ffs_softdep.c revision 140048
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12 *	1614 Oxford Street		mckusick@mckusick.com
13 *	Berkeley, CA 94709-1608		+1-510-843-9542
14 *	USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 140048 2005-01-11 07:36:22Z phk $");
43
44/*
45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46 */
47#ifndef DIAGNOSTIC
48#define DIAGNOSTIC
49#endif
50#ifndef DEBUG
51#define DEBUG
52#endif
53
54#include <sys/param.h>
55#include <sys/kernel.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/kdb.h>
60#include <sys/malloc.h>
61#include <sys/mount.h>
62#include <sys/proc.h>
63#include <sys/stat.h>
64#include <sys/syslog.h>
65#include <sys/vnode.h>
66#include <sys/conf.h>
67#include <ufs/ufs/dir.h>
68#include <ufs/ufs/extattr.h>
69#include <ufs/ufs/quota.h>
70#include <ufs/ufs/inode.h>
71#include <ufs/ufs/ufsmount.h>
72#include <ufs/ffs/fs.h>
73#include <ufs/ffs/softdep.h>
74#include <ufs/ffs/ffs_extern.h>
75#include <ufs/ufs/ufs_extern.h>
76
77/*
78 * These definitions need to be adapted to the system to which
79 * this file is being ported.
80 */
81/*
82 * malloc types defined for the softdep system.
83 */
84static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
85static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
86static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
87static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
88static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
89static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
90static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
91static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
92static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
93static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
94static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
95static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
96static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
97static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block");
98
99#define M_SOFTDEP_FLAGS	(M_WAITOK | M_USE_RESERVE)
100
101#define	D_PAGEDEP	0
102#define	D_INODEDEP	1
103#define	D_NEWBLK	2
104#define	D_BMSAFEMAP	3
105#define	D_ALLOCDIRECT	4
106#define	D_INDIRDEP	5
107#define	D_ALLOCINDIR	6
108#define	D_FREEFRAG	7
109#define	D_FREEBLKS	8
110#define	D_FREEFILE	9
111#define	D_DIRADD	10
112#define	D_MKDIR		11
113#define	D_DIRREM	12
114#define	D_NEWDIRBLK	13
115#define	D_LAST		D_NEWDIRBLK
116
117/*
118 * translate from workitem type to memory type
119 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
120 */
121static struct malloc_type *memtype[] = {
122	M_PAGEDEP,
123	M_INODEDEP,
124	M_NEWBLK,
125	M_BMSAFEMAP,
126	M_ALLOCDIRECT,
127	M_INDIRDEP,
128	M_ALLOCINDIR,
129	M_FREEFRAG,
130	M_FREEBLKS,
131	M_FREEFILE,
132	M_DIRADD,
133	M_MKDIR,
134	M_DIRREM,
135	M_NEWDIRBLK
136};
137
138#define DtoM(type) (memtype[type])
139
140/*
141 * Names of malloc types.
142 */
143#define TYPENAME(type)  \
144	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
145/*
146 * End system adaptaion definitions.
147 */
148
149/*
150 * Internal function prototypes.
151 */
152static	void softdep_error(char *, int);
153static	void drain_output(struct vnode *, int);
154static	struct buf *getdirtybuf(struct buf **, struct mtx *, int);
155static	void clear_remove(struct thread *);
156static	void clear_inodedeps(struct thread *);
157static	int flush_pagedep_deps(struct vnode *, struct mount *,
158	    struct diraddhd *);
159static	int flush_inodedep_deps(struct fs *, ino_t);
160static	int flush_deplist(struct allocdirectlst *, int, int *);
161static	int handle_written_filepage(struct pagedep *, struct buf *);
162static  void diradd_inode_written(struct diradd *, struct inodedep *);
163static	int handle_written_inodeblock(struct inodedep *, struct buf *);
164static	void handle_allocdirect_partdone(struct allocdirect *);
165static	void handle_allocindir_partdone(struct allocindir *);
166static	void initiate_write_filepage(struct pagedep *, struct buf *);
167static	void handle_written_mkdir(struct mkdir *, int);
168static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
169static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
170static	void handle_workitem_freefile(struct freefile *);
171static	void handle_workitem_remove(struct dirrem *, struct vnode *);
172static	struct dirrem *newdirrem(struct buf *, struct inode *,
173	    struct inode *, int, struct dirrem **);
174static	void free_diradd(struct diradd *);
175static	void free_allocindir(struct allocindir *, struct inodedep *);
176static	void free_newdirblk(struct newdirblk *);
177static	int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t,
178	    ufs2_daddr_t *);
179static	void deallocate_dependencies(struct buf *, struct inodedep *);
180static	void free_allocdirect(struct allocdirectlst *,
181	    struct allocdirect *, int);
182static	int check_inode_unwritten(struct inodedep *);
183static	int free_inodedep(struct inodedep *);
184static	void handle_workitem_freeblocks(struct freeblks *, int);
185static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
186static	void setup_allocindir_phase2(struct buf *, struct inode *,
187	    struct allocindir *);
188static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
189	    ufs2_daddr_t);
190static	void handle_workitem_freefrag(struct freefrag *);
191static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long);
192static	void allocdirect_merge(struct allocdirectlst *,
193	    struct allocdirect *, struct allocdirect *);
194static	struct bmsafemap *bmsafemap_lookup(struct buf *);
195static	int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **);
196static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
197static	int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **);
198static	void pause_timer(void *);
199static	int request_cleanup(int, int);
200static	int process_worklist_item(struct mount *, int);
201static	void add_to_worklist(struct worklist *);
202
203/*
204 * Exported softdep operations.
205 */
206static	void softdep_disk_io_initiation(struct buf *);
207static	void softdep_disk_write_complete(struct buf *);
208static	void softdep_deallocate_dependencies(struct buf *);
209static	void softdep_move_dependencies(struct buf *, struct buf *);
210static	int softdep_count_dependencies(struct buf *bp, int);
211
212/*
213 * Locking primitives.
214 *
215 * For a uniprocessor, all we need to do is protect against disk
216 * interrupts. For a multiprocessor, this lock would have to be
217 * a mutex. A single mutex is used throughout this file, though
218 * finer grain locking could be used if contention warranted it.
219 *
220 * For a multiprocessor, the sleep call would accept a lock and
221 * release it after the sleep processing was complete. In a uniprocessor
222 * implementation there is no such interlock, so we simple mark
223 * the places where it needs to be done with the `interlocked' form
224 * of the lock calls. Since the uniprocessor sleep already interlocks
225 * the spl, there is nothing that really needs to be done.
226 */
227#ifndef /* NOT */ DEBUG
228static struct lockit {
229	int	lkt_spl;
230} lk = { 0 };
231#define ACQUIRE_LOCK(lk)		(lk)->lkt_spl = splbio()
232#define FREE_LOCK(lk)			splx((lk)->lkt_spl)
233
234#else /* DEBUG */
235#define NOHOLDER	((struct thread *)-1)
236#define SPECIAL_FLAG	((struct thread *)-2)
237static struct lockit {
238	int	lkt_spl;
239	struct	thread *lkt_held;
240} lk = { 0, NOHOLDER };
241
242static	void acquire_lock(struct lockit *);
243static	void free_lock(struct lockit *);
244void	softdep_panic(char *);
245
246#define ACQUIRE_LOCK(lk)		acquire_lock(lk)
247#define FREE_LOCK(lk)			free_lock(lk)
248
249static void
250acquire_lock(lk)
251	struct lockit *lk;
252{
253	struct thread *holder;
254
255	if (lk->lkt_held != NOHOLDER) {
256		holder = lk->lkt_held;
257		FREE_LOCK(lk);
258		if (holder == curthread)
259			panic("softdep_lock: locking against myself");
260		else
261			panic("softdep_lock: lock held by %p", holder);
262	}
263	lk->lkt_spl = splbio();
264	lk->lkt_held = curthread;
265}
266
267static void
268free_lock(lk)
269	struct lockit *lk;
270{
271
272	if (lk->lkt_held == NOHOLDER)
273		panic("softdep_unlock: lock not held");
274	lk->lkt_held = NOHOLDER;
275	splx(lk->lkt_spl);
276}
277
278/*
279 * Function to release soft updates lock and panic.
280 */
281void
282softdep_panic(msg)
283	char *msg;
284{
285
286	if (lk.lkt_held != NOHOLDER)
287		FREE_LOCK(&lk);
288	panic(msg);
289}
290#endif /* DEBUG */
291
292static	int interlocked_sleep(struct lockit *, int, void *, struct mtx *, int,
293	    const char *, int);
294
295/*
296 * When going to sleep, we must save our SPL so that it does
297 * not get lost if some other process uses the lock while we
298 * are sleeping. We restore it after we have slept. This routine
299 * wraps the interlocking with functions that sleep. The list
300 * below enumerates the available set of operations.
301 */
302#define	UNKNOWN		0
303#define	SLEEP		1
304#define	LOCKBUF		2
305
306static int
307interlocked_sleep(lk, op, ident, mtx, flags, wmesg, timo)
308	struct lockit *lk;
309	int op;
310	void *ident;
311	struct mtx *mtx;
312	int flags;
313	const char *wmesg;
314	int timo;
315{
316	struct thread *holder;
317	int s, retval;
318
319	s = lk->lkt_spl;
320#	ifdef DEBUG
321	if (lk->lkt_held == NOHOLDER)
322		panic("interlocked_sleep: lock not held");
323	lk->lkt_held = NOHOLDER;
324#	endif /* DEBUG */
325	switch (op) {
326	case SLEEP:
327		retval = msleep(ident, mtx, flags, wmesg, timo);
328		break;
329	case LOCKBUF:
330		retval = BUF_LOCK((struct buf *)ident, flags, mtx);
331		break;
332	default:
333		panic("interlocked_sleep: unknown operation");
334	}
335#	ifdef DEBUG
336	if (lk->lkt_held != NOHOLDER) {
337		holder = lk->lkt_held;
338		FREE_LOCK(lk);
339		if (holder == curthread)
340			panic("interlocked_sleep: locking against self");
341		else
342			panic("interlocked_sleep: lock held by %p", holder);
343	}
344	lk->lkt_held = curthread;
345#	endif /* DEBUG */
346	lk->lkt_spl = s;
347	return (retval);
348}
349
350/*
351 * Place holder for real semaphores.
352 */
353struct sema {
354	int	value;
355	struct	thread *holder;
356	char	*name;
357	int	prio;
358	int	timo;
359};
360static	void sema_init(struct sema *, char *, int, int);
361static	int sema_get(struct sema *, struct lockit *);
362static	void sema_release(struct sema *);
363
364static void
365sema_init(semap, name, prio, timo)
366	struct sema *semap;
367	char *name;
368	int prio, timo;
369{
370
371	semap->holder = NOHOLDER;
372	semap->value = 0;
373	semap->name = name;
374	semap->prio = prio;
375	semap->timo = timo;
376}
377
378static int
379sema_get(semap, interlock)
380	struct sema *semap;
381	struct lockit *interlock;
382{
383
384	if (semap->value++ > 0) {
385		if (interlock != NULL) {
386			interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
387			    NULL, semap->prio, semap->name,
388			    semap->timo);
389			FREE_LOCK(interlock);
390		} else {
391			tsleep(semap, semap->prio, semap->name,
392			    semap->timo);
393		}
394		return (0);
395	}
396	semap->holder = curthread;
397	if (interlock != NULL)
398		FREE_LOCK(interlock);
399	return (1);
400}
401
402static void
403sema_release(semap)
404	struct sema *semap;
405{
406
407	if (semap->value <= 0 || semap->holder != curthread) {
408		if (lk.lkt_held != NOHOLDER)
409			FREE_LOCK(&lk);
410		panic("sema_release: not held");
411	}
412	if (--semap->value > 0) {
413		semap->value = 0;
414		wakeup(semap);
415	}
416	semap->holder = NOHOLDER;
417}
418
419/*
420 * Worklist queue management.
421 * These routines require that the lock be held.
422 */
423#ifndef /* NOT */ DEBUG
424#define WORKLIST_INSERT(head, item) do {	\
425	(item)->wk_state |= ONWORKLIST;		\
426	LIST_INSERT_HEAD(head, item, wk_list);	\
427} while (0)
428#define WORKLIST_REMOVE(item) do {		\
429	(item)->wk_state &= ~ONWORKLIST;	\
430	LIST_REMOVE(item, wk_list);		\
431} while (0)
432#define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
433
434#else /* DEBUG */
435static	void worklist_insert(struct workhead *, struct worklist *);
436static	void worklist_remove(struct worklist *);
437static	void workitem_free(struct worklist *, int);
438
439#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
440#define WORKLIST_REMOVE(item) worklist_remove(item)
441#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
442
443static void
444worklist_insert(head, item)
445	struct workhead *head;
446	struct worklist *item;
447{
448
449	if (lk.lkt_held == NOHOLDER)
450		panic("worklist_insert: lock not held");
451	if (item->wk_state & ONWORKLIST) {
452		FREE_LOCK(&lk);
453		panic("worklist_insert: already on list");
454	}
455	item->wk_state |= ONWORKLIST;
456	LIST_INSERT_HEAD(head, item, wk_list);
457}
458
459static void
460worklist_remove(item)
461	struct worklist *item;
462{
463
464	if (lk.lkt_held == NOHOLDER)
465		panic("worklist_remove: lock not held");
466	if ((item->wk_state & ONWORKLIST) == 0) {
467		FREE_LOCK(&lk);
468		panic("worklist_remove: not on list");
469	}
470	item->wk_state &= ~ONWORKLIST;
471	LIST_REMOVE(item, wk_list);
472}
473
474static void
475workitem_free(item, type)
476	struct worklist *item;
477	int type;
478{
479
480	if (item->wk_state & ONWORKLIST) {
481		if (lk.lkt_held != NOHOLDER)
482			FREE_LOCK(&lk);
483		panic("workitem_free: still on list");
484	}
485	if (item->wk_type != type) {
486		if (lk.lkt_held != NOHOLDER)
487			FREE_LOCK(&lk);
488		panic("workitem_free: type mismatch");
489	}
490	FREE(item, DtoM(type));
491}
492#endif /* DEBUG */
493
494/*
495 * Workitem queue management
496 */
497static struct workhead softdep_workitem_pending;
498static struct worklist *worklist_tail;
499static int num_on_worklist;	/* number of worklist items to be processed */
500static int softdep_worklist_busy; /* 1 => trying to do unmount */
501static int softdep_worklist_req; /* serialized waiters */
502static int max_softdeps;	/* maximum number of structs before slowdown */
503static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
504static int tickdelay = 2;	/* number of ticks to pause during slowdown */
505static int proc_waiting;	/* tracks whether we have a timeout posted */
506static int *stat_countp;	/* statistic to count in proc_waiting timeout */
507static struct callout_handle handle; /* handle on posted proc_waiting timeout */
508static struct thread *filesys_syncer; /* proc of filesystem syncer process */
509static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
510#define FLUSH_INODES		1
511static int req_clear_remove;	/* syncer process flush some freeblks */
512#define FLUSH_REMOVE		2
513#define FLUSH_REMOVE_WAIT	3
514/*
515 * runtime statistics
516 */
517static int stat_worklist_push;	/* number of worklist cleanups */
518static int stat_blk_limit_push;	/* number of times block limit neared */
519static int stat_ino_limit_push;	/* number of times inode limit neared */
520static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
521static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
522static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
523static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
524static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
525static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
526static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
527#ifdef DEBUG
528#include <vm/vm.h>
529#include <sys/sysctl.h>
530SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
531SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
532SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, "");
533SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
534SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
535SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
536SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
537SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
538SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
539SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
540SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
541SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
542SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
543#endif /* DEBUG */
544
545/*
546 * Add an item to the end of the work queue.
547 * This routine requires that the lock be held.
548 * This is the only routine that adds items to the list.
549 * The following routine is the only one that removes items
550 * and does so in order from first to last.
551 */
552static void
553add_to_worklist(wk)
554	struct worklist *wk;
555{
556
557	if (wk->wk_state & ONWORKLIST) {
558		if (lk.lkt_held != NOHOLDER)
559			FREE_LOCK(&lk);
560		panic("add_to_worklist: already on list");
561	}
562	wk->wk_state |= ONWORKLIST;
563	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
564		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
565	else
566		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
567	worklist_tail = wk;
568	num_on_worklist += 1;
569}
570
571/*
572 * Process that runs once per second to handle items in the background queue.
573 *
574 * Note that we ensure that everything is done in the order in which they
575 * appear in the queue. The code below depends on this property to ensure
576 * that blocks of a file are freed before the inode itself is freed. This
577 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
578 * until all the old ones have been purged from the dependency lists.
579 */
580int
581softdep_process_worklist(matchmnt)
582	struct mount *matchmnt;
583{
584	struct thread *td = curthread;
585	int cnt, matchcnt, loopcount;
586	long starttime;
587
588	/*
589	 * Record the process identifier of our caller so that we can give
590	 * this process preferential treatment in request_cleanup below.
591	 */
592	filesys_syncer = td;
593	matchcnt = 0;
594
595	/*
596	 * There is no danger of having multiple processes run this
597	 * code, but we have to single-thread it when softdep_flushfiles()
598	 * is in operation to get an accurate count of the number of items
599	 * related to its mount point that are in the list.
600	 */
601	if (matchmnt == NULL) {
602		if (softdep_worklist_busy < 0)
603			return(-1);
604		softdep_worklist_busy += 1;
605	}
606
607	/*
608	 * If requested, try removing inode or removal dependencies.
609	 */
610	if (req_clear_inodedeps) {
611		clear_inodedeps(td);
612		req_clear_inodedeps -= 1;
613		wakeup_one(&proc_waiting);
614	}
615	if (req_clear_remove) {
616		clear_remove(td);
617		req_clear_remove -= 1;
618		wakeup_one(&proc_waiting);
619	}
620	loopcount = 1;
621	starttime = time_second;
622	while (num_on_worklist > 0) {
623		if ((cnt = process_worklist_item(matchmnt, 0)) == -1)
624			break;
625		else
626			matchcnt += cnt;
627
628		/*
629		 * If a umount operation wants to run the worklist
630		 * accurately, abort.
631		 */
632		if (softdep_worklist_req && matchmnt == NULL) {
633			matchcnt = -1;
634			break;
635		}
636
637		/*
638		 * If requested, try removing inode or removal dependencies.
639		 */
640		if (req_clear_inodedeps) {
641			clear_inodedeps(td);
642			req_clear_inodedeps -= 1;
643			wakeup_one(&proc_waiting);
644		}
645		if (req_clear_remove) {
646			clear_remove(td);
647			req_clear_remove -= 1;
648			wakeup_one(&proc_waiting);
649		}
650		/*
651		 * We do not generally want to stop for buffer space, but if
652		 * we are really being a buffer hog, we will stop and wait.
653		 */
654		if (loopcount++ % 128 == 0)
655			bwillwrite();
656		/*
657		 * Never allow processing to run for more than one
658		 * second. Otherwise the other syncer tasks may get
659		 * excessively backlogged.
660		 */
661		if (starttime != time_second && matchmnt == NULL) {
662			matchcnt = -1;
663			break;
664		}
665	}
666	if (matchmnt == NULL) {
667		softdep_worklist_busy -= 1;
668		if (softdep_worklist_req && softdep_worklist_busy == 0)
669			wakeup(&softdep_worklist_req);
670	}
671	return (matchcnt);
672}
673
674/*
675 * Process one item on the worklist.
676 */
677static int
678process_worklist_item(matchmnt, flags)
679	struct mount *matchmnt;
680	int flags;
681{
682	struct worklist *wk, *wkend;
683	struct mount *mp;
684	struct vnode *vp;
685	int matchcnt = 0;
686
687	/*
688	 * If we are being called because of a process doing a
689	 * copy-on-write, then it is not safe to write as we may
690	 * recurse into the copy-on-write routine.
691	 */
692	if (curthread->td_pflags & TDP_COWINPROGRESS)
693		return (-1);
694	ACQUIRE_LOCK(&lk);
695	/*
696	 * Normally we just process each item on the worklist in order.
697	 * However, if we are in a situation where we cannot lock any
698	 * inodes, we have to skip over any dirrem requests whose
699	 * vnodes are resident and locked.
700	 */
701	vp = NULL;
702	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
703		if (wk->wk_state & INPROGRESS)
704			continue;
705		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
706			break;
707		wk->wk_state |= INPROGRESS;
708		FREE_LOCK(&lk);
709		VFS_VGET(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum,
710		    LK_NOWAIT | LK_EXCLUSIVE, &vp);
711		ACQUIRE_LOCK(&lk);
712		wk->wk_state &= ~INPROGRESS;
713		if (vp != NULL)
714			break;
715	}
716	if (wk == 0) {
717		FREE_LOCK(&lk);
718		return (-1);
719	}
720	/*
721	 * Remove the item to be processed. If we are removing the last
722	 * item on the list, we need to recalculate the tail pointer.
723	 * As this happens rarely and usually when the list is short,
724	 * we just run down the list to find it rather than tracking it
725	 * in the above loop.
726	 */
727	WORKLIST_REMOVE(wk);
728	if (wk == worklist_tail) {
729		LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list)
730			if (LIST_NEXT(wkend, wk_list) == NULL)
731				break;
732		worklist_tail = wkend;
733	}
734	num_on_worklist -= 1;
735	FREE_LOCK(&lk);
736	switch (wk->wk_type) {
737
738	case D_DIRREM:
739		/* removal of a directory entry */
740		mp = WK_DIRREM(wk)->dm_mnt;
741		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
742			panic("%s: dirrem on suspended filesystem",
743				"process_worklist_item");
744		if (mp == matchmnt)
745			matchcnt += 1;
746		handle_workitem_remove(WK_DIRREM(wk), vp);
747		break;
748
749	case D_FREEBLKS:
750		/* releasing blocks and/or fragments from a file */
751		mp = WK_FREEBLKS(wk)->fb_mnt;
752		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
753			panic("%s: freeblks on suspended filesystem",
754				"process_worklist_item");
755		if (mp == matchmnt)
756			matchcnt += 1;
757		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
758		break;
759
760	case D_FREEFRAG:
761		/* releasing a fragment when replaced as a file grows */
762		mp = WK_FREEFRAG(wk)->ff_mnt;
763		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
764			panic("%s: freefrag on suspended filesystem",
765				"process_worklist_item");
766		if (mp == matchmnt)
767			matchcnt += 1;
768		handle_workitem_freefrag(WK_FREEFRAG(wk));
769		break;
770
771	case D_FREEFILE:
772		/* releasing an inode when its link count drops to 0 */
773		mp = WK_FREEFILE(wk)->fx_mnt;
774		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
775			panic("%s: freefile on suspended filesystem",
776				"process_worklist_item");
777		if (mp == matchmnt)
778			matchcnt += 1;
779		handle_workitem_freefile(WK_FREEFILE(wk));
780		break;
781
782	default:
783		panic("%s_process_worklist: Unknown type %s",
784		    "softdep", TYPENAME(wk->wk_type));
785		/* NOTREACHED */
786	}
787	return (matchcnt);
788}
789
790/*
791 * Move dependencies from one buffer to another.
792 */
793static void
794softdep_move_dependencies(oldbp, newbp)
795	struct buf *oldbp;
796	struct buf *newbp;
797{
798	struct worklist *wk, *wktail;
799
800	if (LIST_FIRST(&newbp->b_dep) != NULL)
801		panic("softdep_move_dependencies: need merge code");
802	wktail = 0;
803	ACQUIRE_LOCK(&lk);
804	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
805		LIST_REMOVE(wk, wk_list);
806		if (wktail == 0)
807			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
808		else
809			LIST_INSERT_AFTER(wktail, wk, wk_list);
810		wktail = wk;
811	}
812	FREE_LOCK(&lk);
813}
814
815/*
816 * Purge the work list of all items associated with a particular mount point.
817 */
818int
819softdep_flushworklist(oldmnt, countp, td)
820	struct mount *oldmnt;
821	int *countp;
822	struct thread *td;
823{
824	struct vnode *devvp;
825	int count, error = 0;
826
827	/*
828	 * Await our turn to clear out the queue, then serialize access.
829	 */
830	while (softdep_worklist_busy) {
831		softdep_worklist_req += 1;
832		tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0);
833		softdep_worklist_req -= 1;
834	}
835	softdep_worklist_busy = -1;
836	/*
837	 * Alternately flush the block device associated with the mount
838	 * point and process any dependencies that the flushing
839	 * creates. We continue until no more worklist dependencies
840	 * are found.
841	 */
842	*countp = 0;
843	devvp = VFSTOUFS(oldmnt)->um_devvp;
844	while ((count = softdep_process_worklist(oldmnt)) > 0) {
845		*countp += count;
846		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td);
847		error = VOP_FSYNC(devvp, MNT_WAIT, td);
848		VOP_UNLOCK(devvp, 0, td);
849		if (error)
850			break;
851	}
852	softdep_worklist_busy = 0;
853	if (softdep_worklist_req)
854		wakeup(&softdep_worklist_req);
855	return (error);
856}
857
858/*
859 * Flush all vnodes and worklist items associated with a specified mount point.
860 */
861int
862softdep_flushfiles(oldmnt, flags, td)
863	struct mount *oldmnt;
864	int flags;
865	struct thread *td;
866{
867	int error, count, loopcnt;
868
869	error = 0;
870
871	/*
872	 * Alternately flush the vnodes associated with the mount
873	 * point and process any dependencies that the flushing
874	 * creates. In theory, this loop can happen at most twice,
875	 * but we give it a few extra just to be sure.
876	 */
877	for (loopcnt = 10; loopcnt > 0; loopcnt--) {
878		/*
879		 * Do another flush in case any vnodes were brought in
880		 * as part of the cleanup operations.
881		 */
882		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
883			break;
884		if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 ||
885		    count == 0)
886			break;
887	}
888	/*
889	 * If we are unmounting then it is an error to fail. If we
890	 * are simply trying to downgrade to read-only, then filesystem
891	 * activity can keep us busy forever, so we just fail with EBUSY.
892	 */
893	if (loopcnt == 0) {
894		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
895			panic("softdep_flushfiles: looping");
896		error = EBUSY;
897	}
898	return (error);
899}
900
901/*
902 * Structure hashing.
903 *
904 * There are three types of structures that can be looked up:
905 *	1) pagedep structures identified by mount point, inode number,
906 *	   and logical block.
907 *	2) inodedep structures identified by mount point and inode number.
908 *	3) newblk structures identified by mount point and
909 *	   physical block number.
910 *
911 * The "pagedep" and "inodedep" dependency structures are hashed
912 * separately from the file blocks and inodes to which they correspond.
913 * This separation helps when the in-memory copy of an inode or
914 * file block must be replaced. It also obviates the need to access
915 * an inode or file page when simply updating (or de-allocating)
916 * dependency structures. Lookup of newblk structures is needed to
917 * find newly allocated blocks when trying to associate them with
918 * their allocdirect or allocindir structure.
919 *
920 * The lookup routines optionally create and hash a new instance when
921 * an existing entry is not found.
922 */
923#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
924#define NODELAY		0x0002	/* cannot do background work */
925
926/*
927 * Structures and routines associated with pagedep caching.
928 */
929LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
930u_long	pagedep_hash;		/* size of hash table - 1 */
931#define	PAGEDEP_HASH(mp, inum, lbn) \
932	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
933	    pagedep_hash])
934static struct sema pagedep_in_progress;
935
936/*
937 * Look up a pagedep. Return 1 if found, 0 if not found or found
938 * when asked to allocate but not associated with any buffer.
939 * If not found, allocate if DEPALLOC flag is passed.
940 * Found or allocated entry is returned in pagedeppp.
941 * This routine must be called with splbio interrupts blocked.
942 */
943static int
944pagedep_lookup(ip, lbn, flags, pagedeppp)
945	struct inode *ip;
946	ufs_lbn_t lbn;
947	int flags;
948	struct pagedep **pagedeppp;
949{
950	struct pagedep *pagedep;
951	struct pagedep_hashhead *pagedephd;
952	struct mount *mp;
953	int i;
954
955#ifdef DEBUG
956	if (lk.lkt_held == NOHOLDER)
957		panic("pagedep_lookup: lock not held");
958#endif
959	mp = ITOV(ip)->v_mount;
960	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
961top:
962	LIST_FOREACH(pagedep, pagedephd, pd_hash)
963		if (ip->i_number == pagedep->pd_ino &&
964		    lbn == pagedep->pd_lbn &&
965		    mp == pagedep->pd_mnt)
966			break;
967	if (pagedep) {
968		*pagedeppp = pagedep;
969		if ((flags & DEPALLOC) != 0 &&
970		    (pagedep->pd_state & ONWORKLIST) == 0)
971			return (0);
972		return (1);
973	}
974	if ((flags & DEPALLOC) == 0) {
975		*pagedeppp = NULL;
976		return (0);
977	}
978	if (sema_get(&pagedep_in_progress, &lk) == 0) {
979		ACQUIRE_LOCK(&lk);
980		goto top;
981	}
982	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
983		M_SOFTDEP_FLAGS|M_ZERO);
984	pagedep->pd_list.wk_type = D_PAGEDEP;
985	pagedep->pd_mnt = mp;
986	pagedep->pd_ino = ip->i_number;
987	pagedep->pd_lbn = lbn;
988	LIST_INIT(&pagedep->pd_dirremhd);
989	LIST_INIT(&pagedep->pd_pendinghd);
990	for (i = 0; i < DAHASHSZ; i++)
991		LIST_INIT(&pagedep->pd_diraddhd[i]);
992	ACQUIRE_LOCK(&lk);
993	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
994	sema_release(&pagedep_in_progress);
995	*pagedeppp = pagedep;
996	return (0);
997}
998
999/*
1000 * Structures and routines associated with inodedep caching.
1001 */
1002LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1003static u_long	inodedep_hash;	/* size of hash table - 1 */
1004static long	num_inodedep;	/* number of inodedep allocated */
1005#define	INODEDEP_HASH(fs, inum) \
1006      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1007static struct sema inodedep_in_progress;
1008
1009/*
1010 * Look up an inodedep. Return 1 if found, 0 if not found.
1011 * If not found, allocate if DEPALLOC flag is passed.
1012 * Found or allocated entry is returned in inodedeppp.
1013 * This routine must be called with splbio interrupts blocked.
1014 */
1015static int
1016inodedep_lookup(fs, inum, flags, inodedeppp)
1017	struct fs *fs;
1018	ino_t inum;
1019	int flags;
1020	struct inodedep **inodedeppp;
1021{
1022	struct inodedep *inodedep;
1023	struct inodedep_hashhead *inodedephd;
1024	int firsttry;
1025
1026#ifdef DEBUG
1027	if (lk.lkt_held == NOHOLDER)
1028		panic("inodedep_lookup: lock not held");
1029#endif
1030	firsttry = 1;
1031	inodedephd = INODEDEP_HASH(fs, inum);
1032top:
1033	LIST_FOREACH(inodedep, inodedephd, id_hash)
1034		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1035			break;
1036	if (inodedep) {
1037		*inodedeppp = inodedep;
1038		return (1);
1039	}
1040	if ((flags & DEPALLOC) == 0) {
1041		*inodedeppp = NULL;
1042		return (0);
1043	}
1044	/*
1045	 * If we are over our limit, try to improve the situation.
1046	 */
1047	if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 &&
1048	    request_cleanup(FLUSH_INODES, 1)) {
1049		firsttry = 0;
1050		goto top;
1051	}
1052	if (sema_get(&inodedep_in_progress, &lk) == 0) {
1053		ACQUIRE_LOCK(&lk);
1054		goto top;
1055	}
1056	num_inodedep += 1;
1057	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1058		M_INODEDEP, M_SOFTDEP_FLAGS);
1059	inodedep->id_list.wk_type = D_INODEDEP;
1060	inodedep->id_fs = fs;
1061	inodedep->id_ino = inum;
1062	inodedep->id_state = ALLCOMPLETE;
1063	inodedep->id_nlinkdelta = 0;
1064	inodedep->id_savedino1 = NULL;
1065	inodedep->id_savedsize = -1;
1066	inodedep->id_savedextsize = -1;
1067	inodedep->id_buf = NULL;
1068	LIST_INIT(&inodedep->id_pendinghd);
1069	LIST_INIT(&inodedep->id_inowait);
1070	LIST_INIT(&inodedep->id_bufwait);
1071	TAILQ_INIT(&inodedep->id_inoupdt);
1072	TAILQ_INIT(&inodedep->id_newinoupdt);
1073	TAILQ_INIT(&inodedep->id_extupdt);
1074	TAILQ_INIT(&inodedep->id_newextupdt);
1075	ACQUIRE_LOCK(&lk);
1076	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1077	sema_release(&inodedep_in_progress);
1078	*inodedeppp = inodedep;
1079	return (0);
1080}
1081
1082/*
1083 * Structures and routines associated with newblk caching.
1084 */
1085LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1086u_long	newblk_hash;		/* size of hash table - 1 */
1087#define	NEWBLK_HASH(fs, inum) \
1088	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1089static struct sema newblk_in_progress;
1090
1091/*
1092 * Look up a newblk. Return 1 if found, 0 if not found.
1093 * If not found, allocate if DEPALLOC flag is passed.
1094 * Found or allocated entry is returned in newblkpp.
1095 */
1096static int
1097newblk_lookup(fs, newblkno, flags, newblkpp)
1098	struct fs *fs;
1099	ufs2_daddr_t newblkno;
1100	int flags;
1101	struct newblk **newblkpp;
1102{
1103	struct newblk *newblk;
1104	struct newblk_hashhead *newblkhd;
1105
1106	newblkhd = NEWBLK_HASH(fs, newblkno);
1107top:
1108	LIST_FOREACH(newblk, newblkhd, nb_hash)
1109		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1110			break;
1111	if (newblk) {
1112		*newblkpp = newblk;
1113		return (1);
1114	}
1115	if ((flags & DEPALLOC) == 0) {
1116		*newblkpp = NULL;
1117		return (0);
1118	}
1119	if (sema_get(&newblk_in_progress, 0) == 0)
1120		goto top;
1121	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1122		M_NEWBLK, M_SOFTDEP_FLAGS);
1123	newblk->nb_state = 0;
1124	newblk->nb_fs = fs;
1125	newblk->nb_newblkno = newblkno;
1126	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1127	sema_release(&newblk_in_progress);
1128	*newblkpp = newblk;
1129	return (0);
1130}
1131
1132/*
1133 * Executed during filesystem system initialization before
1134 * mounting any filesystems.
1135 */
1136void
1137softdep_initialize()
1138{
1139
1140	LIST_INIT(&mkdirlisthd);
1141	LIST_INIT(&softdep_workitem_pending);
1142	max_softdeps = desiredvnodes * 4;
1143	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1144	    &pagedep_hash);
1145	sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0);
1146	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1147	sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0);
1148	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1149	sema_init(&newblk_in_progress, "newblk", PRIBIO, 0);
1150
1151	/* hooks through which the main kernel code calls us */
1152	softdep_process_worklist_hook = softdep_process_worklist;
1153	softdep_fsync_hook = softdep_fsync;
1154
1155	/* initialise bioops hack */
1156	bioops.io_start = softdep_disk_io_initiation;
1157	bioops.io_complete = softdep_disk_write_complete;
1158	bioops.io_deallocate = softdep_deallocate_dependencies;
1159	bioops.io_movedeps = softdep_move_dependencies;
1160	bioops.io_countdeps = softdep_count_dependencies;
1161}
1162
1163/*
1164 * Executed after all filesystems have been unmounted during
1165 * filesystem module unload.
1166 */
1167void
1168softdep_uninitialize()
1169{
1170
1171	softdep_process_worklist_hook = NULL;
1172	softdep_fsync_hook = NULL;
1173	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
1174	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
1175	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
1176}
1177
1178/*
1179 * Called at mount time to notify the dependency code that a
1180 * filesystem wishes to use it.
1181 */
1182int
1183softdep_mount(devvp, mp, fs, cred)
1184	struct vnode *devvp;
1185	struct mount *mp;
1186	struct fs *fs;
1187	struct ucred *cred;
1188{
1189	struct csum_total cstotal;
1190	struct cg *cgp;
1191	struct buf *bp;
1192	int error, cyl;
1193
1194	mp->mnt_flag &= ~MNT_ASYNC;
1195	mp->mnt_flag |= MNT_SOFTDEP;
1196	/*
1197	 * When doing soft updates, the counters in the
1198	 * superblock may have gotten out of sync, so we have
1199	 * to scan the cylinder groups and recalculate them.
1200	 */
1201	if (fs->fs_clean != 0)
1202		return (0);
1203	bzero(&cstotal, sizeof cstotal);
1204	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1205		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1206		    fs->fs_cgsize, cred, &bp)) != 0) {
1207			brelse(bp);
1208			return (error);
1209		}
1210		cgp = (struct cg *)bp->b_data;
1211		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1212		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1213		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1214		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1215		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1216		brelse(bp);
1217	}
1218#ifdef DEBUG
1219	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1220		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
1221#endif
1222	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1223	return (0);
1224}
1225
1226/*
1227 * Protecting the freemaps (or bitmaps).
1228 *
1229 * To eliminate the need to execute fsck before mounting a filesystem
1230 * after a power failure, one must (conservatively) guarantee that the
1231 * on-disk copy of the bitmaps never indicate that a live inode or block is
1232 * free.  So, when a block or inode is allocated, the bitmap should be
1233 * updated (on disk) before any new pointers.  When a block or inode is
1234 * freed, the bitmap should not be updated until all pointers have been
1235 * reset.  The latter dependency is handled by the delayed de-allocation
1236 * approach described below for block and inode de-allocation.  The former
1237 * dependency is handled by calling the following procedure when a block or
1238 * inode is allocated. When an inode is allocated an "inodedep" is created
1239 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1240 * Each "inodedep" is also inserted into the hash indexing structure so
1241 * that any additional link additions can be made dependent on the inode
1242 * allocation.
1243 *
1244 * The ufs filesystem maintains a number of free block counts (e.g., per
1245 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1246 * in addition to the bitmaps.  These counts are used to improve efficiency
1247 * during allocation and therefore must be consistent with the bitmaps.
1248 * There is no convenient way to guarantee post-crash consistency of these
1249 * counts with simple update ordering, for two main reasons: (1) The counts
1250 * and bitmaps for a single cylinder group block are not in the same disk
1251 * sector.  If a disk write is interrupted (e.g., by power failure), one may
1252 * be written and the other not.  (2) Some of the counts are located in the
1253 * superblock rather than the cylinder group block. So, we focus our soft
1254 * updates implementation on protecting the bitmaps. When mounting a
1255 * filesystem, we recompute the auxiliary counts from the bitmaps.
1256 */
1257
1258/*
1259 * Called just after updating the cylinder group block to allocate an inode.
1260 */
1261void
1262softdep_setup_inomapdep(bp, ip, newinum)
1263	struct buf *bp;		/* buffer for cylgroup block with inode map */
1264	struct inode *ip;	/* inode related to allocation */
1265	ino_t newinum;		/* new inode number being allocated */
1266{
1267	struct inodedep *inodedep;
1268	struct bmsafemap *bmsafemap;
1269
1270	/*
1271	 * Create a dependency for the newly allocated inode.
1272	 * Panic if it already exists as something is seriously wrong.
1273	 * Otherwise add it to the dependency list for the buffer holding
1274	 * the cylinder group map from which it was allocated.
1275	 */
1276	ACQUIRE_LOCK(&lk);
1277	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1278		FREE_LOCK(&lk);
1279		panic("softdep_setup_inomapdep: found inode");
1280	}
1281	inodedep->id_buf = bp;
1282	inodedep->id_state &= ~DEPCOMPLETE;
1283	bmsafemap = bmsafemap_lookup(bp);
1284	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1285	FREE_LOCK(&lk);
1286}
1287
1288/*
1289 * Called just after updating the cylinder group block to
1290 * allocate block or fragment.
1291 */
1292void
1293softdep_setup_blkmapdep(bp, fs, newblkno)
1294	struct buf *bp;		/* buffer for cylgroup block with block map */
1295	struct fs *fs;		/* filesystem doing allocation */
1296	ufs2_daddr_t newblkno;	/* number of newly allocated block */
1297{
1298	struct newblk *newblk;
1299	struct bmsafemap *bmsafemap;
1300
1301	/*
1302	 * Create a dependency for the newly allocated block.
1303	 * Add it to the dependency list for the buffer holding
1304	 * the cylinder group map from which it was allocated.
1305	 */
1306	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1307		panic("softdep_setup_blkmapdep: found block");
1308	ACQUIRE_LOCK(&lk);
1309	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1310	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1311	FREE_LOCK(&lk);
1312}
1313
1314/*
1315 * Find the bmsafemap associated with a cylinder group buffer.
1316 * If none exists, create one. The buffer must be locked when
1317 * this routine is called and this routine must be called with
1318 * splbio interrupts blocked.
1319 */
1320static struct bmsafemap *
1321bmsafemap_lookup(bp)
1322	struct buf *bp;
1323{
1324	struct bmsafemap *bmsafemap;
1325	struct worklist *wk;
1326
1327#ifdef DEBUG
1328	if (lk.lkt_held == NOHOLDER)
1329		panic("bmsafemap_lookup: lock not held");
1330#endif
1331	LIST_FOREACH(wk, &bp->b_dep, wk_list)
1332		if (wk->wk_type == D_BMSAFEMAP)
1333			return (WK_BMSAFEMAP(wk));
1334	FREE_LOCK(&lk);
1335	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1336		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1337	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1338	bmsafemap->sm_list.wk_state = 0;
1339	bmsafemap->sm_buf = bp;
1340	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1341	LIST_INIT(&bmsafemap->sm_allocindirhd);
1342	LIST_INIT(&bmsafemap->sm_inodedephd);
1343	LIST_INIT(&bmsafemap->sm_newblkhd);
1344	ACQUIRE_LOCK(&lk);
1345	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1346	return (bmsafemap);
1347}
1348
1349/*
1350 * Direct block allocation dependencies.
1351 *
1352 * When a new block is allocated, the corresponding disk locations must be
1353 * initialized (with zeros or new data) before the on-disk inode points to
1354 * them.  Also, the freemap from which the block was allocated must be
1355 * updated (on disk) before the inode's pointer. These two dependencies are
1356 * independent of each other and are needed for all file blocks and indirect
1357 * blocks that are pointed to directly by the inode.  Just before the
1358 * "in-core" version of the inode is updated with a newly allocated block
1359 * number, a procedure (below) is called to setup allocation dependency
1360 * structures.  These structures are removed when the corresponding
1361 * dependencies are satisfied or when the block allocation becomes obsolete
1362 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1363 * fragment that gets upgraded).  All of these cases are handled in
1364 * procedures described later.
1365 *
1366 * When a file extension causes a fragment to be upgraded, either to a larger
1367 * fragment or to a full block, the on-disk location may change (if the
1368 * previous fragment could not simply be extended). In this case, the old
1369 * fragment must be de-allocated, but not until after the inode's pointer has
1370 * been updated. In most cases, this is handled by later procedures, which
1371 * will construct a "freefrag" structure to be added to the workitem queue
1372 * when the inode update is complete (or obsolete).  The main exception to
1373 * this is when an allocation occurs while a pending allocation dependency
1374 * (for the same block pointer) remains.  This case is handled in the main
1375 * allocation dependency setup procedure by immediately freeing the
1376 * unreferenced fragments.
1377 */
1378void
1379softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1380	struct inode *ip;	/* inode to which block is being added */
1381	ufs_lbn_t lbn;		/* block pointer within inode */
1382	ufs2_daddr_t newblkno;	/* disk block number being added */
1383	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1384	long newsize;		/* size of new block */
1385	long oldsize;		/* size of new block */
1386	struct buf *bp;		/* bp for allocated block */
1387{
1388	struct allocdirect *adp, *oldadp;
1389	struct allocdirectlst *adphead;
1390	struct bmsafemap *bmsafemap;
1391	struct inodedep *inodedep;
1392	struct pagedep *pagedep;
1393	struct newblk *newblk;
1394
1395	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1396		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1397	adp->ad_list.wk_type = D_ALLOCDIRECT;
1398	adp->ad_lbn = lbn;
1399	adp->ad_newblkno = newblkno;
1400	adp->ad_oldblkno = oldblkno;
1401	adp->ad_newsize = newsize;
1402	adp->ad_oldsize = oldsize;
1403	adp->ad_state = ATTACHED;
1404	LIST_INIT(&adp->ad_newdirblk);
1405	if (newblkno == oldblkno)
1406		adp->ad_freefrag = NULL;
1407	else
1408		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1409
1410	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1411		panic("softdep_setup_allocdirect: lost block");
1412
1413	ACQUIRE_LOCK(&lk);
1414	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1415	adp->ad_inodedep = inodedep;
1416
1417	if (newblk->nb_state == DEPCOMPLETE) {
1418		adp->ad_state |= DEPCOMPLETE;
1419		adp->ad_buf = NULL;
1420	} else {
1421		bmsafemap = newblk->nb_bmsafemap;
1422		adp->ad_buf = bmsafemap->sm_buf;
1423		LIST_REMOVE(newblk, nb_deps);
1424		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1425	}
1426	LIST_REMOVE(newblk, nb_hash);
1427	FREE(newblk, M_NEWBLK);
1428
1429	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1430	if (lbn >= NDADDR) {
1431		/* allocating an indirect block */
1432		if (oldblkno != 0) {
1433			FREE_LOCK(&lk);
1434			panic("softdep_setup_allocdirect: non-zero indir");
1435		}
1436	} else {
1437		/*
1438		 * Allocating a direct block.
1439		 *
1440		 * If we are allocating a directory block, then we must
1441		 * allocate an associated pagedep to track additions and
1442		 * deletions.
1443		 */
1444		if ((ip->i_mode & IFMT) == IFDIR &&
1445		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1446			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1447	}
1448	/*
1449	 * The list of allocdirects must be kept in sorted and ascending
1450	 * order so that the rollback routines can quickly determine the
1451	 * first uncommitted block (the size of the file stored on disk
1452	 * ends at the end of the lowest committed fragment, or if there
1453	 * are no fragments, at the end of the highest committed block).
1454	 * Since files generally grow, the typical case is that the new
1455	 * block is to be added at the end of the list. We speed this
1456	 * special case by checking against the last allocdirect in the
1457	 * list before laboriously traversing the list looking for the
1458	 * insertion point.
1459	 */
1460	adphead = &inodedep->id_newinoupdt;
1461	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1462	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1463		/* insert at end of list */
1464		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1465		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1466			allocdirect_merge(adphead, adp, oldadp);
1467		FREE_LOCK(&lk);
1468		return;
1469	}
1470	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1471		if (oldadp->ad_lbn >= lbn)
1472			break;
1473	}
1474	if (oldadp == NULL) {
1475		FREE_LOCK(&lk);
1476		panic("softdep_setup_allocdirect: lost entry");
1477	}
1478	/* insert in middle of list */
1479	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1480	if (oldadp->ad_lbn == lbn)
1481		allocdirect_merge(adphead, adp, oldadp);
1482	FREE_LOCK(&lk);
1483}
1484
1485/*
1486 * Replace an old allocdirect dependency with a newer one.
1487 * This routine must be called with splbio interrupts blocked.
1488 */
1489static void
1490allocdirect_merge(adphead, newadp, oldadp)
1491	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1492	struct allocdirect *newadp;	/* allocdirect being added */
1493	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1494{
1495	struct worklist *wk;
1496	struct freefrag *freefrag;
1497	struct newdirblk *newdirblk;
1498
1499#ifdef DEBUG
1500	if (lk.lkt_held == NOHOLDER)
1501		panic("allocdirect_merge: lock not held");
1502#endif
1503	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1504	    newadp->ad_oldsize != oldadp->ad_newsize ||
1505	    newadp->ad_lbn >= NDADDR) {
1506		FREE_LOCK(&lk);
1507		panic("%s %jd != new %jd || old size %ld != new %ld",
1508		    "allocdirect_merge: old blkno",
1509		    (intmax_t)newadp->ad_oldblkno,
1510		    (intmax_t)oldadp->ad_newblkno,
1511		    newadp->ad_oldsize, oldadp->ad_newsize);
1512	}
1513	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1514	newadp->ad_oldsize = oldadp->ad_oldsize;
1515	/*
1516	 * If the old dependency had a fragment to free or had never
1517	 * previously had a block allocated, then the new dependency
1518	 * can immediately post its freefrag and adopt the old freefrag.
1519	 * This action is done by swapping the freefrag dependencies.
1520	 * The new dependency gains the old one's freefrag, and the
1521	 * old one gets the new one and then immediately puts it on
1522	 * the worklist when it is freed by free_allocdirect. It is
1523	 * not possible to do this swap when the old dependency had a
1524	 * non-zero size but no previous fragment to free. This condition
1525	 * arises when the new block is an extension of the old block.
1526	 * Here, the first part of the fragment allocated to the new
1527	 * dependency is part of the block currently claimed on disk by
1528	 * the old dependency, so cannot legitimately be freed until the
1529	 * conditions for the new dependency are fulfilled.
1530	 */
1531	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1532		freefrag = newadp->ad_freefrag;
1533		newadp->ad_freefrag = oldadp->ad_freefrag;
1534		oldadp->ad_freefrag = freefrag;
1535	}
1536	/*
1537	 * If we are tracking a new directory-block allocation,
1538	 * move it from the old allocdirect to the new allocdirect.
1539	 */
1540	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
1541		newdirblk = WK_NEWDIRBLK(wk);
1542		WORKLIST_REMOVE(&newdirblk->db_list);
1543		if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL)
1544			panic("allocdirect_merge: extra newdirblk");
1545		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
1546	}
1547	free_allocdirect(adphead, oldadp, 0);
1548}
1549
1550/*
1551 * Allocate a new freefrag structure if needed.
1552 */
1553static struct freefrag *
1554newfreefrag(ip, blkno, size)
1555	struct inode *ip;
1556	ufs2_daddr_t blkno;
1557	long size;
1558{
1559	struct freefrag *freefrag;
1560	struct fs *fs;
1561
1562	if (blkno == 0)
1563		return (NULL);
1564	fs = ip->i_fs;
1565	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1566		panic("newfreefrag: frag size");
1567	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1568		M_FREEFRAG, M_SOFTDEP_FLAGS);
1569	freefrag->ff_list.wk_type = D_FREEFRAG;
1570	freefrag->ff_state = 0;
1571	freefrag->ff_inum = ip->i_number;
1572	freefrag->ff_mnt = ITOV(ip)->v_mount;
1573	freefrag->ff_blkno = blkno;
1574	freefrag->ff_fragsize = size;
1575	return (freefrag);
1576}
1577
1578/*
1579 * This workitem de-allocates fragments that were replaced during
1580 * file block allocation.
1581 */
1582static void
1583handle_workitem_freefrag(freefrag)
1584	struct freefrag *freefrag;
1585{
1586	struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt);
1587
1588	ffs_blkfree(ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
1589	    freefrag->ff_fragsize, freefrag->ff_inum);
1590	FREE(freefrag, M_FREEFRAG);
1591}
1592
1593/*
1594 * Set up a dependency structure for an external attributes data block.
1595 * This routine follows much of the structure of softdep_setup_allocdirect.
1596 * See the description of softdep_setup_allocdirect above for details.
1597 */
1598void
1599softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1600	struct inode *ip;
1601	ufs_lbn_t lbn;
1602	ufs2_daddr_t newblkno;
1603	ufs2_daddr_t oldblkno;
1604	long newsize;
1605	long oldsize;
1606	struct buf *bp;
1607{
1608	struct allocdirect *adp, *oldadp;
1609	struct allocdirectlst *adphead;
1610	struct bmsafemap *bmsafemap;
1611	struct inodedep *inodedep;
1612	struct newblk *newblk;
1613
1614	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1615		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1616	adp->ad_list.wk_type = D_ALLOCDIRECT;
1617	adp->ad_lbn = lbn;
1618	adp->ad_newblkno = newblkno;
1619	adp->ad_oldblkno = oldblkno;
1620	adp->ad_newsize = newsize;
1621	adp->ad_oldsize = oldsize;
1622	adp->ad_state = ATTACHED | EXTDATA;
1623	LIST_INIT(&adp->ad_newdirblk);
1624	if (newblkno == oldblkno)
1625		adp->ad_freefrag = NULL;
1626	else
1627		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1628
1629	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1630		panic("softdep_setup_allocext: lost block");
1631
1632	ACQUIRE_LOCK(&lk);
1633	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1634	adp->ad_inodedep = inodedep;
1635
1636	if (newblk->nb_state == DEPCOMPLETE) {
1637		adp->ad_state |= DEPCOMPLETE;
1638		adp->ad_buf = NULL;
1639	} else {
1640		bmsafemap = newblk->nb_bmsafemap;
1641		adp->ad_buf = bmsafemap->sm_buf;
1642		LIST_REMOVE(newblk, nb_deps);
1643		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1644	}
1645	LIST_REMOVE(newblk, nb_hash);
1646	FREE(newblk, M_NEWBLK);
1647
1648	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1649	if (lbn >= NXADDR) {
1650		FREE_LOCK(&lk);
1651		panic("softdep_setup_allocext: lbn %lld > NXADDR",
1652		    (long long)lbn);
1653	}
1654	/*
1655	 * The list of allocdirects must be kept in sorted and ascending
1656	 * order so that the rollback routines can quickly determine the
1657	 * first uncommitted block (the size of the file stored on disk
1658	 * ends at the end of the lowest committed fragment, or if there
1659	 * are no fragments, at the end of the highest committed block).
1660	 * Since files generally grow, the typical case is that the new
1661	 * block is to be added at the end of the list. We speed this
1662	 * special case by checking against the last allocdirect in the
1663	 * list before laboriously traversing the list looking for the
1664	 * insertion point.
1665	 */
1666	adphead = &inodedep->id_newextupdt;
1667	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1668	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1669		/* insert at end of list */
1670		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1671		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1672			allocdirect_merge(adphead, adp, oldadp);
1673		FREE_LOCK(&lk);
1674		return;
1675	}
1676	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1677		if (oldadp->ad_lbn >= lbn)
1678			break;
1679	}
1680	if (oldadp == NULL) {
1681		FREE_LOCK(&lk);
1682		panic("softdep_setup_allocext: lost entry");
1683	}
1684	/* insert in middle of list */
1685	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1686	if (oldadp->ad_lbn == lbn)
1687		allocdirect_merge(adphead, adp, oldadp);
1688	FREE_LOCK(&lk);
1689}
1690
1691/*
1692 * Indirect block allocation dependencies.
1693 *
1694 * The same dependencies that exist for a direct block also exist when
1695 * a new block is allocated and pointed to by an entry in a block of
1696 * indirect pointers. The undo/redo states described above are also
1697 * used here. Because an indirect block contains many pointers that
1698 * may have dependencies, a second copy of the entire in-memory indirect
1699 * block is kept. The buffer cache copy is always completely up-to-date.
1700 * The second copy, which is used only as a source for disk writes,
1701 * contains only the safe pointers (i.e., those that have no remaining
1702 * update dependencies). The second copy is freed when all pointers
1703 * are safe. The cache is not allowed to replace indirect blocks with
1704 * pending update dependencies. If a buffer containing an indirect
1705 * block with dependencies is written, these routines will mark it
1706 * dirty again. It can only be successfully written once all the
1707 * dependencies are removed. The ffs_fsync routine in conjunction with
1708 * softdep_sync_metadata work together to get all the dependencies
1709 * removed so that a file can be successfully written to disk. Three
1710 * procedures are used when setting up indirect block pointer
1711 * dependencies. The division is necessary because of the organization
1712 * of the "balloc" routine and because of the distinction between file
1713 * pages and file metadata blocks.
1714 */
1715
1716/*
1717 * Allocate a new allocindir structure.
1718 */
1719static struct allocindir *
1720newallocindir(ip, ptrno, newblkno, oldblkno)
1721	struct inode *ip;	/* inode for file being extended */
1722	int ptrno;		/* offset of pointer in indirect block */
1723	ufs2_daddr_t newblkno;	/* disk block number being added */
1724	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1725{
1726	struct allocindir *aip;
1727
1728	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1729		M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO);
1730	aip->ai_list.wk_type = D_ALLOCINDIR;
1731	aip->ai_state = ATTACHED;
1732	aip->ai_offset = ptrno;
1733	aip->ai_newblkno = newblkno;
1734	aip->ai_oldblkno = oldblkno;
1735	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1736	return (aip);
1737}
1738
1739/*
1740 * Called just before setting an indirect block pointer
1741 * to a newly allocated file page.
1742 */
1743void
1744softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1745	struct inode *ip;	/* inode for file being extended */
1746	ufs_lbn_t lbn;		/* allocated block number within file */
1747	struct buf *bp;		/* buffer with indirect blk referencing page */
1748	int ptrno;		/* offset of pointer in indirect block */
1749	ufs2_daddr_t newblkno;	/* disk block number being added */
1750	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1751	struct buf *nbp;	/* buffer holding allocated page */
1752{
1753	struct allocindir *aip;
1754	struct pagedep *pagedep;
1755
1756	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1757	ACQUIRE_LOCK(&lk);
1758	/*
1759	 * If we are allocating a directory page, then we must
1760	 * allocate an associated pagedep to track additions and
1761	 * deletions.
1762	 */
1763	if ((ip->i_mode & IFMT) == IFDIR &&
1764	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1765		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1766	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1767	FREE_LOCK(&lk);
1768	setup_allocindir_phase2(bp, ip, aip);
1769}
1770
1771/*
1772 * Called just before setting an indirect block pointer to a
1773 * newly allocated indirect block.
1774 */
1775void
1776softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
1777	struct buf *nbp;	/* newly allocated indirect block */
1778	struct inode *ip;	/* inode for file being extended */
1779	struct buf *bp;		/* indirect block referencing allocated block */
1780	int ptrno;		/* offset of pointer in indirect block */
1781	ufs2_daddr_t newblkno;	/* disk block number being added */
1782{
1783	struct allocindir *aip;
1784
1785	aip = newallocindir(ip, ptrno, newblkno, 0);
1786	ACQUIRE_LOCK(&lk);
1787	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1788	FREE_LOCK(&lk);
1789	setup_allocindir_phase2(bp, ip, aip);
1790}
1791
1792/*
1793 * Called to finish the allocation of the "aip" allocated
1794 * by one of the two routines above.
1795 */
1796static void
1797setup_allocindir_phase2(bp, ip, aip)
1798	struct buf *bp;		/* in-memory copy of the indirect block */
1799	struct inode *ip;	/* inode for file being extended */
1800	struct allocindir *aip;	/* allocindir allocated by the above routines */
1801{
1802	struct worklist *wk;
1803	struct indirdep *indirdep, *newindirdep;
1804	struct bmsafemap *bmsafemap;
1805	struct allocindir *oldaip;
1806	struct freefrag *freefrag;
1807	struct newblk *newblk;
1808	ufs2_daddr_t blkno;
1809
1810	if (bp->b_lblkno >= 0)
1811		panic("setup_allocindir_phase2: not indir blk");
1812	for (indirdep = NULL, newindirdep = NULL; ; ) {
1813		ACQUIRE_LOCK(&lk);
1814		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1815			if (wk->wk_type != D_INDIRDEP)
1816				continue;
1817			indirdep = WK_INDIRDEP(wk);
1818			break;
1819		}
1820		if (indirdep == NULL && newindirdep) {
1821			indirdep = newindirdep;
1822			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
1823			newindirdep = NULL;
1824		}
1825		FREE_LOCK(&lk);
1826		if (indirdep) {
1827			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1828			    &newblk) == 0)
1829				panic("setup_allocindir: lost block");
1830			ACQUIRE_LOCK(&lk);
1831			if (newblk->nb_state == DEPCOMPLETE) {
1832				aip->ai_state |= DEPCOMPLETE;
1833				aip->ai_buf = NULL;
1834			} else {
1835				bmsafemap = newblk->nb_bmsafemap;
1836				aip->ai_buf = bmsafemap->sm_buf;
1837				LIST_REMOVE(newblk, nb_deps);
1838				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1839				    aip, ai_deps);
1840			}
1841			LIST_REMOVE(newblk, nb_hash);
1842			FREE(newblk, M_NEWBLK);
1843			aip->ai_indirdep = indirdep;
1844			/*
1845			 * Check to see if there is an existing dependency
1846			 * for this block. If there is, merge the old
1847			 * dependency into the new one.
1848			 */
1849			if (aip->ai_oldblkno == 0)
1850				oldaip = NULL;
1851			else
1852
1853				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1854					if (oldaip->ai_offset == aip->ai_offset)
1855						break;
1856			freefrag = NULL;
1857			if (oldaip != NULL) {
1858				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1859					FREE_LOCK(&lk);
1860					panic("setup_allocindir_phase2: blkno");
1861				}
1862				aip->ai_oldblkno = oldaip->ai_oldblkno;
1863				freefrag = aip->ai_freefrag;
1864				aip->ai_freefrag = oldaip->ai_freefrag;
1865				oldaip->ai_freefrag = NULL;
1866				free_allocindir(oldaip, NULL);
1867			}
1868			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1869			if (ip->i_ump->um_fstype == UFS1)
1870				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
1871				    [aip->ai_offset] = aip->ai_oldblkno;
1872			else
1873				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
1874				    [aip->ai_offset] = aip->ai_oldblkno;
1875			FREE_LOCK(&lk);
1876			if (freefrag != NULL)
1877				handle_workitem_freefrag(freefrag);
1878		}
1879		if (newindirdep) {
1880			brelse(newindirdep->ir_savebp);
1881			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1882		}
1883		if (indirdep)
1884			break;
1885		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1886			M_INDIRDEP, M_SOFTDEP_FLAGS);
1887		newindirdep->ir_list.wk_type = D_INDIRDEP;
1888		newindirdep->ir_state = ATTACHED;
1889		if (ip->i_ump->um_fstype == UFS1)
1890			newindirdep->ir_state |= UFS1FMT;
1891		LIST_INIT(&newindirdep->ir_deplisthd);
1892		LIST_INIT(&newindirdep->ir_donehd);
1893		if (bp->b_blkno == bp->b_lblkno) {
1894			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
1895			    NULL, NULL);
1896			bp->b_blkno = blkno;
1897		}
1898		newindirdep->ir_savebp =
1899		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
1900		BUF_KERNPROC(newindirdep->ir_savebp);
1901		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1902	}
1903}
1904
1905/*
1906 * Block de-allocation dependencies.
1907 *
1908 * When blocks are de-allocated, the on-disk pointers must be nullified before
1909 * the blocks are made available for use by other files.  (The true
1910 * requirement is that old pointers must be nullified before new on-disk
1911 * pointers are set.  We chose this slightly more stringent requirement to
1912 * reduce complexity.) Our implementation handles this dependency by updating
1913 * the inode (or indirect block) appropriately but delaying the actual block
1914 * de-allocation (i.e., freemap and free space count manipulation) until
1915 * after the updated versions reach stable storage.  After the disk is
1916 * updated, the blocks can be safely de-allocated whenever it is convenient.
1917 * This implementation handles only the common case of reducing a file's
1918 * length to zero. Other cases are handled by the conventional synchronous
1919 * write approach.
1920 *
1921 * The ffs implementation with which we worked double-checks
1922 * the state of the block pointers and file size as it reduces
1923 * a file's length.  Some of this code is replicated here in our
1924 * soft updates implementation.  The freeblks->fb_chkcnt field is
1925 * used to transfer a part of this information to the procedure
1926 * that eventually de-allocates the blocks.
1927 *
1928 * This routine should be called from the routine that shortens
1929 * a file's length, before the inode's size or block pointers
1930 * are modified. It will save the block pointer information for
1931 * later release and zero the inode so that the calling routine
1932 * can release it.
1933 */
1934void
1935softdep_setup_freeblocks(ip, length, flags)
1936	struct inode *ip;	/* The inode whose length is to be reduced */
1937	off_t length;		/* The new length for the file */
1938	int flags;		/* IO_EXT and/or IO_NORMAL */
1939{
1940	struct freeblks *freeblks;
1941	struct inodedep *inodedep;
1942	struct allocdirect *adp;
1943	struct vnode *vp;
1944	struct buf *bp;
1945	struct fs *fs;
1946	ufs2_daddr_t extblocks, datablocks;
1947	int i, delay, error;
1948
1949	fs = ip->i_fs;
1950	if (length != 0)
1951		panic("softdep_setup_freeblocks: non-zero length");
1952	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1953		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
1954	freeblks->fb_list.wk_type = D_FREEBLKS;
1955	freeblks->fb_uid = ip->i_uid;
1956	freeblks->fb_previousinum = ip->i_number;
1957	freeblks->fb_devvp = ip->i_devvp;
1958	freeblks->fb_mnt = ITOV(ip)->v_mount;
1959	extblocks = 0;
1960	if (fs->fs_magic == FS_UFS2_MAGIC)
1961		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
1962	datablocks = DIP(ip, i_blocks) - extblocks;
1963	if ((flags & IO_NORMAL) == 0) {
1964		freeblks->fb_oldsize = 0;
1965		freeblks->fb_chkcnt = 0;
1966	} else {
1967		freeblks->fb_oldsize = ip->i_size;
1968		ip->i_size = 0;
1969		DIP_SET(ip, i_size, 0);
1970		freeblks->fb_chkcnt = datablocks;
1971		for (i = 0; i < NDADDR; i++) {
1972			freeblks->fb_dblks[i] = DIP(ip, i_db[i]);
1973			DIP_SET(ip, i_db[i], 0);
1974		}
1975		for (i = 0; i < NIADDR; i++) {
1976			freeblks->fb_iblks[i] = DIP(ip, i_ib[i]);
1977			DIP_SET(ip, i_ib[i], 0);
1978		}
1979		/*
1980		 * If the file was removed, then the space being freed was
1981		 * accounted for then (see softdep_filereleased()). If the
1982		 * file is merely being truncated, then we account for it now.
1983		 */
1984		if ((ip->i_flag & IN_SPACECOUNTED) == 0)
1985			fs->fs_pendingblocks += datablocks;
1986	}
1987	if ((flags & IO_EXT) == 0) {
1988		freeblks->fb_oldextsize = 0;
1989	} else {
1990		freeblks->fb_oldextsize = ip->i_din2->di_extsize;
1991		ip->i_din2->di_extsize = 0;
1992		freeblks->fb_chkcnt += extblocks;
1993		for (i = 0; i < NXADDR; i++) {
1994			freeblks->fb_eblks[i] = ip->i_din2->di_extb[i];
1995			ip->i_din2->di_extb[i] = 0;
1996		}
1997	}
1998	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
1999	/*
2000	 * Push the zero'ed inode to to its disk buffer so that we are free
2001	 * to delete its dependencies below. Once the dependencies are gone
2002	 * the buffer can be safely released.
2003	 */
2004	if ((error = bread(ip->i_devvp,
2005	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
2006	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
2007		brelse(bp);
2008		softdep_error("softdep_setup_freeblocks", error);
2009	}
2010	if (ip->i_ump->um_fstype == UFS1)
2011		*((struct ufs1_dinode *)bp->b_data +
2012		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
2013	else
2014		*((struct ufs2_dinode *)bp->b_data +
2015		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
2016	/*
2017	 * Find and eliminate any inode dependencies.
2018	 */
2019	ACQUIRE_LOCK(&lk);
2020	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
2021	if ((inodedep->id_state & IOSTARTED) != 0) {
2022		FREE_LOCK(&lk);
2023		panic("softdep_setup_freeblocks: inode busy");
2024	}
2025	/*
2026	 * Add the freeblks structure to the list of operations that
2027	 * must await the zero'ed inode being written to disk. If we
2028	 * still have a bitmap dependency (delay == 0), then the inode
2029	 * has never been written to disk, so we can process the
2030	 * freeblks below once we have deleted the dependencies.
2031	 */
2032	delay = (inodedep->id_state & DEPCOMPLETE);
2033	if (delay)
2034		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
2035	/*
2036	 * Because the file length has been truncated to zero, any
2037	 * pending block allocation dependency structures associated
2038	 * with this inode are obsolete and can simply be de-allocated.
2039	 * We must first merge the two dependency lists to get rid of
2040	 * any duplicate freefrag structures, then purge the merged list.
2041	 * If we still have a bitmap dependency, then the inode has never
2042	 * been written to disk, so we can free any fragments without delay.
2043	 */
2044	if (flags & IO_NORMAL) {
2045		merge_inode_lists(&inodedep->id_newinoupdt,
2046		    &inodedep->id_inoupdt);
2047		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
2048			free_allocdirect(&inodedep->id_inoupdt, adp, delay);
2049	}
2050	if (flags & IO_EXT) {
2051		merge_inode_lists(&inodedep->id_newextupdt,
2052		    &inodedep->id_extupdt);
2053		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
2054			free_allocdirect(&inodedep->id_extupdt, adp, delay);
2055	}
2056	FREE_LOCK(&lk);
2057	bdwrite(bp);
2058	/*
2059	 * We must wait for any I/O in progress to finish so that
2060	 * all potential buffers on the dirty list will be visible.
2061	 * Once they are all there, walk the list and get rid of
2062	 * any dependencies.
2063	 */
2064	vp = ITOV(ip);
2065	ACQUIRE_LOCK(&lk);
2066	VI_LOCK(vp);
2067	drain_output(vp, 1);
2068restart:
2069	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
2070		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
2071		    ((flags & IO_NORMAL) == 0 &&
2072		      (bp->b_xflags & BX_ALTDATA) == 0))
2073			continue;
2074		if ((bp = getdirtybuf(&bp, VI_MTX(vp), MNT_WAIT)) == NULL)
2075			goto restart;
2076		(void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
2077		deallocate_dependencies(bp, inodedep);
2078		bp->b_flags |= B_INVAL | B_NOCACHE;
2079		FREE_LOCK(&lk);
2080		brelse(bp);
2081		ACQUIRE_LOCK(&lk);
2082		VI_LOCK(vp);
2083		goto restart;
2084	}
2085	VI_UNLOCK(vp);
2086	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
2087		(void) free_inodedep(inodedep);
2088	FREE_LOCK(&lk);
2089	/*
2090	 * If the inode has never been written to disk (delay == 0),
2091	 * then we can process the freeblks now that we have deleted
2092	 * the dependencies.
2093	 */
2094	if (!delay)
2095		handle_workitem_freeblocks(freeblks, 0);
2096}
2097
2098/*
2099 * Reclaim any dependency structures from a buffer that is about to
2100 * be reallocated to a new vnode. The buffer must be locked, thus,
2101 * no I/O completion operations can occur while we are manipulating
2102 * its associated dependencies. The mutex is held so that other I/O's
2103 * associated with related dependencies do not occur.
2104 */
2105static void
2106deallocate_dependencies(bp, inodedep)
2107	struct buf *bp;
2108	struct inodedep *inodedep;
2109{
2110	struct worklist *wk;
2111	struct indirdep *indirdep;
2112	struct allocindir *aip;
2113	struct pagedep *pagedep;
2114	struct dirrem *dirrem;
2115	struct diradd *dap;
2116	int i;
2117
2118	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2119		switch (wk->wk_type) {
2120
2121		case D_INDIRDEP:
2122			indirdep = WK_INDIRDEP(wk);
2123			/*
2124			 * None of the indirect pointers will ever be visible,
2125			 * so they can simply be tossed. GOINGAWAY ensures
2126			 * that allocated pointers will be saved in the buffer
2127			 * cache until they are freed. Note that they will
2128			 * only be able to be found by their physical address
2129			 * since the inode mapping the logical address will
2130			 * be gone. The save buffer used for the safe copy
2131			 * was allocated in setup_allocindir_phase2 using
2132			 * the physical address so it could be used for this
2133			 * purpose. Hence we swap the safe copy with the real
2134			 * copy, allowing the safe copy to be freed and holding
2135			 * on to the real copy for later use in indir_trunc.
2136			 */
2137			if (indirdep->ir_state & GOINGAWAY) {
2138				FREE_LOCK(&lk);
2139				panic("deallocate_dependencies: already gone");
2140			}
2141			indirdep->ir_state |= GOINGAWAY;
2142			VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1;
2143			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2144				free_allocindir(aip, inodedep);
2145			if (bp->b_lblkno >= 0 ||
2146			    bp->b_blkno != indirdep->ir_savebp->b_lblkno) {
2147				FREE_LOCK(&lk);
2148				panic("deallocate_dependencies: not indir");
2149			}
2150			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2151			    bp->b_bcount);
2152			WORKLIST_REMOVE(wk);
2153			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
2154			continue;
2155
2156		case D_PAGEDEP:
2157			pagedep = WK_PAGEDEP(wk);
2158			/*
2159			 * None of the directory additions will ever be
2160			 * visible, so they can simply be tossed.
2161			 */
2162			for (i = 0; i < DAHASHSZ; i++)
2163				while ((dap =
2164				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
2165					free_diradd(dap);
2166			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2167				free_diradd(dap);
2168			/*
2169			 * Copy any directory remove dependencies to the list
2170			 * to be processed after the zero'ed inode is written.
2171			 * If the inode has already been written, then they
2172			 * can be dumped directly onto the work list.
2173			 */
2174			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2175				LIST_REMOVE(dirrem, dm_next);
2176				dirrem->dm_dirinum = pagedep->pd_ino;
2177				if (inodedep == NULL ||
2178				    (inodedep->id_state & ALLCOMPLETE) ==
2179				     ALLCOMPLETE)
2180					add_to_worklist(&dirrem->dm_list);
2181				else
2182					WORKLIST_INSERT(&inodedep->id_bufwait,
2183					    &dirrem->dm_list);
2184			}
2185			if ((pagedep->pd_state & NEWBLOCK) != 0) {
2186				LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
2187					if (wk->wk_type == D_NEWDIRBLK &&
2188					    WK_NEWDIRBLK(wk)->db_pagedep ==
2189					      pagedep)
2190						break;
2191				if (wk != NULL) {
2192					WORKLIST_REMOVE(wk);
2193					free_newdirblk(WK_NEWDIRBLK(wk));
2194				} else {
2195					FREE_LOCK(&lk);
2196					panic("deallocate_dependencies: "
2197					      "lost pagedep");
2198				}
2199			}
2200			WORKLIST_REMOVE(&pagedep->pd_list);
2201			LIST_REMOVE(pagedep, pd_hash);
2202			WORKITEM_FREE(pagedep, D_PAGEDEP);
2203			continue;
2204
2205		case D_ALLOCINDIR:
2206			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2207			continue;
2208
2209		case D_ALLOCDIRECT:
2210		case D_INODEDEP:
2211			FREE_LOCK(&lk);
2212			panic("deallocate_dependencies: Unexpected type %s",
2213			    TYPENAME(wk->wk_type));
2214			/* NOTREACHED */
2215
2216		default:
2217			FREE_LOCK(&lk);
2218			panic("deallocate_dependencies: Unknown type %s",
2219			    TYPENAME(wk->wk_type));
2220			/* NOTREACHED */
2221		}
2222	}
2223}
2224
2225/*
2226 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2227 * This routine must be called with splbio interrupts blocked.
2228 */
2229static void
2230free_allocdirect(adphead, adp, delay)
2231	struct allocdirectlst *adphead;
2232	struct allocdirect *adp;
2233	int delay;
2234{
2235	struct newdirblk *newdirblk;
2236	struct worklist *wk;
2237
2238#ifdef DEBUG
2239	if (lk.lkt_held == NOHOLDER)
2240		panic("free_allocdirect: lock not held");
2241#endif
2242	if ((adp->ad_state & DEPCOMPLETE) == 0)
2243		LIST_REMOVE(adp, ad_deps);
2244	TAILQ_REMOVE(adphead, adp, ad_next);
2245	if ((adp->ad_state & COMPLETE) == 0)
2246		WORKLIST_REMOVE(&adp->ad_list);
2247	if (adp->ad_freefrag != NULL) {
2248		if (delay)
2249			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2250			    &adp->ad_freefrag->ff_list);
2251		else
2252			add_to_worklist(&adp->ad_freefrag->ff_list);
2253	}
2254	if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
2255		newdirblk = WK_NEWDIRBLK(wk);
2256		WORKLIST_REMOVE(&newdirblk->db_list);
2257		if (LIST_FIRST(&adp->ad_newdirblk) != NULL)
2258			panic("free_allocdirect: extra newdirblk");
2259		if (delay)
2260			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2261			    &newdirblk->db_list);
2262		else
2263			free_newdirblk(newdirblk);
2264	}
2265	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2266}
2267
2268/*
2269 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
2270 * This routine must be called with splbio interrupts blocked.
2271 */
2272static void
2273free_newdirblk(newdirblk)
2274	struct newdirblk *newdirblk;
2275{
2276	struct pagedep *pagedep;
2277	struct diradd *dap;
2278	int i;
2279
2280#ifdef DEBUG
2281	if (lk.lkt_held == NOHOLDER)
2282		panic("free_newdirblk: lock not held");
2283#endif
2284	/*
2285	 * If the pagedep is still linked onto the directory buffer
2286	 * dependency chain, then some of the entries on the
2287	 * pd_pendinghd list may not be committed to disk yet. In
2288	 * this case, we will simply clear the NEWBLOCK flag and
2289	 * let the pd_pendinghd list be processed when the pagedep
2290	 * is next written. If the pagedep is no longer on the buffer
2291	 * dependency chain, then all the entries on the pd_pending
2292	 * list are committed to disk and we can free them here.
2293	 */
2294	pagedep = newdirblk->db_pagedep;
2295	pagedep->pd_state &= ~NEWBLOCK;
2296	if ((pagedep->pd_state & ONWORKLIST) == 0)
2297		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2298			free_diradd(dap);
2299	/*
2300	 * If no dependencies remain, the pagedep will be freed.
2301	 */
2302	for (i = 0; i < DAHASHSZ; i++)
2303		if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
2304			break;
2305	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
2306		LIST_REMOVE(pagedep, pd_hash);
2307		WORKITEM_FREE(pagedep, D_PAGEDEP);
2308	}
2309	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2310}
2311
2312/*
2313 * Prepare an inode to be freed. The actual free operation is not
2314 * done until the zero'ed inode has been written to disk.
2315 */
2316void
2317softdep_freefile(pvp, ino, mode)
2318	struct vnode *pvp;
2319	ino_t ino;
2320	int mode;
2321{
2322	struct inode *ip = VTOI(pvp);
2323	struct inodedep *inodedep;
2324	struct freefile *freefile;
2325
2326	/*
2327	 * This sets up the inode de-allocation dependency.
2328	 */
2329	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2330		M_FREEFILE, M_SOFTDEP_FLAGS);
2331	freefile->fx_list.wk_type = D_FREEFILE;
2332	freefile->fx_list.wk_state = 0;
2333	freefile->fx_mode = mode;
2334	freefile->fx_oldinum = ino;
2335	freefile->fx_devvp = ip->i_devvp;
2336	freefile->fx_mnt = ITOV(ip)->v_mount;
2337	if ((ip->i_flag & IN_SPACECOUNTED) == 0)
2338		ip->i_fs->fs_pendinginodes += 1;
2339
2340	/*
2341	 * If the inodedep does not exist, then the zero'ed inode has
2342	 * been written to disk. If the allocated inode has never been
2343	 * written to disk, then the on-disk inode is zero'ed. In either
2344	 * case we can free the file immediately.
2345	 */
2346	ACQUIRE_LOCK(&lk);
2347	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2348	    check_inode_unwritten(inodedep)) {
2349		FREE_LOCK(&lk);
2350		handle_workitem_freefile(freefile);
2351		return;
2352	}
2353	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2354	FREE_LOCK(&lk);
2355}
2356
2357/*
2358 * Check to see if an inode has never been written to disk. If
2359 * so free the inodedep and return success, otherwise return failure.
2360 * This routine must be called with splbio interrupts blocked.
2361 *
2362 * If we still have a bitmap dependency, then the inode has never
2363 * been written to disk. Drop the dependency as it is no longer
2364 * necessary since the inode is being deallocated. We set the
2365 * ALLCOMPLETE flags since the bitmap now properly shows that the
2366 * inode is not allocated. Even if the inode is actively being
2367 * written, it has been rolled back to its zero'ed state, so we
2368 * are ensured that a zero inode is what is on the disk. For short
2369 * lived files, this change will usually result in removing all the
2370 * dependencies from the inode so that it can be freed immediately.
2371 */
2372static int
2373check_inode_unwritten(inodedep)
2374	struct inodedep *inodedep;
2375{
2376
2377	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2378	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2379	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2380	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2381	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2382	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2383	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2384	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2385	    inodedep->id_nlinkdelta != 0)
2386		return (0);
2387	inodedep->id_state |= ALLCOMPLETE;
2388	LIST_REMOVE(inodedep, id_deps);
2389	inodedep->id_buf = NULL;
2390	if (inodedep->id_state & ONWORKLIST)
2391		WORKLIST_REMOVE(&inodedep->id_list);
2392	if (inodedep->id_savedino1 != NULL) {
2393		FREE(inodedep->id_savedino1, M_INODEDEP);
2394		inodedep->id_savedino1 = NULL;
2395	}
2396	if (free_inodedep(inodedep) == 0) {
2397		FREE_LOCK(&lk);
2398		panic("check_inode_unwritten: busy inode");
2399	}
2400	return (1);
2401}
2402
2403/*
2404 * Try to free an inodedep structure. Return 1 if it could be freed.
2405 */
2406static int
2407free_inodedep(inodedep)
2408	struct inodedep *inodedep;
2409{
2410
2411	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2412	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2413	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2414	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2415	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2416	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2417	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2418	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2419	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2420	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL)
2421		return (0);
2422	LIST_REMOVE(inodedep, id_hash);
2423	WORKITEM_FREE(inodedep, D_INODEDEP);
2424	num_inodedep -= 1;
2425	return (1);
2426}
2427
2428/*
2429 * This workitem routine performs the block de-allocation.
2430 * The workitem is added to the pending list after the updated
2431 * inode block has been written to disk.  As mentioned above,
2432 * checks regarding the number of blocks de-allocated (compared
2433 * to the number of blocks allocated for the file) are also
2434 * performed in this function.
2435 */
2436static void
2437handle_workitem_freeblocks(freeblks, flags)
2438	struct freeblks *freeblks;
2439	int flags;
2440{
2441	struct inode *ip;
2442	struct vnode *vp;
2443	struct fs *fs;
2444	int i, nblocks, level, bsize;
2445	ufs2_daddr_t bn, blocksreleased = 0;
2446	int error, allerror = 0;
2447	ufs_lbn_t baselbns[NIADDR], tmpval;
2448
2449	fs = VFSTOUFS(freeblks->fb_mnt)->um_fs;
2450	tmpval = 1;
2451	baselbns[0] = NDADDR;
2452	for (i = 1; i < NIADDR; i++) {
2453		tmpval *= NINDIR(fs);
2454		baselbns[i] = baselbns[i - 1] + tmpval;
2455	}
2456	nblocks = btodb(fs->fs_bsize);
2457	blocksreleased = 0;
2458	/*
2459	 * Release all extended attribute blocks or frags.
2460	 */
2461	if (freeblks->fb_oldextsize > 0) {
2462		for (i = (NXADDR - 1); i >= 0; i--) {
2463			if ((bn = freeblks->fb_eblks[i]) == 0)
2464				continue;
2465			bsize = sblksize(fs, freeblks->fb_oldextsize, i);
2466			ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize,
2467			    freeblks->fb_previousinum);
2468			blocksreleased += btodb(bsize);
2469		}
2470	}
2471	/*
2472	 * Release all data blocks or frags.
2473	 */
2474	if (freeblks->fb_oldsize > 0) {
2475		/*
2476		 * Indirect blocks first.
2477		 */
2478		for (level = (NIADDR - 1); level >= 0; level--) {
2479			if ((bn = freeblks->fb_iblks[level]) == 0)
2480				continue;
2481			if ((error = indir_trunc(freeblks, fsbtodb(fs, bn),
2482			    level, baselbns[level], &blocksreleased)) == 0)
2483				allerror = error;
2484			ffs_blkfree(fs, freeblks->fb_devvp, bn, fs->fs_bsize,
2485			    freeblks->fb_previousinum);
2486			fs->fs_pendingblocks -= nblocks;
2487			blocksreleased += nblocks;
2488		}
2489		/*
2490		 * All direct blocks or frags.
2491		 */
2492		for (i = (NDADDR - 1); i >= 0; i--) {
2493			if ((bn = freeblks->fb_dblks[i]) == 0)
2494				continue;
2495			bsize = sblksize(fs, freeblks->fb_oldsize, i);
2496			ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize,
2497			    freeblks->fb_previousinum);
2498			fs->fs_pendingblocks -= btodb(bsize);
2499			blocksreleased += btodb(bsize);
2500		}
2501	}
2502	/*
2503	 * If we still have not finished background cleanup, then check
2504	 * to see if the block count needs to be adjusted.
2505	 */
2506	if (freeblks->fb_chkcnt != blocksreleased &&
2507	    (fs->fs_flags & FS_UNCLEAN) != 0 &&
2508	    VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum,
2509	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) {
2510		ip = VTOI(vp);
2511		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \
2512		    freeblks->fb_chkcnt - blocksreleased);
2513		ip->i_flag |= IN_CHANGE;
2514		vput(vp);
2515	}
2516
2517#ifdef DIAGNOSTIC
2518	if (freeblks->fb_chkcnt != blocksreleased &&
2519	    ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
2520		printf("handle_workitem_freeblocks: block count\n");
2521	if (allerror)
2522		softdep_error("handle_workitem_freeblks", allerror);
2523#endif /* DIAGNOSTIC */
2524
2525	WORKITEM_FREE(freeblks, D_FREEBLKS);
2526}
2527
2528/*
2529 * Release blocks associated with the inode ip and stored in the indirect
2530 * block dbn. If level is greater than SINGLE, the block is an indirect block
2531 * and recursive calls to indirtrunc must be used to cleanse other indirect
2532 * blocks.
2533 */
2534static int
2535indir_trunc(freeblks, dbn, level, lbn, countp)
2536	struct freeblks *freeblks;
2537	ufs2_daddr_t dbn;
2538	int level;
2539	ufs_lbn_t lbn;
2540	ufs2_daddr_t *countp;
2541{
2542	struct buf *bp;
2543	struct fs *fs;
2544	struct worklist *wk;
2545	struct indirdep *indirdep;
2546	ufs1_daddr_t *bap1 = 0;
2547	ufs2_daddr_t nb, *bap2 = 0;
2548	ufs_lbn_t lbnadd;
2549	int i, nblocks, ufs1fmt;
2550	int error, allerror = 0;
2551
2552	fs = VFSTOUFS(freeblks->fb_mnt)->um_fs;
2553	lbnadd = 1;
2554	for (i = level; i > 0; i--)
2555		lbnadd *= NINDIR(fs);
2556	/*
2557	 * Get buffer of block pointers to be freed. This routine is not
2558	 * called until the zero'ed inode has been written, so it is safe
2559	 * to free blocks as they are encountered. Because the inode has
2560	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2561	 * have to use the on-disk address and the block device for the
2562	 * filesystem to look them up. If the file was deleted before its
2563	 * indirect blocks were all written to disk, the routine that set
2564	 * us up (deallocate_dependencies) will have arranged to leave
2565	 * a complete copy of the indirect block in memory for our use.
2566	 * Otherwise we have to read the blocks in from the disk.
2567	 */
2568#ifdef notyet
2569	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
2570	    GB_NOCREAT);
2571#else
2572	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
2573#endif
2574	ACQUIRE_LOCK(&lk);
2575	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2576		if (wk->wk_type != D_INDIRDEP ||
2577		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2578		    (indirdep->ir_state & GOINGAWAY) == 0) {
2579			FREE_LOCK(&lk);
2580			panic("indir_trunc: lost indirdep");
2581		}
2582		WORKLIST_REMOVE(wk);
2583		WORKITEM_FREE(indirdep, D_INDIRDEP);
2584		if (LIST_FIRST(&bp->b_dep) != NULL) {
2585			FREE_LOCK(&lk);
2586			panic("indir_trunc: dangling dep");
2587		}
2588		VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1;
2589		FREE_LOCK(&lk);
2590	} else {
2591#ifdef notyet
2592		if (bp)
2593			brelse(bp);
2594#endif
2595		FREE_LOCK(&lk);
2596		error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
2597		    NOCRED, &bp);
2598		if (error) {
2599			brelse(bp);
2600			return (error);
2601		}
2602	}
2603	/*
2604	 * Recursively free indirect blocks.
2605	 */
2606	if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) {
2607		ufs1fmt = 1;
2608		bap1 = (ufs1_daddr_t *)bp->b_data;
2609	} else {
2610		ufs1fmt = 0;
2611		bap2 = (ufs2_daddr_t *)bp->b_data;
2612	}
2613	nblocks = btodb(fs->fs_bsize);
2614	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2615		if (ufs1fmt)
2616			nb = bap1[i];
2617		else
2618			nb = bap2[i];
2619		if (nb == 0)
2620			continue;
2621		if (level != 0) {
2622			if ((error = indir_trunc(freeblks, fsbtodb(fs, nb),
2623			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2624				allerror = error;
2625		}
2626		ffs_blkfree(fs, freeblks->fb_devvp, nb, fs->fs_bsize,
2627		    freeblks->fb_previousinum);
2628		fs->fs_pendingblocks -= nblocks;
2629		*countp += nblocks;
2630	}
2631	bp->b_flags |= B_INVAL | B_NOCACHE;
2632	brelse(bp);
2633	return (allerror);
2634}
2635
2636/*
2637 * Free an allocindir.
2638 * This routine must be called with splbio interrupts blocked.
2639 */
2640static void
2641free_allocindir(aip, inodedep)
2642	struct allocindir *aip;
2643	struct inodedep *inodedep;
2644{
2645	struct freefrag *freefrag;
2646
2647#ifdef DEBUG
2648	if (lk.lkt_held == NOHOLDER)
2649		panic("free_allocindir: lock not held");
2650#endif
2651	if ((aip->ai_state & DEPCOMPLETE) == 0)
2652		LIST_REMOVE(aip, ai_deps);
2653	if (aip->ai_state & ONWORKLIST)
2654		WORKLIST_REMOVE(&aip->ai_list);
2655	LIST_REMOVE(aip, ai_next);
2656	if ((freefrag = aip->ai_freefrag) != NULL) {
2657		if (inodedep == NULL)
2658			add_to_worklist(&freefrag->ff_list);
2659		else
2660			WORKLIST_INSERT(&inodedep->id_bufwait,
2661			    &freefrag->ff_list);
2662	}
2663	WORKITEM_FREE(aip, D_ALLOCINDIR);
2664}
2665
2666/*
2667 * Directory entry addition dependencies.
2668 *
2669 * When adding a new directory entry, the inode (with its incremented link
2670 * count) must be written to disk before the directory entry's pointer to it.
2671 * Also, if the inode is newly allocated, the corresponding freemap must be
2672 * updated (on disk) before the directory entry's pointer. These requirements
2673 * are met via undo/redo on the directory entry's pointer, which consists
2674 * simply of the inode number.
2675 *
2676 * As directory entries are added and deleted, the free space within a
2677 * directory block can become fragmented.  The ufs filesystem will compact
2678 * a fragmented directory block to make space for a new entry. When this
2679 * occurs, the offsets of previously added entries change. Any "diradd"
2680 * dependency structures corresponding to these entries must be updated with
2681 * the new offsets.
2682 */
2683
2684/*
2685 * This routine is called after the in-memory inode's link
2686 * count has been incremented, but before the directory entry's
2687 * pointer to the inode has been set.
2688 */
2689int
2690softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
2691	struct buf *bp;		/* buffer containing directory block */
2692	struct inode *dp;	/* inode for directory */
2693	off_t diroffset;	/* offset of new entry in directory */
2694	ino_t newinum;		/* inode referenced by new directory entry */
2695	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2696	int isnewblk;		/* entry is in a newly allocated block */
2697{
2698	int offset;		/* offset of new entry within directory block */
2699	ufs_lbn_t lbn;		/* block in directory containing new entry */
2700	struct fs *fs;
2701	struct diradd *dap;
2702	struct allocdirect *adp;
2703	struct pagedep *pagedep;
2704	struct inodedep *inodedep;
2705	struct newdirblk *newdirblk = 0;
2706	struct mkdir *mkdir1, *mkdir2;
2707
2708	/*
2709	 * Whiteouts have no dependencies.
2710	 */
2711	if (newinum == WINO) {
2712		if (newdirbp != NULL)
2713			bdwrite(newdirbp);
2714		return (0);
2715	}
2716
2717	fs = dp->i_fs;
2718	lbn = lblkno(fs, diroffset);
2719	offset = blkoff(fs, diroffset);
2720	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2721		M_SOFTDEP_FLAGS|M_ZERO);
2722	dap->da_list.wk_type = D_DIRADD;
2723	dap->da_offset = offset;
2724	dap->da_newinum = newinum;
2725	dap->da_state = ATTACHED;
2726	if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
2727		MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk),
2728		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
2729		newdirblk->db_list.wk_type = D_NEWDIRBLK;
2730		newdirblk->db_state = 0;
2731	}
2732	if (newdirbp == NULL) {
2733		dap->da_state |= DEPCOMPLETE;
2734		ACQUIRE_LOCK(&lk);
2735	} else {
2736		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2737		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2738		    M_SOFTDEP_FLAGS);
2739		mkdir1->md_list.wk_type = D_MKDIR;
2740		mkdir1->md_state = MKDIR_BODY;
2741		mkdir1->md_diradd = dap;
2742		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2743		    M_SOFTDEP_FLAGS);
2744		mkdir2->md_list.wk_type = D_MKDIR;
2745		mkdir2->md_state = MKDIR_PARENT;
2746		mkdir2->md_diradd = dap;
2747		/*
2748		 * Dependency on "." and ".." being written to disk.
2749		 */
2750		mkdir1->md_buf = newdirbp;
2751		ACQUIRE_LOCK(&lk);
2752		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2753		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
2754		FREE_LOCK(&lk);
2755		bdwrite(newdirbp);
2756		/*
2757		 * Dependency on link count increase for parent directory
2758		 */
2759		ACQUIRE_LOCK(&lk);
2760		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0
2761		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2762			dap->da_state &= ~MKDIR_PARENT;
2763			WORKITEM_FREE(mkdir2, D_MKDIR);
2764		} else {
2765			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2766			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2767		}
2768	}
2769	/*
2770	 * Link into parent directory pagedep to await its being written.
2771	 */
2772	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2773		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2774	dap->da_pagedep = pagedep;
2775	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2776	    da_pdlist);
2777	/*
2778	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2779	 * is not yet written. If it is written, do the post-inode write
2780	 * processing to put it on the id_pendinghd list.
2781	 */
2782	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2783	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2784		diradd_inode_written(dap, inodedep);
2785	else
2786		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2787	if (isnewblk) {
2788		/*
2789		 * Directories growing into indirect blocks are rare
2790		 * enough and the frequency of new block allocation
2791		 * in those cases even more rare, that we choose not
2792		 * to bother tracking them. Rather we simply force the
2793		 * new directory entry to disk.
2794		 */
2795		if (lbn >= NDADDR) {
2796			FREE_LOCK(&lk);
2797			/*
2798			 * We only have a new allocation when at the
2799			 * beginning of a new block, not when we are
2800			 * expanding into an existing block.
2801			 */
2802			if (blkoff(fs, diroffset) == 0)
2803				return (1);
2804			return (0);
2805		}
2806		/*
2807		 * We only have a new allocation when at the beginning
2808		 * of a new fragment, not when we are expanding into an
2809		 * existing fragment. Also, there is nothing to do if we
2810		 * are already tracking this block.
2811		 */
2812		if (fragoff(fs, diroffset) != 0) {
2813			FREE_LOCK(&lk);
2814			return (0);
2815		}
2816		if ((pagedep->pd_state & NEWBLOCK) != 0) {
2817			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2818			FREE_LOCK(&lk);
2819			return (0);
2820		}
2821		/*
2822		 * Find our associated allocdirect and have it track us.
2823		 */
2824		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0)
2825			panic("softdep_setup_directory_add: lost inodedep");
2826		adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
2827		if (adp == NULL || adp->ad_lbn != lbn) {
2828			FREE_LOCK(&lk);
2829			panic("softdep_setup_directory_add: lost entry");
2830		}
2831		pagedep->pd_state |= NEWBLOCK;
2832		newdirblk->db_pagedep = pagedep;
2833		WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
2834	}
2835	FREE_LOCK(&lk);
2836	return (0);
2837}
2838
2839/*
2840 * This procedure is called to change the offset of a directory
2841 * entry when compacting a directory block which must be owned
2842 * exclusively by the caller. Note that the actual entry movement
2843 * must be done in this procedure to ensure that no I/O completions
2844 * occur while the move is in progress.
2845 */
2846void
2847softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
2848	struct inode *dp;	/* inode for directory */
2849	caddr_t base;		/* address of dp->i_offset */
2850	caddr_t oldloc;		/* address of old directory location */
2851	caddr_t newloc;		/* address of new directory location */
2852	int entrysize;		/* size of directory entry */
2853{
2854	int offset, oldoffset, newoffset;
2855	struct pagedep *pagedep;
2856	struct diradd *dap;
2857	ufs_lbn_t lbn;
2858
2859	ACQUIRE_LOCK(&lk);
2860	lbn = lblkno(dp->i_fs, dp->i_offset);
2861	offset = blkoff(dp->i_fs, dp->i_offset);
2862	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2863		goto done;
2864	oldoffset = offset + (oldloc - base);
2865	newoffset = offset + (newloc - base);
2866
2867	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2868		if (dap->da_offset != oldoffset)
2869			continue;
2870		dap->da_offset = newoffset;
2871		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2872			break;
2873		LIST_REMOVE(dap, da_pdlist);
2874		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2875		    dap, da_pdlist);
2876		break;
2877	}
2878	if (dap == NULL) {
2879
2880		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2881			if (dap->da_offset == oldoffset) {
2882				dap->da_offset = newoffset;
2883				break;
2884			}
2885		}
2886	}
2887done:
2888	bcopy(oldloc, newloc, entrysize);
2889	FREE_LOCK(&lk);
2890}
2891
2892/*
2893 * Free a diradd dependency structure. This routine must be called
2894 * with splbio interrupts blocked.
2895 */
2896static void
2897free_diradd(dap)
2898	struct diradd *dap;
2899{
2900	struct dirrem *dirrem;
2901	struct pagedep *pagedep;
2902	struct inodedep *inodedep;
2903	struct mkdir *mkdir, *nextmd;
2904
2905#ifdef DEBUG
2906	if (lk.lkt_held == NOHOLDER)
2907		panic("free_diradd: lock not held");
2908#endif
2909	WORKLIST_REMOVE(&dap->da_list);
2910	LIST_REMOVE(dap, da_pdlist);
2911	if ((dap->da_state & DIRCHG) == 0) {
2912		pagedep = dap->da_pagedep;
2913	} else {
2914		dirrem = dap->da_previous;
2915		pagedep = dirrem->dm_pagedep;
2916		dirrem->dm_dirinum = pagedep->pd_ino;
2917		add_to_worklist(&dirrem->dm_list);
2918	}
2919	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2920	    0, &inodedep) != 0)
2921		(void) free_inodedep(inodedep);
2922	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2923		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2924			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2925			if (mkdir->md_diradd != dap)
2926				continue;
2927			dap->da_state &= ~mkdir->md_state;
2928			WORKLIST_REMOVE(&mkdir->md_list);
2929			LIST_REMOVE(mkdir, md_mkdirs);
2930			WORKITEM_FREE(mkdir, D_MKDIR);
2931		}
2932		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2933			FREE_LOCK(&lk);
2934			panic("free_diradd: unfound ref");
2935		}
2936	}
2937	WORKITEM_FREE(dap, D_DIRADD);
2938}
2939
2940/*
2941 * Directory entry removal dependencies.
2942 *
2943 * When removing a directory entry, the entry's inode pointer must be
2944 * zero'ed on disk before the corresponding inode's link count is decremented
2945 * (possibly freeing the inode for re-use). This dependency is handled by
2946 * updating the directory entry but delaying the inode count reduction until
2947 * after the directory block has been written to disk. After this point, the
2948 * inode count can be decremented whenever it is convenient.
2949 */
2950
2951/*
2952 * This routine should be called immediately after removing
2953 * a directory entry.  The inode's link count should not be
2954 * decremented by the calling procedure -- the soft updates
2955 * code will do this task when it is safe.
2956 */
2957void
2958softdep_setup_remove(bp, dp, ip, isrmdir)
2959	struct buf *bp;		/* buffer containing directory block */
2960	struct inode *dp;	/* inode for the directory being modified */
2961	struct inode *ip;	/* inode for directory entry being removed */
2962	int isrmdir;		/* indicates if doing RMDIR */
2963{
2964	struct dirrem *dirrem, *prevdirrem;
2965
2966	/*
2967	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2968	 */
2969	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2970
2971	/*
2972	 * If the COMPLETE flag is clear, then there were no active
2973	 * entries and we want to roll back to a zeroed entry until
2974	 * the new inode is committed to disk. If the COMPLETE flag is
2975	 * set then we have deleted an entry that never made it to
2976	 * disk. If the entry we deleted resulted from a name change,
2977	 * then the old name still resides on disk. We cannot delete
2978	 * its inode (returned to us in prevdirrem) until the zeroed
2979	 * directory entry gets to disk. The new inode has never been
2980	 * referenced on the disk, so can be deleted immediately.
2981	 */
2982	if ((dirrem->dm_state & COMPLETE) == 0) {
2983		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2984		    dm_next);
2985		FREE_LOCK(&lk);
2986	} else {
2987		if (prevdirrem != NULL)
2988			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2989			    prevdirrem, dm_next);
2990		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2991		FREE_LOCK(&lk);
2992		handle_workitem_remove(dirrem, NULL);
2993	}
2994}
2995
2996/*
2997 * Allocate a new dirrem if appropriate and return it along with
2998 * its associated pagedep. Called without a lock, returns with lock.
2999 */
3000static long num_dirrem;		/* number of dirrem allocated */
3001static struct dirrem *
3002newdirrem(bp, dp, ip, isrmdir, prevdirremp)
3003	struct buf *bp;		/* buffer containing directory block */
3004	struct inode *dp;	/* inode for the directory being modified */
3005	struct inode *ip;	/* inode for directory entry being removed */
3006	int isrmdir;		/* indicates if doing RMDIR */
3007	struct dirrem **prevdirremp; /* previously referenced inode, if any */
3008{
3009	int offset;
3010	ufs_lbn_t lbn;
3011	struct diradd *dap;
3012	struct dirrem *dirrem;
3013	struct pagedep *pagedep;
3014
3015	/*
3016	 * Whiteouts have no deletion dependencies.
3017	 */
3018	if (ip == NULL)
3019		panic("newdirrem: whiteout");
3020	/*
3021	 * If we are over our limit, try to improve the situation.
3022	 * Limiting the number of dirrem structures will also limit
3023	 * the number of freefile and freeblks structures.
3024	 */
3025	if (num_dirrem > max_softdeps / 2)
3026		(void) request_cleanup(FLUSH_REMOVE, 0);
3027	num_dirrem += 1;
3028	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
3029		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
3030	dirrem->dm_list.wk_type = D_DIRREM;
3031	dirrem->dm_state = isrmdir ? RMDIR : 0;
3032	dirrem->dm_mnt = ITOV(ip)->v_mount;
3033	dirrem->dm_oldinum = ip->i_number;
3034	*prevdirremp = NULL;
3035
3036	ACQUIRE_LOCK(&lk);
3037	lbn = lblkno(dp->i_fs, dp->i_offset);
3038	offset = blkoff(dp->i_fs, dp->i_offset);
3039	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3040		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3041	dirrem->dm_pagedep = pagedep;
3042	/*
3043	 * Check for a diradd dependency for the same directory entry.
3044	 * If present, then both dependencies become obsolete and can
3045	 * be de-allocated. Check for an entry on both the pd_dirraddhd
3046	 * list and the pd_pendinghd list.
3047	 */
3048
3049	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
3050		if (dap->da_offset == offset)
3051			break;
3052	if (dap == NULL) {
3053
3054		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
3055			if (dap->da_offset == offset)
3056				break;
3057		if (dap == NULL)
3058			return (dirrem);
3059	}
3060	/*
3061	 * Must be ATTACHED at this point.
3062	 */
3063	if ((dap->da_state & ATTACHED) == 0) {
3064		FREE_LOCK(&lk);
3065		panic("newdirrem: not ATTACHED");
3066	}
3067	if (dap->da_newinum != ip->i_number) {
3068		FREE_LOCK(&lk);
3069		panic("newdirrem: inum %d should be %d",
3070		    ip->i_number, dap->da_newinum);
3071	}
3072	/*
3073	 * If we are deleting a changed name that never made it to disk,
3074	 * then return the dirrem describing the previous inode (which
3075	 * represents the inode currently referenced from this entry on disk).
3076	 */
3077	if ((dap->da_state & DIRCHG) != 0) {
3078		*prevdirremp = dap->da_previous;
3079		dap->da_state &= ~DIRCHG;
3080		dap->da_pagedep = pagedep;
3081	}
3082	/*
3083	 * We are deleting an entry that never made it to disk.
3084	 * Mark it COMPLETE so we can delete its inode immediately.
3085	 */
3086	dirrem->dm_state |= COMPLETE;
3087	free_diradd(dap);
3088	return (dirrem);
3089}
3090
3091/*
3092 * Directory entry change dependencies.
3093 *
3094 * Changing an existing directory entry requires that an add operation
3095 * be completed first followed by a deletion. The semantics for the addition
3096 * are identical to the description of adding a new entry above except
3097 * that the rollback is to the old inode number rather than zero. Once
3098 * the addition dependency is completed, the removal is done as described
3099 * in the removal routine above.
3100 */
3101
3102/*
3103 * This routine should be called immediately after changing
3104 * a directory entry.  The inode's link count should not be
3105 * decremented by the calling procedure -- the soft updates
3106 * code will perform this task when it is safe.
3107 */
3108void
3109softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
3110	struct buf *bp;		/* buffer containing directory block */
3111	struct inode *dp;	/* inode for the directory being modified */
3112	struct inode *ip;	/* inode for directory entry being removed */
3113	ino_t newinum;		/* new inode number for changed entry */
3114	int isrmdir;		/* indicates if doing RMDIR */
3115{
3116	int offset;
3117	struct diradd *dap = NULL;
3118	struct dirrem *dirrem, *prevdirrem;
3119	struct pagedep *pagedep;
3120	struct inodedep *inodedep;
3121
3122	offset = blkoff(dp->i_fs, dp->i_offset);
3123
3124	/*
3125	 * Whiteouts do not need diradd dependencies.
3126	 */
3127	if (newinum != WINO) {
3128		MALLOC(dap, struct diradd *, sizeof(struct diradd),
3129		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
3130		dap->da_list.wk_type = D_DIRADD;
3131		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
3132		dap->da_offset = offset;
3133		dap->da_newinum = newinum;
3134	}
3135
3136	/*
3137	 * Allocate a new dirrem and ACQUIRE_LOCK.
3138	 */
3139	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3140	pagedep = dirrem->dm_pagedep;
3141	/*
3142	 * The possible values for isrmdir:
3143	 *	0 - non-directory file rename
3144	 *	1 - directory rename within same directory
3145	 *   inum - directory rename to new directory of given inode number
3146	 * When renaming to a new directory, we are both deleting and
3147	 * creating a new directory entry, so the link count on the new
3148	 * directory should not change. Thus we do not need the followup
3149	 * dirrem which is usually done in handle_workitem_remove. We set
3150	 * the DIRCHG flag to tell handle_workitem_remove to skip the
3151	 * followup dirrem.
3152	 */
3153	if (isrmdir > 1)
3154		dirrem->dm_state |= DIRCHG;
3155
3156	/*
3157	 * Whiteouts have no additional dependencies,
3158	 * so just put the dirrem on the correct list.
3159	 */
3160	if (newinum == WINO) {
3161		if ((dirrem->dm_state & COMPLETE) == 0) {
3162			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
3163			    dm_next);
3164		} else {
3165			dirrem->dm_dirinum = pagedep->pd_ino;
3166			add_to_worklist(&dirrem->dm_list);
3167		}
3168		FREE_LOCK(&lk);
3169		return;
3170	}
3171
3172	/*
3173	 * If the COMPLETE flag is clear, then there were no active
3174	 * entries and we want to roll back to the previous inode until
3175	 * the new inode is committed to disk. If the COMPLETE flag is
3176	 * set, then we have deleted an entry that never made it to disk.
3177	 * If the entry we deleted resulted from a name change, then the old
3178	 * inode reference still resides on disk. Any rollback that we do
3179	 * needs to be to that old inode (returned to us in prevdirrem). If
3180	 * the entry we deleted resulted from a create, then there is
3181	 * no entry on the disk, so we want to roll back to zero rather
3182	 * than the uncommitted inode. In either of the COMPLETE cases we
3183	 * want to immediately free the unwritten and unreferenced inode.
3184	 */
3185	if ((dirrem->dm_state & COMPLETE) == 0) {
3186		dap->da_previous = dirrem;
3187	} else {
3188		if (prevdirrem != NULL) {
3189			dap->da_previous = prevdirrem;
3190		} else {
3191			dap->da_state &= ~DIRCHG;
3192			dap->da_pagedep = pagedep;
3193		}
3194		dirrem->dm_dirinum = pagedep->pd_ino;
3195		add_to_worklist(&dirrem->dm_list);
3196	}
3197	/*
3198	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3199	 * is not yet written. If it is written, do the post-inode write
3200	 * processing to put it on the id_pendinghd list.
3201	 */
3202	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
3203	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3204		dap->da_state |= COMPLETE;
3205		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3206		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3207	} else {
3208		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
3209		    dap, da_pdlist);
3210		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3211	}
3212	FREE_LOCK(&lk);
3213}
3214
3215/*
3216 * Called whenever the link count on an inode is changed.
3217 * It creates an inode dependency so that the new reference(s)
3218 * to the inode cannot be committed to disk until the updated
3219 * inode has been written.
3220 */
3221void
3222softdep_change_linkcnt(ip)
3223	struct inode *ip;	/* the inode with the increased link count */
3224{
3225	struct inodedep *inodedep;
3226
3227	ACQUIRE_LOCK(&lk);
3228	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
3229	if (ip->i_nlink < ip->i_effnlink) {
3230		FREE_LOCK(&lk);
3231		panic("softdep_change_linkcnt: bad delta");
3232	}
3233	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3234	FREE_LOCK(&lk);
3235}
3236
3237/*
3238 * Called when the effective link count and the reference count
3239 * on an inode drops to zero. At this point there are no names
3240 * referencing the file in the filesystem and no active file
3241 * references. The space associated with the file will be freed
3242 * as soon as the necessary soft dependencies are cleared.
3243 */
3244void
3245softdep_releasefile(ip)
3246	struct inode *ip;	/* inode with the zero effective link count */
3247{
3248	struct inodedep *inodedep;
3249	struct fs *fs;
3250	int extblocks;
3251
3252	if (ip->i_effnlink > 0)
3253		panic("softdep_filerelease: file still referenced");
3254	/*
3255	 * We may be called several times as the real reference count
3256	 * drops to zero. We only want to account for the space once.
3257	 */
3258	if (ip->i_flag & IN_SPACECOUNTED)
3259		return;
3260	/*
3261	 * We have to deactivate a snapshot otherwise copyonwrites may
3262	 * add blocks and the cleanup may remove blocks after we have
3263	 * tried to account for them.
3264	 */
3265	if ((ip->i_flags & SF_SNAPSHOT) != 0)
3266		ffs_snapremove(ITOV(ip));
3267	/*
3268	 * If we are tracking an nlinkdelta, we have to also remember
3269	 * whether we accounted for the freed space yet.
3270	 */
3271	ACQUIRE_LOCK(&lk);
3272	if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep)))
3273		inodedep->id_state |= SPACECOUNTED;
3274	FREE_LOCK(&lk);
3275	fs = ip->i_fs;
3276	extblocks = 0;
3277	if (fs->fs_magic == FS_UFS2_MAGIC)
3278		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
3279	ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks;
3280	ip->i_fs->fs_pendinginodes += 1;
3281	ip->i_flag |= IN_SPACECOUNTED;
3282}
3283
3284/*
3285 * This workitem decrements the inode's link count.
3286 * If the link count reaches zero, the file is removed.
3287 */
3288static void
3289handle_workitem_remove(dirrem, xp)
3290	struct dirrem *dirrem;
3291	struct vnode *xp;
3292{
3293	struct thread *td = curthread;
3294	struct inodedep *inodedep;
3295	struct vnode *vp;
3296	struct inode *ip;
3297	ino_t oldinum;
3298	int error;
3299
3300	if ((vp = xp) == NULL &&
3301	    (error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE,
3302	     &vp)) != 0) {
3303		softdep_error("handle_workitem_remove: vget", error);
3304		return;
3305	}
3306	ip = VTOI(vp);
3307	ACQUIRE_LOCK(&lk);
3308	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
3309		FREE_LOCK(&lk);
3310		panic("handle_workitem_remove: lost inodedep");
3311	}
3312	/*
3313	 * Normal file deletion.
3314	 */
3315	if ((dirrem->dm_state & RMDIR) == 0) {
3316		ip->i_nlink--;
3317		DIP_SET(ip, i_nlink, ip->i_nlink);
3318		ip->i_flag |= IN_CHANGE;
3319		if (ip->i_nlink < ip->i_effnlink) {
3320			FREE_LOCK(&lk);
3321			panic("handle_workitem_remove: bad file delta");
3322		}
3323		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3324		FREE_LOCK(&lk);
3325		vput(vp);
3326		num_dirrem -= 1;
3327		WORKITEM_FREE(dirrem, D_DIRREM);
3328		return;
3329	}
3330	/*
3331	 * Directory deletion. Decrement reference count for both the
3332	 * just deleted parent directory entry and the reference for ".".
3333	 * Next truncate the directory to length zero. When the
3334	 * truncation completes, arrange to have the reference count on
3335	 * the parent decremented to account for the loss of "..".
3336	 */
3337	ip->i_nlink -= 2;
3338	DIP_SET(ip, i_nlink, ip->i_nlink);
3339	ip->i_flag |= IN_CHANGE;
3340	if (ip->i_nlink < ip->i_effnlink) {
3341		FREE_LOCK(&lk);
3342		panic("handle_workitem_remove: bad dir delta");
3343	}
3344	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3345	FREE_LOCK(&lk);
3346	if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_ucred, td)) != 0)
3347		softdep_error("handle_workitem_remove: truncate", error);
3348	/*
3349	 * Rename a directory to a new parent. Since, we are both deleting
3350	 * and creating a new directory entry, the link count on the new
3351	 * directory should not change. Thus we skip the followup dirrem.
3352	 */
3353	if (dirrem->dm_state & DIRCHG) {
3354		vput(vp);
3355		num_dirrem -= 1;
3356		WORKITEM_FREE(dirrem, D_DIRREM);
3357		return;
3358	}
3359	/*
3360	 * If the inodedep does not exist, then the zero'ed inode has
3361	 * been written to disk. If the allocated inode has never been
3362	 * written to disk, then the on-disk inode is zero'ed. In either
3363	 * case we can remove the file immediately.
3364	 */
3365	ACQUIRE_LOCK(&lk);
3366	dirrem->dm_state = 0;
3367	oldinum = dirrem->dm_oldinum;
3368	dirrem->dm_oldinum = dirrem->dm_dirinum;
3369	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
3370	    check_inode_unwritten(inodedep)) {
3371		FREE_LOCK(&lk);
3372		vput(vp);
3373		handle_workitem_remove(dirrem, NULL);
3374		return;
3375	}
3376	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3377	FREE_LOCK(&lk);
3378	vput(vp);
3379}
3380
3381/*
3382 * Inode de-allocation dependencies.
3383 *
3384 * When an inode's link count is reduced to zero, it can be de-allocated. We
3385 * found it convenient to postpone de-allocation until after the inode is
3386 * written to disk with its new link count (zero).  At this point, all of the
3387 * on-disk inode's block pointers are nullified and, with careful dependency
3388 * list ordering, all dependencies related to the inode will be satisfied and
3389 * the corresponding dependency structures de-allocated.  So, if/when the
3390 * inode is reused, there will be no mixing of old dependencies with new
3391 * ones.  This artificial dependency is set up by the block de-allocation
3392 * procedure above (softdep_setup_freeblocks) and completed by the
3393 * following procedure.
3394 */
3395static void
3396handle_workitem_freefile(freefile)
3397	struct freefile *freefile;
3398{
3399	struct fs *fs;
3400	struct inodedep *idp;
3401	int error;
3402
3403	fs = VFSTOUFS(freefile->fx_mnt)->um_fs;
3404#ifdef DEBUG
3405	ACQUIRE_LOCK(&lk);
3406	error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp);
3407	FREE_LOCK(&lk);
3408	if (error)
3409		panic("handle_workitem_freefile: inodedep survived");
3410#endif
3411	fs->fs_pendinginodes -= 1;
3412	if ((error = ffs_freefile(fs, freefile->fx_devvp, freefile->fx_oldinum,
3413	     freefile->fx_mode)) != 0)
3414		softdep_error("handle_workitem_freefile", error);
3415	WORKITEM_FREE(freefile, D_FREEFILE);
3416}
3417
3418int
3419softdep_disk_prewrite(struct buf *bp)
3420{
3421	int error;
3422	struct vnode *vp = bp->b_vp;
3423
3424	KASSERT(bp->b_iocmd == BIO_WRITE,
3425	    ("softdep_disk_prewrite on non-BIO_WRITE buffer"));
3426	if ((bp->b_flags & B_VALIDSUSPWRT) == 0 &&
3427	    bp->b_vp != NULL && bp->b_vp->v_mount != NULL &&
3428	    (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0)
3429		panic("softdep_disk_prewrite: bad I/O");
3430	bp->b_flags &= ~B_VALIDSUSPWRT;
3431	if (LIST_FIRST(&bp->b_dep) != NULL)
3432		buf_start(bp);
3433	mp_fixme("This should require the vnode lock.");
3434	if ((vp->v_vflag & VV_COPYONWRITE) &&
3435	    vp->v_rdev->si_snapdata != NULL &&
3436	    (error = (ffs_copyonwrite)(vp, bp)) != 0 &&
3437	    error != EOPNOTSUPP) {
3438		bp->b_error = error;
3439		bp->b_ioflags |= BIO_ERROR;
3440		bufdone(bp);
3441		return (1);
3442	}
3443	return (0);
3444}
3445
3446
3447/*
3448 * Disk writes.
3449 *
3450 * The dependency structures constructed above are most actively used when file
3451 * system blocks are written to disk.  No constraints are placed on when a
3452 * block can be written, but unsatisfied update dependencies are made safe by
3453 * modifying (or replacing) the source memory for the duration of the disk
3454 * write.  When the disk write completes, the memory block is again brought
3455 * up-to-date.
3456 *
3457 * In-core inode structure reclamation.
3458 *
3459 * Because there are a finite number of "in-core" inode structures, they are
3460 * reused regularly.  By transferring all inode-related dependencies to the
3461 * in-memory inode block and indexing them separately (via "inodedep"s), we
3462 * can allow "in-core" inode structures to be reused at any time and avoid
3463 * any increase in contention.
3464 *
3465 * Called just before entering the device driver to initiate a new disk I/O.
3466 * The buffer must be locked, thus, no I/O completion operations can occur
3467 * while we are manipulating its associated dependencies.
3468 */
3469static void
3470softdep_disk_io_initiation(bp)
3471	struct buf *bp;		/* structure describing disk write to occur */
3472{
3473	struct worklist *wk, *nextwk;
3474	struct indirdep *indirdep;
3475	struct inodedep *inodedep;
3476
3477	/*
3478	 * We only care about write operations. There should never
3479	 * be dependencies for reads.
3480	 */
3481	if (bp->b_iocmd == BIO_READ)
3482		panic("softdep_disk_io_initiation: read");
3483	/*
3484	 * Do any necessary pre-I/O processing.
3485	 */
3486	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) {
3487		nextwk = LIST_NEXT(wk, wk_list);
3488		switch (wk->wk_type) {
3489
3490		case D_PAGEDEP:
3491			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3492			continue;
3493
3494		case D_INODEDEP:
3495			inodedep = WK_INODEDEP(wk);
3496			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
3497				initiate_write_inodeblock_ufs1(inodedep, bp);
3498			else
3499				initiate_write_inodeblock_ufs2(inodedep, bp);
3500			continue;
3501
3502		case D_INDIRDEP:
3503			indirdep = WK_INDIRDEP(wk);
3504			if (indirdep->ir_state & GOINGAWAY)
3505				panic("disk_io_initiation: indirdep gone");
3506			/*
3507			 * If there are no remaining dependencies, this
3508			 * will be writing the real pointers, so the
3509			 * dependency can be freed.
3510			 */
3511			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3512				indirdep->ir_savebp->b_flags |=
3513				    B_INVAL | B_NOCACHE;
3514				brelse(indirdep->ir_savebp);
3515				/* inline expand WORKLIST_REMOVE(wk); */
3516				wk->wk_state &= ~ONWORKLIST;
3517				LIST_REMOVE(wk, wk_list);
3518				WORKITEM_FREE(indirdep, D_INDIRDEP);
3519				continue;
3520			}
3521			/*
3522			 * Replace up-to-date version with safe version.
3523			 */
3524			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3525			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3526			ACQUIRE_LOCK(&lk);
3527			indirdep->ir_state &= ~ATTACHED;
3528			indirdep->ir_state |= UNDONE;
3529			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3530			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3531			    bp->b_bcount);
3532			FREE_LOCK(&lk);
3533			continue;
3534
3535		case D_MKDIR:
3536		case D_BMSAFEMAP:
3537		case D_ALLOCDIRECT:
3538		case D_ALLOCINDIR:
3539			continue;
3540
3541		default:
3542			panic("handle_disk_io_initiation: Unexpected type %s",
3543			    TYPENAME(wk->wk_type));
3544			/* NOTREACHED */
3545		}
3546	}
3547}
3548
3549/*
3550 * Called from within the procedure above to deal with unsatisfied
3551 * allocation dependencies in a directory. The buffer must be locked,
3552 * thus, no I/O completion operations can occur while we are
3553 * manipulating its associated dependencies.
3554 */
3555static void
3556initiate_write_filepage(pagedep, bp)
3557	struct pagedep *pagedep;
3558	struct buf *bp;
3559{
3560	struct diradd *dap;
3561	struct direct *ep;
3562	int i;
3563
3564	if (pagedep->pd_state & IOSTARTED) {
3565		/*
3566		 * This can only happen if there is a driver that does not
3567		 * understand chaining. Here biodone will reissue the call
3568		 * to strategy for the incomplete buffers.
3569		 */
3570		printf("initiate_write_filepage: already started\n");
3571		return;
3572	}
3573	pagedep->pd_state |= IOSTARTED;
3574	ACQUIRE_LOCK(&lk);
3575	for (i = 0; i < DAHASHSZ; i++) {
3576		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3577			ep = (struct direct *)
3578			    ((char *)bp->b_data + dap->da_offset);
3579			if (ep->d_ino != dap->da_newinum) {
3580				FREE_LOCK(&lk);
3581				panic("%s: dir inum %d != new %d",
3582				    "initiate_write_filepage",
3583				    ep->d_ino, dap->da_newinum);
3584			}
3585			if (dap->da_state & DIRCHG)
3586				ep->d_ino = dap->da_previous->dm_oldinum;
3587			else
3588				ep->d_ino = 0;
3589			dap->da_state &= ~ATTACHED;
3590			dap->da_state |= UNDONE;
3591		}
3592	}
3593	FREE_LOCK(&lk);
3594}
3595
3596/*
3597 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
3598 * Note that any bug fixes made to this routine must be done in the
3599 * version found below.
3600 *
3601 * Called from within the procedure above to deal with unsatisfied
3602 * allocation dependencies in an inodeblock. The buffer must be
3603 * locked, thus, no I/O completion operations can occur while we
3604 * are manipulating its associated dependencies.
3605 */
3606static void
3607initiate_write_inodeblock_ufs1(inodedep, bp)
3608	struct inodedep *inodedep;
3609	struct buf *bp;			/* The inode block */
3610{
3611	struct allocdirect *adp, *lastadp;
3612	struct ufs1_dinode *dp;
3613	struct fs *fs;
3614	ufs_lbn_t i, prevlbn = 0;
3615	int deplist;
3616
3617	if (inodedep->id_state & IOSTARTED)
3618		panic("initiate_write_inodeblock_ufs1: already started");
3619	inodedep->id_state |= IOSTARTED;
3620	fs = inodedep->id_fs;
3621	dp = (struct ufs1_dinode *)bp->b_data +
3622	    ino_to_fsbo(fs, inodedep->id_ino);
3623	/*
3624	 * If the bitmap is not yet written, then the allocated
3625	 * inode cannot be written to disk.
3626	 */
3627	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3628		if (inodedep->id_savedino1 != NULL)
3629			panic("initiate_write_inodeblock_ufs1: I/O underway");
3630		MALLOC(inodedep->id_savedino1, struct ufs1_dinode *,
3631		    sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3632		*inodedep->id_savedino1 = *dp;
3633		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3634		return;
3635	}
3636	/*
3637	 * If no dependencies, then there is nothing to roll back.
3638	 */
3639	inodedep->id_savedsize = dp->di_size;
3640	inodedep->id_savedextsize = 0;
3641	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3642		return;
3643	/*
3644	 * Set the dependencies to busy.
3645	 */
3646	ACQUIRE_LOCK(&lk);
3647	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3648	     adp = TAILQ_NEXT(adp, ad_next)) {
3649#ifdef DIAGNOSTIC
3650		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3651			FREE_LOCK(&lk);
3652			panic("softdep_write_inodeblock: lbn order");
3653		}
3654		prevlbn = adp->ad_lbn;
3655		if (adp->ad_lbn < NDADDR &&
3656		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3657			FREE_LOCK(&lk);
3658			panic("%s: direct pointer #%jd mismatch %d != %jd",
3659			    "softdep_write_inodeblock",
3660			    (intmax_t)adp->ad_lbn,
3661			    dp->di_db[adp->ad_lbn],
3662			    (intmax_t)adp->ad_newblkno);
3663		}
3664		if (adp->ad_lbn >= NDADDR &&
3665		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3666			FREE_LOCK(&lk);
3667			panic("%s: indirect pointer #%jd mismatch %d != %jd",
3668			    "softdep_write_inodeblock",
3669			    (intmax_t)adp->ad_lbn - NDADDR,
3670			    dp->di_ib[adp->ad_lbn - NDADDR],
3671			    (intmax_t)adp->ad_newblkno);
3672		}
3673		deplist |= 1 << adp->ad_lbn;
3674		if ((adp->ad_state & ATTACHED) == 0) {
3675			FREE_LOCK(&lk);
3676			panic("softdep_write_inodeblock: Unknown state 0x%x",
3677			    adp->ad_state);
3678		}
3679#endif /* DIAGNOSTIC */
3680		adp->ad_state &= ~ATTACHED;
3681		adp->ad_state |= UNDONE;
3682	}
3683	/*
3684	 * The on-disk inode cannot claim to be any larger than the last
3685	 * fragment that has been written. Otherwise, the on-disk inode
3686	 * might have fragments that were not the last block in the file
3687	 * which would corrupt the filesystem.
3688	 */
3689	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3690	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3691		if (adp->ad_lbn >= NDADDR)
3692			break;
3693		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3694		/* keep going until hitting a rollback to a frag */
3695		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3696			continue;
3697		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3698		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3699#ifdef DIAGNOSTIC
3700			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3701				FREE_LOCK(&lk);
3702				panic("softdep_write_inodeblock: lost dep1");
3703			}
3704#endif /* DIAGNOSTIC */
3705			dp->di_db[i] = 0;
3706		}
3707		for (i = 0; i < NIADDR; i++) {
3708#ifdef DIAGNOSTIC
3709			if (dp->di_ib[i] != 0 &&
3710			    (deplist & ((1 << NDADDR) << i)) == 0) {
3711				FREE_LOCK(&lk);
3712				panic("softdep_write_inodeblock: lost dep2");
3713			}
3714#endif /* DIAGNOSTIC */
3715			dp->di_ib[i] = 0;
3716		}
3717		FREE_LOCK(&lk);
3718		return;
3719	}
3720	/*
3721	 * If we have zero'ed out the last allocated block of the file,
3722	 * roll back the size to the last currently allocated block.
3723	 * We know that this last allocated block is a full-sized as
3724	 * we already checked for fragments in the loop above.
3725	 */
3726	if (lastadp != NULL &&
3727	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3728		for (i = lastadp->ad_lbn; i >= 0; i--)
3729			if (dp->di_db[i] != 0)
3730				break;
3731		dp->di_size = (i + 1) * fs->fs_bsize;
3732	}
3733	/*
3734	 * The only dependencies are for indirect blocks.
3735	 *
3736	 * The file size for indirect block additions is not guaranteed.
3737	 * Such a guarantee would be non-trivial to achieve. The conventional
3738	 * synchronous write implementation also does not make this guarantee.
3739	 * Fsck should catch and fix discrepancies. Arguably, the file size
3740	 * can be over-estimated without destroying integrity when the file
3741	 * moves into the indirect blocks (i.e., is large). If we want to
3742	 * postpone fsck, we are stuck with this argument.
3743	 */
3744	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3745		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3746	FREE_LOCK(&lk);
3747}
3748
3749/*
3750 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
3751 * Note that any bug fixes made to this routine must be done in the
3752 * version found above.
3753 *
3754 * Called from within the procedure above to deal with unsatisfied
3755 * allocation dependencies in an inodeblock. The buffer must be
3756 * locked, thus, no I/O completion operations can occur while we
3757 * are manipulating its associated dependencies.
3758 */
3759static void
3760initiate_write_inodeblock_ufs2(inodedep, bp)
3761	struct inodedep *inodedep;
3762	struct buf *bp;			/* The inode block */
3763{
3764	struct allocdirect *adp, *lastadp;
3765	struct ufs2_dinode *dp;
3766	struct fs *fs;
3767	ufs_lbn_t i, prevlbn = 0;
3768	int deplist;
3769
3770	if (inodedep->id_state & IOSTARTED)
3771		panic("initiate_write_inodeblock_ufs2: already started");
3772	inodedep->id_state |= IOSTARTED;
3773	fs = inodedep->id_fs;
3774	dp = (struct ufs2_dinode *)bp->b_data +
3775	    ino_to_fsbo(fs, inodedep->id_ino);
3776	/*
3777	 * If the bitmap is not yet written, then the allocated
3778	 * inode cannot be written to disk.
3779	 */
3780	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3781		if (inodedep->id_savedino2 != NULL)
3782			panic("initiate_write_inodeblock_ufs2: I/O underway");
3783		MALLOC(inodedep->id_savedino2, struct ufs2_dinode *,
3784		    sizeof(struct ufs2_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3785		*inodedep->id_savedino2 = *dp;
3786		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
3787		return;
3788	}
3789	/*
3790	 * If no dependencies, then there is nothing to roll back.
3791	 */
3792	inodedep->id_savedsize = dp->di_size;
3793	inodedep->id_savedextsize = dp->di_extsize;
3794	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL &&
3795	    TAILQ_FIRST(&inodedep->id_extupdt) == NULL)
3796		return;
3797	/*
3798	 * Set the ext data dependencies to busy.
3799	 */
3800	ACQUIRE_LOCK(&lk);
3801	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
3802	     adp = TAILQ_NEXT(adp, ad_next)) {
3803#ifdef DIAGNOSTIC
3804		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3805			FREE_LOCK(&lk);
3806			panic("softdep_write_inodeblock: lbn order");
3807		}
3808		prevlbn = adp->ad_lbn;
3809		if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) {
3810			FREE_LOCK(&lk);
3811			panic("%s: direct pointer #%jd mismatch %jd != %jd",
3812			    "softdep_write_inodeblock",
3813			    (intmax_t)adp->ad_lbn,
3814			    (intmax_t)dp->di_extb[adp->ad_lbn],
3815			    (intmax_t)adp->ad_newblkno);
3816		}
3817		deplist |= 1 << adp->ad_lbn;
3818		if ((adp->ad_state & ATTACHED) == 0) {
3819			FREE_LOCK(&lk);
3820			panic("softdep_write_inodeblock: Unknown state 0x%x",
3821			    adp->ad_state);
3822		}
3823#endif /* DIAGNOSTIC */
3824		adp->ad_state &= ~ATTACHED;
3825		adp->ad_state |= UNDONE;
3826	}
3827	/*
3828	 * The on-disk inode cannot claim to be any larger than the last
3829	 * fragment that has been written. Otherwise, the on-disk inode
3830	 * might have fragments that were not the last block in the ext
3831	 * data which would corrupt the filesystem.
3832	 */
3833	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
3834	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3835		dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno;
3836		/* keep going until hitting a rollback to a frag */
3837		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3838			continue;
3839		dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3840		for (i = adp->ad_lbn + 1; i < NXADDR; i++) {
3841#ifdef DIAGNOSTIC
3842			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) {
3843				FREE_LOCK(&lk);
3844				panic("softdep_write_inodeblock: lost dep1");
3845			}
3846#endif /* DIAGNOSTIC */
3847			dp->di_extb[i] = 0;
3848		}
3849		lastadp = NULL;
3850		break;
3851	}
3852	/*
3853	 * If we have zero'ed out the last allocated block of the ext
3854	 * data, roll back the size to the last currently allocated block.
3855	 * We know that this last allocated block is a full-sized as
3856	 * we already checked for fragments in the loop above.
3857	 */
3858	if (lastadp != NULL &&
3859	    dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3860		for (i = lastadp->ad_lbn; i >= 0; i--)
3861			if (dp->di_extb[i] != 0)
3862				break;
3863		dp->di_extsize = (i + 1) * fs->fs_bsize;
3864	}
3865	/*
3866	 * Set the file data dependencies to busy.
3867	 */
3868	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3869	     adp = TAILQ_NEXT(adp, ad_next)) {
3870#ifdef DIAGNOSTIC
3871		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3872			FREE_LOCK(&lk);
3873			panic("softdep_write_inodeblock: lbn order");
3874		}
3875		prevlbn = adp->ad_lbn;
3876		if (adp->ad_lbn < NDADDR &&
3877		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3878			FREE_LOCK(&lk);
3879			panic("%s: direct pointer #%jd mismatch %jd != %jd",
3880			    "softdep_write_inodeblock",
3881			    (intmax_t)adp->ad_lbn,
3882			    (intmax_t)dp->di_db[adp->ad_lbn],
3883			    (intmax_t)adp->ad_newblkno);
3884		}
3885		if (adp->ad_lbn >= NDADDR &&
3886		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3887			FREE_LOCK(&lk);
3888			panic("%s indirect pointer #%jd mismatch %jd != %jd",
3889			    "softdep_write_inodeblock:",
3890			    (intmax_t)adp->ad_lbn - NDADDR,
3891			    (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR],
3892			    (intmax_t)adp->ad_newblkno);
3893		}
3894		deplist |= 1 << adp->ad_lbn;
3895		if ((adp->ad_state & ATTACHED) == 0) {
3896			FREE_LOCK(&lk);
3897			panic("softdep_write_inodeblock: Unknown state 0x%x",
3898			    adp->ad_state);
3899		}
3900#endif /* DIAGNOSTIC */
3901		adp->ad_state &= ~ATTACHED;
3902		adp->ad_state |= UNDONE;
3903	}
3904	/*
3905	 * The on-disk inode cannot claim to be any larger than the last
3906	 * fragment that has been written. Otherwise, the on-disk inode
3907	 * might have fragments that were not the last block in the file
3908	 * which would corrupt the filesystem.
3909	 */
3910	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3911	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3912		if (adp->ad_lbn >= NDADDR)
3913			break;
3914		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3915		/* keep going until hitting a rollback to a frag */
3916		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3917			continue;
3918		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3919		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3920#ifdef DIAGNOSTIC
3921			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3922				FREE_LOCK(&lk);
3923				panic("softdep_write_inodeblock: lost dep2");
3924			}
3925#endif /* DIAGNOSTIC */
3926			dp->di_db[i] = 0;
3927		}
3928		for (i = 0; i < NIADDR; i++) {
3929#ifdef DIAGNOSTIC
3930			if (dp->di_ib[i] != 0 &&
3931			    (deplist & ((1 << NDADDR) << i)) == 0) {
3932				FREE_LOCK(&lk);
3933				panic("softdep_write_inodeblock: lost dep3");
3934			}
3935#endif /* DIAGNOSTIC */
3936			dp->di_ib[i] = 0;
3937		}
3938		FREE_LOCK(&lk);
3939		return;
3940	}
3941	/*
3942	 * If we have zero'ed out the last allocated block of the file,
3943	 * roll back the size to the last currently allocated block.
3944	 * We know that this last allocated block is a full-sized as
3945	 * we already checked for fragments in the loop above.
3946	 */
3947	if (lastadp != NULL &&
3948	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3949		for (i = lastadp->ad_lbn; i >= 0; i--)
3950			if (dp->di_db[i] != 0)
3951				break;
3952		dp->di_size = (i + 1) * fs->fs_bsize;
3953	}
3954	/*
3955	 * The only dependencies are for indirect blocks.
3956	 *
3957	 * The file size for indirect block additions is not guaranteed.
3958	 * Such a guarantee would be non-trivial to achieve. The conventional
3959	 * synchronous write implementation also does not make this guarantee.
3960	 * Fsck should catch and fix discrepancies. Arguably, the file size
3961	 * can be over-estimated without destroying integrity when the file
3962	 * moves into the indirect blocks (i.e., is large). If we want to
3963	 * postpone fsck, we are stuck with this argument.
3964	 */
3965	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3966		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3967	FREE_LOCK(&lk);
3968}
3969
3970/*
3971 * This routine is called during the completion interrupt
3972 * service routine for a disk write (from the procedure called
3973 * by the device driver to inform the filesystem caches of
3974 * a request completion).  It should be called early in this
3975 * procedure, before the block is made available to other
3976 * processes or other routines are called.
3977 */
3978static void
3979softdep_disk_write_complete(bp)
3980	struct buf *bp;		/* describes the completed disk write */
3981{
3982	struct worklist *wk;
3983	struct workhead reattach;
3984	struct newblk *newblk;
3985	struct allocindir *aip;
3986	struct allocdirect *adp;
3987	struct indirdep *indirdep;
3988	struct inodedep *inodedep;
3989	struct bmsafemap *bmsafemap;
3990
3991	/*
3992	 * If an error occurred while doing the write, then the data
3993	 * has not hit the disk and the dependencies cannot be unrolled.
3994	 */
3995	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
3996		return;
3997#ifdef DEBUG
3998	if (lk.lkt_held != NOHOLDER)
3999		panic("softdep_disk_write_complete: lock is held");
4000	lk.lkt_held = SPECIAL_FLAG;
4001#endif
4002	LIST_INIT(&reattach);
4003	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
4004		WORKLIST_REMOVE(wk);
4005		switch (wk->wk_type) {
4006
4007		case D_PAGEDEP:
4008			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
4009				WORKLIST_INSERT(&reattach, wk);
4010			continue;
4011
4012		case D_INODEDEP:
4013			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
4014				WORKLIST_INSERT(&reattach, wk);
4015			continue;
4016
4017		case D_BMSAFEMAP:
4018			bmsafemap = WK_BMSAFEMAP(wk);
4019			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
4020				newblk->nb_state |= DEPCOMPLETE;
4021				newblk->nb_bmsafemap = NULL;
4022				LIST_REMOVE(newblk, nb_deps);
4023			}
4024			while ((adp =
4025			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
4026				adp->ad_state |= DEPCOMPLETE;
4027				adp->ad_buf = NULL;
4028				LIST_REMOVE(adp, ad_deps);
4029				handle_allocdirect_partdone(adp);
4030			}
4031			while ((aip =
4032			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
4033				aip->ai_state |= DEPCOMPLETE;
4034				aip->ai_buf = NULL;
4035				LIST_REMOVE(aip, ai_deps);
4036				handle_allocindir_partdone(aip);
4037			}
4038			while ((inodedep =
4039			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
4040				inodedep->id_state |= DEPCOMPLETE;
4041				LIST_REMOVE(inodedep, id_deps);
4042				inodedep->id_buf = NULL;
4043			}
4044			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4045			continue;
4046
4047		case D_MKDIR:
4048			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
4049			continue;
4050
4051		case D_ALLOCDIRECT:
4052			adp = WK_ALLOCDIRECT(wk);
4053			adp->ad_state |= COMPLETE;
4054			handle_allocdirect_partdone(adp);
4055			continue;
4056
4057		case D_ALLOCINDIR:
4058			aip = WK_ALLOCINDIR(wk);
4059			aip->ai_state |= COMPLETE;
4060			handle_allocindir_partdone(aip);
4061			continue;
4062
4063		case D_INDIRDEP:
4064			indirdep = WK_INDIRDEP(wk);
4065			if (indirdep->ir_state & GOINGAWAY) {
4066				lk.lkt_held = NOHOLDER;
4067				panic("disk_write_complete: indirdep gone");
4068			}
4069			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
4070			FREE(indirdep->ir_saveddata, M_INDIRDEP);
4071			indirdep->ir_saveddata = 0;
4072			indirdep->ir_state &= ~UNDONE;
4073			indirdep->ir_state |= ATTACHED;
4074			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
4075				handle_allocindir_partdone(aip);
4076				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
4077					lk.lkt_held = NOHOLDER;
4078					panic("disk_write_complete: not gone");
4079				}
4080			}
4081			WORKLIST_INSERT(&reattach, wk);
4082			if ((bp->b_flags & B_DELWRI) == 0)
4083				stat_indir_blk_ptrs++;
4084			bdirty(bp);
4085			continue;
4086
4087		default:
4088			lk.lkt_held = NOHOLDER;
4089			panic("handle_disk_write_complete: Unknown type %s",
4090			    TYPENAME(wk->wk_type));
4091			/* NOTREACHED */
4092		}
4093	}
4094	/*
4095	 * Reattach any requests that must be redone.
4096	 */
4097	while ((wk = LIST_FIRST(&reattach)) != NULL) {
4098		WORKLIST_REMOVE(wk);
4099		WORKLIST_INSERT(&bp->b_dep, wk);
4100	}
4101#ifdef DEBUG
4102	if (lk.lkt_held != SPECIAL_FLAG)
4103		panic("softdep_disk_write_complete: lock lost");
4104	lk.lkt_held = NOHOLDER;
4105#endif
4106}
4107
4108/*
4109 * Called from within softdep_disk_write_complete above. Note that
4110 * this routine is always called from interrupt level with further
4111 * splbio interrupts blocked.
4112 */
4113static void
4114handle_allocdirect_partdone(adp)
4115	struct allocdirect *adp;	/* the completed allocdirect */
4116{
4117	struct allocdirectlst *listhead;
4118	struct allocdirect *listadp;
4119	struct inodedep *inodedep;
4120	long bsize, delay;
4121
4122	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4123		return;
4124	if (adp->ad_buf != NULL) {
4125		lk.lkt_held = NOHOLDER;
4126		panic("handle_allocdirect_partdone: dangling dep");
4127	}
4128	/*
4129	 * The on-disk inode cannot claim to be any larger than the last
4130	 * fragment that has been written. Otherwise, the on-disk inode
4131	 * might have fragments that were not the last block in the file
4132	 * which would corrupt the filesystem. Thus, we cannot free any
4133	 * allocdirects after one whose ad_oldblkno claims a fragment as
4134	 * these blocks must be rolled back to zero before writing the inode.
4135	 * We check the currently active set of allocdirects in id_inoupdt
4136	 * or id_extupdt as appropriate.
4137	 */
4138	inodedep = adp->ad_inodedep;
4139	bsize = inodedep->id_fs->fs_bsize;
4140	if (adp->ad_state & EXTDATA)
4141		listhead = &inodedep->id_extupdt;
4142	else
4143		listhead = &inodedep->id_inoupdt;
4144	TAILQ_FOREACH(listadp, listhead, ad_next) {
4145		/* found our block */
4146		if (listadp == adp)
4147			break;
4148		/* continue if ad_oldlbn is not a fragment */
4149		if (listadp->ad_oldsize == 0 ||
4150		    listadp->ad_oldsize == bsize)
4151			continue;
4152		/* hit a fragment */
4153		return;
4154	}
4155	/*
4156	 * If we have reached the end of the current list without
4157	 * finding the just finished dependency, then it must be
4158	 * on the future dependency list. Future dependencies cannot
4159	 * be freed until they are moved to the current list.
4160	 */
4161	if (listadp == NULL) {
4162#ifdef DEBUG
4163		if (adp->ad_state & EXTDATA)
4164			listhead = &inodedep->id_newextupdt;
4165		else
4166			listhead = &inodedep->id_newinoupdt;
4167		TAILQ_FOREACH(listadp, listhead, ad_next)
4168			/* found our block */
4169			if (listadp == adp)
4170				break;
4171		if (listadp == NULL) {
4172			lk.lkt_held = NOHOLDER;
4173			panic("handle_allocdirect_partdone: lost dep");
4174		}
4175#endif /* DEBUG */
4176		return;
4177	}
4178	/*
4179	 * If we have found the just finished dependency, then free
4180	 * it along with anything that follows it that is complete.
4181	 * If the inode still has a bitmap dependency, then it has
4182	 * never been written to disk, hence the on-disk inode cannot
4183	 * reference the old fragment so we can free it without delay.
4184	 */
4185	delay = (inodedep->id_state & DEPCOMPLETE);
4186	for (; adp; adp = listadp) {
4187		listadp = TAILQ_NEXT(adp, ad_next);
4188		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4189			return;
4190		free_allocdirect(listhead, adp, delay);
4191	}
4192}
4193
4194/*
4195 * Called from within softdep_disk_write_complete above. Note that
4196 * this routine is always called from interrupt level with further
4197 * splbio interrupts blocked.
4198 */
4199static void
4200handle_allocindir_partdone(aip)
4201	struct allocindir *aip;		/* the completed allocindir */
4202{
4203	struct indirdep *indirdep;
4204
4205	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
4206		return;
4207	if (aip->ai_buf != NULL) {
4208		lk.lkt_held = NOHOLDER;
4209		panic("handle_allocindir_partdone: dangling dependency");
4210	}
4211	indirdep = aip->ai_indirdep;
4212	if (indirdep->ir_state & UNDONE) {
4213		LIST_REMOVE(aip, ai_next);
4214		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
4215		return;
4216	}
4217	if (indirdep->ir_state & UFS1FMT)
4218		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4219		    aip->ai_newblkno;
4220	else
4221		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4222		    aip->ai_newblkno;
4223	LIST_REMOVE(aip, ai_next);
4224	if (aip->ai_freefrag != NULL)
4225		add_to_worklist(&aip->ai_freefrag->ff_list);
4226	WORKITEM_FREE(aip, D_ALLOCINDIR);
4227}
4228
4229/*
4230 * Called from within softdep_disk_write_complete above to restore
4231 * in-memory inode block contents to their most up-to-date state. Note
4232 * that this routine is always called from interrupt level with further
4233 * splbio interrupts blocked.
4234 */
4235static int
4236handle_written_inodeblock(inodedep, bp)
4237	struct inodedep *inodedep;
4238	struct buf *bp;		/* buffer containing the inode block */
4239{
4240	struct worklist *wk, *filefree;
4241	struct allocdirect *adp, *nextadp;
4242	struct ufs1_dinode *dp1 = NULL;
4243	struct ufs2_dinode *dp2 = NULL;
4244	int hadchanges, fstype;
4245
4246	if ((inodedep->id_state & IOSTARTED) == 0) {
4247		lk.lkt_held = NOHOLDER;
4248		panic("handle_written_inodeblock: not started");
4249	}
4250	inodedep->id_state &= ~IOSTARTED;
4251	inodedep->id_state |= COMPLETE;
4252	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
4253		fstype = UFS1;
4254		dp1 = (struct ufs1_dinode *)bp->b_data +
4255		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4256	} else {
4257		fstype = UFS2;
4258		dp2 = (struct ufs2_dinode *)bp->b_data +
4259		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4260	}
4261	/*
4262	 * If we had to rollback the inode allocation because of
4263	 * bitmaps being incomplete, then simply restore it.
4264	 * Keep the block dirty so that it will not be reclaimed until
4265	 * all associated dependencies have been cleared and the
4266	 * corresponding updates written to disk.
4267	 */
4268	if (inodedep->id_savedino1 != NULL) {
4269		if (fstype == UFS1)
4270			*dp1 = *inodedep->id_savedino1;
4271		else
4272			*dp2 = *inodedep->id_savedino2;
4273		FREE(inodedep->id_savedino1, M_INODEDEP);
4274		inodedep->id_savedino1 = NULL;
4275		if ((bp->b_flags & B_DELWRI) == 0)
4276			stat_inode_bitmap++;
4277		bdirty(bp);
4278		return (1);
4279	}
4280	/*
4281	 * Roll forward anything that had to be rolled back before
4282	 * the inode could be updated.
4283	 */
4284	hadchanges = 0;
4285	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
4286		nextadp = TAILQ_NEXT(adp, ad_next);
4287		if (adp->ad_state & ATTACHED) {
4288			lk.lkt_held = NOHOLDER;
4289			panic("handle_written_inodeblock: new entry");
4290		}
4291		if (fstype == UFS1) {
4292			if (adp->ad_lbn < NDADDR) {
4293				if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) {
4294					lk.lkt_held = NOHOLDER;
4295					panic("%s %s #%jd mismatch %d != %jd",
4296					    "handle_written_inodeblock:",
4297					    "direct pointer",
4298					    (intmax_t)adp->ad_lbn,
4299					    dp1->di_db[adp->ad_lbn],
4300					    (intmax_t)adp->ad_oldblkno);
4301				}
4302				dp1->di_db[adp->ad_lbn] = adp->ad_newblkno;
4303			} else {
4304				if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) {
4305					lk.lkt_held = NOHOLDER;
4306					panic("%s: %s #%jd allocated as %d",
4307					    "handle_written_inodeblock",
4308					    "indirect pointer",
4309					    (intmax_t)adp->ad_lbn - NDADDR,
4310					    dp1->di_ib[adp->ad_lbn - NDADDR]);
4311				}
4312				dp1->di_ib[adp->ad_lbn - NDADDR] =
4313				    adp->ad_newblkno;
4314			}
4315		} else {
4316			if (adp->ad_lbn < NDADDR) {
4317				if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) {
4318					lk.lkt_held = NOHOLDER;
4319					panic("%s: %s #%jd %s %jd != %jd",
4320					    "handle_written_inodeblock",
4321					    "direct pointer",
4322					    (intmax_t)adp->ad_lbn, "mismatch",
4323					    (intmax_t)dp2->di_db[adp->ad_lbn],
4324					    (intmax_t)adp->ad_oldblkno);
4325				}
4326				dp2->di_db[adp->ad_lbn] = adp->ad_newblkno;
4327			} else {
4328				if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) {
4329					lk.lkt_held = NOHOLDER;
4330					panic("%s: %s #%jd allocated as %jd",
4331					    "handle_written_inodeblock",
4332					    "indirect pointer",
4333					    (intmax_t)adp->ad_lbn - NDADDR,
4334					    (intmax_t)
4335					    dp2->di_ib[adp->ad_lbn - NDADDR]);
4336				}
4337				dp2->di_ib[adp->ad_lbn - NDADDR] =
4338				    adp->ad_newblkno;
4339			}
4340		}
4341		adp->ad_state &= ~UNDONE;
4342		adp->ad_state |= ATTACHED;
4343		hadchanges = 1;
4344	}
4345	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
4346		nextadp = TAILQ_NEXT(adp, ad_next);
4347		if (adp->ad_state & ATTACHED) {
4348			lk.lkt_held = NOHOLDER;
4349			panic("handle_written_inodeblock: new entry");
4350		}
4351		if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) {
4352			lk.lkt_held = NOHOLDER;
4353			panic("%s: direct pointers #%jd %s %jd != %jd",
4354			    "handle_written_inodeblock",
4355			    (intmax_t)adp->ad_lbn, "mismatch",
4356			    (intmax_t)dp2->di_extb[adp->ad_lbn],
4357			    (intmax_t)adp->ad_oldblkno);
4358		}
4359		dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno;
4360		adp->ad_state &= ~UNDONE;
4361		adp->ad_state |= ATTACHED;
4362		hadchanges = 1;
4363	}
4364	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
4365		stat_direct_blk_ptrs++;
4366	/*
4367	 * Reset the file size to its most up-to-date value.
4368	 */
4369	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) {
4370		lk.lkt_held = NOHOLDER;
4371		panic("handle_written_inodeblock: bad size");
4372	}
4373	if (fstype == UFS1) {
4374		if (dp1->di_size != inodedep->id_savedsize) {
4375			dp1->di_size = inodedep->id_savedsize;
4376			hadchanges = 1;
4377		}
4378	} else {
4379		if (dp2->di_size != inodedep->id_savedsize) {
4380			dp2->di_size = inodedep->id_savedsize;
4381			hadchanges = 1;
4382		}
4383		if (dp2->di_extsize != inodedep->id_savedextsize) {
4384			dp2->di_extsize = inodedep->id_savedextsize;
4385			hadchanges = 1;
4386		}
4387	}
4388	inodedep->id_savedsize = -1;
4389	inodedep->id_savedextsize = -1;
4390	/*
4391	 * If there were any rollbacks in the inode block, then it must be
4392	 * marked dirty so that its will eventually get written back in
4393	 * its correct form.
4394	 */
4395	if (hadchanges)
4396		bdirty(bp);
4397	/*
4398	 * Process any allocdirects that completed during the update.
4399	 */
4400	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
4401		handle_allocdirect_partdone(adp);
4402	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
4403		handle_allocdirect_partdone(adp);
4404	/*
4405	 * Process deallocations that were held pending until the
4406	 * inode had been written to disk. Freeing of the inode
4407	 * is delayed until after all blocks have been freed to
4408	 * avoid creation of new <vfsid, inum, lbn> triples
4409	 * before the old ones have been deleted.
4410	 */
4411	filefree = NULL;
4412	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
4413		WORKLIST_REMOVE(wk);
4414		switch (wk->wk_type) {
4415
4416		case D_FREEFILE:
4417			/*
4418			 * We defer adding filefree to the worklist until
4419			 * all other additions have been made to ensure
4420			 * that it will be done after all the old blocks
4421			 * have been freed.
4422			 */
4423			if (filefree != NULL) {
4424				lk.lkt_held = NOHOLDER;
4425				panic("handle_written_inodeblock: filefree");
4426			}
4427			filefree = wk;
4428			continue;
4429
4430		case D_MKDIR:
4431			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
4432			continue;
4433
4434		case D_DIRADD:
4435			diradd_inode_written(WK_DIRADD(wk), inodedep);
4436			continue;
4437
4438		case D_FREEBLKS:
4439		case D_FREEFRAG:
4440		case D_DIRREM:
4441			add_to_worklist(wk);
4442			continue;
4443
4444		case D_NEWDIRBLK:
4445			free_newdirblk(WK_NEWDIRBLK(wk));
4446			continue;
4447
4448		default:
4449			lk.lkt_held = NOHOLDER;
4450			panic("handle_written_inodeblock: Unknown type %s",
4451			    TYPENAME(wk->wk_type));
4452			/* NOTREACHED */
4453		}
4454	}
4455	if (filefree != NULL) {
4456		if (free_inodedep(inodedep) == 0) {
4457			lk.lkt_held = NOHOLDER;
4458			panic("handle_written_inodeblock: live inodedep");
4459		}
4460		add_to_worklist(filefree);
4461		return (0);
4462	}
4463
4464	/*
4465	 * If no outstanding dependencies, free it.
4466	 */
4467	if (free_inodedep(inodedep) ||
4468	    (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
4469	     TAILQ_FIRST(&inodedep->id_extupdt) == 0))
4470		return (0);
4471	return (hadchanges);
4472}
4473
4474/*
4475 * Process a diradd entry after its dependent inode has been written.
4476 * This routine must be called with splbio interrupts blocked.
4477 */
4478static void
4479diradd_inode_written(dap, inodedep)
4480	struct diradd *dap;
4481	struct inodedep *inodedep;
4482{
4483	struct pagedep *pagedep;
4484
4485	dap->da_state |= COMPLETE;
4486	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4487		if (dap->da_state & DIRCHG)
4488			pagedep = dap->da_previous->dm_pagedep;
4489		else
4490			pagedep = dap->da_pagedep;
4491		LIST_REMOVE(dap, da_pdlist);
4492		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4493	}
4494	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
4495}
4496
4497/*
4498 * Handle the completion of a mkdir dependency.
4499 */
4500static void
4501handle_written_mkdir(mkdir, type)
4502	struct mkdir *mkdir;
4503	int type;
4504{
4505	struct diradd *dap;
4506	struct pagedep *pagedep;
4507
4508	if (mkdir->md_state != type) {
4509		lk.lkt_held = NOHOLDER;
4510		panic("handle_written_mkdir: bad type");
4511	}
4512	dap = mkdir->md_diradd;
4513	dap->da_state &= ~type;
4514	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
4515		dap->da_state |= DEPCOMPLETE;
4516	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4517		if (dap->da_state & DIRCHG)
4518			pagedep = dap->da_previous->dm_pagedep;
4519		else
4520			pagedep = dap->da_pagedep;
4521		LIST_REMOVE(dap, da_pdlist);
4522		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4523	}
4524	LIST_REMOVE(mkdir, md_mkdirs);
4525	WORKITEM_FREE(mkdir, D_MKDIR);
4526}
4527
4528/*
4529 * Called from within softdep_disk_write_complete above.
4530 * A write operation was just completed. Removed inodes can
4531 * now be freed and associated block pointers may be committed.
4532 * Note that this routine is always called from interrupt level
4533 * with further splbio interrupts blocked.
4534 */
4535static int
4536handle_written_filepage(pagedep, bp)
4537	struct pagedep *pagedep;
4538	struct buf *bp;		/* buffer containing the written page */
4539{
4540	struct dirrem *dirrem;
4541	struct diradd *dap, *nextdap;
4542	struct direct *ep;
4543	int i, chgs;
4544
4545	if ((pagedep->pd_state & IOSTARTED) == 0) {
4546		lk.lkt_held = NOHOLDER;
4547		panic("handle_written_filepage: not started");
4548	}
4549	pagedep->pd_state &= ~IOSTARTED;
4550	/*
4551	 * Process any directory removals that have been committed.
4552	 */
4553	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
4554		LIST_REMOVE(dirrem, dm_next);
4555		dirrem->dm_dirinum = pagedep->pd_ino;
4556		add_to_worklist(&dirrem->dm_list);
4557	}
4558	/*
4559	 * Free any directory additions that have been committed.
4560	 * If it is a newly allocated block, we have to wait until
4561	 * the on-disk directory inode claims the new block.
4562	 */
4563	if ((pagedep->pd_state & NEWBLOCK) == 0)
4564		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
4565			free_diradd(dap);
4566	/*
4567	 * Uncommitted directory entries must be restored.
4568	 */
4569	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
4570		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
4571		     dap = nextdap) {
4572			nextdap = LIST_NEXT(dap, da_pdlist);
4573			if (dap->da_state & ATTACHED) {
4574				lk.lkt_held = NOHOLDER;
4575				panic("handle_written_filepage: attached");
4576			}
4577			ep = (struct direct *)
4578			    ((char *)bp->b_data + dap->da_offset);
4579			ep->d_ino = dap->da_newinum;
4580			dap->da_state &= ~UNDONE;
4581			dap->da_state |= ATTACHED;
4582			chgs = 1;
4583			/*
4584			 * If the inode referenced by the directory has
4585			 * been written out, then the dependency can be
4586			 * moved to the pending list.
4587			 */
4588			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4589				LIST_REMOVE(dap, da_pdlist);
4590				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
4591				    da_pdlist);
4592			}
4593		}
4594	}
4595	/*
4596	 * If there were any rollbacks in the directory, then it must be
4597	 * marked dirty so that its will eventually get written back in
4598	 * its correct form.
4599	 */
4600	if (chgs) {
4601		if ((bp->b_flags & B_DELWRI) == 0)
4602			stat_dir_entry++;
4603		bdirty(bp);
4604		return (1);
4605	}
4606	/*
4607	 * If we are not waiting for a new directory block to be
4608	 * claimed by its inode, then the pagedep will be freed.
4609	 * Otherwise it will remain to track any new entries on
4610	 * the page in case they are fsync'ed.
4611	 */
4612	if ((pagedep->pd_state & NEWBLOCK) == 0) {
4613		LIST_REMOVE(pagedep, pd_hash);
4614		WORKITEM_FREE(pagedep, D_PAGEDEP);
4615	}
4616	return (0);
4617}
4618
4619/*
4620 * Writing back in-core inode structures.
4621 *
4622 * The filesystem only accesses an inode's contents when it occupies an
4623 * "in-core" inode structure.  These "in-core" structures are separate from
4624 * the page frames used to cache inode blocks.  Only the latter are
4625 * transferred to/from the disk.  So, when the updated contents of the
4626 * "in-core" inode structure are copied to the corresponding in-memory inode
4627 * block, the dependencies are also transferred.  The following procedure is
4628 * called when copying a dirty "in-core" inode to a cached inode block.
4629 */
4630
4631/*
4632 * Called when an inode is loaded from disk. If the effective link count
4633 * differed from the actual link count when it was last flushed, then we
4634 * need to ensure that the correct effective link count is put back.
4635 */
4636void
4637softdep_load_inodeblock(ip)
4638	struct inode *ip;	/* the "in_core" copy of the inode */
4639{
4640	struct inodedep *inodedep;
4641
4642	/*
4643	 * Check for alternate nlink count.
4644	 */
4645	ip->i_effnlink = ip->i_nlink;
4646	ACQUIRE_LOCK(&lk);
4647	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4648		FREE_LOCK(&lk);
4649		return;
4650	}
4651	ip->i_effnlink -= inodedep->id_nlinkdelta;
4652	if (inodedep->id_state & SPACECOUNTED)
4653		ip->i_flag |= IN_SPACECOUNTED;
4654	FREE_LOCK(&lk);
4655}
4656
4657/*
4658 * This routine is called just before the "in-core" inode
4659 * information is to be copied to the in-memory inode block.
4660 * Recall that an inode block contains several inodes. If
4661 * the force flag is set, then the dependencies will be
4662 * cleared so that the update can always be made. Note that
4663 * the buffer is locked when this routine is called, so we
4664 * will never be in the middle of writing the inode block
4665 * to disk.
4666 */
4667void
4668softdep_update_inodeblock(ip, bp, waitfor)
4669	struct inode *ip;	/* the "in_core" copy of the inode */
4670	struct buf *bp;		/* the buffer containing the inode block */
4671	int waitfor;		/* nonzero => update must be allowed */
4672{
4673	struct inodedep *inodedep;
4674	struct worklist *wk;
4675	struct buf *ibp;
4676	int error;
4677
4678	/*
4679	 * If the effective link count is not equal to the actual link
4680	 * count, then we must track the difference in an inodedep while
4681	 * the inode is (potentially) tossed out of the cache. Otherwise,
4682	 * if there is no existing inodedep, then there are no dependencies
4683	 * to track.
4684	 */
4685	ACQUIRE_LOCK(&lk);
4686	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4687		FREE_LOCK(&lk);
4688		if (ip->i_effnlink != ip->i_nlink)
4689			panic("softdep_update_inodeblock: bad link count");
4690		return;
4691	}
4692	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
4693		FREE_LOCK(&lk);
4694		panic("softdep_update_inodeblock: bad delta");
4695	}
4696	/*
4697	 * Changes have been initiated. Anything depending on these
4698	 * changes cannot occur until this inode has been written.
4699	 */
4700	inodedep->id_state &= ~COMPLETE;
4701	if ((inodedep->id_state & ONWORKLIST) == 0)
4702		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
4703	/*
4704	 * Any new dependencies associated with the incore inode must
4705	 * now be moved to the list associated with the buffer holding
4706	 * the in-memory copy of the inode. Once merged process any
4707	 * allocdirects that are completed by the merger.
4708	 */
4709	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
4710	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4711		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4712	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
4713	if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL)
4714		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt));
4715	/*
4716	 * Now that the inode has been pushed into the buffer, the
4717	 * operations dependent on the inode being written to disk
4718	 * can be moved to the id_bufwait so that they will be
4719	 * processed when the buffer I/O completes.
4720	 */
4721	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4722		WORKLIST_REMOVE(wk);
4723		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4724	}
4725	/*
4726	 * Newly allocated inodes cannot be written until the bitmap
4727	 * that allocates them have been written (indicated by
4728	 * DEPCOMPLETE being set in id_state). If we are doing a
4729	 * forced sync (e.g., an fsync on a file), we force the bitmap
4730	 * to be written so that the update can be done.
4731	 */
4732	if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4733		FREE_LOCK(&lk);
4734		return;
4735	}
4736	ibp = inodedep->id_buf;
4737	ibp = getdirtybuf(&ibp, NULL, MNT_WAIT);
4738	FREE_LOCK(&lk);
4739	if (ibp && (error = bwrite(ibp)) != 0)
4740		softdep_error("softdep_update_inodeblock: bwrite", error);
4741	if ((inodedep->id_state & DEPCOMPLETE) == 0)
4742		panic("softdep_update_inodeblock: update failed");
4743}
4744
4745/*
4746 * Merge the a new inode dependency list (such as id_newinoupdt) into an
4747 * old inode dependency list (such as id_inoupdt). This routine must be
4748 * called with splbio interrupts blocked.
4749 */
4750static void
4751merge_inode_lists(newlisthead, oldlisthead)
4752	struct allocdirectlst *newlisthead;
4753	struct allocdirectlst *oldlisthead;
4754{
4755	struct allocdirect *listadp, *newadp;
4756
4757	newadp = TAILQ_FIRST(newlisthead);
4758	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
4759		if (listadp->ad_lbn < newadp->ad_lbn) {
4760			listadp = TAILQ_NEXT(listadp, ad_next);
4761			continue;
4762		}
4763		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4764		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4765		if (listadp->ad_lbn == newadp->ad_lbn) {
4766			allocdirect_merge(oldlisthead, newadp,
4767			    listadp);
4768			listadp = newadp;
4769		}
4770		newadp = TAILQ_FIRST(newlisthead);
4771	}
4772	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
4773		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4774		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
4775	}
4776}
4777
4778/*
4779 * If we are doing an fsync, then we must ensure that any directory
4780 * entries for the inode have been written after the inode gets to disk.
4781 */
4782int
4783softdep_fsync(vp)
4784	struct vnode *vp;	/* the "in_core" copy of the inode */
4785{
4786	struct inodedep *inodedep;
4787	struct pagedep *pagedep;
4788	struct worklist *wk;
4789	struct diradd *dap;
4790	struct mount *mnt;
4791	struct vnode *pvp;
4792	struct inode *ip;
4793	struct buf *bp;
4794	struct fs *fs;
4795	struct thread *td = curthread;
4796	int error, flushparent;
4797	ino_t parentino;
4798	ufs_lbn_t lbn;
4799
4800	ip = VTOI(vp);
4801	fs = ip->i_fs;
4802	ACQUIRE_LOCK(&lk);
4803	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4804		FREE_LOCK(&lk);
4805		return (0);
4806	}
4807	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4808	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4809	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
4810	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
4811	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4812	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4813		FREE_LOCK(&lk);
4814		panic("softdep_fsync: pending ops");
4815	}
4816	for (error = 0, flushparent = 0; ; ) {
4817		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4818			break;
4819		if (wk->wk_type != D_DIRADD) {
4820			FREE_LOCK(&lk);
4821			panic("softdep_fsync: Unexpected type %s",
4822			    TYPENAME(wk->wk_type));
4823		}
4824		dap = WK_DIRADD(wk);
4825		/*
4826		 * Flush our parent if this directory entry has a MKDIR_PARENT
4827		 * dependency or is contained in a newly allocated block.
4828		 */
4829		if (dap->da_state & DIRCHG)
4830			pagedep = dap->da_previous->dm_pagedep;
4831		else
4832			pagedep = dap->da_pagedep;
4833		mnt = pagedep->pd_mnt;
4834		parentino = pagedep->pd_ino;
4835		lbn = pagedep->pd_lbn;
4836		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4837			FREE_LOCK(&lk);
4838			panic("softdep_fsync: dirty");
4839		}
4840		if ((dap->da_state & MKDIR_PARENT) ||
4841		    (pagedep->pd_state & NEWBLOCK))
4842			flushparent = 1;
4843		else
4844			flushparent = 0;
4845		/*
4846		 * If we are being fsync'ed as part of vgone'ing this vnode,
4847		 * then we will not be able to release and recover the
4848		 * vnode below, so we just have to give up on writing its
4849		 * directory entry out. It will eventually be written, just
4850		 * not now, but then the user was not asking to have it
4851		 * written, so we are not breaking any promises.
4852		 */
4853		if (vp->v_iflag & VI_XLOCK)
4854			break;
4855		/*
4856		 * We prevent deadlock by always fetching inodes from the
4857		 * root, moving down the directory tree. Thus, when fetching
4858		 * our parent directory, we first try to get the lock. If
4859		 * that fails, we must unlock ourselves before requesting
4860		 * the lock on our parent. See the comment in ufs_lookup
4861		 * for details on possible races.
4862		 */
4863		FREE_LOCK(&lk);
4864		if (VFS_VGET(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) {
4865			VOP_UNLOCK(vp, 0, td);
4866			error = VFS_VGET(mnt, parentino, LK_EXCLUSIVE, &pvp);
4867			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
4868			if (error != 0)
4869				return (error);
4870		}
4871		/*
4872		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
4873		 * that are contained in direct blocks will be resolved by
4874		 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks
4875		 * may require a complete sync'ing of the directory. So, we
4876		 * try the cheap and fast UFS_UPDATE first, and if that fails,
4877		 * then we do the slower VOP_FSYNC of the directory.
4878		 */
4879		if (flushparent) {
4880			if ((error = UFS_UPDATE(pvp, 1)) != 0) {
4881				vput(pvp);
4882				return (error);
4883			}
4884			if ((pagedep->pd_state & NEWBLOCK) &&
4885			    (error = VOP_FSYNC(pvp, MNT_WAIT, td))) {
4886				vput(pvp);
4887				return (error);
4888			}
4889		}
4890		/*
4891		 * Flush directory page containing the inode's name.
4892		 */
4893		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
4894		    &bp);
4895		if (error == 0)
4896			error = bwrite(bp);
4897		else
4898			brelse(bp);
4899		vput(pvp);
4900		if (error != 0)
4901			return (error);
4902		ACQUIRE_LOCK(&lk);
4903		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4904			break;
4905	}
4906	FREE_LOCK(&lk);
4907	return (0);
4908}
4909
4910/*
4911 * Flush all the dirty bitmaps associated with the block device
4912 * before flushing the rest of the dirty blocks so as to reduce
4913 * the number of dependencies that will have to be rolled back.
4914 */
4915void
4916softdep_fsync_mountdev(vp)
4917	struct vnode *vp;
4918{
4919	struct buf *bp, *nbp;
4920	struct worklist *wk;
4921
4922	if (!vn_isdisk(vp, NULL))
4923		panic("softdep_fsync_mountdev: vnode not a disk");
4924	ACQUIRE_LOCK(&lk);
4925	VI_LOCK(vp);
4926	TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) {
4927		/*
4928		 * If it is already scheduled, skip to the next buffer.
4929		 */
4930		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
4931			continue;
4932
4933		if ((bp->b_flags & B_DELWRI) == 0) {
4934			FREE_LOCK(&lk);
4935			panic("softdep_fsync_mountdev: not dirty");
4936		}
4937		/*
4938		 * We are only interested in bitmaps with outstanding
4939		 * dependencies.
4940		 */
4941		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4942		    wk->wk_type != D_BMSAFEMAP ||
4943		    (bp->b_vflags & BV_BKGRDINPROG)) {
4944			BUF_UNLOCK(bp);
4945			continue;
4946		}
4947		VI_UNLOCK(vp);
4948		bremfree(bp);
4949		FREE_LOCK(&lk);
4950		(void) bawrite(bp);
4951		ACQUIRE_LOCK(&lk);
4952		/*
4953		 * Since we may have slept during the I/O, we need
4954		 * to start from a known point.
4955		 */
4956		VI_LOCK(vp);
4957		nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
4958	}
4959	drain_output(vp, 1);
4960	VI_UNLOCK(vp);
4961	FREE_LOCK(&lk);
4962}
4963
4964/*
4965 * This routine is called when we are trying to synchronously flush a
4966 * file. This routine must eliminate any filesystem metadata dependencies
4967 * so that the syncing routine can succeed by pushing the dirty blocks
4968 * associated with the file. If any I/O errors occur, they are returned.
4969 */
4970int
4971softdep_sync_metadata(ap)
4972	struct vop_fsync_args /* {
4973		struct vnode *a_vp;
4974		struct ucred *a_cred;
4975		int a_waitfor;
4976		struct thread *a_td;
4977	} */ *ap;
4978{
4979	struct vnode *vp = ap->a_vp;
4980	struct pagedep *pagedep;
4981	struct allocdirect *adp;
4982	struct allocindir *aip;
4983	struct buf *bp, *nbp;
4984	struct worklist *wk;
4985	int i, error, waitfor;
4986
4987	if (!DOINGSOFTDEP(vp))
4988		return (0);
4989	/*
4990	 * Ensure that any direct block dependencies have been cleared.
4991	 */
4992	ACQUIRE_LOCK(&lk);
4993	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4994		FREE_LOCK(&lk);
4995		return (error);
4996	}
4997	/*
4998	 * For most files, the only metadata dependencies are the
4999	 * cylinder group maps that allocate their inode or blocks.
5000	 * The block allocation dependencies can be found by traversing
5001	 * the dependency lists for any buffers that remain on their
5002	 * dirty buffer list. The inode allocation dependency will
5003	 * be resolved when the inode is updated with MNT_WAIT.
5004	 * This work is done in two passes. The first pass grabs most
5005	 * of the buffers and begins asynchronously writing them. The
5006	 * only way to wait for these asynchronous writes is to sleep
5007	 * on the filesystem vnode which may stay busy for a long time
5008	 * if the filesystem is active. So, instead, we make a second
5009	 * pass over the dependencies blocking on each write. In the
5010	 * usual case we will be blocking against a write that we
5011	 * initiated, so when it is done the dependency will have been
5012	 * resolved. Thus the second pass is expected to end quickly.
5013	 */
5014	waitfor = MNT_NOWAIT;
5015top:
5016	/*
5017	 * We must wait for any I/O in progress to finish so that
5018	 * all potential buffers on the dirty list will be visible.
5019	 */
5020	VI_LOCK(vp);
5021	drain_output(vp, 1);
5022	bp = getdirtybuf(&TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd),
5023	    VI_MTX(vp), MNT_WAIT);
5024	if (bp == NULL) {
5025		VI_UNLOCK(vp);
5026		FREE_LOCK(&lk);
5027		return (0);
5028	}
5029	/* While syncing snapshots, we must allow recursive lookups */
5030	bp->b_lock.lk_flags |= LK_CANRECURSE;
5031loop:
5032	/*
5033	 * As we hold the buffer locked, none of its dependencies
5034	 * will disappear.
5035	 */
5036	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5037		switch (wk->wk_type) {
5038
5039		case D_ALLOCDIRECT:
5040			adp = WK_ALLOCDIRECT(wk);
5041			if (adp->ad_state & DEPCOMPLETE)
5042				continue;
5043			nbp = adp->ad_buf;
5044			nbp = getdirtybuf(&nbp, NULL, waitfor);
5045			if (nbp == NULL)
5046				continue;
5047			FREE_LOCK(&lk);
5048			if (waitfor == MNT_NOWAIT) {
5049				bawrite(nbp);
5050			} else if ((error = bwrite(nbp)) != 0) {
5051				break;
5052			}
5053			ACQUIRE_LOCK(&lk);
5054			continue;
5055
5056		case D_ALLOCINDIR:
5057			aip = WK_ALLOCINDIR(wk);
5058			if (aip->ai_state & DEPCOMPLETE)
5059				continue;
5060			nbp = aip->ai_buf;
5061			nbp = getdirtybuf(&nbp, NULL, waitfor);
5062			if (nbp == NULL)
5063				continue;
5064			FREE_LOCK(&lk);
5065			if (waitfor == MNT_NOWAIT) {
5066				bawrite(nbp);
5067			} else if ((error = bwrite(nbp)) != 0) {
5068				break;
5069			}
5070			ACQUIRE_LOCK(&lk);
5071			continue;
5072
5073		case D_INDIRDEP:
5074		restart:
5075
5076			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
5077				if (aip->ai_state & DEPCOMPLETE)
5078					continue;
5079				nbp = aip->ai_buf;
5080				nbp = getdirtybuf(&nbp, NULL, MNT_WAIT);
5081				if (nbp == NULL)
5082					goto restart;
5083				FREE_LOCK(&lk);
5084				if ((error = bwrite(nbp)) != 0) {
5085					break;
5086				}
5087				ACQUIRE_LOCK(&lk);
5088				goto restart;
5089			}
5090			continue;
5091
5092		case D_INODEDEP:
5093			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
5094			    WK_INODEDEP(wk)->id_ino)) != 0) {
5095				FREE_LOCK(&lk);
5096				break;
5097			}
5098			continue;
5099
5100		case D_PAGEDEP:
5101			/*
5102			 * We are trying to sync a directory that may
5103			 * have dependencies on both its own metadata
5104			 * and/or dependencies on the inodes of any
5105			 * recently allocated files. We walk its diradd
5106			 * lists pushing out the associated inode.
5107			 */
5108			pagedep = WK_PAGEDEP(wk);
5109			for (i = 0; i < DAHASHSZ; i++) {
5110				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
5111					continue;
5112				if ((error =
5113				    flush_pagedep_deps(vp, pagedep->pd_mnt,
5114						&pagedep->pd_diraddhd[i]))) {
5115					FREE_LOCK(&lk);
5116					break;
5117				}
5118			}
5119			continue;
5120
5121		case D_MKDIR:
5122			/*
5123			 * This case should never happen if the vnode has
5124			 * been properly sync'ed. However, if this function
5125			 * is used at a place where the vnode has not yet
5126			 * been sync'ed, this dependency can show up. So,
5127			 * rather than panic, just flush it.
5128			 */
5129			nbp = WK_MKDIR(wk)->md_buf;
5130			nbp = getdirtybuf(&nbp, NULL, waitfor);
5131			if (nbp == NULL)
5132				continue;
5133			FREE_LOCK(&lk);
5134			if (waitfor == MNT_NOWAIT) {
5135				bawrite(nbp);
5136			} else if ((error = bwrite(nbp)) != 0) {
5137				break;
5138			}
5139			ACQUIRE_LOCK(&lk);
5140			continue;
5141
5142		case D_BMSAFEMAP:
5143			/*
5144			 * This case should never happen if the vnode has
5145			 * been properly sync'ed. However, if this function
5146			 * is used at a place where the vnode has not yet
5147			 * been sync'ed, this dependency can show up. So,
5148			 * rather than panic, just flush it.
5149			 */
5150			nbp = WK_BMSAFEMAP(wk)->sm_buf;
5151			nbp = getdirtybuf(&nbp, NULL, waitfor);
5152			if (nbp == NULL)
5153				continue;
5154			FREE_LOCK(&lk);
5155			if (waitfor == MNT_NOWAIT) {
5156				bawrite(nbp);
5157			} else if ((error = bwrite(nbp)) != 0) {
5158				break;
5159			}
5160			ACQUIRE_LOCK(&lk);
5161			continue;
5162
5163		default:
5164			FREE_LOCK(&lk);
5165			panic("softdep_sync_metadata: Unknown type %s",
5166			    TYPENAME(wk->wk_type));
5167			/* NOTREACHED */
5168		}
5169		/* We reach here only in error and unlocked */
5170		if (error == 0)
5171			panic("softdep_sync_metadata: zero error");
5172		bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5173		bawrite(bp);
5174		return (error);
5175	}
5176	VI_LOCK(vp);
5177	nbp = getdirtybuf(&TAILQ_NEXT(bp, b_bobufs), VI_MTX(vp), MNT_WAIT);
5178	if (nbp == NULL)
5179		VI_UNLOCK(vp);
5180	FREE_LOCK(&lk);
5181	bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5182	bawrite(bp);
5183	ACQUIRE_LOCK(&lk);
5184	if (nbp != NULL) {
5185		bp = nbp;
5186		goto loop;
5187	}
5188	/*
5189	 * The brief unlock is to allow any pent up dependency
5190	 * processing to be done. Then proceed with the second pass.
5191	 */
5192	if (waitfor == MNT_NOWAIT) {
5193		waitfor = MNT_WAIT;
5194		FREE_LOCK(&lk);
5195		ACQUIRE_LOCK(&lk);
5196		goto top;
5197	}
5198
5199	/*
5200	 * If we have managed to get rid of all the dirty buffers,
5201	 * then we are done. For certain directories and block
5202	 * devices, we may need to do further work.
5203	 *
5204	 * We must wait for any I/O in progress to finish so that
5205	 * all potential buffers on the dirty list will be visible.
5206	 */
5207	VI_LOCK(vp);
5208	drain_output(vp, 1);
5209	if (vp->v_bufobj.bo_dirty.bv_cnt == 0) {
5210		VI_UNLOCK(vp);
5211		FREE_LOCK(&lk);
5212		return (0);
5213	}
5214	VI_UNLOCK(vp);
5215
5216	FREE_LOCK(&lk);
5217	return (0);
5218}
5219
5220/*
5221 * Flush the dependencies associated with an inodedep.
5222 * Called with splbio blocked.
5223 */
5224static int
5225flush_inodedep_deps(fs, ino)
5226	struct fs *fs;
5227	ino_t ino;
5228{
5229	struct inodedep *inodedep;
5230	int error, waitfor;
5231
5232	/*
5233	 * This work is done in two passes. The first pass grabs most
5234	 * of the buffers and begins asynchronously writing them. The
5235	 * only way to wait for these asynchronous writes is to sleep
5236	 * on the filesystem vnode which may stay busy for a long time
5237	 * if the filesystem is active. So, instead, we make a second
5238	 * pass over the dependencies blocking on each write. In the
5239	 * usual case we will be blocking against a write that we
5240	 * initiated, so when it is done the dependency will have been
5241	 * resolved. Thus the second pass is expected to end quickly.
5242	 * We give a brief window at the top of the loop to allow
5243	 * any pending I/O to complete.
5244	 */
5245	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
5246		if (error)
5247			return (error);
5248		FREE_LOCK(&lk);
5249		ACQUIRE_LOCK(&lk);
5250		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
5251			return (0);
5252		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
5253		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
5254		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
5255		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
5256			continue;
5257		/*
5258		 * If pass2, we are done, otherwise do pass 2.
5259		 */
5260		if (waitfor == MNT_WAIT)
5261			break;
5262		waitfor = MNT_WAIT;
5263	}
5264	/*
5265	 * Try freeing inodedep in case all dependencies have been removed.
5266	 */
5267	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
5268		(void) free_inodedep(inodedep);
5269	return (0);
5270}
5271
5272/*
5273 * Flush an inode dependency list.
5274 * Called with splbio blocked.
5275 */
5276static int
5277flush_deplist(listhead, waitfor, errorp)
5278	struct allocdirectlst *listhead;
5279	int waitfor;
5280	int *errorp;
5281{
5282	struct allocdirect *adp;
5283	struct buf *bp;
5284
5285	TAILQ_FOREACH(adp, listhead, ad_next) {
5286		if (adp->ad_state & DEPCOMPLETE)
5287			continue;
5288		bp = adp->ad_buf;
5289		bp = getdirtybuf(&bp, NULL, waitfor);
5290		if (bp == NULL) {
5291			if (waitfor == MNT_NOWAIT)
5292				continue;
5293			return (1);
5294		}
5295		FREE_LOCK(&lk);
5296		if (waitfor == MNT_NOWAIT) {
5297			bawrite(bp);
5298		} else if ((*errorp = bwrite(bp)) != 0) {
5299			ACQUIRE_LOCK(&lk);
5300			return (1);
5301		}
5302		ACQUIRE_LOCK(&lk);
5303		return (1);
5304	}
5305	return (0);
5306}
5307
5308/*
5309 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
5310 * Called with splbio blocked.
5311 */
5312static int
5313flush_pagedep_deps(pvp, mp, diraddhdp)
5314	struct vnode *pvp;
5315	struct mount *mp;
5316	struct diraddhd *diraddhdp;
5317{
5318	struct thread *td = curthread;
5319	struct inodedep *inodedep;
5320	struct ufsmount *ump;
5321	struct diradd *dap;
5322	struct vnode *vp;
5323	int error = 0;
5324	struct buf *bp;
5325	ino_t inum;
5326
5327	ump = VFSTOUFS(mp);
5328	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
5329		/*
5330		 * Flush ourselves if this directory entry
5331		 * has a MKDIR_PARENT dependency.
5332		 */
5333		if (dap->da_state & MKDIR_PARENT) {
5334			FREE_LOCK(&lk);
5335			if ((error = UFS_UPDATE(pvp, 1)) != 0)
5336				break;
5337			ACQUIRE_LOCK(&lk);
5338			/*
5339			 * If that cleared dependencies, go on to next.
5340			 */
5341			if (dap != LIST_FIRST(diraddhdp))
5342				continue;
5343			if (dap->da_state & MKDIR_PARENT) {
5344				FREE_LOCK(&lk);
5345				panic("flush_pagedep_deps: MKDIR_PARENT");
5346			}
5347		}
5348		/*
5349		 * A newly allocated directory must have its "." and
5350		 * ".." entries written out before its name can be
5351		 * committed in its parent. We do not want or need
5352		 * the full semantics of a synchronous VOP_FSYNC as
5353		 * that may end up here again, once for each directory
5354		 * level in the filesystem. Instead, we push the blocks
5355		 * and wait for them to clear. We have to fsync twice
5356		 * because the first call may choose to defer blocks
5357		 * that still have dependencies, but deferral will
5358		 * happen at most once.
5359		 */
5360		inum = dap->da_newinum;
5361		if (dap->da_state & MKDIR_BODY) {
5362			FREE_LOCK(&lk);
5363			if ((error = VFS_VGET(mp, inum, LK_EXCLUSIVE, &vp)))
5364				break;
5365			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, td)) ||
5366			    (error=VOP_FSYNC(vp, MNT_NOWAIT, td))) {
5367				vput(vp);
5368				break;
5369			}
5370			VI_LOCK(vp);
5371			drain_output(vp, 0);
5372			VI_UNLOCK(vp);
5373			vput(vp);
5374			ACQUIRE_LOCK(&lk);
5375			/*
5376			 * If that cleared dependencies, go on to next.
5377			 */
5378			if (dap != LIST_FIRST(diraddhdp))
5379				continue;
5380			if (dap->da_state & MKDIR_BODY) {
5381				FREE_LOCK(&lk);
5382				panic("flush_pagedep_deps: MKDIR_BODY");
5383			}
5384		}
5385		/*
5386		 * Flush the inode on which the directory entry depends.
5387		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
5388		 * the only remaining dependency is that the updated inode
5389		 * count must get pushed to disk. The inode has already
5390		 * been pushed into its inode buffer (via VOP_UPDATE) at
5391		 * the time of the reference count change. So we need only
5392		 * locate that buffer, ensure that there will be no rollback
5393		 * caused by a bitmap dependency, then write the inode buffer.
5394		 */
5395		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
5396			FREE_LOCK(&lk);
5397			panic("flush_pagedep_deps: lost inode");
5398		}
5399		/*
5400		 * If the inode still has bitmap dependencies,
5401		 * push them to disk.
5402		 */
5403		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5404			bp = inodedep->id_buf;
5405			bp = getdirtybuf(&bp, NULL, MNT_WAIT);
5406			FREE_LOCK(&lk);
5407			if (bp && (error = bwrite(bp)) != 0)
5408				break;
5409			ACQUIRE_LOCK(&lk);
5410			if (dap != LIST_FIRST(diraddhdp))
5411				continue;
5412		}
5413		/*
5414		 * If the inode is still sitting in a buffer waiting
5415		 * to be written, push it to disk.
5416		 */
5417		FREE_LOCK(&lk);
5418		if ((error = bread(ump->um_devvp,
5419		    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
5420		    (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) {
5421			brelse(bp);
5422			break;
5423		}
5424		if ((error = bwrite(bp)) != 0)
5425			break;
5426		ACQUIRE_LOCK(&lk);
5427		/*
5428		 * If we have failed to get rid of all the dependencies
5429		 * then something is seriously wrong.
5430		 */
5431		if (dap == LIST_FIRST(diraddhdp)) {
5432			FREE_LOCK(&lk);
5433			panic("flush_pagedep_deps: flush failed");
5434		}
5435	}
5436	if (error)
5437		ACQUIRE_LOCK(&lk);
5438	return (error);
5439}
5440
5441/*
5442 * A large burst of file addition or deletion activity can drive the
5443 * memory load excessively high. First attempt to slow things down
5444 * using the techniques below. If that fails, this routine requests
5445 * the offending operations to fall back to running synchronously
5446 * until the memory load returns to a reasonable level.
5447 */
5448int
5449softdep_slowdown(vp)
5450	struct vnode *vp;
5451{
5452	int max_softdeps_hard;
5453
5454	max_softdeps_hard = max_softdeps * 11 / 10;
5455	if (num_dirrem < max_softdeps_hard / 2 &&
5456	    num_inodedep < max_softdeps_hard &&
5457	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps)
5458  		return (0);
5459	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps)
5460		speedup_syncer();
5461	stat_sync_limit_hit += 1;
5462	return (1);
5463}
5464
5465/*
5466 * Called by the allocation routines when they are about to fail
5467 * in the hope that we can free up some disk space.
5468 *
5469 * First check to see if the work list has anything on it. If it has,
5470 * clean up entries until we successfully free some space. Because this
5471 * process holds inodes locked, we cannot handle any remove requests
5472 * that might block on a locked inode as that could lead to deadlock.
5473 * If the worklist yields no free space, encourage the syncer daemon
5474 * to help us. In no event will we try for longer than tickdelay seconds.
5475 */
5476int
5477softdep_request_cleanup(fs, vp)
5478	struct fs *fs;
5479	struct vnode *vp;
5480{
5481	long starttime;
5482	ufs2_daddr_t needed;
5483
5484	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
5485	starttime = time_second + tickdelay;
5486	/*
5487	 * If we are being called because of a process doing a
5488	 * copy-on-write, then it is not safe to update the vnode
5489	 * as we may recurse into the copy-on-write routine.
5490	 */
5491	if (!(curthread->td_pflags & TDP_COWINPROGRESS) &&
5492	    UFS_UPDATE(vp, 1) != 0)
5493		return (0);
5494	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
5495		if (time_second > starttime)
5496			return (0);
5497		if (num_on_worklist > 0 &&
5498		    process_worklist_item(NULL, LK_NOWAIT) != -1) {
5499			stat_worklist_push += 1;
5500			continue;
5501		}
5502		request_cleanup(FLUSH_REMOVE_WAIT, 0);
5503	}
5504	return (1);
5505}
5506
5507/*
5508 * If memory utilization has gotten too high, deliberately slow things
5509 * down and speed up the I/O processing.
5510 */
5511static int
5512request_cleanup(resource, islocked)
5513	int resource;
5514	int islocked;
5515{
5516	struct thread *td = curthread;
5517
5518	/*
5519	 * We never hold up the filesystem syncer process.
5520	 */
5521	if (td == filesys_syncer)
5522		return (0);
5523	/*
5524	 * First check to see if the work list has gotten backlogged.
5525	 * If it has, co-opt this process to help clean up two entries.
5526	 * Because this process may hold inodes locked, we cannot
5527	 * handle any remove requests that might block on a locked
5528	 * inode as that could lead to deadlock.
5529	 */
5530	if (num_on_worklist > max_softdeps / 10) {
5531		if (islocked)
5532			FREE_LOCK(&lk);
5533		process_worklist_item(NULL, LK_NOWAIT);
5534		process_worklist_item(NULL, LK_NOWAIT);
5535		stat_worklist_push += 2;
5536		if (islocked)
5537			ACQUIRE_LOCK(&lk);
5538		return(1);
5539	}
5540	/*
5541	 * Next, we attempt to speed up the syncer process. If that
5542	 * is successful, then we allow the process to continue.
5543	 */
5544	if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT)
5545		return(0);
5546	/*
5547	 * If we are resource constrained on inode dependencies, try
5548	 * flushing some dirty inodes. Otherwise, we are constrained
5549	 * by file deletions, so try accelerating flushes of directories
5550	 * with removal dependencies. We would like to do the cleanup
5551	 * here, but we probably hold an inode locked at this point and
5552	 * that might deadlock against one that we try to clean. So,
5553	 * the best that we can do is request the syncer daemon to do
5554	 * the cleanup for us.
5555	 */
5556	switch (resource) {
5557
5558	case FLUSH_INODES:
5559		stat_ino_limit_push += 1;
5560		req_clear_inodedeps += 1;
5561		stat_countp = &stat_ino_limit_hit;
5562		break;
5563
5564	case FLUSH_REMOVE:
5565	case FLUSH_REMOVE_WAIT:
5566		stat_blk_limit_push += 1;
5567		req_clear_remove += 1;
5568		stat_countp = &stat_blk_limit_hit;
5569		break;
5570
5571	default:
5572		if (islocked)
5573			FREE_LOCK(&lk);
5574		panic("request_cleanup: unknown type");
5575	}
5576	/*
5577	 * Hopefully the syncer daemon will catch up and awaken us.
5578	 * We wait at most tickdelay before proceeding in any case.
5579	 */
5580	if (islocked == 0)
5581		ACQUIRE_LOCK(&lk);
5582	proc_waiting += 1;
5583	if (handle.callout == NULL)
5584		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5585	interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, NULL, PPAUSE,
5586	    "softupdate", 0);
5587	proc_waiting -= 1;
5588	if (islocked == 0)
5589		FREE_LOCK(&lk);
5590	return (1);
5591}
5592
5593/*
5594 * Awaken processes pausing in request_cleanup and clear proc_waiting
5595 * to indicate that there is no longer a timer running.
5596 */
5597static void
5598pause_timer(arg)
5599	void *arg;
5600{
5601
5602	*stat_countp += 1;
5603	wakeup_one(&proc_waiting);
5604	if (proc_waiting > 0)
5605		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5606	else
5607		handle.callout = NULL;
5608}
5609
5610/*
5611 * Flush out a directory with at least one removal dependency in an effort to
5612 * reduce the number of dirrem, freefile, and freeblks dependency structures.
5613 */
5614static void
5615clear_remove(td)
5616	struct thread *td;
5617{
5618	struct pagedep_hashhead *pagedephd;
5619	struct pagedep *pagedep;
5620	static int next = 0;
5621	struct mount *mp;
5622	struct vnode *vp;
5623	int error, cnt;
5624	ino_t ino;
5625
5626	ACQUIRE_LOCK(&lk);
5627	for (cnt = 0; cnt < pagedep_hash; cnt++) {
5628		pagedephd = &pagedep_hashtbl[next++];
5629		if (next >= pagedep_hash)
5630			next = 0;
5631		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
5632			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
5633				continue;
5634			mp = pagedep->pd_mnt;
5635			ino = pagedep->pd_ino;
5636			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5637				continue;
5638			FREE_LOCK(&lk);
5639			if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp))) {
5640				softdep_error("clear_remove: vget", error);
5641				vn_finished_write(mp);
5642				return;
5643			}
5644			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, td)))
5645				softdep_error("clear_remove: fsync", error);
5646			VI_LOCK(vp);
5647			drain_output(vp, 0);
5648			VI_UNLOCK(vp);
5649			vput(vp);
5650			vn_finished_write(mp);
5651			return;
5652		}
5653	}
5654	FREE_LOCK(&lk);
5655}
5656
5657/*
5658 * Clear out a block of dirty inodes in an effort to reduce
5659 * the number of inodedep dependency structures.
5660 */
5661static void
5662clear_inodedeps(td)
5663	struct thread *td;
5664{
5665	struct inodedep_hashhead *inodedephd;
5666	struct inodedep *inodedep;
5667	static int next = 0;
5668	struct mount *mp;
5669	struct vnode *vp;
5670	struct fs *fs;
5671	int error, cnt;
5672	ino_t firstino, lastino, ino;
5673
5674	ACQUIRE_LOCK(&lk);
5675	/*
5676	 * Pick a random inode dependency to be cleared.
5677	 * We will then gather up all the inodes in its block
5678	 * that have dependencies and flush them out.
5679	 */
5680	for (cnt = 0; cnt < inodedep_hash; cnt++) {
5681		inodedephd = &inodedep_hashtbl[next++];
5682		if (next >= inodedep_hash)
5683			next = 0;
5684		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
5685			break;
5686	}
5687	if (inodedep == NULL)
5688		return;
5689	/*
5690	 * Ugly code to find mount point given pointer to superblock.
5691	 */
5692	fs = inodedep->id_fs;
5693	TAILQ_FOREACH(mp, &mountlist, mnt_list)
5694		if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
5695			break;
5696	/*
5697	 * Find the last inode in the block with dependencies.
5698	 */
5699	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5700	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5701		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
5702			break;
5703	/*
5704	 * Asynchronously push all but the last inode with dependencies.
5705	 * Synchronously push the last inode with dependencies to ensure
5706	 * that the inode block gets written to free up the inodedeps.
5707	 */
5708	for (ino = firstino; ino <= lastino; ino++) {
5709		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
5710			continue;
5711		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5712			continue;
5713		FREE_LOCK(&lk);
5714		if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp)) != 0) {
5715			softdep_error("clear_inodedeps: vget", error);
5716			vn_finished_write(mp);
5717			return;
5718		}
5719		if (ino == lastino) {
5720			if ((error = VOP_FSYNC(vp, MNT_WAIT, td)))
5721				softdep_error("clear_inodedeps: fsync1", error);
5722		} else {
5723			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, td)))
5724				softdep_error("clear_inodedeps: fsync2", error);
5725			VI_LOCK(vp);
5726			drain_output(vp, 0);
5727			VI_UNLOCK(vp);
5728		}
5729		vput(vp);
5730		vn_finished_write(mp);
5731		ACQUIRE_LOCK(&lk);
5732	}
5733	FREE_LOCK(&lk);
5734}
5735
5736/*
5737 * Function to determine if the buffer has outstanding dependencies
5738 * that will cause a roll-back if the buffer is written. If wantcount
5739 * is set, return number of dependencies, otherwise just yes or no.
5740 */
5741static int
5742softdep_count_dependencies(bp, wantcount)
5743	struct buf *bp;
5744	int wantcount;
5745{
5746	struct worklist *wk;
5747	struct inodedep *inodedep;
5748	struct indirdep *indirdep;
5749	struct allocindir *aip;
5750	struct pagedep *pagedep;
5751	struct diradd *dap;
5752	int i, retval;
5753
5754	retval = 0;
5755	ACQUIRE_LOCK(&lk);
5756	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5757		switch (wk->wk_type) {
5758
5759		case D_INODEDEP:
5760			inodedep = WK_INODEDEP(wk);
5761			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5762				/* bitmap allocation dependency */
5763				retval += 1;
5764				if (!wantcount)
5765					goto out;
5766			}
5767			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5768				/* direct block pointer dependency */
5769				retval += 1;
5770				if (!wantcount)
5771					goto out;
5772			}
5773			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
5774				/* direct block pointer dependency */
5775				retval += 1;
5776				if (!wantcount)
5777					goto out;
5778			}
5779			continue;
5780
5781		case D_INDIRDEP:
5782			indirdep = WK_INDIRDEP(wk);
5783
5784			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5785				/* indirect block pointer dependency */
5786				retval += 1;
5787				if (!wantcount)
5788					goto out;
5789			}
5790			continue;
5791
5792		case D_PAGEDEP:
5793			pagedep = WK_PAGEDEP(wk);
5794			for (i = 0; i < DAHASHSZ; i++) {
5795
5796				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5797					/* directory entry dependency */
5798					retval += 1;
5799					if (!wantcount)
5800						goto out;
5801				}
5802			}
5803			continue;
5804
5805		case D_BMSAFEMAP:
5806		case D_ALLOCDIRECT:
5807		case D_ALLOCINDIR:
5808		case D_MKDIR:
5809			/* never a dependency on these blocks */
5810			continue;
5811
5812		default:
5813			FREE_LOCK(&lk);
5814			panic("softdep_check_for_rollback: Unexpected type %s",
5815			    TYPENAME(wk->wk_type));
5816			/* NOTREACHED */
5817		}
5818	}
5819out:
5820	FREE_LOCK(&lk);
5821	return retval;
5822}
5823
5824/*
5825 * Acquire exclusive access to a buffer.
5826 * Must be called with splbio blocked.
5827 * Return acquired buffer or NULL on failure.  mtx, if provided, will be
5828 * released on success but held on failure.
5829 */
5830static struct buf *
5831getdirtybuf(bpp, mtx, waitfor)
5832	struct buf **bpp;
5833	struct mtx *mtx;
5834	int waitfor;
5835{
5836	struct buf *bp;
5837	int error;
5838
5839	/*
5840	 * XXX This code and the code that calls it need to be reviewed to
5841	 * verify its use of the vnode interlock.
5842	 */
5843
5844	for (;;) {
5845		if ((bp = *bpp) == NULL)
5846			return (0);
5847		if (bp->b_vp == NULL)
5848			kdb_backtrace();
5849		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
5850			if ((bp->b_vflags & BV_BKGRDINPROG) == 0)
5851				break;
5852			BUF_UNLOCK(bp);
5853			if (waitfor != MNT_WAIT)
5854				return (NULL);
5855			/*
5856			 * The mtx argument must be bp->b_vp's mutex in
5857			 * this case.
5858			 */
5859#ifdef	DEBUG_VFS_LOCKS
5860			if (bp->b_vp->v_type != VCHR)
5861				ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf");
5862#endif
5863			bp->b_vflags |= BV_BKGRDWAIT;
5864			interlocked_sleep(&lk, SLEEP, &bp->b_xflags, mtx,
5865			    PRIBIO, "getbuf", 0);
5866			continue;
5867		}
5868		if (waitfor != MNT_WAIT)
5869			return (NULL);
5870		if (mtx) {
5871			error = interlocked_sleep(&lk, LOCKBUF, bp, mtx,
5872			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 0, 0);
5873			mtx_lock(mtx);
5874		} else
5875			error = interlocked_sleep(&lk, LOCKBUF, bp, NULL,
5876			    LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
5877		if (error != ENOLCK) {
5878			FREE_LOCK(&lk);
5879			panic("getdirtybuf: inconsistent lock");
5880		}
5881	}
5882	if ((bp->b_flags & B_DELWRI) == 0) {
5883		BUF_UNLOCK(bp);
5884		return (NULL);
5885	}
5886	if (mtx)
5887		mtx_unlock(mtx);
5888	bremfree(bp);
5889	return (bp);
5890}
5891
5892/*
5893 * Wait for pending output on a vnode to complete.
5894 * Must be called with vnode lock and interlock locked.
5895 *
5896 * XXX: Should just be a call to bufobj_wwait().
5897 */
5898static void
5899drain_output(vp, islocked)
5900	struct vnode *vp;
5901	int islocked;
5902{
5903	ASSERT_VOP_LOCKED(vp, "drain_output");
5904	ASSERT_VI_LOCKED(vp, "drain_output");
5905
5906	if (!islocked)
5907		ACQUIRE_LOCK(&lk);
5908	while (vp->v_bufobj.bo_numoutput) {
5909		vp->v_bufobj.bo_flag |= BO_WWAIT;
5910		interlocked_sleep(&lk, SLEEP,
5911		    (caddr_t)&vp->v_bufobj.bo_numoutput,
5912		    VI_MTX(vp), PRIBIO + 1, "drainvp", 0);
5913	}
5914	if (!islocked)
5915		FREE_LOCK(&lk);
5916}
5917
5918/*
5919 * Called whenever a buffer that is being invalidated or reallocated
5920 * contains dependencies. This should only happen if an I/O error has
5921 * occurred. The routine is called with the buffer locked.
5922 */
5923static void
5924softdep_deallocate_dependencies(bp)
5925	struct buf *bp;
5926{
5927
5928	if ((bp->b_ioflags & BIO_ERROR) == 0)
5929		panic("softdep_deallocate_dependencies: dangling deps");
5930	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
5931	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5932}
5933
5934/*
5935 * Function to handle asynchronous write errors in the filesystem.
5936 */
5937static void
5938softdep_error(func, error)
5939	char *func;
5940	int error;
5941{
5942
5943	/* XXX should do something better! */
5944	printf("%s: got error %d while accessing filesystem\n", func, error);
5945}
5946