5585		else if (error != ENOLCK)
5586			panic("getdirtybuf: inconsistent lock: %d", error);
5587		mtx_lock(mtx);
5588		return (NULL);
5589	}
5590	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
5591		BUF_UNLOCK(bp);
5592		if (waitfor != MNT_WAIT)
5593			return (NULL);
5594		/*
5595		 * The mtx argument must be bp->b_vp's mutex in
5596		 * this case.
5597		 */
5598#ifdef	DEBUG_VFS_LOCKS
5599		if (bp->b_vp->v_type != VCHR)
5600			ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf");
5601#endif
5602		bp->b_vflags |= BV_BKGRDWAIT;
5603		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
5604		return (NULL);
5605	}
5606	if ((bp->b_flags & B_DELWRI) == 0) {
5607		BUF_UNLOCK(bp);
5608		return (NULL);
5609	}
5610	bremfree(bp);
5611	return (bp);
5612}
5613
5614/*
5615 * Wait for pending output on a vnode to complete.
5616 * Must be called with vnode lock and interlock locked.
5617 *
5618 * XXX: Should just be a call to bufobj_wwait().
5619 */
5620static void
5621drain_output(vp)
5622	struct vnode *vp;
5623{
5624	ASSERT_VOP_LOCKED(vp, "drain_output");
5625	ASSERT_VI_LOCKED(vp, "drain_output");
5626
5627	while (vp->v_bufobj.bo_numoutput) {
5628		vp->v_bufobj.bo_flag |= BO_WWAIT;
5629		msleep((caddr_t)&vp->v_bufobj.bo_numoutput,
5630		    VI_MTX(vp), PRIBIO + 1, "drainvp", 0);
5631	}
5632}
5633
5634/*
5635 * Called whenever a buffer that is being invalidated or reallocated
5636 * contains dependencies. This should only happen if an I/O error has
5637 * occurred. The routine is called with the buffer locked.
5638 */
5639static void
5640softdep_deallocate_dependencies(bp)
5641	struct buf *bp;
5642{
5643
5644	if ((bp->b_ioflags & BIO_ERROR) == 0)
5645		panic("softdep_deallocate_dependencies: dangling deps");
5646	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
5647	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5648}
5649
5650/*
5651 * Function to handle asynchronous write errors in the filesystem.
5652 */
5653static void
5654softdep_error(func, error)
5655	char *func;
5656	int error;
5657{
5658
5659	/* XXX should do something better! */
5660	printf("%s: got error %d while accessing filesystem\n", func, error);
5661}
5662