ffs_softdep.c revision 136963
1/*
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12 *	1614 Oxford Street		mckusick@mckusick.com
13 *	Berkeley, CA 94709-1608		+1-510-843-9542
14 *	USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 136963 2004-10-26 06:25:56Z phk $");
43
44/*
45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46 */
47#ifndef DIAGNOSTIC
48#define DIAGNOSTIC
49#endif
50#ifndef DEBUG
51#define DEBUG
52#endif
53
54#include <sys/param.h>
55#include <sys/kernel.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/kdb.h>
60#include <sys/malloc.h>
61#include <sys/mount.h>
62#include <sys/proc.h>
63#include <sys/stat.h>
64#include <sys/syslog.h>
65#include <sys/vnode.h>
66#include <sys/conf.h>
67#include <ufs/ufs/dir.h>
68#include <ufs/ufs/extattr.h>
69#include <ufs/ufs/quota.h>
70#include <ufs/ufs/inode.h>
71#include <ufs/ufs/ufsmount.h>
72#include <ufs/ffs/fs.h>
73#include <ufs/ffs/softdep.h>
74#include <ufs/ffs/ffs_extern.h>
75#include <ufs/ufs/ufs_extern.h>
76
77/*
78 * These definitions need to be adapted to the system to which
79 * this file is being ported.
80 */
81/*
82 * malloc types defined for the softdep system.
83 */
84static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
85static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
86static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
87static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
88static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
89static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
90static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
91static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
92static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
93static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
94static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
95static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
96static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
97static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block");
98
99#define M_SOFTDEP_FLAGS	(M_WAITOK | M_USE_RESERVE)
100
101#define	D_PAGEDEP	0
102#define	D_INODEDEP	1
103#define	D_NEWBLK	2
104#define	D_BMSAFEMAP	3
105#define	D_ALLOCDIRECT	4
106#define	D_INDIRDEP	5
107#define	D_ALLOCINDIR	6
108#define	D_FREEFRAG	7
109#define	D_FREEBLKS	8
110#define	D_FREEFILE	9
111#define	D_DIRADD	10
112#define	D_MKDIR		11
113#define	D_DIRREM	12
114#define	D_NEWDIRBLK	13
115#define	D_LAST		D_NEWDIRBLK
116
117/*
118 * translate from workitem type to memory type
119 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
120 */
121static struct malloc_type *memtype[] = {
122	M_PAGEDEP,
123	M_INODEDEP,
124	M_NEWBLK,
125	M_BMSAFEMAP,
126	M_ALLOCDIRECT,
127	M_INDIRDEP,
128	M_ALLOCINDIR,
129	M_FREEFRAG,
130	M_FREEBLKS,
131	M_FREEFILE,
132	M_DIRADD,
133	M_MKDIR,
134	M_DIRREM,
135	M_NEWDIRBLK
136};
137
138#define DtoM(type) (memtype[type])
139
140/*
141 * Names of malloc types.
142 */
143#define TYPENAME(type)  \
144	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
145/*
146 * End system adaptaion definitions.
147 */
148
149/*
150 * Internal function prototypes.
151 */
152static	void softdep_error(char *, int);
153static	void drain_output(struct vnode *, int);
154static	struct buf *getdirtybuf(struct buf **, struct mtx *, int);
155static	void clear_remove(struct thread *);
156static	void clear_inodedeps(struct thread *);
157static	int flush_pagedep_deps(struct vnode *, struct mount *,
158	    struct diraddhd *);
159static	int flush_inodedep_deps(struct fs *, ino_t);
160static	int flush_deplist(struct allocdirectlst *, int, int *);
161static	int handle_written_filepage(struct pagedep *, struct buf *);
162static  void diradd_inode_written(struct diradd *, struct inodedep *);
163static	int handle_written_inodeblock(struct inodedep *, struct buf *);
164static	void handle_allocdirect_partdone(struct allocdirect *);
165static	void handle_allocindir_partdone(struct allocindir *);
166static	void initiate_write_filepage(struct pagedep *, struct buf *);
167static	void handle_written_mkdir(struct mkdir *, int);
168static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
169static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
170static	void handle_workitem_freefile(struct freefile *);
171static	void handle_workitem_remove(struct dirrem *, struct vnode *);
172static	struct dirrem *newdirrem(struct buf *, struct inode *,
173	    struct inode *, int, struct dirrem **);
174static	void free_diradd(struct diradd *);
175static	void free_allocindir(struct allocindir *, struct inodedep *);
176static	void free_newdirblk(struct newdirblk *);
177static	int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t,
178	    ufs2_daddr_t *);
179static	void deallocate_dependencies(struct buf *, struct inodedep *);
180static	void free_allocdirect(struct allocdirectlst *,
181	    struct allocdirect *, int);
182static	int check_inode_unwritten(struct inodedep *);
183static	int free_inodedep(struct inodedep *);
184static	void handle_workitem_freeblocks(struct freeblks *, int);
185static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
186static	void setup_allocindir_phase2(struct buf *, struct inode *,
187	    struct allocindir *);
188static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
189	    ufs2_daddr_t);
190static	void handle_workitem_freefrag(struct freefrag *);
191static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long);
192static	void allocdirect_merge(struct allocdirectlst *,
193	    struct allocdirect *, struct allocdirect *);
194static	struct bmsafemap *bmsafemap_lookup(struct buf *);
195static	int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **);
196static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
197static	int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **);
198static	void pause_timer(void *);
199static	int request_cleanup(int, int);
200static	int process_worklist_item(struct mount *, int);
201static	void add_to_worklist(struct worklist *);
202
203/*
204 * Exported softdep operations.
205 */
206static	int softdep_disk_prewrite(struct vnode *vp, struct buf *bp);
207static	void softdep_disk_io_initiation(struct buf *);
208static	void softdep_disk_write_complete(struct buf *);
209static	void softdep_deallocate_dependencies(struct buf *);
210static	void softdep_move_dependencies(struct buf *, struct buf *);
211static	int softdep_count_dependencies(struct buf *bp, int);
212
213/*
214 * Locking primitives.
215 *
216 * For a uniprocessor, all we need to do is protect against disk
217 * interrupts. For a multiprocessor, this lock would have to be
218 * a mutex. A single mutex is used throughout this file, though
219 * finer grain locking could be used if contention warranted it.
220 *
221 * For a multiprocessor, the sleep call would accept a lock and
222 * release it after the sleep processing was complete. In a uniprocessor
223 * implementation there is no such interlock, so we simple mark
224 * the places where it needs to be done with the `interlocked' form
225 * of the lock calls. Since the uniprocessor sleep already interlocks
226 * the spl, there is nothing that really needs to be done.
227 */
228#ifndef /* NOT */ DEBUG
229static struct lockit {
230	int	lkt_spl;
231} lk = { 0 };
232#define ACQUIRE_LOCK(lk)		(lk)->lkt_spl = splbio()
233#define FREE_LOCK(lk)			splx((lk)->lkt_spl)
234
235#else /* DEBUG */
236#define NOHOLDER	((struct thread *)-1)
237#define SPECIAL_FLAG	((struct thread *)-2)
238static struct lockit {
239	int	lkt_spl;
240	struct	thread *lkt_held;
241} lk = { 0, NOHOLDER };
242
243static	void acquire_lock(struct lockit *);
244static	void free_lock(struct lockit *);
245void	softdep_panic(char *);
246
247#define ACQUIRE_LOCK(lk)		acquire_lock(lk)
248#define FREE_LOCK(lk)			free_lock(lk)
249
250static void
251acquire_lock(lk)
252	struct lockit *lk;
253{
254	struct thread *holder;
255
256	if (lk->lkt_held != NOHOLDER) {
257		holder = lk->lkt_held;
258		FREE_LOCK(lk);
259		if (holder == curthread)
260			panic("softdep_lock: locking against myself");
261		else
262			panic("softdep_lock: lock held by %p", holder);
263	}
264	lk->lkt_spl = splbio();
265	lk->lkt_held = curthread;
266}
267
268static void
269free_lock(lk)
270	struct lockit *lk;
271{
272
273	if (lk->lkt_held == NOHOLDER)
274		panic("softdep_unlock: lock not held");
275	lk->lkt_held = NOHOLDER;
276	splx(lk->lkt_spl);
277}
278
279/*
280 * Function to release soft updates lock and panic.
281 */
282void
283softdep_panic(msg)
284	char *msg;
285{
286
287	if (lk.lkt_held != NOHOLDER)
288		FREE_LOCK(&lk);
289	panic(msg);
290}
291#endif /* DEBUG */
292
293static	int interlocked_sleep(struct lockit *, int, void *, struct mtx *, int,
294	    const char *, int);
295
296/*
297 * When going to sleep, we must save our SPL so that it does
298 * not get lost if some other process uses the lock while we
299 * are sleeping. We restore it after we have slept. This routine
300 * wraps the interlocking with functions that sleep. The list
301 * below enumerates the available set of operations.
302 */
303#define	UNKNOWN		0
304#define	SLEEP		1
305#define	LOCKBUF		2
306
307static int
308interlocked_sleep(lk, op, ident, mtx, flags, wmesg, timo)
309	struct lockit *lk;
310	int op;
311	void *ident;
312	struct mtx *mtx;
313	int flags;
314	const char *wmesg;
315	int timo;
316{
317	struct thread *holder;
318	int s, retval;
319
320	s = lk->lkt_spl;
321#	ifdef DEBUG
322	if (lk->lkt_held == NOHOLDER)
323		panic("interlocked_sleep: lock not held");
324	lk->lkt_held = NOHOLDER;
325#	endif /* DEBUG */
326	switch (op) {
327	case SLEEP:
328		retval = msleep(ident, mtx, flags, wmesg, timo);
329		break;
330	case LOCKBUF:
331		retval = BUF_LOCK((struct buf *)ident, flags, mtx);
332		break;
333	default:
334		panic("interlocked_sleep: unknown operation");
335	}
336#	ifdef DEBUG
337	if (lk->lkt_held != NOHOLDER) {
338		holder = lk->lkt_held;
339		FREE_LOCK(lk);
340		if (holder == curthread)
341			panic("interlocked_sleep: locking against self");
342		else
343			panic("interlocked_sleep: lock held by %p", holder);
344	}
345	lk->lkt_held = curthread;
346#	endif /* DEBUG */
347	lk->lkt_spl = s;
348	return (retval);
349}
350
351/*
352 * Place holder for real semaphores.
353 */
354struct sema {
355	int	value;
356	struct	thread *holder;
357	char	*name;
358	int	prio;
359	int	timo;
360};
361static	void sema_init(struct sema *, char *, int, int);
362static	int sema_get(struct sema *, struct lockit *);
363static	void sema_release(struct sema *);
364
365static void
366sema_init(semap, name, prio, timo)
367	struct sema *semap;
368	char *name;
369	int prio, timo;
370{
371
372	semap->holder = NOHOLDER;
373	semap->value = 0;
374	semap->name = name;
375	semap->prio = prio;
376	semap->timo = timo;
377}
378
379static int
380sema_get(semap, interlock)
381	struct sema *semap;
382	struct lockit *interlock;
383{
384
385	if (semap->value++ > 0) {
386		if (interlock != NULL) {
387			interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
388			    NULL, semap->prio, semap->name,
389			    semap->timo);
390			FREE_LOCK(interlock);
391		} else {
392			tsleep(semap, semap->prio, semap->name,
393			    semap->timo);
394		}
395		return (0);
396	}
397	semap->holder = curthread;
398	if (interlock != NULL)
399		FREE_LOCK(interlock);
400	return (1);
401}
402
403static void
404sema_release(semap)
405	struct sema *semap;
406{
407
408	if (semap->value <= 0 || semap->holder != curthread) {
409		if (lk.lkt_held != NOHOLDER)
410			FREE_LOCK(&lk);
411		panic("sema_release: not held");
412	}
413	if (--semap->value > 0) {
414		semap->value = 0;
415		wakeup(semap);
416	}
417	semap->holder = NOHOLDER;
418}
419
420/*
421 * Worklist queue management.
422 * These routines require that the lock be held.
423 */
424#ifndef /* NOT */ DEBUG
425#define WORKLIST_INSERT(head, item) do {	\
426	(item)->wk_state |= ONWORKLIST;		\
427	LIST_INSERT_HEAD(head, item, wk_list);	\
428} while (0)
429#define WORKLIST_REMOVE(item) do {		\
430	(item)->wk_state &= ~ONWORKLIST;	\
431	LIST_REMOVE(item, wk_list);		\
432} while (0)
433#define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
434
435#else /* DEBUG */
436static	void worklist_insert(struct workhead *, struct worklist *);
437static	void worklist_remove(struct worklist *);
438static	void workitem_free(struct worklist *, int);
439
440#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
441#define WORKLIST_REMOVE(item) worklist_remove(item)
442#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
443
444static void
445worklist_insert(head, item)
446	struct workhead *head;
447	struct worklist *item;
448{
449
450	if (lk.lkt_held == NOHOLDER)
451		panic("worklist_insert: lock not held");
452	if (item->wk_state & ONWORKLIST) {
453		FREE_LOCK(&lk);
454		panic("worklist_insert: already on list");
455	}
456	item->wk_state |= ONWORKLIST;
457	LIST_INSERT_HEAD(head, item, wk_list);
458}
459
460static void
461worklist_remove(item)
462	struct worklist *item;
463{
464
465	if (lk.lkt_held == NOHOLDER)
466		panic("worklist_remove: lock not held");
467	if ((item->wk_state & ONWORKLIST) == 0) {
468		FREE_LOCK(&lk);
469		panic("worklist_remove: not on list");
470	}
471	item->wk_state &= ~ONWORKLIST;
472	LIST_REMOVE(item, wk_list);
473}
474
475static void
476workitem_free(item, type)
477	struct worklist *item;
478	int type;
479{
480
481	if (item->wk_state & ONWORKLIST) {
482		if (lk.lkt_held != NOHOLDER)
483			FREE_LOCK(&lk);
484		panic("workitem_free: still on list");
485	}
486	if (item->wk_type != type) {
487		if (lk.lkt_held != NOHOLDER)
488			FREE_LOCK(&lk);
489		panic("workitem_free: type mismatch");
490	}
491	FREE(item, DtoM(type));
492}
493#endif /* DEBUG */
494
495/*
496 * Workitem queue management
497 */
498static struct workhead softdep_workitem_pending;
499static struct worklist *worklist_tail;
500static int num_on_worklist;	/* number of worklist items to be processed */
501static int softdep_worklist_busy; /* 1 => trying to do unmount */
502static int softdep_worklist_req; /* serialized waiters */
503static int max_softdeps;	/* maximum number of structs before slowdown */
504static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
505static int tickdelay = 2;	/* number of ticks to pause during slowdown */
506static int proc_waiting;	/* tracks whether we have a timeout posted */
507static int *stat_countp;	/* statistic to count in proc_waiting timeout */
508static struct callout_handle handle; /* handle on posted proc_waiting timeout */
509static struct thread *filesys_syncer; /* proc of filesystem syncer process */
510static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
511#define FLUSH_INODES		1
512static int req_clear_remove;	/* syncer process flush some freeblks */
513#define FLUSH_REMOVE		2
514#define FLUSH_REMOVE_WAIT	3
515/*
516 * runtime statistics
517 */
518static int stat_worklist_push;	/* number of worklist cleanups */
519static int stat_blk_limit_push;	/* number of times block limit neared */
520static int stat_ino_limit_push;	/* number of times inode limit neared */
521static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
522static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
523static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
524static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
525static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
526static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
527static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
528#ifdef DEBUG
529#include <vm/vm.h>
530#include <sys/sysctl.h>
531SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
532SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
533SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, "");
534SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
535SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
536SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
537SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
538SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
539SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
540SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
541SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
542SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
543SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
544#endif /* DEBUG */
545
546/*
547 * Add an item to the end of the work queue.
548 * This routine requires that the lock be held.
549 * This is the only routine that adds items to the list.
550 * The following routine is the only one that removes items
551 * and does so in order from first to last.
552 */
553static void
554add_to_worklist(wk)
555	struct worklist *wk;
556{
557
558	if (wk->wk_state & ONWORKLIST) {
559		if (lk.lkt_held != NOHOLDER)
560			FREE_LOCK(&lk);
561		panic("add_to_worklist: already on list");
562	}
563	wk->wk_state |= ONWORKLIST;
564	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
565		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
566	else
567		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
568	worklist_tail = wk;
569	num_on_worklist += 1;
570}
571
572/*
573 * Process that runs once per second to handle items in the background queue.
574 *
575 * Note that we ensure that everything is done in the order in which they
576 * appear in the queue. The code below depends on this property to ensure
577 * that blocks of a file are freed before the inode itself is freed. This
578 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
579 * until all the old ones have been purged from the dependency lists.
580 */
581int
582softdep_process_worklist(matchmnt)
583	struct mount *matchmnt;
584{
585	struct thread *td = curthread;
586	int cnt, matchcnt, loopcount;
587	long starttime;
588
589	/*
590	 * Record the process identifier of our caller so that we can give
591	 * this process preferential treatment in request_cleanup below.
592	 */
593	filesys_syncer = td;
594	matchcnt = 0;
595
596	/*
597	 * There is no danger of having multiple processes run this
598	 * code, but we have to single-thread it when softdep_flushfiles()
599	 * is in operation to get an accurate count of the number of items
600	 * related to its mount point that are in the list.
601	 */
602	if (matchmnt == NULL) {
603		if (softdep_worklist_busy < 0)
604			return(-1);
605		softdep_worklist_busy += 1;
606	}
607
608	/*
609	 * If requested, try removing inode or removal dependencies.
610	 */
611	if (req_clear_inodedeps) {
612		clear_inodedeps(td);
613		req_clear_inodedeps -= 1;
614		wakeup_one(&proc_waiting);
615	}
616	if (req_clear_remove) {
617		clear_remove(td);
618		req_clear_remove -= 1;
619		wakeup_one(&proc_waiting);
620	}
621	loopcount = 1;
622	starttime = time_second;
623	while (num_on_worklist > 0) {
624		if ((cnt = process_worklist_item(matchmnt, 0)) == -1)
625			break;
626		else
627			matchcnt += cnt;
628
629		/*
630		 * If a umount operation wants to run the worklist
631		 * accurately, abort.
632		 */
633		if (softdep_worklist_req && matchmnt == NULL) {
634			matchcnt = -1;
635			break;
636		}
637
638		/*
639		 * If requested, try removing inode or removal dependencies.
640		 */
641		if (req_clear_inodedeps) {
642			clear_inodedeps(td);
643			req_clear_inodedeps -= 1;
644			wakeup_one(&proc_waiting);
645		}
646		if (req_clear_remove) {
647			clear_remove(td);
648			req_clear_remove -= 1;
649			wakeup_one(&proc_waiting);
650		}
651		/*
652		 * We do not generally want to stop for buffer space, but if
653		 * we are really being a buffer hog, we will stop and wait.
654		 */
655		if (loopcount++ % 128 == 0)
656			bwillwrite();
657		/*
658		 * Never allow processing to run for more than one
659		 * second. Otherwise the other syncer tasks may get
660		 * excessively backlogged.
661		 */
662		if (starttime != time_second && matchmnt == NULL) {
663			matchcnt = -1;
664			break;
665		}
666	}
667	if (matchmnt == NULL) {
668		softdep_worklist_busy -= 1;
669		if (softdep_worklist_req && softdep_worklist_busy == 0)
670			wakeup(&softdep_worklist_req);
671	}
672	return (matchcnt);
673}
674
675/*
676 * Process one item on the worklist.
677 */
678static int
679process_worklist_item(matchmnt, flags)
680	struct mount *matchmnt;
681	int flags;
682{
683	struct worklist *wk, *wkend;
684	struct mount *mp;
685	struct vnode *vp;
686	int matchcnt = 0;
687
688	/*
689	 * If we are being called because of a process doing a
690	 * copy-on-write, then it is not safe to write as we may
691	 * recurse into the copy-on-write routine.
692	 */
693	if (curthread->td_pflags & TDP_COWINPROGRESS)
694		return (-1);
695	ACQUIRE_LOCK(&lk);
696	/*
697	 * Normally we just process each item on the worklist in order.
698	 * However, if we are in a situation where we cannot lock any
699	 * inodes, we have to skip over any dirrem requests whose
700	 * vnodes are resident and locked.
701	 */
702	vp = NULL;
703	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
704		if (wk->wk_state & INPROGRESS)
705			continue;
706		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
707			break;
708		wk->wk_state |= INPROGRESS;
709		FREE_LOCK(&lk);
710		VFS_VGET(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum,
711		    LK_NOWAIT | LK_EXCLUSIVE, &vp);
712		ACQUIRE_LOCK(&lk);
713		wk->wk_state &= ~INPROGRESS;
714		if (vp != NULL)
715			break;
716	}
717	if (wk == 0) {
718		FREE_LOCK(&lk);
719		return (-1);
720	}
721	/*
722	 * Remove the item to be processed. If we are removing the last
723	 * item on the list, we need to recalculate the tail pointer.
724	 * As this happens rarely and usually when the list is short,
725	 * we just run down the list to find it rather than tracking it
726	 * in the above loop.
727	 */
728	WORKLIST_REMOVE(wk);
729	if (wk == worklist_tail) {
730		LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list)
731			if (LIST_NEXT(wkend, wk_list) == NULL)
732				break;
733		worklist_tail = wkend;
734	}
735	num_on_worklist -= 1;
736	FREE_LOCK(&lk);
737	switch (wk->wk_type) {
738
739	case D_DIRREM:
740		/* removal of a directory entry */
741		mp = WK_DIRREM(wk)->dm_mnt;
742		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
743			panic("%s: dirrem on suspended filesystem",
744				"process_worklist_item");
745		if (mp == matchmnt)
746			matchcnt += 1;
747		handle_workitem_remove(WK_DIRREM(wk), vp);
748		break;
749
750	case D_FREEBLKS:
751		/* releasing blocks and/or fragments from a file */
752		mp = WK_FREEBLKS(wk)->fb_mnt;
753		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
754			panic("%s: freeblks on suspended filesystem",
755				"process_worklist_item");
756		if (mp == matchmnt)
757			matchcnt += 1;
758		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
759		break;
760
761	case D_FREEFRAG:
762		/* releasing a fragment when replaced as a file grows */
763		mp = WK_FREEFRAG(wk)->ff_mnt;
764		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
765			panic("%s: freefrag on suspended filesystem",
766				"process_worklist_item");
767		if (mp == matchmnt)
768			matchcnt += 1;
769		handle_workitem_freefrag(WK_FREEFRAG(wk));
770		break;
771
772	case D_FREEFILE:
773		/* releasing an inode when its link count drops to 0 */
774		mp = WK_FREEFILE(wk)->fx_mnt;
775		if (vn_write_suspend_wait(NULL, mp, V_NOWAIT))
776			panic("%s: freefile on suspended filesystem",
777				"process_worklist_item");
778		if (mp == matchmnt)
779			matchcnt += 1;
780		handle_workitem_freefile(WK_FREEFILE(wk));
781		break;
782
783	default:
784		panic("%s_process_worklist: Unknown type %s",
785		    "softdep", TYPENAME(wk->wk_type));
786		/* NOTREACHED */
787	}
788	return (matchcnt);
789}
790
791/*
792 * Move dependencies from one buffer to another.
793 */
794static void
795softdep_move_dependencies(oldbp, newbp)
796	struct buf *oldbp;
797	struct buf *newbp;
798{
799	struct worklist *wk, *wktail;
800
801	if (LIST_FIRST(&newbp->b_dep) != NULL)
802		panic("softdep_move_dependencies: need merge code");
803	wktail = 0;
804	ACQUIRE_LOCK(&lk);
805	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
806		LIST_REMOVE(wk, wk_list);
807		if (wktail == 0)
808			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
809		else
810			LIST_INSERT_AFTER(wktail, wk, wk_list);
811		wktail = wk;
812	}
813	FREE_LOCK(&lk);
814}
815
816/*
817 * Purge the work list of all items associated with a particular mount point.
818 */
819int
820softdep_flushworklist(oldmnt, countp, td)
821	struct mount *oldmnt;
822	int *countp;
823	struct thread *td;
824{
825	struct vnode *devvp;
826	int count, error = 0;
827
828	/*
829	 * Await our turn to clear out the queue, then serialize access.
830	 */
831	while (softdep_worklist_busy) {
832		softdep_worklist_req += 1;
833		tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0);
834		softdep_worklist_req -= 1;
835	}
836	softdep_worklist_busy = -1;
837	/*
838	 * Alternately flush the block device associated with the mount
839	 * point and process any dependencies that the flushing
840	 * creates. We continue until no more worklist dependencies
841	 * are found.
842	 */
843	*countp = 0;
844	devvp = VFSTOUFS(oldmnt)->um_devvp;
845	while ((count = softdep_process_worklist(oldmnt)) > 0) {
846		*countp += count;
847		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td);
848		error = VOP_FSYNC(devvp, td->td_ucred, MNT_WAIT, td);
849		VOP_UNLOCK(devvp, 0, td);
850		if (error)
851			break;
852	}
853	softdep_worklist_busy = 0;
854	if (softdep_worklist_req)
855		wakeup(&softdep_worklist_req);
856	return (error);
857}
858
859/*
860 * Flush all vnodes and worklist items associated with a specified mount point.
861 */
862int
863softdep_flushfiles(oldmnt, flags, td)
864	struct mount *oldmnt;
865	int flags;
866	struct thread *td;
867{
868	int error, count, loopcnt;
869
870	error = 0;
871
872	/*
873	 * Alternately flush the vnodes associated with the mount
874	 * point and process any dependencies that the flushing
875	 * creates. In theory, this loop can happen at most twice,
876	 * but we give it a few extra just to be sure.
877	 */
878	for (loopcnt = 10; loopcnt > 0; loopcnt--) {
879		/*
880		 * Do another flush in case any vnodes were brought in
881		 * as part of the cleanup operations.
882		 */
883		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
884			break;
885		if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 ||
886		    count == 0)
887			break;
888	}
889	/*
890	 * If we are unmounting then it is an error to fail. If we
891	 * are simply trying to downgrade to read-only, then filesystem
892	 * activity can keep us busy forever, so we just fail with EBUSY.
893	 */
894	if (loopcnt == 0) {
895		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
896			panic("softdep_flushfiles: looping");
897		error = EBUSY;
898	}
899	return (error);
900}
901
902/*
903 * Structure hashing.
904 *
905 * There are three types of structures that can be looked up:
906 *	1) pagedep structures identified by mount point, inode number,
907 *	   and logical block.
908 *	2) inodedep structures identified by mount point and inode number.
909 *	3) newblk structures identified by mount point and
910 *	   physical block number.
911 *
912 * The "pagedep" and "inodedep" dependency structures are hashed
913 * separately from the file blocks and inodes to which they correspond.
914 * This separation helps when the in-memory copy of an inode or
915 * file block must be replaced. It also obviates the need to access
916 * an inode or file page when simply updating (or de-allocating)
917 * dependency structures. Lookup of newblk structures is needed to
918 * find newly allocated blocks when trying to associate them with
919 * their allocdirect or allocindir structure.
920 *
921 * The lookup routines optionally create and hash a new instance when
922 * an existing entry is not found.
923 */
924#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
925#define NODELAY		0x0002	/* cannot do background work */
926
927/*
928 * Structures and routines associated with pagedep caching.
929 */
930LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
931u_long	pagedep_hash;		/* size of hash table - 1 */
932#define	PAGEDEP_HASH(mp, inum, lbn) \
933	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
934	    pagedep_hash])
935static struct sema pagedep_in_progress;
936
937/*
938 * Look up a pagedep. Return 1 if found, 0 if not found or found
939 * when asked to allocate but not associated with any buffer.
940 * If not found, allocate if DEPALLOC flag is passed.
941 * Found or allocated entry is returned in pagedeppp.
942 * This routine must be called with splbio interrupts blocked.
943 */
944static int
945pagedep_lookup(ip, lbn, flags, pagedeppp)
946	struct inode *ip;
947	ufs_lbn_t lbn;
948	int flags;
949	struct pagedep **pagedeppp;
950{
951	struct pagedep *pagedep;
952	struct pagedep_hashhead *pagedephd;
953	struct mount *mp;
954	int i;
955
956#ifdef DEBUG
957	if (lk.lkt_held == NOHOLDER)
958		panic("pagedep_lookup: lock not held");
959#endif
960	mp = ITOV(ip)->v_mount;
961	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
962top:
963	LIST_FOREACH(pagedep, pagedephd, pd_hash)
964		if (ip->i_number == pagedep->pd_ino &&
965		    lbn == pagedep->pd_lbn &&
966		    mp == pagedep->pd_mnt)
967			break;
968	if (pagedep) {
969		*pagedeppp = pagedep;
970		if ((flags & DEPALLOC) != 0 &&
971		    (pagedep->pd_state & ONWORKLIST) == 0)
972			return (0);
973		return (1);
974	}
975	if ((flags & DEPALLOC) == 0) {
976		*pagedeppp = NULL;
977		return (0);
978	}
979	if (sema_get(&pagedep_in_progress, &lk) == 0) {
980		ACQUIRE_LOCK(&lk);
981		goto top;
982	}
983	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
984		M_SOFTDEP_FLAGS|M_ZERO);
985	pagedep->pd_list.wk_type = D_PAGEDEP;
986	pagedep->pd_mnt = mp;
987	pagedep->pd_ino = ip->i_number;
988	pagedep->pd_lbn = lbn;
989	LIST_INIT(&pagedep->pd_dirremhd);
990	LIST_INIT(&pagedep->pd_pendinghd);
991	for (i = 0; i < DAHASHSZ; i++)
992		LIST_INIT(&pagedep->pd_diraddhd[i]);
993	ACQUIRE_LOCK(&lk);
994	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
995	sema_release(&pagedep_in_progress);
996	*pagedeppp = pagedep;
997	return (0);
998}
999
1000/*
1001 * Structures and routines associated with inodedep caching.
1002 */
1003LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1004static u_long	inodedep_hash;	/* size of hash table - 1 */
1005static long	num_inodedep;	/* number of inodedep allocated */
1006#define	INODEDEP_HASH(fs, inum) \
1007      (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1008static struct sema inodedep_in_progress;
1009
1010/*
1011 * Look up an inodedep. Return 1 if found, 0 if not found.
1012 * If not found, allocate if DEPALLOC flag is passed.
1013 * Found or allocated entry is returned in inodedeppp.
1014 * This routine must be called with splbio interrupts blocked.
1015 */
1016static int
1017inodedep_lookup(fs, inum, flags, inodedeppp)
1018	struct fs *fs;
1019	ino_t inum;
1020	int flags;
1021	struct inodedep **inodedeppp;
1022{
1023	struct inodedep *inodedep;
1024	struct inodedep_hashhead *inodedephd;
1025	int firsttry;
1026
1027#ifdef DEBUG
1028	if (lk.lkt_held == NOHOLDER)
1029		panic("inodedep_lookup: lock not held");
1030#endif
1031	firsttry = 1;
1032	inodedephd = INODEDEP_HASH(fs, inum);
1033top:
1034	LIST_FOREACH(inodedep, inodedephd, id_hash)
1035		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1036			break;
1037	if (inodedep) {
1038		*inodedeppp = inodedep;
1039		return (1);
1040	}
1041	if ((flags & DEPALLOC) == 0) {
1042		*inodedeppp = NULL;
1043		return (0);
1044	}
1045	/*
1046	 * If we are over our limit, try to improve the situation.
1047	 */
1048	if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 &&
1049	    request_cleanup(FLUSH_INODES, 1)) {
1050		firsttry = 0;
1051		goto top;
1052	}
1053	if (sema_get(&inodedep_in_progress, &lk) == 0) {
1054		ACQUIRE_LOCK(&lk);
1055		goto top;
1056	}
1057	num_inodedep += 1;
1058	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1059		M_INODEDEP, M_SOFTDEP_FLAGS);
1060	inodedep->id_list.wk_type = D_INODEDEP;
1061	inodedep->id_fs = fs;
1062	inodedep->id_ino = inum;
1063	inodedep->id_state = ALLCOMPLETE;
1064	inodedep->id_nlinkdelta = 0;
1065	inodedep->id_savedino1 = NULL;
1066	inodedep->id_savedsize = -1;
1067	inodedep->id_savedextsize = -1;
1068	inodedep->id_buf = NULL;
1069	LIST_INIT(&inodedep->id_pendinghd);
1070	LIST_INIT(&inodedep->id_inowait);
1071	LIST_INIT(&inodedep->id_bufwait);
1072	TAILQ_INIT(&inodedep->id_inoupdt);
1073	TAILQ_INIT(&inodedep->id_newinoupdt);
1074	TAILQ_INIT(&inodedep->id_extupdt);
1075	TAILQ_INIT(&inodedep->id_newextupdt);
1076	ACQUIRE_LOCK(&lk);
1077	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1078	sema_release(&inodedep_in_progress);
1079	*inodedeppp = inodedep;
1080	return (0);
1081}
1082
1083/*
1084 * Structures and routines associated with newblk caching.
1085 */
1086LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1087u_long	newblk_hash;		/* size of hash table - 1 */
1088#define	NEWBLK_HASH(fs, inum) \
1089	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1090static struct sema newblk_in_progress;
1091
1092/*
1093 * Look up a newblk. Return 1 if found, 0 if not found.
1094 * If not found, allocate if DEPALLOC flag is passed.
1095 * Found or allocated entry is returned in newblkpp.
1096 */
1097static int
1098newblk_lookup(fs, newblkno, flags, newblkpp)
1099	struct fs *fs;
1100	ufs2_daddr_t newblkno;
1101	int flags;
1102	struct newblk **newblkpp;
1103{
1104	struct newblk *newblk;
1105	struct newblk_hashhead *newblkhd;
1106
1107	newblkhd = NEWBLK_HASH(fs, newblkno);
1108top:
1109	LIST_FOREACH(newblk, newblkhd, nb_hash)
1110		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1111			break;
1112	if (newblk) {
1113		*newblkpp = newblk;
1114		return (1);
1115	}
1116	if ((flags & DEPALLOC) == 0) {
1117		*newblkpp = NULL;
1118		return (0);
1119	}
1120	if (sema_get(&newblk_in_progress, 0) == 0)
1121		goto top;
1122	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1123		M_NEWBLK, M_SOFTDEP_FLAGS);
1124	newblk->nb_state = 0;
1125	newblk->nb_fs = fs;
1126	newblk->nb_newblkno = newblkno;
1127	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1128	sema_release(&newblk_in_progress);
1129	*newblkpp = newblk;
1130	return (0);
1131}
1132
1133/*
1134 * Executed during filesystem system initialization before
1135 * mounting any filesystems.
1136 */
1137void
1138softdep_initialize()
1139{
1140
1141	LIST_INIT(&mkdirlisthd);
1142	LIST_INIT(&softdep_workitem_pending);
1143	max_softdeps = desiredvnodes * 4;
1144	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1145	    &pagedep_hash);
1146	sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0);
1147	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1148	sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0);
1149	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1150	sema_init(&newblk_in_progress, "newblk", PRIBIO, 0);
1151
1152	/* hooks through which the main kernel code calls us */
1153	softdep_process_worklist_hook = softdep_process_worklist;
1154	softdep_fsync_hook = softdep_fsync;
1155
1156	/* initialise bioops hack */
1157	bioops.io_prewrite = softdep_disk_prewrite;
1158	bioops.io_start = softdep_disk_io_initiation;
1159	bioops.io_complete = softdep_disk_write_complete;
1160	bioops.io_deallocate = softdep_deallocate_dependencies;
1161	bioops.io_movedeps = softdep_move_dependencies;
1162	bioops.io_countdeps = softdep_count_dependencies;
1163}
1164
1165/*
1166 * Executed after all filesystems have been unmounted during
1167 * filesystem module unload.
1168 */
1169void
1170softdep_uninitialize()
1171{
1172
1173	softdep_process_worklist_hook = NULL;
1174	softdep_fsync_hook = NULL;
1175	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
1176	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
1177	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
1178}
1179
1180/*
1181 * Called at mount time to notify the dependency code that a
1182 * filesystem wishes to use it.
1183 */
1184int
1185softdep_mount(devvp, mp, fs, cred)
1186	struct vnode *devvp;
1187	struct mount *mp;
1188	struct fs *fs;
1189	struct ucred *cred;
1190{
1191	struct csum_total cstotal;
1192	struct cg *cgp;
1193	struct buf *bp;
1194	int error, cyl;
1195
1196	mp->mnt_flag &= ~MNT_ASYNC;
1197	mp->mnt_flag |= MNT_SOFTDEP;
1198	/*
1199	 * When doing soft updates, the counters in the
1200	 * superblock may have gotten out of sync, so we have
1201	 * to scan the cylinder groups and recalculate them.
1202	 */
1203	if (fs->fs_clean != 0)
1204		return (0);
1205	bzero(&cstotal, sizeof cstotal);
1206	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1207		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1208		    fs->fs_cgsize, cred, &bp)) != 0) {
1209			brelse(bp);
1210			return (error);
1211		}
1212		cgp = (struct cg *)bp->b_data;
1213		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1214		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1215		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1216		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1217		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1218		brelse(bp);
1219	}
1220#ifdef DEBUG
1221	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1222		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
1223#endif
1224	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1225	return (0);
1226}
1227
1228/*
1229 * Protecting the freemaps (or bitmaps).
1230 *
1231 * To eliminate the need to execute fsck before mounting a filesystem
1232 * after a power failure, one must (conservatively) guarantee that the
1233 * on-disk copy of the bitmaps never indicate that a live inode or block is
1234 * free.  So, when a block or inode is allocated, the bitmap should be
1235 * updated (on disk) before any new pointers.  When a block or inode is
1236 * freed, the bitmap should not be updated until all pointers have been
1237 * reset.  The latter dependency is handled by the delayed de-allocation
1238 * approach described below for block and inode de-allocation.  The former
1239 * dependency is handled by calling the following procedure when a block or
1240 * inode is allocated. When an inode is allocated an "inodedep" is created
1241 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1242 * Each "inodedep" is also inserted into the hash indexing structure so
1243 * that any additional link additions can be made dependent on the inode
1244 * allocation.
1245 *
1246 * The ufs filesystem maintains a number of free block counts (e.g., per
1247 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1248 * in addition to the bitmaps.  These counts are used to improve efficiency
1249 * during allocation and therefore must be consistent with the bitmaps.
1250 * There is no convenient way to guarantee post-crash consistency of these
1251 * counts with simple update ordering, for two main reasons: (1) The counts
1252 * and bitmaps for a single cylinder group block are not in the same disk
1253 * sector.  If a disk write is interrupted (e.g., by power failure), one may
1254 * be written and the other not.  (2) Some of the counts are located in the
1255 * superblock rather than the cylinder group block. So, we focus our soft
1256 * updates implementation on protecting the bitmaps. When mounting a
1257 * filesystem, we recompute the auxiliary counts from the bitmaps.
1258 */
1259
1260/*
1261 * Called just after updating the cylinder group block to allocate an inode.
1262 */
1263void
1264softdep_setup_inomapdep(bp, ip, newinum)
1265	struct buf *bp;		/* buffer for cylgroup block with inode map */
1266	struct inode *ip;	/* inode related to allocation */
1267	ino_t newinum;		/* new inode number being allocated */
1268{
1269	struct inodedep *inodedep;
1270	struct bmsafemap *bmsafemap;
1271
1272	/*
1273	 * Create a dependency for the newly allocated inode.
1274	 * Panic if it already exists as something is seriously wrong.
1275	 * Otherwise add it to the dependency list for the buffer holding
1276	 * the cylinder group map from which it was allocated.
1277	 */
1278	ACQUIRE_LOCK(&lk);
1279	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1280		FREE_LOCK(&lk);
1281		panic("softdep_setup_inomapdep: found inode");
1282	}
1283	inodedep->id_buf = bp;
1284	inodedep->id_state &= ~DEPCOMPLETE;
1285	bmsafemap = bmsafemap_lookup(bp);
1286	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1287	FREE_LOCK(&lk);
1288}
1289
1290/*
1291 * Called just after updating the cylinder group block to
1292 * allocate block or fragment.
1293 */
1294void
1295softdep_setup_blkmapdep(bp, fs, newblkno)
1296	struct buf *bp;		/* buffer for cylgroup block with block map */
1297	struct fs *fs;		/* filesystem doing allocation */
1298	ufs2_daddr_t newblkno;	/* number of newly allocated block */
1299{
1300	struct newblk *newblk;
1301	struct bmsafemap *bmsafemap;
1302
1303	/*
1304	 * Create a dependency for the newly allocated block.
1305	 * Add it to the dependency list for the buffer holding
1306	 * the cylinder group map from which it was allocated.
1307	 */
1308	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1309		panic("softdep_setup_blkmapdep: found block");
1310	ACQUIRE_LOCK(&lk);
1311	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1312	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1313	FREE_LOCK(&lk);
1314}
1315
1316/*
1317 * Find the bmsafemap associated with a cylinder group buffer.
1318 * If none exists, create one. The buffer must be locked when
1319 * this routine is called and this routine must be called with
1320 * splbio interrupts blocked.
1321 */
1322static struct bmsafemap *
1323bmsafemap_lookup(bp)
1324	struct buf *bp;
1325{
1326	struct bmsafemap *bmsafemap;
1327	struct worklist *wk;
1328
1329#ifdef DEBUG
1330	if (lk.lkt_held == NOHOLDER)
1331		panic("bmsafemap_lookup: lock not held");
1332#endif
1333	LIST_FOREACH(wk, &bp->b_dep, wk_list)
1334		if (wk->wk_type == D_BMSAFEMAP)
1335			return (WK_BMSAFEMAP(wk));
1336	FREE_LOCK(&lk);
1337	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1338		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1339	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1340	bmsafemap->sm_list.wk_state = 0;
1341	bmsafemap->sm_buf = bp;
1342	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1343	LIST_INIT(&bmsafemap->sm_allocindirhd);
1344	LIST_INIT(&bmsafemap->sm_inodedephd);
1345	LIST_INIT(&bmsafemap->sm_newblkhd);
1346	ACQUIRE_LOCK(&lk);
1347	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1348	return (bmsafemap);
1349}
1350
1351/*
1352 * Direct block allocation dependencies.
1353 *
1354 * When a new block is allocated, the corresponding disk locations must be
1355 * initialized (with zeros or new data) before the on-disk inode points to
1356 * them.  Also, the freemap from which the block was allocated must be
1357 * updated (on disk) before the inode's pointer. These two dependencies are
1358 * independent of each other and are needed for all file blocks and indirect
1359 * blocks that are pointed to directly by the inode.  Just before the
1360 * "in-core" version of the inode is updated with a newly allocated block
1361 * number, a procedure (below) is called to setup allocation dependency
1362 * structures.  These structures are removed when the corresponding
1363 * dependencies are satisfied or when the block allocation becomes obsolete
1364 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1365 * fragment that gets upgraded).  All of these cases are handled in
1366 * procedures described later.
1367 *
1368 * When a file extension causes a fragment to be upgraded, either to a larger
1369 * fragment or to a full block, the on-disk location may change (if the
1370 * previous fragment could not simply be extended). In this case, the old
1371 * fragment must be de-allocated, but not until after the inode's pointer has
1372 * been updated. In most cases, this is handled by later procedures, which
1373 * will construct a "freefrag" structure to be added to the workitem queue
1374 * when the inode update is complete (or obsolete).  The main exception to
1375 * this is when an allocation occurs while a pending allocation dependency
1376 * (for the same block pointer) remains.  This case is handled in the main
1377 * allocation dependency setup procedure by immediately freeing the
1378 * unreferenced fragments.
1379 */
1380void
1381softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1382	struct inode *ip;	/* inode to which block is being added */
1383	ufs_lbn_t lbn;		/* block pointer within inode */
1384	ufs2_daddr_t newblkno;	/* disk block number being added */
1385	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
1386	long newsize;		/* size of new block */
1387	long oldsize;		/* size of new block */
1388	struct buf *bp;		/* bp for allocated block */
1389{
1390	struct allocdirect *adp, *oldadp;
1391	struct allocdirectlst *adphead;
1392	struct bmsafemap *bmsafemap;
1393	struct inodedep *inodedep;
1394	struct pagedep *pagedep;
1395	struct newblk *newblk;
1396
1397	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1398		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1399	adp->ad_list.wk_type = D_ALLOCDIRECT;
1400	adp->ad_lbn = lbn;
1401	adp->ad_newblkno = newblkno;
1402	adp->ad_oldblkno = oldblkno;
1403	adp->ad_newsize = newsize;
1404	adp->ad_oldsize = oldsize;
1405	adp->ad_state = ATTACHED;
1406	LIST_INIT(&adp->ad_newdirblk);
1407	if (newblkno == oldblkno)
1408		adp->ad_freefrag = NULL;
1409	else
1410		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1411
1412	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1413		panic("softdep_setup_allocdirect: lost block");
1414
1415	ACQUIRE_LOCK(&lk);
1416	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1417	adp->ad_inodedep = inodedep;
1418
1419	if (newblk->nb_state == DEPCOMPLETE) {
1420		adp->ad_state |= DEPCOMPLETE;
1421		adp->ad_buf = NULL;
1422	} else {
1423		bmsafemap = newblk->nb_bmsafemap;
1424		adp->ad_buf = bmsafemap->sm_buf;
1425		LIST_REMOVE(newblk, nb_deps);
1426		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1427	}
1428	LIST_REMOVE(newblk, nb_hash);
1429	FREE(newblk, M_NEWBLK);
1430
1431	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1432	if (lbn >= NDADDR) {
1433		/* allocating an indirect block */
1434		if (oldblkno != 0) {
1435			FREE_LOCK(&lk);
1436			panic("softdep_setup_allocdirect: non-zero indir");
1437		}
1438	} else {
1439		/*
1440		 * Allocating a direct block.
1441		 *
1442		 * If we are allocating a directory block, then we must
1443		 * allocate an associated pagedep to track additions and
1444		 * deletions.
1445		 */
1446		if ((ip->i_mode & IFMT) == IFDIR &&
1447		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1448			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1449	}
1450	/*
1451	 * The list of allocdirects must be kept in sorted and ascending
1452	 * order so that the rollback routines can quickly determine the
1453	 * first uncommitted block (the size of the file stored on disk
1454	 * ends at the end of the lowest committed fragment, or if there
1455	 * are no fragments, at the end of the highest committed block).
1456	 * Since files generally grow, the typical case is that the new
1457	 * block is to be added at the end of the list. We speed this
1458	 * special case by checking against the last allocdirect in the
1459	 * list before laboriously traversing the list looking for the
1460	 * insertion point.
1461	 */
1462	adphead = &inodedep->id_newinoupdt;
1463	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1464	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1465		/* insert at end of list */
1466		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1467		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1468			allocdirect_merge(adphead, adp, oldadp);
1469		FREE_LOCK(&lk);
1470		return;
1471	}
1472	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1473		if (oldadp->ad_lbn >= lbn)
1474			break;
1475	}
1476	if (oldadp == NULL) {
1477		FREE_LOCK(&lk);
1478		panic("softdep_setup_allocdirect: lost entry");
1479	}
1480	/* insert in middle of list */
1481	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1482	if (oldadp->ad_lbn == lbn)
1483		allocdirect_merge(adphead, adp, oldadp);
1484	FREE_LOCK(&lk);
1485}
1486
1487/*
1488 * Replace an old allocdirect dependency with a newer one.
1489 * This routine must be called with splbio interrupts blocked.
1490 */
1491static void
1492allocdirect_merge(adphead, newadp, oldadp)
1493	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
1494	struct allocdirect *newadp;	/* allocdirect being added */
1495	struct allocdirect *oldadp;	/* existing allocdirect being checked */
1496{
1497	struct worklist *wk;
1498	struct freefrag *freefrag;
1499	struct newdirblk *newdirblk;
1500
1501#ifdef DEBUG
1502	if (lk.lkt_held == NOHOLDER)
1503		panic("allocdirect_merge: lock not held");
1504#endif
1505	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1506	    newadp->ad_oldsize != oldadp->ad_newsize ||
1507	    newadp->ad_lbn >= NDADDR) {
1508		FREE_LOCK(&lk);
1509		panic("%s %jd != new %jd || old size %ld != new %ld",
1510		    "allocdirect_merge: old blkno",
1511		    (intmax_t)newadp->ad_oldblkno,
1512		    (intmax_t)oldadp->ad_newblkno,
1513		    newadp->ad_oldsize, oldadp->ad_newsize);
1514	}
1515	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1516	newadp->ad_oldsize = oldadp->ad_oldsize;
1517	/*
1518	 * If the old dependency had a fragment to free or had never
1519	 * previously had a block allocated, then the new dependency
1520	 * can immediately post its freefrag and adopt the old freefrag.
1521	 * This action is done by swapping the freefrag dependencies.
1522	 * The new dependency gains the old one's freefrag, and the
1523	 * old one gets the new one and then immediately puts it on
1524	 * the worklist when it is freed by free_allocdirect. It is
1525	 * not possible to do this swap when the old dependency had a
1526	 * non-zero size but no previous fragment to free. This condition
1527	 * arises when the new block is an extension of the old block.
1528	 * Here, the first part of the fragment allocated to the new
1529	 * dependency is part of the block currently claimed on disk by
1530	 * the old dependency, so cannot legitimately be freed until the
1531	 * conditions for the new dependency are fulfilled.
1532	 */
1533	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1534		freefrag = newadp->ad_freefrag;
1535		newadp->ad_freefrag = oldadp->ad_freefrag;
1536		oldadp->ad_freefrag = freefrag;
1537	}
1538	/*
1539	 * If we are tracking a new directory-block allocation,
1540	 * move it from the old allocdirect to the new allocdirect.
1541	 */
1542	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
1543		newdirblk = WK_NEWDIRBLK(wk);
1544		WORKLIST_REMOVE(&newdirblk->db_list);
1545		if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL)
1546			panic("allocdirect_merge: extra newdirblk");
1547		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
1548	}
1549	free_allocdirect(adphead, oldadp, 0);
1550}
1551
1552/*
1553 * Allocate a new freefrag structure if needed.
1554 */
1555static struct freefrag *
1556newfreefrag(ip, blkno, size)
1557	struct inode *ip;
1558	ufs2_daddr_t blkno;
1559	long size;
1560{
1561	struct freefrag *freefrag;
1562	struct fs *fs;
1563
1564	if (blkno == 0)
1565		return (NULL);
1566	fs = ip->i_fs;
1567	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1568		panic("newfreefrag: frag size");
1569	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1570		M_FREEFRAG, M_SOFTDEP_FLAGS);
1571	freefrag->ff_list.wk_type = D_FREEFRAG;
1572	freefrag->ff_state = 0;
1573	freefrag->ff_inum = ip->i_number;
1574	freefrag->ff_mnt = ITOV(ip)->v_mount;
1575	freefrag->ff_blkno = blkno;
1576	freefrag->ff_fragsize = size;
1577	return (freefrag);
1578}
1579
1580/*
1581 * This workitem de-allocates fragments that were replaced during
1582 * file block allocation.
1583 */
1584static void
1585handle_workitem_freefrag(freefrag)
1586	struct freefrag *freefrag;
1587{
1588	struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt);
1589
1590	ffs_blkfree(ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
1591	    freefrag->ff_fragsize, freefrag->ff_inum);
1592	FREE(freefrag, M_FREEFRAG);
1593}
1594
1595/*
1596 * Set up a dependency structure for an external attributes data block.
1597 * This routine follows much of the structure of softdep_setup_allocdirect.
1598 * See the description of softdep_setup_allocdirect above for details.
1599 */
1600void
1601softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1602	struct inode *ip;
1603	ufs_lbn_t lbn;
1604	ufs2_daddr_t newblkno;
1605	ufs2_daddr_t oldblkno;
1606	long newsize;
1607	long oldsize;
1608	struct buf *bp;
1609{
1610	struct allocdirect *adp, *oldadp;
1611	struct allocdirectlst *adphead;
1612	struct bmsafemap *bmsafemap;
1613	struct inodedep *inodedep;
1614	struct newblk *newblk;
1615
1616	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1617		M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1618	adp->ad_list.wk_type = D_ALLOCDIRECT;
1619	adp->ad_lbn = lbn;
1620	adp->ad_newblkno = newblkno;
1621	adp->ad_oldblkno = oldblkno;
1622	adp->ad_newsize = newsize;
1623	adp->ad_oldsize = oldsize;
1624	adp->ad_state = ATTACHED | EXTDATA;
1625	LIST_INIT(&adp->ad_newdirblk);
1626	if (newblkno == oldblkno)
1627		adp->ad_freefrag = NULL;
1628	else
1629		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1630
1631	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1632		panic("softdep_setup_allocext: lost block");
1633
1634	ACQUIRE_LOCK(&lk);
1635	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1636	adp->ad_inodedep = inodedep;
1637
1638	if (newblk->nb_state == DEPCOMPLETE) {
1639		adp->ad_state |= DEPCOMPLETE;
1640		adp->ad_buf = NULL;
1641	} else {
1642		bmsafemap = newblk->nb_bmsafemap;
1643		adp->ad_buf = bmsafemap->sm_buf;
1644		LIST_REMOVE(newblk, nb_deps);
1645		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1646	}
1647	LIST_REMOVE(newblk, nb_hash);
1648	FREE(newblk, M_NEWBLK);
1649
1650	WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1651	if (lbn >= NXADDR) {
1652		FREE_LOCK(&lk);
1653		panic("softdep_setup_allocext: lbn %lld > NXADDR",
1654		    (long long)lbn);
1655	}
1656	/*
1657	 * The list of allocdirects must be kept in sorted and ascending
1658	 * order so that the rollback routines can quickly determine the
1659	 * first uncommitted block (the size of the file stored on disk
1660	 * ends at the end of the lowest committed fragment, or if there
1661	 * are no fragments, at the end of the highest committed block).
1662	 * Since files generally grow, the typical case is that the new
1663	 * block is to be added at the end of the list. We speed this
1664	 * special case by checking against the last allocdirect in the
1665	 * list before laboriously traversing the list looking for the
1666	 * insertion point.
1667	 */
1668	adphead = &inodedep->id_newextupdt;
1669	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1670	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1671		/* insert at end of list */
1672		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1673		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1674			allocdirect_merge(adphead, adp, oldadp);
1675		FREE_LOCK(&lk);
1676		return;
1677	}
1678	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1679		if (oldadp->ad_lbn >= lbn)
1680			break;
1681	}
1682	if (oldadp == NULL) {
1683		FREE_LOCK(&lk);
1684		panic("softdep_setup_allocext: lost entry");
1685	}
1686	/* insert in middle of list */
1687	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1688	if (oldadp->ad_lbn == lbn)
1689		allocdirect_merge(adphead, adp, oldadp);
1690	FREE_LOCK(&lk);
1691}
1692
1693/*
1694 * Indirect block allocation dependencies.
1695 *
1696 * The same dependencies that exist for a direct block also exist when
1697 * a new block is allocated and pointed to by an entry in a block of
1698 * indirect pointers. The undo/redo states described above are also
1699 * used here. Because an indirect block contains many pointers that
1700 * may have dependencies, a second copy of the entire in-memory indirect
1701 * block is kept. The buffer cache copy is always completely up-to-date.
1702 * The second copy, which is used only as a source for disk writes,
1703 * contains only the safe pointers (i.e., those that have no remaining
1704 * update dependencies). The second copy is freed when all pointers
1705 * are safe. The cache is not allowed to replace indirect blocks with
1706 * pending update dependencies. If a buffer containing an indirect
1707 * block with dependencies is written, these routines will mark it
1708 * dirty again. It can only be successfully written once all the
1709 * dependencies are removed. The ffs_fsync routine in conjunction with
1710 * softdep_sync_metadata work together to get all the dependencies
1711 * removed so that a file can be successfully written to disk. Three
1712 * procedures are used when setting up indirect block pointer
1713 * dependencies. The division is necessary because of the organization
1714 * of the "balloc" routine and because of the distinction between file
1715 * pages and file metadata blocks.
1716 */
1717
1718/*
1719 * Allocate a new allocindir structure.
1720 */
1721static struct allocindir *
1722newallocindir(ip, ptrno, newblkno, oldblkno)
1723	struct inode *ip;	/* inode for file being extended */
1724	int ptrno;		/* offset of pointer in indirect block */
1725	ufs2_daddr_t newblkno;	/* disk block number being added */
1726	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1727{
1728	struct allocindir *aip;
1729
1730	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1731		M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO);
1732	aip->ai_list.wk_type = D_ALLOCINDIR;
1733	aip->ai_state = ATTACHED;
1734	aip->ai_offset = ptrno;
1735	aip->ai_newblkno = newblkno;
1736	aip->ai_oldblkno = oldblkno;
1737	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1738	return (aip);
1739}
1740
1741/*
1742 * Called just before setting an indirect block pointer
1743 * to a newly allocated file page.
1744 */
1745void
1746softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1747	struct inode *ip;	/* inode for file being extended */
1748	ufs_lbn_t lbn;		/* allocated block number within file */
1749	struct buf *bp;		/* buffer with indirect blk referencing page */
1750	int ptrno;		/* offset of pointer in indirect block */
1751	ufs2_daddr_t newblkno;	/* disk block number being added */
1752	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
1753	struct buf *nbp;	/* buffer holding allocated page */
1754{
1755	struct allocindir *aip;
1756	struct pagedep *pagedep;
1757
1758	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1759	ACQUIRE_LOCK(&lk);
1760	/*
1761	 * If we are allocating a directory page, then we must
1762	 * allocate an associated pagedep to track additions and
1763	 * deletions.
1764	 */
1765	if ((ip->i_mode & IFMT) == IFDIR &&
1766	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1767		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1768	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1769	FREE_LOCK(&lk);
1770	setup_allocindir_phase2(bp, ip, aip);
1771}
1772
1773/*
1774 * Called just before setting an indirect block pointer to a
1775 * newly allocated indirect block.
1776 */
1777void
1778softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
1779	struct buf *nbp;	/* newly allocated indirect block */
1780	struct inode *ip;	/* inode for file being extended */
1781	struct buf *bp;		/* indirect block referencing allocated block */
1782	int ptrno;		/* offset of pointer in indirect block */
1783	ufs2_daddr_t newblkno;	/* disk block number being added */
1784{
1785	struct allocindir *aip;
1786
1787	aip = newallocindir(ip, ptrno, newblkno, 0);
1788	ACQUIRE_LOCK(&lk);
1789	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1790	FREE_LOCK(&lk);
1791	setup_allocindir_phase2(bp, ip, aip);
1792}
1793
1794/*
1795 * Called to finish the allocation of the "aip" allocated
1796 * by one of the two routines above.
1797 */
1798static void
1799setup_allocindir_phase2(bp, ip, aip)
1800	struct buf *bp;		/* in-memory copy of the indirect block */
1801	struct inode *ip;	/* inode for file being extended */
1802	struct allocindir *aip;	/* allocindir allocated by the above routines */
1803{
1804	struct worklist *wk;
1805	struct indirdep *indirdep, *newindirdep;
1806	struct bmsafemap *bmsafemap;
1807	struct allocindir *oldaip;
1808	struct freefrag *freefrag;
1809	struct newblk *newblk;
1810	ufs2_daddr_t blkno;
1811
1812	if (bp->b_lblkno >= 0)
1813		panic("setup_allocindir_phase2: not indir blk");
1814	for (indirdep = NULL, newindirdep = NULL; ; ) {
1815		ACQUIRE_LOCK(&lk);
1816		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1817			if (wk->wk_type != D_INDIRDEP)
1818				continue;
1819			indirdep = WK_INDIRDEP(wk);
1820			break;
1821		}
1822		if (indirdep == NULL && newindirdep) {
1823			indirdep = newindirdep;
1824			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
1825			newindirdep = NULL;
1826		}
1827		FREE_LOCK(&lk);
1828		if (indirdep) {
1829			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1830			    &newblk) == 0)
1831				panic("setup_allocindir: lost block");
1832			ACQUIRE_LOCK(&lk);
1833			if (newblk->nb_state == DEPCOMPLETE) {
1834				aip->ai_state |= DEPCOMPLETE;
1835				aip->ai_buf = NULL;
1836			} else {
1837				bmsafemap = newblk->nb_bmsafemap;
1838				aip->ai_buf = bmsafemap->sm_buf;
1839				LIST_REMOVE(newblk, nb_deps);
1840				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1841				    aip, ai_deps);
1842			}
1843			LIST_REMOVE(newblk, nb_hash);
1844			FREE(newblk, M_NEWBLK);
1845			aip->ai_indirdep = indirdep;
1846			/*
1847			 * Check to see if there is an existing dependency
1848			 * for this block. If there is, merge the old
1849			 * dependency into the new one.
1850			 */
1851			if (aip->ai_oldblkno == 0)
1852				oldaip = NULL;
1853			else
1854
1855				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1856					if (oldaip->ai_offset == aip->ai_offset)
1857						break;
1858			freefrag = NULL;
1859			if (oldaip != NULL) {
1860				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1861					FREE_LOCK(&lk);
1862					panic("setup_allocindir_phase2: blkno");
1863				}
1864				aip->ai_oldblkno = oldaip->ai_oldblkno;
1865				freefrag = aip->ai_freefrag;
1866				aip->ai_freefrag = oldaip->ai_freefrag;
1867				oldaip->ai_freefrag = NULL;
1868				free_allocindir(oldaip, NULL);
1869			}
1870			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1871			if (ip->i_ump->um_fstype == UFS1)
1872				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
1873				    [aip->ai_offset] = aip->ai_oldblkno;
1874			else
1875				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
1876				    [aip->ai_offset] = aip->ai_oldblkno;
1877			FREE_LOCK(&lk);
1878			if (freefrag != NULL)
1879				handle_workitem_freefrag(freefrag);
1880		}
1881		if (newindirdep) {
1882			brelse(newindirdep->ir_savebp);
1883			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1884		}
1885		if (indirdep)
1886			break;
1887		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1888			M_INDIRDEP, M_SOFTDEP_FLAGS);
1889		newindirdep->ir_list.wk_type = D_INDIRDEP;
1890		newindirdep->ir_state = ATTACHED;
1891		if (ip->i_ump->um_fstype == UFS1)
1892			newindirdep->ir_state |= UFS1FMT;
1893		LIST_INIT(&newindirdep->ir_deplisthd);
1894		LIST_INIT(&newindirdep->ir_donehd);
1895		if (bp->b_blkno == bp->b_lblkno) {
1896			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
1897			    NULL, NULL);
1898			bp->b_blkno = blkno;
1899		}
1900		newindirdep->ir_savebp =
1901		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
1902		BUF_KERNPROC(newindirdep->ir_savebp);
1903		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1904	}
1905}
1906
1907/*
1908 * Block de-allocation dependencies.
1909 *
1910 * When blocks are de-allocated, the on-disk pointers must be nullified before
1911 * the blocks are made available for use by other files.  (The true
1912 * requirement is that old pointers must be nullified before new on-disk
1913 * pointers are set.  We chose this slightly more stringent requirement to
1914 * reduce complexity.) Our implementation handles this dependency by updating
1915 * the inode (or indirect block) appropriately but delaying the actual block
1916 * de-allocation (i.e., freemap and free space count manipulation) until
1917 * after the updated versions reach stable storage.  After the disk is
1918 * updated, the blocks can be safely de-allocated whenever it is convenient.
1919 * This implementation handles only the common case of reducing a file's
1920 * length to zero. Other cases are handled by the conventional synchronous
1921 * write approach.
1922 *
1923 * The ffs implementation with which we worked double-checks
1924 * the state of the block pointers and file size as it reduces
1925 * a file's length.  Some of this code is replicated here in our
1926 * soft updates implementation.  The freeblks->fb_chkcnt field is
1927 * used to transfer a part of this information to the procedure
1928 * that eventually de-allocates the blocks.
1929 *
1930 * This routine should be called from the routine that shortens
1931 * a file's length, before the inode's size or block pointers
1932 * are modified. It will save the block pointer information for
1933 * later release and zero the inode so that the calling routine
1934 * can release it.
1935 */
1936void
1937softdep_setup_freeblocks(ip, length, flags)
1938	struct inode *ip;	/* The inode whose length is to be reduced */
1939	off_t length;		/* The new length for the file */
1940	int flags;		/* IO_EXT and/or IO_NORMAL */
1941{
1942	struct freeblks *freeblks;
1943	struct inodedep *inodedep;
1944	struct allocdirect *adp;
1945	struct vnode *vp;
1946	struct buf *bp;
1947	struct fs *fs;
1948	ufs2_daddr_t extblocks, datablocks;
1949	int i, delay, error;
1950
1951	fs = ip->i_fs;
1952	if (length != 0)
1953		panic("softdep_setup_freeblocks: non-zero length");
1954	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1955		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
1956	freeblks->fb_list.wk_type = D_FREEBLKS;
1957	freeblks->fb_uid = ip->i_uid;
1958	freeblks->fb_previousinum = ip->i_number;
1959	freeblks->fb_devvp = ip->i_devvp;
1960	freeblks->fb_mnt = ITOV(ip)->v_mount;
1961	extblocks = 0;
1962	if (fs->fs_magic == FS_UFS2_MAGIC)
1963		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
1964	datablocks = DIP(ip, i_blocks) - extblocks;
1965	if ((flags & IO_NORMAL) == 0) {
1966		freeblks->fb_oldsize = 0;
1967		freeblks->fb_chkcnt = 0;
1968	} else {
1969		freeblks->fb_oldsize = ip->i_size;
1970		ip->i_size = 0;
1971		DIP_SET(ip, i_size, 0);
1972		freeblks->fb_chkcnt = datablocks;
1973		for (i = 0; i < NDADDR; i++) {
1974			freeblks->fb_dblks[i] = DIP(ip, i_db[i]);
1975			DIP_SET(ip, i_db[i], 0);
1976		}
1977		for (i = 0; i < NIADDR; i++) {
1978			freeblks->fb_iblks[i] = DIP(ip, i_ib[i]);
1979			DIP_SET(ip, i_ib[i], 0);
1980		}
1981		/*
1982		 * If the file was removed, then the space being freed was
1983		 * accounted for then (see softdep_filereleased()). If the
1984		 * file is merely being truncated, then we account for it now.
1985		 */
1986		if ((ip->i_flag & IN_SPACECOUNTED) == 0)
1987			fs->fs_pendingblocks += datablocks;
1988	}
1989	if ((flags & IO_EXT) == 0) {
1990		freeblks->fb_oldextsize = 0;
1991	} else {
1992		freeblks->fb_oldextsize = ip->i_din2->di_extsize;
1993		ip->i_din2->di_extsize = 0;
1994		freeblks->fb_chkcnt += extblocks;
1995		for (i = 0; i < NXADDR; i++) {
1996			freeblks->fb_eblks[i] = ip->i_din2->di_extb[i];
1997			ip->i_din2->di_extb[i] = 0;
1998		}
1999	}
2000	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
2001	/*
2002	 * Push the zero'ed inode to to its disk buffer so that we are free
2003	 * to delete its dependencies below. Once the dependencies are gone
2004	 * the buffer can be safely released.
2005	 */
2006	if ((error = bread(ip->i_devvp,
2007	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
2008	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
2009		brelse(bp);
2010		softdep_error("softdep_setup_freeblocks", error);
2011	}
2012	if (ip->i_ump->um_fstype == UFS1)
2013		*((struct ufs1_dinode *)bp->b_data +
2014		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
2015	else
2016		*((struct ufs2_dinode *)bp->b_data +
2017		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
2018	/*
2019	 * Find and eliminate any inode dependencies.
2020	 */
2021	ACQUIRE_LOCK(&lk);
2022	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
2023	if ((inodedep->id_state & IOSTARTED) != 0) {
2024		FREE_LOCK(&lk);
2025		panic("softdep_setup_freeblocks: inode busy");
2026	}
2027	/*
2028	 * Add the freeblks structure to the list of operations that
2029	 * must await the zero'ed inode being written to disk. If we
2030	 * still have a bitmap dependency (delay == 0), then the inode
2031	 * has never been written to disk, so we can process the
2032	 * freeblks below once we have deleted the dependencies.
2033	 */
2034	delay = (inodedep->id_state & DEPCOMPLETE);
2035	if (delay)
2036		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
2037	/*
2038	 * Because the file length has been truncated to zero, any
2039	 * pending block allocation dependency structures associated
2040	 * with this inode are obsolete and can simply be de-allocated.
2041	 * We must first merge the two dependency lists to get rid of
2042	 * any duplicate freefrag structures, then purge the merged list.
2043	 * If we still have a bitmap dependency, then the inode has never
2044	 * been written to disk, so we can free any fragments without delay.
2045	 */
2046	if (flags & IO_NORMAL) {
2047		merge_inode_lists(&inodedep->id_newinoupdt,
2048		    &inodedep->id_inoupdt);
2049		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
2050			free_allocdirect(&inodedep->id_inoupdt, adp, delay);
2051	}
2052	if (flags & IO_EXT) {
2053		merge_inode_lists(&inodedep->id_newextupdt,
2054		    &inodedep->id_extupdt);
2055		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
2056			free_allocdirect(&inodedep->id_extupdt, adp, delay);
2057	}
2058	FREE_LOCK(&lk);
2059	bdwrite(bp);
2060	/*
2061	 * We must wait for any I/O in progress to finish so that
2062	 * all potential buffers on the dirty list will be visible.
2063	 * Once they are all there, walk the list and get rid of
2064	 * any dependencies.
2065	 */
2066	vp = ITOV(ip);
2067	ACQUIRE_LOCK(&lk);
2068	VI_LOCK(vp);
2069	drain_output(vp, 1);
2070restart:
2071	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
2072		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
2073		    ((flags & IO_NORMAL) == 0 &&
2074		      (bp->b_xflags & BX_ALTDATA) == 0))
2075			continue;
2076		if ((bp = getdirtybuf(&bp, VI_MTX(vp), MNT_WAIT)) == NULL)
2077			goto restart;
2078		(void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
2079		deallocate_dependencies(bp, inodedep);
2080		bp->b_flags |= B_INVAL | B_NOCACHE;
2081		FREE_LOCK(&lk);
2082		brelse(bp);
2083		ACQUIRE_LOCK(&lk);
2084		VI_LOCK(vp);
2085		goto restart;
2086	}
2087	VI_UNLOCK(vp);
2088	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
2089		(void) free_inodedep(inodedep);
2090	FREE_LOCK(&lk);
2091	/*
2092	 * If the inode has never been written to disk (delay == 0),
2093	 * then we can process the freeblks now that we have deleted
2094	 * the dependencies.
2095	 */
2096	if (!delay)
2097		handle_workitem_freeblocks(freeblks, 0);
2098}
2099
2100/*
2101 * Reclaim any dependency structures from a buffer that is about to
2102 * be reallocated to a new vnode. The buffer must be locked, thus,
2103 * no I/O completion operations can occur while we are manipulating
2104 * its associated dependencies. The mutex is held so that other I/O's
2105 * associated with related dependencies do not occur.
2106 */
2107static void
2108deallocate_dependencies(bp, inodedep)
2109	struct buf *bp;
2110	struct inodedep *inodedep;
2111{
2112	struct worklist *wk;
2113	struct indirdep *indirdep;
2114	struct allocindir *aip;
2115	struct pagedep *pagedep;
2116	struct dirrem *dirrem;
2117	struct diradd *dap;
2118	int i;
2119
2120	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2121		switch (wk->wk_type) {
2122
2123		case D_INDIRDEP:
2124			indirdep = WK_INDIRDEP(wk);
2125			/*
2126			 * None of the indirect pointers will ever be visible,
2127			 * so they can simply be tossed. GOINGAWAY ensures
2128			 * that allocated pointers will be saved in the buffer
2129			 * cache until they are freed. Note that they will
2130			 * only be able to be found by their physical address
2131			 * since the inode mapping the logical address will
2132			 * be gone. The save buffer used for the safe copy
2133			 * was allocated in setup_allocindir_phase2 using
2134			 * the physical address so it could be used for this
2135			 * purpose. Hence we swap the safe copy with the real
2136			 * copy, allowing the safe copy to be freed and holding
2137			 * on to the real copy for later use in indir_trunc.
2138			 */
2139			if (indirdep->ir_state & GOINGAWAY) {
2140				FREE_LOCK(&lk);
2141				panic("deallocate_dependencies: already gone");
2142			}
2143			indirdep->ir_state |= GOINGAWAY;
2144			VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1;
2145			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2146				free_allocindir(aip, inodedep);
2147			if (bp->b_lblkno >= 0 ||
2148			    bp->b_blkno != indirdep->ir_savebp->b_lblkno) {
2149				FREE_LOCK(&lk);
2150				panic("deallocate_dependencies: not indir");
2151			}
2152			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2153			    bp->b_bcount);
2154			WORKLIST_REMOVE(wk);
2155			WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
2156			continue;
2157
2158		case D_PAGEDEP:
2159			pagedep = WK_PAGEDEP(wk);
2160			/*
2161			 * None of the directory additions will ever be
2162			 * visible, so they can simply be tossed.
2163			 */
2164			for (i = 0; i < DAHASHSZ; i++)
2165				while ((dap =
2166				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
2167					free_diradd(dap);
2168			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2169				free_diradd(dap);
2170			/*
2171			 * Copy any directory remove dependencies to the list
2172			 * to be processed after the zero'ed inode is written.
2173			 * If the inode has already been written, then they
2174			 * can be dumped directly onto the work list.
2175			 */
2176			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2177				LIST_REMOVE(dirrem, dm_next);
2178				dirrem->dm_dirinum = pagedep->pd_ino;
2179				if (inodedep == NULL ||
2180				    (inodedep->id_state & ALLCOMPLETE) ==
2181				     ALLCOMPLETE)
2182					add_to_worklist(&dirrem->dm_list);
2183				else
2184					WORKLIST_INSERT(&inodedep->id_bufwait,
2185					    &dirrem->dm_list);
2186			}
2187			if ((pagedep->pd_state & NEWBLOCK) != 0) {
2188				LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
2189					if (wk->wk_type == D_NEWDIRBLK &&
2190					    WK_NEWDIRBLK(wk)->db_pagedep ==
2191					      pagedep)
2192						break;
2193				if (wk != NULL) {
2194					WORKLIST_REMOVE(wk);
2195					free_newdirblk(WK_NEWDIRBLK(wk));
2196				} else {
2197					FREE_LOCK(&lk);
2198					panic("deallocate_dependencies: "
2199					      "lost pagedep");
2200				}
2201			}
2202			WORKLIST_REMOVE(&pagedep->pd_list);
2203			LIST_REMOVE(pagedep, pd_hash);
2204			WORKITEM_FREE(pagedep, D_PAGEDEP);
2205			continue;
2206
2207		case D_ALLOCINDIR:
2208			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2209			continue;
2210
2211		case D_ALLOCDIRECT:
2212		case D_INODEDEP:
2213			FREE_LOCK(&lk);
2214			panic("deallocate_dependencies: Unexpected type %s",
2215			    TYPENAME(wk->wk_type));
2216			/* NOTREACHED */
2217
2218		default:
2219			FREE_LOCK(&lk);
2220			panic("deallocate_dependencies: Unknown type %s",
2221			    TYPENAME(wk->wk_type));
2222			/* NOTREACHED */
2223		}
2224	}
2225}
2226
2227/*
2228 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2229 * This routine must be called with splbio interrupts blocked.
2230 */
2231static void
2232free_allocdirect(adphead, adp, delay)
2233	struct allocdirectlst *adphead;
2234	struct allocdirect *adp;
2235	int delay;
2236{
2237	struct newdirblk *newdirblk;
2238	struct worklist *wk;
2239
2240#ifdef DEBUG
2241	if (lk.lkt_held == NOHOLDER)
2242		panic("free_allocdirect: lock not held");
2243#endif
2244	if ((adp->ad_state & DEPCOMPLETE) == 0)
2245		LIST_REMOVE(adp, ad_deps);
2246	TAILQ_REMOVE(adphead, adp, ad_next);
2247	if ((adp->ad_state & COMPLETE) == 0)
2248		WORKLIST_REMOVE(&adp->ad_list);
2249	if (adp->ad_freefrag != NULL) {
2250		if (delay)
2251			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2252			    &adp->ad_freefrag->ff_list);
2253		else
2254			add_to_worklist(&adp->ad_freefrag->ff_list);
2255	}
2256	if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
2257		newdirblk = WK_NEWDIRBLK(wk);
2258		WORKLIST_REMOVE(&newdirblk->db_list);
2259		if (LIST_FIRST(&adp->ad_newdirblk) != NULL)
2260			panic("free_allocdirect: extra newdirblk");
2261		if (delay)
2262			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2263			    &newdirblk->db_list);
2264		else
2265			free_newdirblk(newdirblk);
2266	}
2267	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2268}
2269
2270/*
2271 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
2272 * This routine must be called with splbio interrupts blocked.
2273 */
2274static void
2275free_newdirblk(newdirblk)
2276	struct newdirblk *newdirblk;
2277{
2278	struct pagedep *pagedep;
2279	struct diradd *dap;
2280	int i;
2281
2282#ifdef DEBUG
2283	if (lk.lkt_held == NOHOLDER)
2284		panic("free_newdirblk: lock not held");
2285#endif
2286	/*
2287	 * If the pagedep is still linked onto the directory buffer
2288	 * dependency chain, then some of the entries on the
2289	 * pd_pendinghd list may not be committed to disk yet. In
2290	 * this case, we will simply clear the NEWBLOCK flag and
2291	 * let the pd_pendinghd list be processed when the pagedep
2292	 * is next written. If the pagedep is no longer on the buffer
2293	 * dependency chain, then all the entries on the pd_pending
2294	 * list are committed to disk and we can free them here.
2295	 */
2296	pagedep = newdirblk->db_pagedep;
2297	pagedep->pd_state &= ~NEWBLOCK;
2298	if ((pagedep->pd_state & ONWORKLIST) == 0)
2299		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2300			free_diradd(dap);
2301	/*
2302	 * If no dependencies remain, the pagedep will be freed.
2303	 */
2304	for (i = 0; i < DAHASHSZ; i++)
2305		if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
2306			break;
2307	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
2308		LIST_REMOVE(pagedep, pd_hash);
2309		WORKITEM_FREE(pagedep, D_PAGEDEP);
2310	}
2311	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2312}
2313
2314/*
2315 * Prepare an inode to be freed. The actual free operation is not
2316 * done until the zero'ed inode has been written to disk.
2317 */
2318void
2319softdep_freefile(pvp, ino, mode)
2320	struct vnode *pvp;
2321	ino_t ino;
2322	int mode;
2323{
2324	struct inode *ip = VTOI(pvp);
2325	struct inodedep *inodedep;
2326	struct freefile *freefile;
2327
2328	/*
2329	 * This sets up the inode de-allocation dependency.
2330	 */
2331	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2332		M_FREEFILE, M_SOFTDEP_FLAGS);
2333	freefile->fx_list.wk_type = D_FREEFILE;
2334	freefile->fx_list.wk_state = 0;
2335	freefile->fx_mode = mode;
2336	freefile->fx_oldinum = ino;
2337	freefile->fx_devvp = ip->i_devvp;
2338	freefile->fx_mnt = ITOV(ip)->v_mount;
2339	if ((ip->i_flag & IN_SPACECOUNTED) == 0)
2340		ip->i_fs->fs_pendinginodes += 1;
2341
2342	/*
2343	 * If the inodedep does not exist, then the zero'ed inode has
2344	 * been written to disk. If the allocated inode has never been
2345	 * written to disk, then the on-disk inode is zero'ed. In either
2346	 * case we can free the file immediately.
2347	 */
2348	ACQUIRE_LOCK(&lk);
2349	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2350	    check_inode_unwritten(inodedep)) {
2351		FREE_LOCK(&lk);
2352		handle_workitem_freefile(freefile);
2353		return;
2354	}
2355	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2356	FREE_LOCK(&lk);
2357}
2358
2359/*
2360 * Check to see if an inode has never been written to disk. If
2361 * so free the inodedep and return success, otherwise return failure.
2362 * This routine must be called with splbio interrupts blocked.
2363 *
2364 * If we still have a bitmap dependency, then the inode has never
2365 * been written to disk. Drop the dependency as it is no longer
2366 * necessary since the inode is being deallocated. We set the
2367 * ALLCOMPLETE flags since the bitmap now properly shows that the
2368 * inode is not allocated. Even if the inode is actively being
2369 * written, it has been rolled back to its zero'ed state, so we
2370 * are ensured that a zero inode is what is on the disk. For short
2371 * lived files, this change will usually result in removing all the
2372 * dependencies from the inode so that it can be freed immediately.
2373 */
2374static int
2375check_inode_unwritten(inodedep)
2376	struct inodedep *inodedep;
2377{
2378
2379	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2380	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2381	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2382	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2383	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2384	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2385	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2386	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2387	    inodedep->id_nlinkdelta != 0)
2388		return (0);
2389	inodedep->id_state |= ALLCOMPLETE;
2390	LIST_REMOVE(inodedep, id_deps);
2391	inodedep->id_buf = NULL;
2392	if (inodedep->id_state & ONWORKLIST)
2393		WORKLIST_REMOVE(&inodedep->id_list);
2394	if (inodedep->id_savedino1 != NULL) {
2395		FREE(inodedep->id_savedino1, M_INODEDEP);
2396		inodedep->id_savedino1 = NULL;
2397	}
2398	if (free_inodedep(inodedep) == 0) {
2399		FREE_LOCK(&lk);
2400		panic("check_inode_unwritten: busy inode");
2401	}
2402	return (1);
2403}
2404
2405/*
2406 * Try to free an inodedep structure. Return 1 if it could be freed.
2407 */
2408static int
2409free_inodedep(inodedep)
2410	struct inodedep *inodedep;
2411{
2412
2413	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2414	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2415	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2416	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2417	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2418	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2419	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2420	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
2421	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
2422	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL)
2423		return (0);
2424	LIST_REMOVE(inodedep, id_hash);
2425	WORKITEM_FREE(inodedep, D_INODEDEP);
2426	num_inodedep -= 1;
2427	return (1);
2428}
2429
2430/*
2431 * This workitem routine performs the block de-allocation.
2432 * The workitem is added to the pending list after the updated
2433 * inode block has been written to disk.  As mentioned above,
2434 * checks regarding the number of blocks de-allocated (compared
2435 * to the number of blocks allocated for the file) are also
2436 * performed in this function.
2437 */
2438static void
2439handle_workitem_freeblocks(freeblks, flags)
2440	struct freeblks *freeblks;
2441	int flags;
2442{
2443	struct inode *ip;
2444	struct vnode *vp;
2445	struct fs *fs;
2446	int i, nblocks, level, bsize;
2447	ufs2_daddr_t bn, blocksreleased = 0;
2448	int error, allerror = 0;
2449	ufs_lbn_t baselbns[NIADDR], tmpval;
2450
2451	fs = VFSTOUFS(freeblks->fb_mnt)->um_fs;
2452	tmpval = 1;
2453	baselbns[0] = NDADDR;
2454	for (i = 1; i < NIADDR; i++) {
2455		tmpval *= NINDIR(fs);
2456		baselbns[i] = baselbns[i - 1] + tmpval;
2457	}
2458	nblocks = btodb(fs->fs_bsize);
2459	blocksreleased = 0;
2460	/*
2461	 * Release all extended attribute blocks or frags.
2462	 */
2463	if (freeblks->fb_oldextsize > 0) {
2464		for (i = (NXADDR - 1); i >= 0; i--) {
2465			if ((bn = freeblks->fb_eblks[i]) == 0)
2466				continue;
2467			bsize = sblksize(fs, freeblks->fb_oldextsize, i);
2468			ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize,
2469			    freeblks->fb_previousinum);
2470			blocksreleased += btodb(bsize);
2471		}
2472	}
2473	/*
2474	 * Release all data blocks or frags.
2475	 */
2476	if (freeblks->fb_oldsize > 0) {
2477		/*
2478		 * Indirect blocks first.
2479		 */
2480		for (level = (NIADDR - 1); level >= 0; level--) {
2481			if ((bn = freeblks->fb_iblks[level]) == 0)
2482				continue;
2483			if ((error = indir_trunc(freeblks, fsbtodb(fs, bn),
2484			    level, baselbns[level], &blocksreleased)) == 0)
2485				allerror = error;
2486			ffs_blkfree(fs, freeblks->fb_devvp, bn, fs->fs_bsize,
2487			    freeblks->fb_previousinum);
2488			fs->fs_pendingblocks -= nblocks;
2489			blocksreleased += nblocks;
2490		}
2491		/*
2492		 * All direct blocks or frags.
2493		 */
2494		for (i = (NDADDR - 1); i >= 0; i--) {
2495			if ((bn = freeblks->fb_dblks[i]) == 0)
2496				continue;
2497			bsize = sblksize(fs, freeblks->fb_oldsize, i);
2498			ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize,
2499			    freeblks->fb_previousinum);
2500			fs->fs_pendingblocks -= btodb(bsize);
2501			blocksreleased += btodb(bsize);
2502		}
2503	}
2504	/*
2505	 * If we still have not finished background cleanup, then check
2506	 * to see if the block count needs to be adjusted.
2507	 */
2508	if (freeblks->fb_chkcnt != blocksreleased &&
2509	    (fs->fs_flags & FS_UNCLEAN) != 0 &&
2510	    VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum,
2511	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) {
2512		ip = VTOI(vp);
2513		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \
2514		    freeblks->fb_chkcnt - blocksreleased);
2515		ip->i_flag |= IN_CHANGE;
2516		vput(vp);
2517	}
2518
2519#ifdef DIAGNOSTIC
2520	if (freeblks->fb_chkcnt != blocksreleased &&
2521	    ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
2522		printf("handle_workitem_freeblocks: block count\n");
2523	if (allerror)
2524		softdep_error("handle_workitem_freeblks", allerror);
2525#endif /* DIAGNOSTIC */
2526
2527	WORKITEM_FREE(freeblks, D_FREEBLKS);
2528}
2529
2530/*
2531 * Release blocks associated with the inode ip and stored in the indirect
2532 * block dbn. If level is greater than SINGLE, the block is an indirect block
2533 * and recursive calls to indirtrunc must be used to cleanse other indirect
2534 * blocks.
2535 */
2536static int
2537indir_trunc(freeblks, dbn, level, lbn, countp)
2538	struct freeblks *freeblks;
2539	ufs2_daddr_t dbn;
2540	int level;
2541	ufs_lbn_t lbn;
2542	ufs2_daddr_t *countp;
2543{
2544	struct buf *bp;
2545	struct fs *fs;
2546	struct worklist *wk;
2547	struct indirdep *indirdep;
2548	ufs1_daddr_t *bap1 = 0;
2549	ufs2_daddr_t nb, *bap2 = 0;
2550	ufs_lbn_t lbnadd;
2551	int i, nblocks, ufs1fmt;
2552	int error, allerror = 0;
2553
2554	fs = VFSTOUFS(freeblks->fb_mnt)->um_fs;
2555	lbnadd = 1;
2556	for (i = level; i > 0; i--)
2557		lbnadd *= NINDIR(fs);
2558	/*
2559	 * Get buffer of block pointers to be freed. This routine is not
2560	 * called until the zero'ed inode has been written, so it is safe
2561	 * to free blocks as they are encountered. Because the inode has
2562	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2563	 * have to use the on-disk address and the block device for the
2564	 * filesystem to look them up. If the file was deleted before its
2565	 * indirect blocks were all written to disk, the routine that set
2566	 * us up (deallocate_dependencies) will have arranged to leave
2567	 * a complete copy of the indirect block in memory for our use.
2568	 * Otherwise we have to read the blocks in from the disk.
2569	 */
2570#ifdef notyet
2571	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
2572	    GB_NOCREAT);
2573#else
2574	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
2575#endif
2576	ACQUIRE_LOCK(&lk);
2577	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2578		if (wk->wk_type != D_INDIRDEP ||
2579		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2580		    (indirdep->ir_state & GOINGAWAY) == 0) {
2581			FREE_LOCK(&lk);
2582			panic("indir_trunc: lost indirdep");
2583		}
2584		WORKLIST_REMOVE(wk);
2585		WORKITEM_FREE(indirdep, D_INDIRDEP);
2586		if (LIST_FIRST(&bp->b_dep) != NULL) {
2587			FREE_LOCK(&lk);
2588			panic("indir_trunc: dangling dep");
2589		}
2590		VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1;
2591		FREE_LOCK(&lk);
2592	} else {
2593#ifdef notyet
2594		if (bp)
2595			brelse(bp);
2596#endif
2597		FREE_LOCK(&lk);
2598		error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
2599		    NOCRED, &bp);
2600		if (error) {
2601			brelse(bp);
2602			return (error);
2603		}
2604	}
2605	/*
2606	 * Recursively free indirect blocks.
2607	 */
2608	if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) {
2609		ufs1fmt = 1;
2610		bap1 = (ufs1_daddr_t *)bp->b_data;
2611	} else {
2612		ufs1fmt = 0;
2613		bap2 = (ufs2_daddr_t *)bp->b_data;
2614	}
2615	nblocks = btodb(fs->fs_bsize);
2616	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2617		if (ufs1fmt)
2618			nb = bap1[i];
2619		else
2620			nb = bap2[i];
2621		if (nb == 0)
2622			continue;
2623		if (level != 0) {
2624			if ((error = indir_trunc(freeblks, fsbtodb(fs, nb),
2625			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2626				allerror = error;
2627		}
2628		ffs_blkfree(fs, freeblks->fb_devvp, nb, fs->fs_bsize,
2629		    freeblks->fb_previousinum);
2630		fs->fs_pendingblocks -= nblocks;
2631		*countp += nblocks;
2632	}
2633	bp->b_flags |= B_INVAL | B_NOCACHE;
2634	brelse(bp);
2635	return (allerror);
2636}
2637
2638/*
2639 * Free an allocindir.
2640 * This routine must be called with splbio interrupts blocked.
2641 */
2642static void
2643free_allocindir(aip, inodedep)
2644	struct allocindir *aip;
2645	struct inodedep *inodedep;
2646{
2647	struct freefrag *freefrag;
2648
2649#ifdef DEBUG
2650	if (lk.lkt_held == NOHOLDER)
2651		panic("free_allocindir: lock not held");
2652#endif
2653	if ((aip->ai_state & DEPCOMPLETE) == 0)
2654		LIST_REMOVE(aip, ai_deps);
2655	if (aip->ai_state & ONWORKLIST)
2656		WORKLIST_REMOVE(&aip->ai_list);
2657	LIST_REMOVE(aip, ai_next);
2658	if ((freefrag = aip->ai_freefrag) != NULL) {
2659		if (inodedep == NULL)
2660			add_to_worklist(&freefrag->ff_list);
2661		else
2662			WORKLIST_INSERT(&inodedep->id_bufwait,
2663			    &freefrag->ff_list);
2664	}
2665	WORKITEM_FREE(aip, D_ALLOCINDIR);
2666}
2667
2668/*
2669 * Directory entry addition dependencies.
2670 *
2671 * When adding a new directory entry, the inode (with its incremented link
2672 * count) must be written to disk before the directory entry's pointer to it.
2673 * Also, if the inode is newly allocated, the corresponding freemap must be
2674 * updated (on disk) before the directory entry's pointer. These requirements
2675 * are met via undo/redo on the directory entry's pointer, which consists
2676 * simply of the inode number.
2677 *
2678 * As directory entries are added and deleted, the free space within a
2679 * directory block can become fragmented.  The ufs filesystem will compact
2680 * a fragmented directory block to make space for a new entry. When this
2681 * occurs, the offsets of previously added entries change. Any "diradd"
2682 * dependency structures corresponding to these entries must be updated with
2683 * the new offsets.
2684 */
2685
2686/*
2687 * This routine is called after the in-memory inode's link
2688 * count has been incremented, but before the directory entry's
2689 * pointer to the inode has been set.
2690 */
2691int
2692softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
2693	struct buf *bp;		/* buffer containing directory block */
2694	struct inode *dp;	/* inode for directory */
2695	off_t diroffset;	/* offset of new entry in directory */
2696	ino_t newinum;		/* inode referenced by new directory entry */
2697	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
2698	int isnewblk;		/* entry is in a newly allocated block */
2699{
2700	int offset;		/* offset of new entry within directory block */
2701	ufs_lbn_t lbn;		/* block in directory containing new entry */
2702	struct fs *fs;
2703	struct diradd *dap;
2704	struct allocdirect *adp;
2705	struct pagedep *pagedep;
2706	struct inodedep *inodedep;
2707	struct newdirblk *newdirblk = 0;
2708	struct mkdir *mkdir1, *mkdir2;
2709
2710	/*
2711	 * Whiteouts have no dependencies.
2712	 */
2713	if (newinum == WINO) {
2714		if (newdirbp != NULL)
2715			bdwrite(newdirbp);
2716		return (0);
2717	}
2718
2719	fs = dp->i_fs;
2720	lbn = lblkno(fs, diroffset);
2721	offset = blkoff(fs, diroffset);
2722	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2723		M_SOFTDEP_FLAGS|M_ZERO);
2724	dap->da_list.wk_type = D_DIRADD;
2725	dap->da_offset = offset;
2726	dap->da_newinum = newinum;
2727	dap->da_state = ATTACHED;
2728	if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
2729		MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk),
2730		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
2731		newdirblk->db_list.wk_type = D_NEWDIRBLK;
2732		newdirblk->db_state = 0;
2733	}
2734	if (newdirbp == NULL) {
2735		dap->da_state |= DEPCOMPLETE;
2736		ACQUIRE_LOCK(&lk);
2737	} else {
2738		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2739		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2740		    M_SOFTDEP_FLAGS);
2741		mkdir1->md_list.wk_type = D_MKDIR;
2742		mkdir1->md_state = MKDIR_BODY;
2743		mkdir1->md_diradd = dap;
2744		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2745		    M_SOFTDEP_FLAGS);
2746		mkdir2->md_list.wk_type = D_MKDIR;
2747		mkdir2->md_state = MKDIR_PARENT;
2748		mkdir2->md_diradd = dap;
2749		/*
2750		 * Dependency on "." and ".." being written to disk.
2751		 */
2752		mkdir1->md_buf = newdirbp;
2753		ACQUIRE_LOCK(&lk);
2754		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2755		WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
2756		FREE_LOCK(&lk);
2757		bdwrite(newdirbp);
2758		/*
2759		 * Dependency on link count increase for parent directory
2760		 */
2761		ACQUIRE_LOCK(&lk);
2762		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0
2763		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2764			dap->da_state &= ~MKDIR_PARENT;
2765			WORKITEM_FREE(mkdir2, D_MKDIR);
2766		} else {
2767			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2768			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2769		}
2770	}
2771	/*
2772	 * Link into parent directory pagedep to await its being written.
2773	 */
2774	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2775		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2776	dap->da_pagedep = pagedep;
2777	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2778	    da_pdlist);
2779	/*
2780	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2781	 * is not yet written. If it is written, do the post-inode write
2782	 * processing to put it on the id_pendinghd list.
2783	 */
2784	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2785	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2786		diradd_inode_written(dap, inodedep);
2787	else
2788		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2789	if (isnewblk) {
2790		/*
2791		 * Directories growing into indirect blocks are rare
2792		 * enough and the frequency of new block allocation
2793		 * in those cases even more rare, that we choose not
2794		 * to bother tracking them. Rather we simply force the
2795		 * new directory entry to disk.
2796		 */
2797		if (lbn >= NDADDR) {
2798			FREE_LOCK(&lk);
2799			/*
2800			 * We only have a new allocation when at the
2801			 * beginning of a new block, not when we are
2802			 * expanding into an existing block.
2803			 */
2804			if (blkoff(fs, diroffset) == 0)
2805				return (1);
2806			return (0);
2807		}
2808		/*
2809		 * We only have a new allocation when at the beginning
2810		 * of a new fragment, not when we are expanding into an
2811		 * existing fragment. Also, there is nothing to do if we
2812		 * are already tracking this block.
2813		 */
2814		if (fragoff(fs, diroffset) != 0) {
2815			FREE_LOCK(&lk);
2816			return (0);
2817		}
2818		if ((pagedep->pd_state & NEWBLOCK) != 0) {
2819			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2820			FREE_LOCK(&lk);
2821			return (0);
2822		}
2823		/*
2824		 * Find our associated allocdirect and have it track us.
2825		 */
2826		if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0)
2827			panic("softdep_setup_directory_add: lost inodedep");
2828		adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
2829		if (adp == NULL || adp->ad_lbn != lbn) {
2830			FREE_LOCK(&lk);
2831			panic("softdep_setup_directory_add: lost entry");
2832		}
2833		pagedep->pd_state |= NEWBLOCK;
2834		newdirblk->db_pagedep = pagedep;
2835		WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
2836	}
2837	FREE_LOCK(&lk);
2838	return (0);
2839}
2840
2841/*
2842 * This procedure is called to change the offset of a directory
2843 * entry when compacting a directory block which must be owned
2844 * exclusively by the caller. Note that the actual entry movement
2845 * must be done in this procedure to ensure that no I/O completions
2846 * occur while the move is in progress.
2847 */
2848void
2849softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
2850	struct inode *dp;	/* inode for directory */
2851	caddr_t base;		/* address of dp->i_offset */
2852	caddr_t oldloc;		/* address of old directory location */
2853	caddr_t newloc;		/* address of new directory location */
2854	int entrysize;		/* size of directory entry */
2855{
2856	int offset, oldoffset, newoffset;
2857	struct pagedep *pagedep;
2858	struct diradd *dap;
2859	ufs_lbn_t lbn;
2860
2861	ACQUIRE_LOCK(&lk);
2862	lbn = lblkno(dp->i_fs, dp->i_offset);
2863	offset = blkoff(dp->i_fs, dp->i_offset);
2864	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2865		goto done;
2866	oldoffset = offset + (oldloc - base);
2867	newoffset = offset + (newloc - base);
2868
2869	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2870		if (dap->da_offset != oldoffset)
2871			continue;
2872		dap->da_offset = newoffset;
2873		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2874			break;
2875		LIST_REMOVE(dap, da_pdlist);
2876		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2877		    dap, da_pdlist);
2878		break;
2879	}
2880	if (dap == NULL) {
2881
2882		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2883			if (dap->da_offset == oldoffset) {
2884				dap->da_offset = newoffset;
2885				break;
2886			}
2887		}
2888	}
2889done:
2890	bcopy(oldloc, newloc, entrysize);
2891	FREE_LOCK(&lk);
2892}
2893
2894/*
2895 * Free a diradd dependency structure. This routine must be called
2896 * with splbio interrupts blocked.
2897 */
2898static void
2899free_diradd(dap)
2900	struct diradd *dap;
2901{
2902	struct dirrem *dirrem;
2903	struct pagedep *pagedep;
2904	struct inodedep *inodedep;
2905	struct mkdir *mkdir, *nextmd;
2906
2907#ifdef DEBUG
2908	if (lk.lkt_held == NOHOLDER)
2909		panic("free_diradd: lock not held");
2910#endif
2911	WORKLIST_REMOVE(&dap->da_list);
2912	LIST_REMOVE(dap, da_pdlist);
2913	if ((dap->da_state & DIRCHG) == 0) {
2914		pagedep = dap->da_pagedep;
2915	} else {
2916		dirrem = dap->da_previous;
2917		pagedep = dirrem->dm_pagedep;
2918		dirrem->dm_dirinum = pagedep->pd_ino;
2919		add_to_worklist(&dirrem->dm_list);
2920	}
2921	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2922	    0, &inodedep) != 0)
2923		(void) free_inodedep(inodedep);
2924	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2925		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2926			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2927			if (mkdir->md_diradd != dap)
2928				continue;
2929			dap->da_state &= ~mkdir->md_state;
2930			WORKLIST_REMOVE(&mkdir->md_list);
2931			LIST_REMOVE(mkdir, md_mkdirs);
2932			WORKITEM_FREE(mkdir, D_MKDIR);
2933		}
2934		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2935			FREE_LOCK(&lk);
2936			panic("free_diradd: unfound ref");
2937		}
2938	}
2939	WORKITEM_FREE(dap, D_DIRADD);
2940}
2941
2942/*
2943 * Directory entry removal dependencies.
2944 *
2945 * When removing a directory entry, the entry's inode pointer must be
2946 * zero'ed on disk before the corresponding inode's link count is decremented
2947 * (possibly freeing the inode for re-use). This dependency is handled by
2948 * updating the directory entry but delaying the inode count reduction until
2949 * after the directory block has been written to disk. After this point, the
2950 * inode count can be decremented whenever it is convenient.
2951 */
2952
2953/*
2954 * This routine should be called immediately after removing
2955 * a directory entry.  The inode's link count should not be
2956 * decremented by the calling procedure -- the soft updates
2957 * code will do this task when it is safe.
2958 */
2959void
2960softdep_setup_remove(bp, dp, ip, isrmdir)
2961	struct buf *bp;		/* buffer containing directory block */
2962	struct inode *dp;	/* inode for the directory being modified */
2963	struct inode *ip;	/* inode for directory entry being removed */
2964	int isrmdir;		/* indicates if doing RMDIR */
2965{
2966	struct dirrem *dirrem, *prevdirrem;
2967
2968	/*
2969	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2970	 */
2971	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2972
2973	/*
2974	 * If the COMPLETE flag is clear, then there were no active
2975	 * entries and we want to roll back to a zeroed entry until
2976	 * the new inode is committed to disk. If the COMPLETE flag is
2977	 * set then we have deleted an entry that never made it to
2978	 * disk. If the entry we deleted resulted from a name change,
2979	 * then the old name still resides on disk. We cannot delete
2980	 * its inode (returned to us in prevdirrem) until the zeroed
2981	 * directory entry gets to disk. The new inode has never been
2982	 * referenced on the disk, so can be deleted immediately.
2983	 */
2984	if ((dirrem->dm_state & COMPLETE) == 0) {
2985		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2986		    dm_next);
2987		FREE_LOCK(&lk);
2988	} else {
2989		if (prevdirrem != NULL)
2990			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2991			    prevdirrem, dm_next);
2992		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2993		FREE_LOCK(&lk);
2994		handle_workitem_remove(dirrem, NULL);
2995	}
2996}
2997
2998/*
2999 * Allocate a new dirrem if appropriate and return it along with
3000 * its associated pagedep. Called without a lock, returns with lock.
3001 */
3002static long num_dirrem;		/* number of dirrem allocated */
3003static struct dirrem *
3004newdirrem(bp, dp, ip, isrmdir, prevdirremp)
3005	struct buf *bp;		/* buffer containing directory block */
3006	struct inode *dp;	/* inode for the directory being modified */
3007	struct inode *ip;	/* inode for directory entry being removed */
3008	int isrmdir;		/* indicates if doing RMDIR */
3009	struct dirrem **prevdirremp; /* previously referenced inode, if any */
3010{
3011	int offset;
3012	ufs_lbn_t lbn;
3013	struct diradd *dap;
3014	struct dirrem *dirrem;
3015	struct pagedep *pagedep;
3016
3017	/*
3018	 * Whiteouts have no deletion dependencies.
3019	 */
3020	if (ip == NULL)
3021		panic("newdirrem: whiteout");
3022	/*
3023	 * If we are over our limit, try to improve the situation.
3024	 * Limiting the number of dirrem structures will also limit
3025	 * the number of freefile and freeblks structures.
3026	 */
3027	if (num_dirrem > max_softdeps / 2)
3028		(void) request_cleanup(FLUSH_REMOVE, 0);
3029	num_dirrem += 1;
3030	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
3031		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
3032	dirrem->dm_list.wk_type = D_DIRREM;
3033	dirrem->dm_state = isrmdir ? RMDIR : 0;
3034	dirrem->dm_mnt = ITOV(ip)->v_mount;
3035	dirrem->dm_oldinum = ip->i_number;
3036	*prevdirremp = NULL;
3037
3038	ACQUIRE_LOCK(&lk);
3039	lbn = lblkno(dp->i_fs, dp->i_offset);
3040	offset = blkoff(dp->i_fs, dp->i_offset);
3041	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3042		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3043	dirrem->dm_pagedep = pagedep;
3044	/*
3045	 * Check for a diradd dependency for the same directory entry.
3046	 * If present, then both dependencies become obsolete and can
3047	 * be de-allocated. Check for an entry on both the pd_dirraddhd
3048	 * list and the pd_pendinghd list.
3049	 */
3050
3051	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
3052		if (dap->da_offset == offset)
3053			break;
3054	if (dap == NULL) {
3055
3056		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
3057			if (dap->da_offset == offset)
3058				break;
3059		if (dap == NULL)
3060			return (dirrem);
3061	}
3062	/*
3063	 * Must be ATTACHED at this point.
3064	 */
3065	if ((dap->da_state & ATTACHED) == 0) {
3066		FREE_LOCK(&lk);
3067		panic("newdirrem: not ATTACHED");
3068	}
3069	if (dap->da_newinum != ip->i_number) {
3070		FREE_LOCK(&lk);
3071		panic("newdirrem: inum %d should be %d",
3072		    ip->i_number, dap->da_newinum);
3073	}
3074	/*
3075	 * If we are deleting a changed name that never made it to disk,
3076	 * then return the dirrem describing the previous inode (which
3077	 * represents the inode currently referenced from this entry on disk).
3078	 */
3079	if ((dap->da_state & DIRCHG) != 0) {
3080		*prevdirremp = dap->da_previous;
3081		dap->da_state &= ~DIRCHG;
3082		dap->da_pagedep = pagedep;
3083	}
3084	/*
3085	 * We are deleting an entry that never made it to disk.
3086	 * Mark it COMPLETE so we can delete its inode immediately.
3087	 */
3088	dirrem->dm_state |= COMPLETE;
3089	free_diradd(dap);
3090	return (dirrem);
3091}
3092
3093/*
3094 * Directory entry change dependencies.
3095 *
3096 * Changing an existing directory entry requires that an add operation
3097 * be completed first followed by a deletion. The semantics for the addition
3098 * are identical to the description of adding a new entry above except
3099 * that the rollback is to the old inode number rather than zero. Once
3100 * the addition dependency is completed, the removal is done as described
3101 * in the removal routine above.
3102 */
3103
3104/*
3105 * This routine should be called immediately after changing
3106 * a directory entry.  The inode's link count should not be
3107 * decremented by the calling procedure -- the soft updates
3108 * code will perform this task when it is safe.
3109 */
3110void
3111softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
3112	struct buf *bp;		/* buffer containing directory block */
3113	struct inode *dp;	/* inode for the directory being modified */
3114	struct inode *ip;	/* inode for directory entry being removed */
3115	ino_t newinum;		/* new inode number for changed entry */
3116	int isrmdir;		/* indicates if doing RMDIR */
3117{
3118	int offset;
3119	struct diradd *dap = NULL;
3120	struct dirrem *dirrem, *prevdirrem;
3121	struct pagedep *pagedep;
3122	struct inodedep *inodedep;
3123
3124	offset = blkoff(dp->i_fs, dp->i_offset);
3125
3126	/*
3127	 * Whiteouts do not need diradd dependencies.
3128	 */
3129	if (newinum != WINO) {
3130		MALLOC(dap, struct diradd *, sizeof(struct diradd),
3131		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
3132		dap->da_list.wk_type = D_DIRADD;
3133		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
3134		dap->da_offset = offset;
3135		dap->da_newinum = newinum;
3136	}
3137
3138	/*
3139	 * Allocate a new dirrem and ACQUIRE_LOCK.
3140	 */
3141	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3142	pagedep = dirrem->dm_pagedep;
3143	/*
3144	 * The possible values for isrmdir:
3145	 *	0 - non-directory file rename
3146	 *	1 - directory rename within same directory
3147	 *   inum - directory rename to new directory of given inode number
3148	 * When renaming to a new directory, we are both deleting and
3149	 * creating a new directory entry, so the link count on the new
3150	 * directory should not change. Thus we do not need the followup
3151	 * dirrem which is usually done in handle_workitem_remove. We set
3152	 * the DIRCHG flag to tell handle_workitem_remove to skip the
3153	 * followup dirrem.
3154	 */
3155	if (isrmdir > 1)
3156		dirrem->dm_state |= DIRCHG;
3157
3158	/*
3159	 * Whiteouts have no additional dependencies,
3160	 * so just put the dirrem on the correct list.
3161	 */
3162	if (newinum == WINO) {
3163		if ((dirrem->dm_state & COMPLETE) == 0) {
3164			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
3165			    dm_next);
3166		} else {
3167			dirrem->dm_dirinum = pagedep->pd_ino;
3168			add_to_worklist(&dirrem->dm_list);
3169		}
3170		FREE_LOCK(&lk);
3171		return;
3172	}
3173
3174	/*
3175	 * If the COMPLETE flag is clear, then there were no active
3176	 * entries and we want to roll back to the previous inode until
3177	 * the new inode is committed to disk. If the COMPLETE flag is
3178	 * set, then we have deleted an entry that never made it to disk.
3179	 * If the entry we deleted resulted from a name change, then the old
3180	 * inode reference still resides on disk. Any rollback that we do
3181	 * needs to be to that old inode (returned to us in prevdirrem). If
3182	 * the entry we deleted resulted from a create, then there is
3183	 * no entry on the disk, so we want to roll back to zero rather
3184	 * than the uncommitted inode. In either of the COMPLETE cases we
3185	 * want to immediately free the unwritten and unreferenced inode.
3186	 */
3187	if ((dirrem->dm_state & COMPLETE) == 0) {
3188		dap->da_previous = dirrem;
3189	} else {
3190		if (prevdirrem != NULL) {
3191			dap->da_previous = prevdirrem;
3192		} else {
3193			dap->da_state &= ~DIRCHG;
3194			dap->da_pagedep = pagedep;
3195		}
3196		dirrem->dm_dirinum = pagedep->pd_ino;
3197		add_to_worklist(&dirrem->dm_list);
3198	}
3199	/*
3200	 * Link into its inodedep. Put it on the id_bufwait list if the inode
3201	 * is not yet written. If it is written, do the post-inode write
3202	 * processing to put it on the id_pendinghd list.
3203	 */
3204	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
3205	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3206		dap->da_state |= COMPLETE;
3207		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3208		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3209	} else {
3210		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
3211		    dap, da_pdlist);
3212		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3213	}
3214	FREE_LOCK(&lk);
3215}
3216
3217/*
3218 * Called whenever the link count on an inode is changed.
3219 * It creates an inode dependency so that the new reference(s)
3220 * to the inode cannot be committed to disk until the updated
3221 * inode has been written.
3222 */
3223void
3224softdep_change_linkcnt(ip)
3225	struct inode *ip;	/* the inode with the increased link count */
3226{
3227	struct inodedep *inodedep;
3228
3229	ACQUIRE_LOCK(&lk);
3230	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
3231	if (ip->i_nlink < ip->i_effnlink) {
3232		FREE_LOCK(&lk);
3233		panic("softdep_change_linkcnt: bad delta");
3234	}
3235	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3236	FREE_LOCK(&lk);
3237}
3238
3239/*
3240 * Called when the effective link count and the reference count
3241 * on an inode drops to zero. At this point there are no names
3242 * referencing the file in the filesystem and no active file
3243 * references. The space associated with the file will be freed
3244 * as soon as the necessary soft dependencies are cleared.
3245 */
3246void
3247softdep_releasefile(ip)
3248	struct inode *ip;	/* inode with the zero effective link count */
3249{
3250	struct inodedep *inodedep;
3251	struct fs *fs;
3252	int extblocks;
3253
3254	if (ip->i_effnlink > 0)
3255		panic("softdep_filerelease: file still referenced");
3256	/*
3257	 * We may be called several times as the real reference count
3258	 * drops to zero. We only want to account for the space once.
3259	 */
3260	if (ip->i_flag & IN_SPACECOUNTED)
3261		return;
3262	/*
3263	 * We have to deactivate a snapshot otherwise copyonwrites may
3264	 * add blocks and the cleanup may remove blocks after we have
3265	 * tried to account for them.
3266	 */
3267	if ((ip->i_flags & SF_SNAPSHOT) != 0)
3268		ffs_snapremove(ITOV(ip));
3269	/*
3270	 * If we are tracking an nlinkdelta, we have to also remember
3271	 * whether we accounted for the freed space yet.
3272	 */
3273	ACQUIRE_LOCK(&lk);
3274	if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep)))
3275		inodedep->id_state |= SPACECOUNTED;
3276	FREE_LOCK(&lk);
3277	fs = ip->i_fs;
3278	extblocks = 0;
3279	if (fs->fs_magic == FS_UFS2_MAGIC)
3280		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
3281	ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks;
3282	ip->i_fs->fs_pendinginodes += 1;
3283	ip->i_flag |= IN_SPACECOUNTED;
3284}
3285
3286/*
3287 * This workitem decrements the inode's link count.
3288 * If the link count reaches zero, the file is removed.
3289 */
3290static void
3291handle_workitem_remove(dirrem, xp)
3292	struct dirrem *dirrem;
3293	struct vnode *xp;
3294{
3295	struct thread *td = curthread;
3296	struct inodedep *inodedep;
3297	struct vnode *vp;
3298	struct inode *ip;
3299	ino_t oldinum;
3300	int error;
3301
3302	if ((vp = xp) == NULL &&
3303	    (error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE,
3304	     &vp)) != 0) {
3305		softdep_error("handle_workitem_remove: vget", error);
3306		return;
3307	}
3308	ip = VTOI(vp);
3309	ACQUIRE_LOCK(&lk);
3310	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
3311		FREE_LOCK(&lk);
3312		panic("handle_workitem_remove: lost inodedep");
3313	}
3314	/*
3315	 * Normal file deletion.
3316	 */
3317	if ((dirrem->dm_state & RMDIR) == 0) {
3318		ip->i_nlink--;
3319		DIP_SET(ip, i_nlink, ip->i_nlink);
3320		ip->i_flag |= IN_CHANGE;
3321		if (ip->i_nlink < ip->i_effnlink) {
3322			FREE_LOCK(&lk);
3323			panic("handle_workitem_remove: bad file delta");
3324		}
3325		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3326		FREE_LOCK(&lk);
3327		vput(vp);
3328		num_dirrem -= 1;
3329		WORKITEM_FREE(dirrem, D_DIRREM);
3330		return;
3331	}
3332	/*
3333	 * Directory deletion. Decrement reference count for both the
3334	 * just deleted parent directory entry and the reference for ".".
3335	 * Next truncate the directory to length zero. When the
3336	 * truncation completes, arrange to have the reference count on
3337	 * the parent decremented to account for the loss of "..".
3338	 */
3339	ip->i_nlink -= 2;
3340	DIP_SET(ip, i_nlink, ip->i_nlink);
3341	ip->i_flag |= IN_CHANGE;
3342	if (ip->i_nlink < ip->i_effnlink) {
3343		FREE_LOCK(&lk);
3344		panic("handle_workitem_remove: bad dir delta");
3345	}
3346	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3347	FREE_LOCK(&lk);
3348	if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_ucred, td)) != 0)
3349		softdep_error("handle_workitem_remove: truncate", error);
3350	/*
3351	 * Rename a directory to a new parent. Since, we are both deleting
3352	 * and creating a new directory entry, the link count on the new
3353	 * directory should not change. Thus we skip the followup dirrem.
3354	 */
3355	if (dirrem->dm_state & DIRCHG) {
3356		vput(vp);
3357		num_dirrem -= 1;
3358		WORKITEM_FREE(dirrem, D_DIRREM);
3359		return;
3360	}
3361	/*
3362	 * If the inodedep does not exist, then the zero'ed inode has
3363	 * been written to disk. If the allocated inode has never been
3364	 * written to disk, then the on-disk inode is zero'ed. In either
3365	 * case we can remove the file immediately.
3366	 */
3367	ACQUIRE_LOCK(&lk);
3368	dirrem->dm_state = 0;
3369	oldinum = dirrem->dm_oldinum;
3370	dirrem->dm_oldinum = dirrem->dm_dirinum;
3371	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
3372	    check_inode_unwritten(inodedep)) {
3373		FREE_LOCK(&lk);
3374		vput(vp);
3375		handle_workitem_remove(dirrem, NULL);
3376		return;
3377	}
3378	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3379	FREE_LOCK(&lk);
3380	vput(vp);
3381}
3382
3383/*
3384 * Inode de-allocation dependencies.
3385 *
3386 * When an inode's link count is reduced to zero, it can be de-allocated. We
3387 * found it convenient to postpone de-allocation until after the inode is
3388 * written to disk with its new link count (zero).  At this point, all of the
3389 * on-disk inode's block pointers are nullified and, with careful dependency
3390 * list ordering, all dependencies related to the inode will be satisfied and
3391 * the corresponding dependency structures de-allocated.  So, if/when the
3392 * inode is reused, there will be no mixing of old dependencies with new
3393 * ones.  This artificial dependency is set up by the block de-allocation
3394 * procedure above (softdep_setup_freeblocks) and completed by the
3395 * following procedure.
3396 */
3397static void
3398handle_workitem_freefile(freefile)
3399	struct freefile *freefile;
3400{
3401	struct fs *fs;
3402	struct inodedep *idp;
3403	int error;
3404
3405	fs = VFSTOUFS(freefile->fx_mnt)->um_fs;
3406#ifdef DEBUG
3407	ACQUIRE_LOCK(&lk);
3408	error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp);
3409	FREE_LOCK(&lk);
3410	if (error)
3411		panic("handle_workitem_freefile: inodedep survived");
3412#endif
3413	fs->fs_pendinginodes -= 1;
3414	if ((error = ffs_freefile(fs, freefile->fx_devvp, freefile->fx_oldinum,
3415	     freefile->fx_mode)) != 0)
3416		softdep_error("handle_workitem_freefile", error);
3417	WORKITEM_FREE(freefile, D_FREEFILE);
3418}
3419
3420static int
3421softdep_disk_prewrite(struct vnode *vp, struct buf *bp)
3422{
3423	int error;
3424
3425	if (bp->b_iocmd != BIO_WRITE)
3426		return (0);
3427	if ((bp->b_flags & B_VALIDSUSPWRT) == 0 &&
3428	    bp->b_vp != NULL && bp->b_vp->v_mount != NULL &&
3429	    (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0)
3430		panic("softdep_disk_prewrite: bad I/O");
3431	bp->b_flags &= ~B_VALIDSUSPWRT;
3432	if (LIST_FIRST(&bp->b_dep) != NULL)
3433		buf_start(bp);
3434	mp_fixme("This should require the vnode lock.");
3435	if ((vp->v_vflag & VV_COPYONWRITE) &&
3436	    vp->v_rdev->si_snapdata != NULL &&
3437	    (error = (ffs_copyonwrite)(vp, bp)) != 0 &&
3438	    error != EOPNOTSUPP) {
3439		bp->b_error = error;
3440		bp->b_ioflags |= BIO_ERROR;
3441		bufdone(bp);
3442		return (1);
3443	}
3444	return (0);
3445}
3446
3447
3448/*
3449 * Disk writes.
3450 *
3451 * The dependency structures constructed above are most actively used when file
3452 * system blocks are written to disk.  No constraints are placed on when a
3453 * block can be written, but unsatisfied update dependencies are made safe by
3454 * modifying (or replacing) the source memory for the duration of the disk
3455 * write.  When the disk write completes, the memory block is again brought
3456 * up-to-date.
3457 *
3458 * In-core inode structure reclamation.
3459 *
3460 * Because there are a finite number of "in-core" inode structures, they are
3461 * reused regularly.  By transferring all inode-related dependencies to the
3462 * in-memory inode block and indexing them separately (via "inodedep"s), we
3463 * can allow "in-core" inode structures to be reused at any time and avoid
3464 * any increase in contention.
3465 *
3466 * Called just before entering the device driver to initiate a new disk I/O.
3467 * The buffer must be locked, thus, no I/O completion operations can occur
3468 * while we are manipulating its associated dependencies.
3469 */
3470static void
3471softdep_disk_io_initiation(bp)
3472	struct buf *bp;		/* structure describing disk write to occur */
3473{
3474	struct worklist *wk, *nextwk;
3475	struct indirdep *indirdep;
3476	struct inodedep *inodedep;
3477
3478	/*
3479	 * We only care about write operations. There should never
3480	 * be dependencies for reads.
3481	 */
3482	if (bp->b_iocmd == BIO_READ)
3483		panic("softdep_disk_io_initiation: read");
3484	/*
3485	 * Do any necessary pre-I/O processing.
3486	 */
3487	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) {
3488		nextwk = LIST_NEXT(wk, wk_list);
3489		switch (wk->wk_type) {
3490
3491		case D_PAGEDEP:
3492			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3493			continue;
3494
3495		case D_INODEDEP:
3496			inodedep = WK_INODEDEP(wk);
3497			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
3498				initiate_write_inodeblock_ufs1(inodedep, bp);
3499			else
3500				initiate_write_inodeblock_ufs2(inodedep, bp);
3501			continue;
3502
3503		case D_INDIRDEP:
3504			indirdep = WK_INDIRDEP(wk);
3505			if (indirdep->ir_state & GOINGAWAY)
3506				panic("disk_io_initiation: indirdep gone");
3507			/*
3508			 * If there are no remaining dependencies, this
3509			 * will be writing the real pointers, so the
3510			 * dependency can be freed.
3511			 */
3512			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3513				indirdep->ir_savebp->b_flags |=
3514				    B_INVAL | B_NOCACHE;
3515				brelse(indirdep->ir_savebp);
3516				/* inline expand WORKLIST_REMOVE(wk); */
3517				wk->wk_state &= ~ONWORKLIST;
3518				LIST_REMOVE(wk, wk_list);
3519				WORKITEM_FREE(indirdep, D_INDIRDEP);
3520				continue;
3521			}
3522			/*
3523			 * Replace up-to-date version with safe version.
3524			 */
3525			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3526			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3527			ACQUIRE_LOCK(&lk);
3528			indirdep->ir_state &= ~ATTACHED;
3529			indirdep->ir_state |= UNDONE;
3530			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3531			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3532			    bp->b_bcount);
3533			FREE_LOCK(&lk);
3534			continue;
3535
3536		case D_MKDIR:
3537		case D_BMSAFEMAP:
3538		case D_ALLOCDIRECT:
3539		case D_ALLOCINDIR:
3540			continue;
3541
3542		default:
3543			panic("handle_disk_io_initiation: Unexpected type %s",
3544			    TYPENAME(wk->wk_type));
3545			/* NOTREACHED */
3546		}
3547	}
3548}
3549
3550/*
3551 * Called from within the procedure above to deal with unsatisfied
3552 * allocation dependencies in a directory. The buffer must be locked,
3553 * thus, no I/O completion operations can occur while we are
3554 * manipulating its associated dependencies.
3555 */
3556static void
3557initiate_write_filepage(pagedep, bp)
3558	struct pagedep *pagedep;
3559	struct buf *bp;
3560{
3561	struct diradd *dap;
3562	struct direct *ep;
3563	int i;
3564
3565	if (pagedep->pd_state & IOSTARTED) {
3566		/*
3567		 * This can only happen if there is a driver that does not
3568		 * understand chaining. Here biodone will reissue the call
3569		 * to strategy for the incomplete buffers.
3570		 */
3571		printf("initiate_write_filepage: already started\n");
3572		return;
3573	}
3574	pagedep->pd_state |= IOSTARTED;
3575	ACQUIRE_LOCK(&lk);
3576	for (i = 0; i < DAHASHSZ; i++) {
3577		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3578			ep = (struct direct *)
3579			    ((char *)bp->b_data + dap->da_offset);
3580			if (ep->d_ino != dap->da_newinum) {
3581				FREE_LOCK(&lk);
3582				panic("%s: dir inum %d != new %d",
3583				    "initiate_write_filepage",
3584				    ep->d_ino, dap->da_newinum);
3585			}
3586			if (dap->da_state & DIRCHG)
3587				ep->d_ino = dap->da_previous->dm_oldinum;
3588			else
3589				ep->d_ino = 0;
3590			dap->da_state &= ~ATTACHED;
3591			dap->da_state |= UNDONE;
3592		}
3593	}
3594	FREE_LOCK(&lk);
3595}
3596
3597/*
3598 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
3599 * Note that any bug fixes made to this routine must be done in the
3600 * version found below.
3601 *
3602 * Called from within the procedure above to deal with unsatisfied
3603 * allocation dependencies in an inodeblock. The buffer must be
3604 * locked, thus, no I/O completion operations can occur while we
3605 * are manipulating its associated dependencies.
3606 */
3607static void
3608initiate_write_inodeblock_ufs1(inodedep, bp)
3609	struct inodedep *inodedep;
3610	struct buf *bp;			/* The inode block */
3611{
3612	struct allocdirect *adp, *lastadp;
3613	struct ufs1_dinode *dp;
3614	struct fs *fs;
3615	ufs_lbn_t i, prevlbn = 0;
3616	int deplist;
3617
3618	if (inodedep->id_state & IOSTARTED)
3619		panic("initiate_write_inodeblock_ufs1: already started");
3620	inodedep->id_state |= IOSTARTED;
3621	fs = inodedep->id_fs;
3622	dp = (struct ufs1_dinode *)bp->b_data +
3623	    ino_to_fsbo(fs, inodedep->id_ino);
3624	/*
3625	 * If the bitmap is not yet written, then the allocated
3626	 * inode cannot be written to disk.
3627	 */
3628	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3629		if (inodedep->id_savedino1 != NULL)
3630			panic("initiate_write_inodeblock_ufs1: I/O underway");
3631		MALLOC(inodedep->id_savedino1, struct ufs1_dinode *,
3632		    sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3633		*inodedep->id_savedino1 = *dp;
3634		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3635		return;
3636	}
3637	/*
3638	 * If no dependencies, then there is nothing to roll back.
3639	 */
3640	inodedep->id_savedsize = dp->di_size;
3641	inodedep->id_savedextsize = 0;
3642	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3643		return;
3644	/*
3645	 * Set the dependencies to busy.
3646	 */
3647	ACQUIRE_LOCK(&lk);
3648	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3649	     adp = TAILQ_NEXT(adp, ad_next)) {
3650#ifdef DIAGNOSTIC
3651		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3652			FREE_LOCK(&lk);
3653			panic("softdep_write_inodeblock: lbn order");
3654		}
3655		prevlbn = adp->ad_lbn;
3656		if (adp->ad_lbn < NDADDR &&
3657		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3658			FREE_LOCK(&lk);
3659			panic("%s: direct pointer #%jd mismatch %d != %jd",
3660			    "softdep_write_inodeblock",
3661			    (intmax_t)adp->ad_lbn,
3662			    dp->di_db[adp->ad_lbn],
3663			    (intmax_t)adp->ad_newblkno);
3664		}
3665		if (adp->ad_lbn >= NDADDR &&
3666		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3667			FREE_LOCK(&lk);
3668			panic("%s: indirect pointer #%jd mismatch %d != %jd",
3669			    "softdep_write_inodeblock",
3670			    (intmax_t)adp->ad_lbn - NDADDR,
3671			    dp->di_ib[adp->ad_lbn - NDADDR],
3672			    (intmax_t)adp->ad_newblkno);
3673		}
3674		deplist |= 1 << adp->ad_lbn;
3675		if ((adp->ad_state & ATTACHED) == 0) {
3676			FREE_LOCK(&lk);
3677			panic("softdep_write_inodeblock: Unknown state 0x%x",
3678			    adp->ad_state);
3679		}
3680#endif /* DIAGNOSTIC */
3681		adp->ad_state &= ~ATTACHED;
3682		adp->ad_state |= UNDONE;
3683	}
3684	/*
3685	 * The on-disk inode cannot claim to be any larger than the last
3686	 * fragment that has been written. Otherwise, the on-disk inode
3687	 * might have fragments that were not the last block in the file
3688	 * which would corrupt the filesystem.
3689	 */
3690	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3691	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3692		if (adp->ad_lbn >= NDADDR)
3693			break;
3694		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3695		/* keep going until hitting a rollback to a frag */
3696		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3697			continue;
3698		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3699		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3700#ifdef DIAGNOSTIC
3701			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3702				FREE_LOCK(&lk);
3703				panic("softdep_write_inodeblock: lost dep1");
3704			}
3705#endif /* DIAGNOSTIC */
3706			dp->di_db[i] = 0;
3707		}
3708		for (i = 0; i < NIADDR; i++) {
3709#ifdef DIAGNOSTIC
3710			if (dp->di_ib[i] != 0 &&
3711			    (deplist & ((1 << NDADDR) << i)) == 0) {
3712				FREE_LOCK(&lk);
3713				panic("softdep_write_inodeblock: lost dep2");
3714			}
3715#endif /* DIAGNOSTIC */
3716			dp->di_ib[i] = 0;
3717		}
3718		FREE_LOCK(&lk);
3719		return;
3720	}
3721	/*
3722	 * If we have zero'ed out the last allocated block of the file,
3723	 * roll back the size to the last currently allocated block.
3724	 * We know that this last allocated block is a full-sized as
3725	 * we already checked for fragments in the loop above.
3726	 */
3727	if (lastadp != NULL &&
3728	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3729		for (i = lastadp->ad_lbn; i >= 0; i--)
3730			if (dp->di_db[i] != 0)
3731				break;
3732		dp->di_size = (i + 1) * fs->fs_bsize;
3733	}
3734	/*
3735	 * The only dependencies are for indirect blocks.
3736	 *
3737	 * The file size for indirect block additions is not guaranteed.
3738	 * Such a guarantee would be non-trivial to achieve. The conventional
3739	 * synchronous write implementation also does not make this guarantee.
3740	 * Fsck should catch and fix discrepancies. Arguably, the file size
3741	 * can be over-estimated without destroying integrity when the file
3742	 * moves into the indirect blocks (i.e., is large). If we want to
3743	 * postpone fsck, we are stuck with this argument.
3744	 */
3745	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3746		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3747	FREE_LOCK(&lk);
3748}
3749
3750/*
3751 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
3752 * Note that any bug fixes made to this routine must be done in the
3753 * version found above.
3754 *
3755 * Called from within the procedure above to deal with unsatisfied
3756 * allocation dependencies in an inodeblock. The buffer must be
3757 * locked, thus, no I/O completion operations can occur while we
3758 * are manipulating its associated dependencies.
3759 */
3760static void
3761initiate_write_inodeblock_ufs2(inodedep, bp)
3762	struct inodedep *inodedep;
3763	struct buf *bp;			/* The inode block */
3764{
3765	struct allocdirect *adp, *lastadp;
3766	struct ufs2_dinode *dp;
3767	struct fs *fs;
3768	ufs_lbn_t i, prevlbn = 0;
3769	int deplist;
3770
3771	if (inodedep->id_state & IOSTARTED)
3772		panic("initiate_write_inodeblock_ufs2: already started");
3773	inodedep->id_state |= IOSTARTED;
3774	fs = inodedep->id_fs;
3775	dp = (struct ufs2_dinode *)bp->b_data +
3776	    ino_to_fsbo(fs, inodedep->id_ino);
3777	/*
3778	 * If the bitmap is not yet written, then the allocated
3779	 * inode cannot be written to disk.
3780	 */
3781	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3782		if (inodedep->id_savedino2 != NULL)
3783			panic("initiate_write_inodeblock_ufs2: I/O underway");
3784		MALLOC(inodedep->id_savedino2, struct ufs2_dinode *,
3785		    sizeof(struct ufs2_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3786		*inodedep->id_savedino2 = *dp;
3787		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
3788		return;
3789	}
3790	/*
3791	 * If no dependencies, then there is nothing to roll back.
3792	 */
3793	inodedep->id_savedsize = dp->di_size;
3794	inodedep->id_savedextsize = dp->di_extsize;
3795	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL &&
3796	    TAILQ_FIRST(&inodedep->id_extupdt) == NULL)
3797		return;
3798	/*
3799	 * Set the ext data dependencies to busy.
3800	 */
3801	ACQUIRE_LOCK(&lk);
3802	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
3803	     adp = TAILQ_NEXT(adp, ad_next)) {
3804#ifdef DIAGNOSTIC
3805		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3806			FREE_LOCK(&lk);
3807			panic("softdep_write_inodeblock: lbn order");
3808		}
3809		prevlbn = adp->ad_lbn;
3810		if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) {
3811			FREE_LOCK(&lk);
3812			panic("%s: direct pointer #%jd mismatch %jd != %jd",
3813			    "softdep_write_inodeblock",
3814			    (intmax_t)adp->ad_lbn,
3815			    (intmax_t)dp->di_extb[adp->ad_lbn],
3816			    (intmax_t)adp->ad_newblkno);
3817		}
3818		deplist |= 1 << adp->ad_lbn;
3819		if ((adp->ad_state & ATTACHED) == 0) {
3820			FREE_LOCK(&lk);
3821			panic("softdep_write_inodeblock: Unknown state 0x%x",
3822			    adp->ad_state);
3823		}
3824#endif /* DIAGNOSTIC */
3825		adp->ad_state &= ~ATTACHED;
3826		adp->ad_state |= UNDONE;
3827	}
3828	/*
3829	 * The on-disk inode cannot claim to be any larger than the last
3830	 * fragment that has been written. Otherwise, the on-disk inode
3831	 * might have fragments that were not the last block in the ext
3832	 * data which would corrupt the filesystem.
3833	 */
3834	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
3835	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3836		dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno;
3837		/* keep going until hitting a rollback to a frag */
3838		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3839			continue;
3840		dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3841		for (i = adp->ad_lbn + 1; i < NXADDR; i++) {
3842#ifdef DIAGNOSTIC
3843			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) {
3844				FREE_LOCK(&lk);
3845				panic("softdep_write_inodeblock: lost dep1");
3846			}
3847#endif /* DIAGNOSTIC */
3848			dp->di_extb[i] = 0;
3849		}
3850		lastadp = NULL;
3851		break;
3852	}
3853	/*
3854	 * If we have zero'ed out the last allocated block of the ext
3855	 * data, roll back the size to the last currently allocated block.
3856	 * We know that this last allocated block is a full-sized as
3857	 * we already checked for fragments in the loop above.
3858	 */
3859	if (lastadp != NULL &&
3860	    dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3861		for (i = lastadp->ad_lbn; i >= 0; i--)
3862			if (dp->di_extb[i] != 0)
3863				break;
3864		dp->di_extsize = (i + 1) * fs->fs_bsize;
3865	}
3866	/*
3867	 * Set the file data dependencies to busy.
3868	 */
3869	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3870	     adp = TAILQ_NEXT(adp, ad_next)) {
3871#ifdef DIAGNOSTIC
3872		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3873			FREE_LOCK(&lk);
3874			panic("softdep_write_inodeblock: lbn order");
3875		}
3876		prevlbn = adp->ad_lbn;
3877		if (adp->ad_lbn < NDADDR &&
3878		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3879			FREE_LOCK(&lk);
3880			panic("%s: direct pointer #%jd mismatch %jd != %jd",
3881			    "softdep_write_inodeblock",
3882			    (intmax_t)adp->ad_lbn,
3883			    (intmax_t)dp->di_db[adp->ad_lbn],
3884			    (intmax_t)adp->ad_newblkno);
3885		}
3886		if (adp->ad_lbn >= NDADDR &&
3887		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3888			FREE_LOCK(&lk);
3889			panic("%s indirect pointer #%jd mismatch %jd != %jd",
3890			    "softdep_write_inodeblock:",
3891			    (intmax_t)adp->ad_lbn - NDADDR,
3892			    (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR],
3893			    (intmax_t)adp->ad_newblkno);
3894		}
3895		deplist |= 1 << adp->ad_lbn;
3896		if ((adp->ad_state & ATTACHED) == 0) {
3897			FREE_LOCK(&lk);
3898			panic("softdep_write_inodeblock: Unknown state 0x%x",
3899			    adp->ad_state);
3900		}
3901#endif /* DIAGNOSTIC */
3902		adp->ad_state &= ~ATTACHED;
3903		adp->ad_state |= UNDONE;
3904	}
3905	/*
3906	 * The on-disk inode cannot claim to be any larger than the last
3907	 * fragment that has been written. Otherwise, the on-disk inode
3908	 * might have fragments that were not the last block in the file
3909	 * which would corrupt the filesystem.
3910	 */
3911	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3912	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3913		if (adp->ad_lbn >= NDADDR)
3914			break;
3915		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3916		/* keep going until hitting a rollback to a frag */
3917		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3918			continue;
3919		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3920		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3921#ifdef DIAGNOSTIC
3922			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3923				FREE_LOCK(&lk);
3924				panic("softdep_write_inodeblock: lost dep2");
3925			}
3926#endif /* DIAGNOSTIC */
3927			dp->di_db[i] = 0;
3928		}
3929		for (i = 0; i < NIADDR; i++) {
3930#ifdef DIAGNOSTIC
3931			if (dp->di_ib[i] != 0 &&
3932			    (deplist & ((1 << NDADDR) << i)) == 0) {
3933				FREE_LOCK(&lk);
3934				panic("softdep_write_inodeblock: lost dep3");
3935			}
3936#endif /* DIAGNOSTIC */
3937			dp->di_ib[i] = 0;
3938		}
3939		FREE_LOCK(&lk);
3940		return;
3941	}
3942	/*
3943	 * If we have zero'ed out the last allocated block of the file,
3944	 * roll back the size to the last currently allocated block.
3945	 * We know that this last allocated block is a full-sized as
3946	 * we already checked for fragments in the loop above.
3947	 */
3948	if (lastadp != NULL &&
3949	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3950		for (i = lastadp->ad_lbn; i >= 0; i--)
3951			if (dp->di_db[i] != 0)
3952				break;
3953		dp->di_size = (i + 1) * fs->fs_bsize;
3954	}
3955	/*
3956	 * The only dependencies are for indirect blocks.
3957	 *
3958	 * The file size for indirect block additions is not guaranteed.
3959	 * Such a guarantee would be non-trivial to achieve. The conventional
3960	 * synchronous write implementation also does not make this guarantee.
3961	 * Fsck should catch and fix discrepancies. Arguably, the file size
3962	 * can be over-estimated without destroying integrity when the file
3963	 * moves into the indirect blocks (i.e., is large). If we want to
3964	 * postpone fsck, we are stuck with this argument.
3965	 */
3966	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3967		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3968	FREE_LOCK(&lk);
3969}
3970
3971/*
3972 * This routine is called during the completion interrupt
3973 * service routine for a disk write (from the procedure called
3974 * by the device driver to inform the filesystem caches of
3975 * a request completion).  It should be called early in this
3976 * procedure, before the block is made available to other
3977 * processes or other routines are called.
3978 */
3979static void
3980softdep_disk_write_complete(bp)
3981	struct buf *bp;		/* describes the completed disk write */
3982{
3983	struct worklist *wk;
3984	struct workhead reattach;
3985	struct newblk *newblk;
3986	struct allocindir *aip;
3987	struct allocdirect *adp;
3988	struct indirdep *indirdep;
3989	struct inodedep *inodedep;
3990	struct bmsafemap *bmsafemap;
3991
3992	/*
3993	 * If an error occurred while doing the write, then the data
3994	 * has not hit the disk and the dependencies cannot be unrolled.
3995	 */
3996	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
3997		return;
3998#ifdef DEBUG
3999	if (lk.lkt_held != NOHOLDER)
4000		panic("softdep_disk_write_complete: lock is held");
4001	lk.lkt_held = SPECIAL_FLAG;
4002#endif
4003	LIST_INIT(&reattach);
4004	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
4005		WORKLIST_REMOVE(wk);
4006		switch (wk->wk_type) {
4007
4008		case D_PAGEDEP:
4009			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
4010				WORKLIST_INSERT(&reattach, wk);
4011			continue;
4012
4013		case D_INODEDEP:
4014			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
4015				WORKLIST_INSERT(&reattach, wk);
4016			continue;
4017
4018		case D_BMSAFEMAP:
4019			bmsafemap = WK_BMSAFEMAP(wk);
4020			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
4021				newblk->nb_state |= DEPCOMPLETE;
4022				newblk->nb_bmsafemap = NULL;
4023				LIST_REMOVE(newblk, nb_deps);
4024			}
4025			while ((adp =
4026			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
4027				adp->ad_state |= DEPCOMPLETE;
4028				adp->ad_buf = NULL;
4029				LIST_REMOVE(adp, ad_deps);
4030				handle_allocdirect_partdone(adp);
4031			}
4032			while ((aip =
4033			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
4034				aip->ai_state |= DEPCOMPLETE;
4035				aip->ai_buf = NULL;
4036				LIST_REMOVE(aip, ai_deps);
4037				handle_allocindir_partdone(aip);
4038			}
4039			while ((inodedep =
4040			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
4041				inodedep->id_state |= DEPCOMPLETE;
4042				LIST_REMOVE(inodedep, id_deps);
4043				inodedep->id_buf = NULL;
4044			}
4045			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4046			continue;
4047
4048		case D_MKDIR:
4049			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
4050			continue;
4051
4052		case D_ALLOCDIRECT:
4053			adp = WK_ALLOCDIRECT(wk);
4054			adp->ad_state |= COMPLETE;
4055			handle_allocdirect_partdone(adp);
4056			continue;
4057
4058		case D_ALLOCINDIR:
4059			aip = WK_ALLOCINDIR(wk);
4060			aip->ai_state |= COMPLETE;
4061			handle_allocindir_partdone(aip);
4062			continue;
4063
4064		case D_INDIRDEP:
4065			indirdep = WK_INDIRDEP(wk);
4066			if (indirdep->ir_state & GOINGAWAY) {
4067				lk.lkt_held = NOHOLDER;
4068				panic("disk_write_complete: indirdep gone");
4069			}
4070			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
4071			FREE(indirdep->ir_saveddata, M_INDIRDEP);
4072			indirdep->ir_saveddata = 0;
4073			indirdep->ir_state &= ~UNDONE;
4074			indirdep->ir_state |= ATTACHED;
4075			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
4076				handle_allocindir_partdone(aip);
4077				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
4078					lk.lkt_held = NOHOLDER;
4079					panic("disk_write_complete: not gone");
4080				}
4081			}
4082			WORKLIST_INSERT(&reattach, wk);
4083			if ((bp->b_flags & B_DELWRI) == 0)
4084				stat_indir_blk_ptrs++;
4085			bdirty(bp);
4086			continue;
4087
4088		default:
4089			lk.lkt_held = NOHOLDER;
4090			panic("handle_disk_write_complete: Unknown type %s",
4091			    TYPENAME(wk->wk_type));
4092			/* NOTREACHED */
4093		}
4094	}
4095	/*
4096	 * Reattach any requests that must be redone.
4097	 */
4098	while ((wk = LIST_FIRST(&reattach)) != NULL) {
4099		WORKLIST_REMOVE(wk);
4100		WORKLIST_INSERT(&bp->b_dep, wk);
4101	}
4102#ifdef DEBUG
4103	if (lk.lkt_held != SPECIAL_FLAG)
4104		panic("softdep_disk_write_complete: lock lost");
4105	lk.lkt_held = NOHOLDER;
4106#endif
4107}
4108
4109/*
4110 * Called from within softdep_disk_write_complete above. Note that
4111 * this routine is always called from interrupt level with further
4112 * splbio interrupts blocked.
4113 */
4114static void
4115handle_allocdirect_partdone(adp)
4116	struct allocdirect *adp;	/* the completed allocdirect */
4117{
4118	struct allocdirectlst *listhead;
4119	struct allocdirect *listadp;
4120	struct inodedep *inodedep;
4121	long bsize, delay;
4122
4123	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4124		return;
4125	if (adp->ad_buf != NULL) {
4126		lk.lkt_held = NOHOLDER;
4127		panic("handle_allocdirect_partdone: dangling dep");
4128	}
4129	/*
4130	 * The on-disk inode cannot claim to be any larger than the last
4131	 * fragment that has been written. Otherwise, the on-disk inode
4132	 * might have fragments that were not the last block in the file
4133	 * which would corrupt the filesystem. Thus, we cannot free any
4134	 * allocdirects after one whose ad_oldblkno claims a fragment as
4135	 * these blocks must be rolled back to zero before writing the inode.
4136	 * We check the currently active set of allocdirects in id_inoupdt
4137	 * or id_extupdt as appropriate.
4138	 */
4139	inodedep = adp->ad_inodedep;
4140	bsize = inodedep->id_fs->fs_bsize;
4141	if (adp->ad_state & EXTDATA)
4142		listhead = &inodedep->id_extupdt;
4143	else
4144		listhead = &inodedep->id_inoupdt;
4145	TAILQ_FOREACH(listadp, listhead, ad_next) {
4146		/* found our block */
4147		if (listadp == adp)
4148			break;
4149		/* continue if ad_oldlbn is not a fragment */
4150		if (listadp->ad_oldsize == 0 ||
4151		    listadp->ad_oldsize == bsize)
4152			continue;
4153		/* hit a fragment */
4154		return;
4155	}
4156	/*
4157	 * If we have reached the end of the current list without
4158	 * finding the just finished dependency, then it must be
4159	 * on the future dependency list. Future dependencies cannot
4160	 * be freed until they are moved to the current list.
4161	 */
4162	if (listadp == NULL) {
4163#ifdef DEBUG
4164		if (adp->ad_state & EXTDATA)
4165			listhead = &inodedep->id_newextupdt;
4166		else
4167			listhead = &inodedep->id_newinoupdt;
4168		TAILQ_FOREACH(listadp, listhead, ad_next)
4169			/* found our block */
4170			if (listadp == adp)
4171				break;
4172		if (listadp == NULL) {
4173			lk.lkt_held = NOHOLDER;
4174			panic("handle_allocdirect_partdone: lost dep");
4175		}
4176#endif /* DEBUG */
4177		return;
4178	}
4179	/*
4180	 * If we have found the just finished dependency, then free
4181	 * it along with anything that follows it that is complete.
4182	 * If the inode still has a bitmap dependency, then it has
4183	 * never been written to disk, hence the on-disk inode cannot
4184	 * reference the old fragment so we can free it without delay.
4185	 */
4186	delay = (inodedep->id_state & DEPCOMPLETE);
4187	for (; adp; adp = listadp) {
4188		listadp = TAILQ_NEXT(adp, ad_next);
4189		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4190			return;
4191		free_allocdirect(listhead, adp, delay);
4192	}
4193}
4194
4195/*
4196 * Called from within softdep_disk_write_complete above. Note that
4197 * this routine is always called from interrupt level with further
4198 * splbio interrupts blocked.
4199 */
4200static void
4201handle_allocindir_partdone(aip)
4202	struct allocindir *aip;		/* the completed allocindir */
4203{
4204	struct indirdep *indirdep;
4205
4206	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
4207		return;
4208	if (aip->ai_buf != NULL) {
4209		lk.lkt_held = NOHOLDER;
4210		panic("handle_allocindir_partdone: dangling dependency");
4211	}
4212	indirdep = aip->ai_indirdep;
4213	if (indirdep->ir_state & UNDONE) {
4214		LIST_REMOVE(aip, ai_next);
4215		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
4216		return;
4217	}
4218	if (indirdep->ir_state & UFS1FMT)
4219		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4220		    aip->ai_newblkno;
4221	else
4222		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4223		    aip->ai_newblkno;
4224	LIST_REMOVE(aip, ai_next);
4225	if (aip->ai_freefrag != NULL)
4226		add_to_worklist(&aip->ai_freefrag->ff_list);
4227	WORKITEM_FREE(aip, D_ALLOCINDIR);
4228}
4229
4230/*
4231 * Called from within softdep_disk_write_complete above to restore
4232 * in-memory inode block contents to their most up-to-date state. Note
4233 * that this routine is always called from interrupt level with further
4234 * splbio interrupts blocked.
4235 */
4236static int
4237handle_written_inodeblock(inodedep, bp)
4238	struct inodedep *inodedep;
4239	struct buf *bp;		/* buffer containing the inode block */
4240{
4241	struct worklist *wk, *filefree;
4242	struct allocdirect *adp, *nextadp;
4243	struct ufs1_dinode *dp1 = NULL;
4244	struct ufs2_dinode *dp2 = NULL;
4245	int hadchanges, fstype;
4246
4247	if ((inodedep->id_state & IOSTARTED) == 0) {
4248		lk.lkt_held = NOHOLDER;
4249		panic("handle_written_inodeblock: not started");
4250	}
4251	inodedep->id_state &= ~IOSTARTED;
4252	inodedep->id_state |= COMPLETE;
4253	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
4254		fstype = UFS1;
4255		dp1 = (struct ufs1_dinode *)bp->b_data +
4256		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4257	} else {
4258		fstype = UFS2;
4259		dp2 = (struct ufs2_dinode *)bp->b_data +
4260		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4261	}
4262	/*
4263	 * If we had to rollback the inode allocation because of
4264	 * bitmaps being incomplete, then simply restore it.
4265	 * Keep the block dirty so that it will not be reclaimed until
4266	 * all associated dependencies have been cleared and the
4267	 * corresponding updates written to disk.
4268	 */
4269	if (inodedep->id_savedino1 != NULL) {
4270		if (fstype == UFS1)
4271			*dp1 = *inodedep->id_savedino1;
4272		else
4273			*dp2 = *inodedep->id_savedino2;
4274		FREE(inodedep->id_savedino1, M_INODEDEP);
4275		inodedep->id_savedino1 = NULL;
4276		if ((bp->b_flags & B_DELWRI) == 0)
4277			stat_inode_bitmap++;
4278		bdirty(bp);
4279		return (1);
4280	}
4281	/*
4282	 * Roll forward anything that had to be rolled back before
4283	 * the inode could be updated.
4284	 */
4285	hadchanges = 0;
4286	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
4287		nextadp = TAILQ_NEXT(adp, ad_next);
4288		if (adp->ad_state & ATTACHED) {
4289			lk.lkt_held = NOHOLDER;
4290			panic("handle_written_inodeblock: new entry");
4291		}
4292		if (fstype == UFS1) {
4293			if (adp->ad_lbn < NDADDR) {
4294				if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) {
4295					lk.lkt_held = NOHOLDER;
4296					panic("%s %s #%jd mismatch %d != %jd",
4297					    "handle_written_inodeblock:",
4298					    "direct pointer",
4299					    (intmax_t)adp->ad_lbn,
4300					    dp1->di_db[adp->ad_lbn],
4301					    (intmax_t)adp->ad_oldblkno);
4302				}
4303				dp1->di_db[adp->ad_lbn] = adp->ad_newblkno;
4304			} else {
4305				if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) {
4306					lk.lkt_held = NOHOLDER;
4307					panic("%s: %s #%jd allocated as %d",
4308					    "handle_written_inodeblock",
4309					    "indirect pointer",
4310					    (intmax_t)adp->ad_lbn - NDADDR,
4311					    dp1->di_ib[adp->ad_lbn - NDADDR]);
4312				}
4313				dp1->di_ib[adp->ad_lbn - NDADDR] =
4314				    adp->ad_newblkno;
4315			}
4316		} else {
4317			if (adp->ad_lbn < NDADDR) {
4318				if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) {
4319					lk.lkt_held = NOHOLDER;
4320					panic("%s: %s #%jd %s %jd != %jd",
4321					    "handle_written_inodeblock",
4322					    "direct pointer",
4323					    (intmax_t)adp->ad_lbn, "mismatch",
4324					    (intmax_t)dp2->di_db[adp->ad_lbn],
4325					    (intmax_t)adp->ad_oldblkno);
4326				}
4327				dp2->di_db[adp->ad_lbn] = adp->ad_newblkno;
4328			} else {
4329				if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) {
4330					lk.lkt_held = NOHOLDER;
4331					panic("%s: %s #%jd allocated as %jd",
4332					    "handle_written_inodeblock",
4333					    "indirect pointer",
4334					    (intmax_t)adp->ad_lbn - NDADDR,
4335					    (intmax_t)
4336					    dp2->di_ib[adp->ad_lbn - NDADDR]);
4337				}
4338				dp2->di_ib[adp->ad_lbn - NDADDR] =
4339				    adp->ad_newblkno;
4340			}
4341		}
4342		adp->ad_state &= ~UNDONE;
4343		adp->ad_state |= ATTACHED;
4344		hadchanges = 1;
4345	}
4346	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
4347		nextadp = TAILQ_NEXT(adp, ad_next);
4348		if (adp->ad_state & ATTACHED) {
4349			lk.lkt_held = NOHOLDER;
4350			panic("handle_written_inodeblock: new entry");
4351		}
4352		if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) {
4353			lk.lkt_held = NOHOLDER;
4354			panic("%s: direct pointers #%jd %s %jd != %jd",
4355			    "handle_written_inodeblock",
4356			    (intmax_t)adp->ad_lbn, "mismatch",
4357			    (intmax_t)dp2->di_extb[adp->ad_lbn],
4358			    (intmax_t)adp->ad_oldblkno);
4359		}
4360		dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno;
4361		adp->ad_state &= ~UNDONE;
4362		adp->ad_state |= ATTACHED;
4363		hadchanges = 1;
4364	}
4365	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
4366		stat_direct_blk_ptrs++;
4367	/*
4368	 * Reset the file size to its most up-to-date value.
4369	 */
4370	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) {
4371		lk.lkt_held = NOHOLDER;
4372		panic("handle_written_inodeblock: bad size");
4373	}
4374	if (fstype == UFS1) {
4375		if (dp1->di_size != inodedep->id_savedsize) {
4376			dp1->di_size = inodedep->id_savedsize;
4377			hadchanges = 1;
4378		}
4379	} else {
4380		if (dp2->di_size != inodedep->id_savedsize) {
4381			dp2->di_size = inodedep->id_savedsize;
4382			hadchanges = 1;
4383		}
4384		if (dp2->di_extsize != inodedep->id_savedextsize) {
4385			dp2->di_extsize = inodedep->id_savedextsize;
4386			hadchanges = 1;
4387		}
4388	}
4389	inodedep->id_savedsize = -1;
4390	inodedep->id_savedextsize = -1;
4391	/*
4392	 * If there were any rollbacks in the inode block, then it must be
4393	 * marked dirty so that its will eventually get written back in
4394	 * its correct form.
4395	 */
4396	if (hadchanges)
4397		bdirty(bp);
4398	/*
4399	 * Process any allocdirects that completed during the update.
4400	 */
4401	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
4402		handle_allocdirect_partdone(adp);
4403	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
4404		handle_allocdirect_partdone(adp);
4405	/*
4406	 * Process deallocations that were held pending until the
4407	 * inode had been written to disk. Freeing of the inode
4408	 * is delayed until after all blocks have been freed to
4409	 * avoid creation of new <vfsid, inum, lbn> triples
4410	 * before the old ones have been deleted.
4411	 */
4412	filefree = NULL;
4413	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
4414		WORKLIST_REMOVE(wk);
4415		switch (wk->wk_type) {
4416
4417		case D_FREEFILE:
4418			/*
4419			 * We defer adding filefree to the worklist until
4420			 * all other additions have been made to ensure
4421			 * that it will be done after all the old blocks
4422			 * have been freed.
4423			 */
4424			if (filefree != NULL) {
4425				lk.lkt_held = NOHOLDER;
4426				panic("handle_written_inodeblock: filefree");
4427			}
4428			filefree = wk;
4429			continue;
4430
4431		case D_MKDIR:
4432			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
4433			continue;
4434
4435		case D_DIRADD:
4436			diradd_inode_written(WK_DIRADD(wk), inodedep);
4437			continue;
4438
4439		case D_FREEBLKS:
4440		case D_FREEFRAG:
4441		case D_DIRREM:
4442			add_to_worklist(wk);
4443			continue;
4444
4445		case D_NEWDIRBLK:
4446			free_newdirblk(WK_NEWDIRBLK(wk));
4447			continue;
4448
4449		default:
4450			lk.lkt_held = NOHOLDER;
4451			panic("handle_written_inodeblock: Unknown type %s",
4452			    TYPENAME(wk->wk_type));
4453			/* NOTREACHED */
4454		}
4455	}
4456	if (filefree != NULL) {
4457		if (free_inodedep(inodedep) == 0) {
4458			lk.lkt_held = NOHOLDER;
4459			panic("handle_written_inodeblock: live inodedep");
4460		}
4461		add_to_worklist(filefree);
4462		return (0);
4463	}
4464
4465	/*
4466	 * If no outstanding dependencies, free it.
4467	 */
4468	if (free_inodedep(inodedep) ||
4469	    (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
4470	     TAILQ_FIRST(&inodedep->id_extupdt) == 0))
4471		return (0);
4472	return (hadchanges);
4473}
4474
4475/*
4476 * Process a diradd entry after its dependent inode has been written.
4477 * This routine must be called with splbio interrupts blocked.
4478 */
4479static void
4480diradd_inode_written(dap, inodedep)
4481	struct diradd *dap;
4482	struct inodedep *inodedep;
4483{
4484	struct pagedep *pagedep;
4485
4486	dap->da_state |= COMPLETE;
4487	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4488		if (dap->da_state & DIRCHG)
4489			pagedep = dap->da_previous->dm_pagedep;
4490		else
4491			pagedep = dap->da_pagedep;
4492		LIST_REMOVE(dap, da_pdlist);
4493		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4494	}
4495	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
4496}
4497
4498/*
4499 * Handle the completion of a mkdir dependency.
4500 */
4501static void
4502handle_written_mkdir(mkdir, type)
4503	struct mkdir *mkdir;
4504	int type;
4505{
4506	struct diradd *dap;
4507	struct pagedep *pagedep;
4508
4509	if (mkdir->md_state != type) {
4510		lk.lkt_held = NOHOLDER;
4511		panic("handle_written_mkdir: bad type");
4512	}
4513	dap = mkdir->md_diradd;
4514	dap->da_state &= ~type;
4515	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
4516		dap->da_state |= DEPCOMPLETE;
4517	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4518		if (dap->da_state & DIRCHG)
4519			pagedep = dap->da_previous->dm_pagedep;
4520		else
4521			pagedep = dap->da_pagedep;
4522		LIST_REMOVE(dap, da_pdlist);
4523		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4524	}
4525	LIST_REMOVE(mkdir, md_mkdirs);
4526	WORKITEM_FREE(mkdir, D_MKDIR);
4527}
4528
4529/*
4530 * Called from within softdep_disk_write_complete above.
4531 * A write operation was just completed. Removed inodes can
4532 * now be freed and associated block pointers may be committed.
4533 * Note that this routine is always called from interrupt level
4534 * with further splbio interrupts blocked.
4535 */
4536static int
4537handle_written_filepage(pagedep, bp)
4538	struct pagedep *pagedep;
4539	struct buf *bp;		/* buffer containing the written page */
4540{
4541	struct dirrem *dirrem;
4542	struct diradd *dap, *nextdap;
4543	struct direct *ep;
4544	int i, chgs;
4545
4546	if ((pagedep->pd_state & IOSTARTED) == 0) {
4547		lk.lkt_held = NOHOLDER;
4548		panic("handle_written_filepage: not started");
4549	}
4550	pagedep->pd_state &= ~IOSTARTED;
4551	/*
4552	 * Process any directory removals that have been committed.
4553	 */
4554	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
4555		LIST_REMOVE(dirrem, dm_next);
4556		dirrem->dm_dirinum = pagedep->pd_ino;
4557		add_to_worklist(&dirrem->dm_list);
4558	}
4559	/*
4560	 * Free any directory additions that have been committed.
4561	 * If it is a newly allocated block, we have to wait until
4562	 * the on-disk directory inode claims the new block.
4563	 */
4564	if ((pagedep->pd_state & NEWBLOCK) == 0)
4565		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
4566			free_diradd(dap);
4567	/*
4568	 * Uncommitted directory entries must be restored.
4569	 */
4570	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
4571		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
4572		     dap = nextdap) {
4573			nextdap = LIST_NEXT(dap, da_pdlist);
4574			if (dap->da_state & ATTACHED) {
4575				lk.lkt_held = NOHOLDER;
4576				panic("handle_written_filepage: attached");
4577			}
4578			ep = (struct direct *)
4579			    ((char *)bp->b_data + dap->da_offset);
4580			ep->d_ino = dap->da_newinum;
4581			dap->da_state &= ~UNDONE;
4582			dap->da_state |= ATTACHED;
4583			chgs = 1;
4584			/*
4585			 * If the inode referenced by the directory has
4586			 * been written out, then the dependency can be
4587			 * moved to the pending list.
4588			 */
4589			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4590				LIST_REMOVE(dap, da_pdlist);
4591				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
4592				    da_pdlist);
4593			}
4594		}
4595	}
4596	/*
4597	 * If there were any rollbacks in the directory, then it must be
4598	 * marked dirty so that its will eventually get written back in
4599	 * its correct form.
4600	 */
4601	if (chgs) {
4602		if ((bp->b_flags & B_DELWRI) == 0)
4603			stat_dir_entry++;
4604		bdirty(bp);
4605		return (1);
4606	}
4607	/*
4608	 * If we are not waiting for a new directory block to be
4609	 * claimed by its inode, then the pagedep will be freed.
4610	 * Otherwise it will remain to track any new entries on
4611	 * the page in case they are fsync'ed.
4612	 */
4613	if ((pagedep->pd_state & NEWBLOCK) == 0) {
4614		LIST_REMOVE(pagedep, pd_hash);
4615		WORKITEM_FREE(pagedep, D_PAGEDEP);
4616	}
4617	return (0);
4618}
4619
4620/*
4621 * Writing back in-core inode structures.
4622 *
4623 * The filesystem only accesses an inode's contents when it occupies an
4624 * "in-core" inode structure.  These "in-core" structures are separate from
4625 * the page frames used to cache inode blocks.  Only the latter are
4626 * transferred to/from the disk.  So, when the updated contents of the
4627 * "in-core" inode structure are copied to the corresponding in-memory inode
4628 * block, the dependencies are also transferred.  The following procedure is
4629 * called when copying a dirty "in-core" inode to a cached inode block.
4630 */
4631
4632/*
4633 * Called when an inode is loaded from disk. If the effective link count
4634 * differed from the actual link count when it was last flushed, then we
4635 * need to ensure that the correct effective link count is put back.
4636 */
4637void
4638softdep_load_inodeblock(ip)
4639	struct inode *ip;	/* the "in_core" copy of the inode */
4640{
4641	struct inodedep *inodedep;
4642
4643	/*
4644	 * Check for alternate nlink count.
4645	 */
4646	ip->i_effnlink = ip->i_nlink;
4647	ACQUIRE_LOCK(&lk);
4648	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4649		FREE_LOCK(&lk);
4650		return;
4651	}
4652	ip->i_effnlink -= inodedep->id_nlinkdelta;
4653	if (inodedep->id_state & SPACECOUNTED)
4654		ip->i_flag |= IN_SPACECOUNTED;
4655	FREE_LOCK(&lk);
4656}
4657
4658/*
4659 * This routine is called just before the "in-core" inode
4660 * information is to be copied to the in-memory inode block.
4661 * Recall that an inode block contains several inodes. If
4662 * the force flag is set, then the dependencies will be
4663 * cleared so that the update can always be made. Note that
4664 * the buffer is locked when this routine is called, so we
4665 * will never be in the middle of writing the inode block
4666 * to disk.
4667 */
4668void
4669softdep_update_inodeblock(ip, bp, waitfor)
4670	struct inode *ip;	/* the "in_core" copy of the inode */
4671	struct buf *bp;		/* the buffer containing the inode block */
4672	int waitfor;		/* nonzero => update must be allowed */
4673{
4674	struct inodedep *inodedep;
4675	struct worklist *wk;
4676	struct buf *ibp;
4677	int error;
4678
4679	/*
4680	 * If the effective link count is not equal to the actual link
4681	 * count, then we must track the difference in an inodedep while
4682	 * the inode is (potentially) tossed out of the cache. Otherwise,
4683	 * if there is no existing inodedep, then there are no dependencies
4684	 * to track.
4685	 */
4686	ACQUIRE_LOCK(&lk);
4687	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4688		FREE_LOCK(&lk);
4689		if (ip->i_effnlink != ip->i_nlink)
4690			panic("softdep_update_inodeblock: bad link count");
4691		return;
4692	}
4693	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
4694		FREE_LOCK(&lk);
4695		panic("softdep_update_inodeblock: bad delta");
4696	}
4697	/*
4698	 * Changes have been initiated. Anything depending on these
4699	 * changes cannot occur until this inode has been written.
4700	 */
4701	inodedep->id_state &= ~COMPLETE;
4702	if ((inodedep->id_state & ONWORKLIST) == 0)
4703		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
4704	/*
4705	 * Any new dependencies associated with the incore inode must
4706	 * now be moved to the list associated with the buffer holding
4707	 * the in-memory copy of the inode. Once merged process any
4708	 * allocdirects that are completed by the merger.
4709	 */
4710	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
4711	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4712		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4713	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
4714	if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL)
4715		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt));
4716	/*
4717	 * Now that the inode has been pushed into the buffer, the
4718	 * operations dependent on the inode being written to disk
4719	 * can be moved to the id_bufwait so that they will be
4720	 * processed when the buffer I/O completes.
4721	 */
4722	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4723		WORKLIST_REMOVE(wk);
4724		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4725	}
4726	/*
4727	 * Newly allocated inodes cannot be written until the bitmap
4728	 * that allocates them have been written (indicated by
4729	 * DEPCOMPLETE being set in id_state). If we are doing a
4730	 * forced sync (e.g., an fsync on a file), we force the bitmap
4731	 * to be written so that the update can be done.
4732	 */
4733	if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4734		FREE_LOCK(&lk);
4735		return;
4736	}
4737	ibp = inodedep->id_buf;
4738	ibp = getdirtybuf(&ibp, NULL, MNT_WAIT);
4739	FREE_LOCK(&lk);
4740	if (ibp && (error = bwrite(ibp)) != 0)
4741		softdep_error("softdep_update_inodeblock: bwrite", error);
4742	if ((inodedep->id_state & DEPCOMPLETE) == 0)
4743		panic("softdep_update_inodeblock: update failed");
4744}
4745
4746/*
4747 * Merge the a new inode dependency list (such as id_newinoupdt) into an
4748 * old inode dependency list (such as id_inoupdt). This routine must be
4749 * called with splbio interrupts blocked.
4750 */
4751static void
4752merge_inode_lists(newlisthead, oldlisthead)
4753	struct allocdirectlst *newlisthead;
4754	struct allocdirectlst *oldlisthead;
4755{
4756	struct allocdirect *listadp, *newadp;
4757
4758	newadp = TAILQ_FIRST(newlisthead);
4759	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
4760		if (listadp->ad_lbn < newadp->ad_lbn) {
4761			listadp = TAILQ_NEXT(listadp, ad_next);
4762			continue;
4763		}
4764		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4765		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4766		if (listadp->ad_lbn == newadp->ad_lbn) {
4767			allocdirect_merge(oldlisthead, newadp,
4768			    listadp);
4769			listadp = newadp;
4770		}
4771		newadp = TAILQ_FIRST(newlisthead);
4772	}
4773	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
4774		TAILQ_REMOVE(newlisthead, newadp, ad_next);
4775		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
4776	}
4777}
4778
4779/*
4780 * If we are doing an fsync, then we must ensure that any directory
4781 * entries for the inode have been written after the inode gets to disk.
4782 */
4783int
4784softdep_fsync(vp)
4785	struct vnode *vp;	/* the "in_core" copy of the inode */
4786{
4787	struct inodedep *inodedep;
4788	struct pagedep *pagedep;
4789	struct worklist *wk;
4790	struct diradd *dap;
4791	struct mount *mnt;
4792	struct vnode *pvp;
4793	struct inode *ip;
4794	struct buf *bp;
4795	struct fs *fs;
4796	struct thread *td = curthread;
4797	int error, flushparent;
4798	ino_t parentino;
4799	ufs_lbn_t lbn;
4800
4801	ip = VTOI(vp);
4802	fs = ip->i_fs;
4803	ACQUIRE_LOCK(&lk);
4804	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4805		FREE_LOCK(&lk);
4806		return (0);
4807	}
4808	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4809	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4810	    TAILQ_FIRST(&inodedep->id_extupdt) != NULL ||
4811	    TAILQ_FIRST(&inodedep->id_newextupdt) != NULL ||
4812	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4813	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4814		FREE_LOCK(&lk);
4815		panic("softdep_fsync: pending ops");
4816	}
4817	for (error = 0, flushparent = 0; ; ) {
4818		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4819			break;
4820		if (wk->wk_type != D_DIRADD) {
4821			FREE_LOCK(&lk);
4822			panic("softdep_fsync: Unexpected type %s",
4823			    TYPENAME(wk->wk_type));
4824		}
4825		dap = WK_DIRADD(wk);
4826		/*
4827		 * Flush our parent if this directory entry has a MKDIR_PARENT
4828		 * dependency or is contained in a newly allocated block.
4829		 */
4830		if (dap->da_state & DIRCHG)
4831			pagedep = dap->da_previous->dm_pagedep;
4832		else
4833			pagedep = dap->da_pagedep;
4834		mnt = pagedep->pd_mnt;
4835		parentino = pagedep->pd_ino;
4836		lbn = pagedep->pd_lbn;
4837		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4838			FREE_LOCK(&lk);
4839			panic("softdep_fsync: dirty");
4840		}
4841		if ((dap->da_state & MKDIR_PARENT) ||
4842		    (pagedep->pd_state & NEWBLOCK))
4843			flushparent = 1;
4844		else
4845			flushparent = 0;
4846		/*
4847		 * If we are being fsync'ed as part of vgone'ing this vnode,
4848		 * then we will not be able to release and recover the
4849		 * vnode below, so we just have to give up on writing its
4850		 * directory entry out. It will eventually be written, just
4851		 * not now, but then the user was not asking to have it
4852		 * written, so we are not breaking any promises.
4853		 */
4854		if (vp->v_iflag & VI_XLOCK)
4855			break;
4856		/*
4857		 * We prevent deadlock by always fetching inodes from the
4858		 * root, moving down the directory tree. Thus, when fetching
4859		 * our parent directory, we first try to get the lock. If
4860		 * that fails, we must unlock ourselves before requesting
4861		 * the lock on our parent. See the comment in ufs_lookup
4862		 * for details on possible races.
4863		 */
4864		FREE_LOCK(&lk);
4865		if (VFS_VGET(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) {
4866			VOP_UNLOCK(vp, 0, td);
4867			error = VFS_VGET(mnt, parentino, LK_EXCLUSIVE, &pvp);
4868			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
4869			if (error != 0)
4870				return (error);
4871		}
4872		/*
4873		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
4874		 * that are contained in direct blocks will be resolved by
4875		 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks
4876		 * may require a complete sync'ing of the directory. So, we
4877		 * try the cheap and fast UFS_UPDATE first, and if that fails,
4878		 * then we do the slower VOP_FSYNC of the directory.
4879		 */
4880		if (flushparent) {
4881			if ((error = UFS_UPDATE(pvp, 1)) != 0) {
4882				vput(pvp);
4883				return (error);
4884			}
4885			if ((pagedep->pd_state & NEWBLOCK) &&
4886			    (error = VOP_FSYNC(pvp, td->td_ucred, MNT_WAIT, td))) {
4887				vput(pvp);
4888				return (error);
4889			}
4890		}
4891		/*
4892		 * Flush directory page containing the inode's name.
4893		 */
4894		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
4895		    &bp);
4896		if (error == 0)
4897			error = bwrite(bp);
4898		else
4899			brelse(bp);
4900		vput(pvp);
4901		if (error != 0)
4902			return (error);
4903		ACQUIRE_LOCK(&lk);
4904		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4905			break;
4906	}
4907	FREE_LOCK(&lk);
4908	return (0);
4909}
4910
4911/*
4912 * Flush all the dirty bitmaps associated with the block device
4913 * before flushing the rest of the dirty blocks so as to reduce
4914 * the number of dependencies that will have to be rolled back.
4915 */
4916void
4917softdep_fsync_mountdev(vp)
4918	struct vnode *vp;
4919{
4920	struct buf *bp, *nbp;
4921	struct worklist *wk;
4922
4923	if (!vn_isdisk(vp, NULL))
4924		panic("softdep_fsync_mountdev: vnode not a disk");
4925	ACQUIRE_LOCK(&lk);
4926	VI_LOCK(vp);
4927	TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) {
4928		/*
4929		 * If it is already scheduled, skip to the next buffer.
4930		 */
4931		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
4932			continue;
4933
4934		if ((bp->b_flags & B_DELWRI) == 0) {
4935			FREE_LOCK(&lk);
4936			panic("softdep_fsync_mountdev: not dirty");
4937		}
4938		/*
4939		 * We are only interested in bitmaps with outstanding
4940		 * dependencies.
4941		 */
4942		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4943		    wk->wk_type != D_BMSAFEMAP ||
4944		    (bp->b_vflags & BV_BKGRDINPROG)) {
4945			BUF_UNLOCK(bp);
4946			continue;
4947		}
4948		VI_UNLOCK(vp);
4949		bremfree(bp);
4950		FREE_LOCK(&lk);
4951		(void) bawrite(bp);
4952		ACQUIRE_LOCK(&lk);
4953		/*
4954		 * Since we may have slept during the I/O, we need
4955		 * to start from a known point.
4956		 */
4957		VI_LOCK(vp);
4958		nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
4959	}
4960	drain_output(vp, 1);
4961	VI_UNLOCK(vp);
4962	FREE_LOCK(&lk);
4963}
4964
4965/*
4966 * This routine is called when we are trying to synchronously flush a
4967 * file. This routine must eliminate any filesystem metadata dependencies
4968 * so that the syncing routine can succeed by pushing the dirty blocks
4969 * associated with the file. If any I/O errors occur, they are returned.
4970 */
4971int
4972softdep_sync_metadata(ap)
4973	struct vop_fsync_args /* {
4974		struct vnode *a_vp;
4975		struct ucred *a_cred;
4976		int a_waitfor;
4977		struct thread *a_td;
4978	} */ *ap;
4979{
4980	struct vnode *vp = ap->a_vp;
4981	struct pagedep *pagedep;
4982	struct allocdirect *adp;
4983	struct allocindir *aip;
4984	struct buf *bp, *nbp;
4985	struct worklist *wk;
4986	int i, error, waitfor;
4987
4988	/*
4989	 * Check whether this vnode is involved in a filesystem
4990	 * that is doing soft dependency processing.
4991	 */
4992	if (!vn_isdisk(vp, NULL)) {
4993		if (!DOINGSOFTDEP(vp))
4994			return (0);
4995	} else
4996		if (vp->v_rdev->si_mountpoint == NULL ||
4997		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4998			return (0);
4999	/*
5000	 * Ensure that any direct block dependencies have been cleared.
5001	 */
5002	ACQUIRE_LOCK(&lk);
5003	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
5004		FREE_LOCK(&lk);
5005		return (error);
5006	}
5007	/*
5008	 * For most files, the only metadata dependencies are the
5009	 * cylinder group maps that allocate their inode or blocks.
5010	 * The block allocation dependencies can be found by traversing
5011	 * the dependency lists for any buffers that remain on their
5012	 * dirty buffer list. The inode allocation dependency will
5013	 * be resolved when the inode is updated with MNT_WAIT.
5014	 * This work is done in two passes. The first pass grabs most
5015	 * of the buffers and begins asynchronously writing them. The
5016	 * only way to wait for these asynchronous writes is to sleep
5017	 * on the filesystem vnode which may stay busy for a long time
5018	 * if the filesystem is active. So, instead, we make a second
5019	 * pass over the dependencies blocking on each write. In the
5020	 * usual case we will be blocking against a write that we
5021	 * initiated, so when it is done the dependency will have been
5022	 * resolved. Thus the second pass is expected to end quickly.
5023	 */
5024	waitfor = MNT_NOWAIT;
5025top:
5026	/*
5027	 * We must wait for any I/O in progress to finish so that
5028	 * all potential buffers on the dirty list will be visible.
5029	 */
5030	VI_LOCK(vp);
5031	drain_output(vp, 1);
5032	bp = getdirtybuf(&TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd),
5033	    VI_MTX(vp), MNT_WAIT);
5034	if (bp == NULL) {
5035		VI_UNLOCK(vp);
5036		FREE_LOCK(&lk);
5037		return (0);
5038	}
5039	/* While syncing snapshots, we must allow recursive lookups */
5040	bp->b_lock.lk_flags |= LK_CANRECURSE;
5041loop:
5042	/*
5043	 * As we hold the buffer locked, none of its dependencies
5044	 * will disappear.
5045	 */
5046	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5047		switch (wk->wk_type) {
5048
5049		case D_ALLOCDIRECT:
5050			adp = WK_ALLOCDIRECT(wk);
5051			if (adp->ad_state & DEPCOMPLETE)
5052				continue;
5053			nbp = adp->ad_buf;
5054			nbp = getdirtybuf(&nbp, NULL, waitfor);
5055			if (nbp == NULL)
5056				continue;
5057			FREE_LOCK(&lk);
5058			if (waitfor == MNT_NOWAIT) {
5059				bawrite(nbp);
5060			} else if ((error = bwrite(nbp)) != 0) {
5061				break;
5062			}
5063			ACQUIRE_LOCK(&lk);
5064			continue;
5065
5066		case D_ALLOCINDIR:
5067			aip = WK_ALLOCINDIR(wk);
5068			if (aip->ai_state & DEPCOMPLETE)
5069				continue;
5070			nbp = aip->ai_buf;
5071			nbp = getdirtybuf(&nbp, NULL, waitfor);
5072			if (nbp == NULL)
5073				continue;
5074			FREE_LOCK(&lk);
5075			if (waitfor == MNT_NOWAIT) {
5076				bawrite(nbp);
5077			} else if ((error = bwrite(nbp)) != 0) {
5078				break;
5079			}
5080			ACQUIRE_LOCK(&lk);
5081			continue;
5082
5083		case D_INDIRDEP:
5084		restart:
5085
5086			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
5087				if (aip->ai_state & DEPCOMPLETE)
5088					continue;
5089				nbp = aip->ai_buf;
5090				nbp = getdirtybuf(&nbp, NULL, MNT_WAIT);
5091				if (nbp == NULL)
5092					goto restart;
5093				FREE_LOCK(&lk);
5094				if ((error = bwrite(nbp)) != 0) {
5095					break;
5096				}
5097				ACQUIRE_LOCK(&lk);
5098				goto restart;
5099			}
5100			continue;
5101
5102		case D_INODEDEP:
5103			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
5104			    WK_INODEDEP(wk)->id_ino)) != 0) {
5105				FREE_LOCK(&lk);
5106				break;
5107			}
5108			continue;
5109
5110		case D_PAGEDEP:
5111			/*
5112			 * We are trying to sync a directory that may
5113			 * have dependencies on both its own metadata
5114			 * and/or dependencies on the inodes of any
5115			 * recently allocated files. We walk its diradd
5116			 * lists pushing out the associated inode.
5117			 */
5118			pagedep = WK_PAGEDEP(wk);
5119			for (i = 0; i < DAHASHSZ; i++) {
5120				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
5121					continue;
5122				if ((error =
5123				    flush_pagedep_deps(vp, pagedep->pd_mnt,
5124						&pagedep->pd_diraddhd[i]))) {
5125					FREE_LOCK(&lk);
5126					break;
5127				}
5128			}
5129			continue;
5130
5131		case D_MKDIR:
5132			/*
5133			 * This case should never happen if the vnode has
5134			 * been properly sync'ed. However, if this function
5135			 * is used at a place where the vnode has not yet
5136			 * been sync'ed, this dependency can show up. So,
5137			 * rather than panic, just flush it.
5138			 */
5139			nbp = WK_MKDIR(wk)->md_buf;
5140			nbp = getdirtybuf(&nbp, NULL, waitfor);
5141			if (nbp == NULL)
5142				continue;
5143			FREE_LOCK(&lk);
5144			if (waitfor == MNT_NOWAIT) {
5145				bawrite(nbp);
5146			} else if ((error = bwrite(nbp)) != 0) {
5147				break;
5148			}
5149			ACQUIRE_LOCK(&lk);
5150			continue;
5151
5152		case D_BMSAFEMAP:
5153			/*
5154			 * This case should never happen if the vnode has
5155			 * been properly sync'ed. However, if this function
5156			 * is used at a place where the vnode has not yet
5157			 * been sync'ed, this dependency can show up. So,
5158			 * rather than panic, just flush it.
5159			 */
5160			nbp = WK_BMSAFEMAP(wk)->sm_buf;
5161			nbp = getdirtybuf(&nbp, NULL, waitfor);
5162			if (nbp == NULL)
5163				continue;
5164			FREE_LOCK(&lk);
5165			if (waitfor == MNT_NOWAIT) {
5166				bawrite(nbp);
5167			} else if ((error = bwrite(nbp)) != 0) {
5168				break;
5169			}
5170			ACQUIRE_LOCK(&lk);
5171			continue;
5172
5173		default:
5174			FREE_LOCK(&lk);
5175			panic("softdep_sync_metadata: Unknown type %s",
5176			    TYPENAME(wk->wk_type));
5177			/* NOTREACHED */
5178		}
5179		/* We reach here only in error and unlocked */
5180		if (error == 0)
5181			panic("softdep_sync_metadata: zero error");
5182		bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5183		bawrite(bp);
5184		return (error);
5185	}
5186	VI_LOCK(vp);
5187	nbp = getdirtybuf(&TAILQ_NEXT(bp, b_bobufs), VI_MTX(vp), MNT_WAIT);
5188	if (nbp == NULL)
5189		VI_UNLOCK(vp);
5190	FREE_LOCK(&lk);
5191	bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5192	bawrite(bp);
5193	ACQUIRE_LOCK(&lk);
5194	if (nbp != NULL) {
5195		bp = nbp;
5196		goto loop;
5197	}
5198	/*
5199	 * The brief unlock is to allow any pent up dependency
5200	 * processing to be done. Then proceed with the second pass.
5201	 */
5202	if (waitfor == MNT_NOWAIT) {
5203		waitfor = MNT_WAIT;
5204		FREE_LOCK(&lk);
5205		ACQUIRE_LOCK(&lk);
5206		goto top;
5207	}
5208
5209	/*
5210	 * If we have managed to get rid of all the dirty buffers,
5211	 * then we are done. For certain directories and block
5212	 * devices, we may need to do further work.
5213	 *
5214	 * We must wait for any I/O in progress to finish so that
5215	 * all potential buffers on the dirty list will be visible.
5216	 */
5217	VI_LOCK(vp);
5218	drain_output(vp, 1);
5219	if (vp->v_bufobj.bo_dirty.bv_cnt == 0) {
5220		VI_UNLOCK(vp);
5221		FREE_LOCK(&lk);
5222		return (0);
5223	}
5224	VI_UNLOCK(vp);
5225
5226	FREE_LOCK(&lk);
5227	/*
5228	 * If we are trying to sync a block device, some of its buffers may
5229	 * contain metadata that cannot be written until the contents of some
5230	 * partially written files have been written to disk. The only easy
5231	 * way to accomplish this is to sync the entire filesystem (luckily
5232	 * this happens rarely).
5233	 */
5234	if (vn_isdisk(vp, NULL) &&
5235	    vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) &&
5236	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_cred,
5237	     ap->a_td)) != 0)
5238		return (error);
5239	return (0);
5240}
5241
5242/*
5243 * Flush the dependencies associated with an inodedep.
5244 * Called with splbio blocked.
5245 */
5246static int
5247flush_inodedep_deps(fs, ino)
5248	struct fs *fs;
5249	ino_t ino;
5250{
5251	struct inodedep *inodedep;
5252	int error, waitfor;
5253
5254	/*
5255	 * This work is done in two passes. The first pass grabs most
5256	 * of the buffers and begins asynchronously writing them. The
5257	 * only way to wait for these asynchronous writes is to sleep
5258	 * on the filesystem vnode which may stay busy for a long time
5259	 * if the filesystem is active. So, instead, we make a second
5260	 * pass over the dependencies blocking on each write. In the
5261	 * usual case we will be blocking against a write that we
5262	 * initiated, so when it is done the dependency will have been
5263	 * resolved. Thus the second pass is expected to end quickly.
5264	 * We give a brief window at the top of the loop to allow
5265	 * any pending I/O to complete.
5266	 */
5267	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
5268		if (error)
5269			return (error);
5270		FREE_LOCK(&lk);
5271		ACQUIRE_LOCK(&lk);
5272		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
5273			return (0);
5274		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
5275		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
5276		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
5277		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
5278			continue;
5279		/*
5280		 * If pass2, we are done, otherwise do pass 2.
5281		 */
5282		if (waitfor == MNT_WAIT)
5283			break;
5284		waitfor = MNT_WAIT;
5285	}
5286	/*
5287	 * Try freeing inodedep in case all dependencies have been removed.
5288	 */
5289	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
5290		(void) free_inodedep(inodedep);
5291	return (0);
5292}
5293
5294/*
5295 * Flush an inode dependency list.
5296 * Called with splbio blocked.
5297 */
5298static int
5299flush_deplist(listhead, waitfor, errorp)
5300	struct allocdirectlst *listhead;
5301	int waitfor;
5302	int *errorp;
5303{
5304	struct allocdirect *adp;
5305	struct buf *bp;
5306
5307	TAILQ_FOREACH(adp, listhead, ad_next) {
5308		if (adp->ad_state & DEPCOMPLETE)
5309			continue;
5310		bp = adp->ad_buf;
5311		bp = getdirtybuf(&bp, NULL, waitfor);
5312		if (bp == NULL) {
5313			if (waitfor == MNT_NOWAIT)
5314				continue;
5315			return (1);
5316		}
5317		FREE_LOCK(&lk);
5318		if (waitfor == MNT_NOWAIT) {
5319			bawrite(bp);
5320		} else if ((*errorp = bwrite(bp)) != 0) {
5321			ACQUIRE_LOCK(&lk);
5322			return (1);
5323		}
5324		ACQUIRE_LOCK(&lk);
5325		return (1);
5326	}
5327	return (0);
5328}
5329
5330/*
5331 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
5332 * Called with splbio blocked.
5333 */
5334static int
5335flush_pagedep_deps(pvp, mp, diraddhdp)
5336	struct vnode *pvp;
5337	struct mount *mp;
5338	struct diraddhd *diraddhdp;
5339{
5340	struct thread *td = curthread;
5341	struct inodedep *inodedep;
5342	struct ufsmount *ump;
5343	struct diradd *dap;
5344	struct vnode *vp;
5345	int error = 0;
5346	struct buf *bp;
5347	ino_t inum;
5348
5349	ump = VFSTOUFS(mp);
5350	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
5351		/*
5352		 * Flush ourselves if this directory entry
5353		 * has a MKDIR_PARENT dependency.
5354		 */
5355		if (dap->da_state & MKDIR_PARENT) {
5356			FREE_LOCK(&lk);
5357			if ((error = UFS_UPDATE(pvp, 1)) != 0)
5358				break;
5359			ACQUIRE_LOCK(&lk);
5360			/*
5361			 * If that cleared dependencies, go on to next.
5362			 */
5363			if (dap != LIST_FIRST(diraddhdp))
5364				continue;
5365			if (dap->da_state & MKDIR_PARENT) {
5366				FREE_LOCK(&lk);
5367				panic("flush_pagedep_deps: MKDIR_PARENT");
5368			}
5369		}
5370		/*
5371		 * A newly allocated directory must have its "." and
5372		 * ".." entries written out before its name can be
5373		 * committed in its parent. We do not want or need
5374		 * the full semantics of a synchronous VOP_FSYNC as
5375		 * that may end up here again, once for each directory
5376		 * level in the filesystem. Instead, we push the blocks
5377		 * and wait for them to clear. We have to fsync twice
5378		 * because the first call may choose to defer blocks
5379		 * that still have dependencies, but deferral will
5380		 * happen at most once.
5381		 */
5382		inum = dap->da_newinum;
5383		if (dap->da_state & MKDIR_BODY) {
5384			FREE_LOCK(&lk);
5385			if ((error = VFS_VGET(mp, inum, LK_EXCLUSIVE, &vp)))
5386				break;
5387			if ((error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td)) ||
5388			    (error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) {
5389				vput(vp);
5390				break;
5391			}
5392			VI_LOCK(vp);
5393			drain_output(vp, 0);
5394			VI_UNLOCK(vp);
5395			vput(vp);
5396			ACQUIRE_LOCK(&lk);
5397			/*
5398			 * If that cleared dependencies, go on to next.
5399			 */
5400			if (dap != LIST_FIRST(diraddhdp))
5401				continue;
5402			if (dap->da_state & MKDIR_BODY) {
5403				FREE_LOCK(&lk);
5404				panic("flush_pagedep_deps: MKDIR_BODY");
5405			}
5406		}
5407		/*
5408		 * Flush the inode on which the directory entry depends.
5409		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
5410		 * the only remaining dependency is that the updated inode
5411		 * count must get pushed to disk. The inode has already
5412		 * been pushed into its inode buffer (via VOP_UPDATE) at
5413		 * the time of the reference count change. So we need only
5414		 * locate that buffer, ensure that there will be no rollback
5415		 * caused by a bitmap dependency, then write the inode buffer.
5416		 */
5417		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
5418			FREE_LOCK(&lk);
5419			panic("flush_pagedep_deps: lost inode");
5420		}
5421		/*
5422		 * If the inode still has bitmap dependencies,
5423		 * push them to disk.
5424		 */
5425		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5426			bp = inodedep->id_buf;
5427			bp = getdirtybuf(&bp, NULL, MNT_WAIT);
5428			FREE_LOCK(&lk);
5429			if (bp && (error = bwrite(bp)) != 0)
5430				break;
5431			ACQUIRE_LOCK(&lk);
5432			if (dap != LIST_FIRST(diraddhdp))
5433				continue;
5434		}
5435		/*
5436		 * If the inode is still sitting in a buffer waiting
5437		 * to be written, push it to disk.
5438		 */
5439		FREE_LOCK(&lk);
5440		if ((error = bread(ump->um_devvp,
5441		    fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
5442		    (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) {
5443			brelse(bp);
5444			break;
5445		}
5446		if ((error = bwrite(bp)) != 0)
5447			break;
5448		ACQUIRE_LOCK(&lk);
5449		/*
5450		 * If we have failed to get rid of all the dependencies
5451		 * then something is seriously wrong.
5452		 */
5453		if (dap == LIST_FIRST(diraddhdp)) {
5454			FREE_LOCK(&lk);
5455			panic("flush_pagedep_deps: flush failed");
5456		}
5457	}
5458	if (error)
5459		ACQUIRE_LOCK(&lk);
5460	return (error);
5461}
5462
5463/*
5464 * A large burst of file addition or deletion activity can drive the
5465 * memory load excessively high. First attempt to slow things down
5466 * using the techniques below. If that fails, this routine requests
5467 * the offending operations to fall back to running synchronously
5468 * until the memory load returns to a reasonable level.
5469 */
5470int
5471softdep_slowdown(vp)
5472	struct vnode *vp;
5473{
5474	int max_softdeps_hard;
5475
5476	max_softdeps_hard = max_softdeps * 11 / 10;
5477	if (num_dirrem < max_softdeps_hard / 2 &&
5478	    num_inodedep < max_softdeps_hard &&
5479	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps)
5480  		return (0);
5481	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps)
5482		speedup_syncer();
5483	stat_sync_limit_hit += 1;
5484	return (1);
5485}
5486
5487/*
5488 * Called by the allocation routines when they are about to fail
5489 * in the hope that we can free up some disk space.
5490 *
5491 * First check to see if the work list has anything on it. If it has,
5492 * clean up entries until we successfully free some space. Because this
5493 * process holds inodes locked, we cannot handle any remove requests
5494 * that might block on a locked inode as that could lead to deadlock.
5495 * If the worklist yields no free space, encourage the syncer daemon
5496 * to help us. In no event will we try for longer than tickdelay seconds.
5497 */
5498int
5499softdep_request_cleanup(fs, vp)
5500	struct fs *fs;
5501	struct vnode *vp;
5502{
5503	long starttime;
5504	ufs2_daddr_t needed;
5505
5506	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
5507	starttime = time_second + tickdelay;
5508	/*
5509	 * If we are being called because of a process doing a
5510	 * copy-on-write, then it is not safe to update the vnode
5511	 * as we may recurse into the copy-on-write routine.
5512	 */
5513	if (!(curthread->td_pflags & TDP_COWINPROGRESS) &&
5514	    UFS_UPDATE(vp, 1) != 0)
5515		return (0);
5516	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
5517		if (time_second > starttime)
5518			return (0);
5519		if (num_on_worklist > 0 &&
5520		    process_worklist_item(NULL, LK_NOWAIT) != -1) {
5521			stat_worklist_push += 1;
5522			continue;
5523		}
5524		request_cleanup(FLUSH_REMOVE_WAIT, 0);
5525	}
5526	return (1);
5527}
5528
5529/*
5530 * If memory utilization has gotten too high, deliberately slow things
5531 * down and speed up the I/O processing.
5532 */
5533static int
5534request_cleanup(resource, islocked)
5535	int resource;
5536	int islocked;
5537{
5538	struct thread *td = curthread;
5539
5540	/*
5541	 * We never hold up the filesystem syncer process.
5542	 */
5543	if (td == filesys_syncer)
5544		return (0);
5545	/*
5546	 * First check to see if the work list has gotten backlogged.
5547	 * If it has, co-opt this process to help clean up two entries.
5548	 * Because this process may hold inodes locked, we cannot
5549	 * handle any remove requests that might block on a locked
5550	 * inode as that could lead to deadlock.
5551	 */
5552	if (num_on_worklist > max_softdeps / 10) {
5553		if (islocked)
5554			FREE_LOCK(&lk);
5555		process_worklist_item(NULL, LK_NOWAIT);
5556		process_worklist_item(NULL, LK_NOWAIT);
5557		stat_worklist_push += 2;
5558		if (islocked)
5559			ACQUIRE_LOCK(&lk);
5560		return(1);
5561	}
5562	/*
5563	 * Next, we attempt to speed up the syncer process. If that
5564	 * is successful, then we allow the process to continue.
5565	 */
5566	if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT)
5567		return(0);
5568	/*
5569	 * If we are resource constrained on inode dependencies, try
5570	 * flushing some dirty inodes. Otherwise, we are constrained
5571	 * by file deletions, so try accelerating flushes of directories
5572	 * with removal dependencies. We would like to do the cleanup
5573	 * here, but we probably hold an inode locked at this point and
5574	 * that might deadlock against one that we try to clean. So,
5575	 * the best that we can do is request the syncer daemon to do
5576	 * the cleanup for us.
5577	 */
5578	switch (resource) {
5579
5580	case FLUSH_INODES:
5581		stat_ino_limit_push += 1;
5582		req_clear_inodedeps += 1;
5583		stat_countp = &stat_ino_limit_hit;
5584		break;
5585
5586	case FLUSH_REMOVE:
5587	case FLUSH_REMOVE_WAIT:
5588		stat_blk_limit_push += 1;
5589		req_clear_remove += 1;
5590		stat_countp = &stat_blk_limit_hit;
5591		break;
5592
5593	default:
5594		if (islocked)
5595			FREE_LOCK(&lk);
5596		panic("request_cleanup: unknown type");
5597	}
5598	/*
5599	 * Hopefully the syncer daemon will catch up and awaken us.
5600	 * We wait at most tickdelay before proceeding in any case.
5601	 */
5602	if (islocked == 0)
5603		ACQUIRE_LOCK(&lk);
5604	proc_waiting += 1;
5605	if (handle.callout == NULL)
5606		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5607	interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, NULL, PPAUSE,
5608	    "softupdate", 0);
5609	proc_waiting -= 1;
5610	if (islocked == 0)
5611		FREE_LOCK(&lk);
5612	return (1);
5613}
5614
5615/*
5616 * Awaken processes pausing in request_cleanup and clear proc_waiting
5617 * to indicate that there is no longer a timer running.
5618 */
5619static void
5620pause_timer(arg)
5621	void *arg;
5622{
5623
5624	*stat_countp += 1;
5625	wakeup_one(&proc_waiting);
5626	if (proc_waiting > 0)
5627		handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5628	else
5629		handle.callout = NULL;
5630}
5631
5632/*
5633 * Flush out a directory with at least one removal dependency in an effort to
5634 * reduce the number of dirrem, freefile, and freeblks dependency structures.
5635 */
5636static void
5637clear_remove(td)
5638	struct thread *td;
5639{
5640	struct pagedep_hashhead *pagedephd;
5641	struct pagedep *pagedep;
5642	static int next = 0;
5643	struct mount *mp;
5644	struct vnode *vp;
5645	int error, cnt;
5646	ino_t ino;
5647
5648	ACQUIRE_LOCK(&lk);
5649	for (cnt = 0; cnt < pagedep_hash; cnt++) {
5650		pagedephd = &pagedep_hashtbl[next++];
5651		if (next >= pagedep_hash)
5652			next = 0;
5653		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
5654			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
5655				continue;
5656			mp = pagedep->pd_mnt;
5657			ino = pagedep->pd_ino;
5658			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5659				continue;
5660			FREE_LOCK(&lk);
5661			if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp))) {
5662				softdep_error("clear_remove: vget", error);
5663				vn_finished_write(mp);
5664				return;
5665			}
5666			if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td)))
5667				softdep_error("clear_remove: fsync", error);
5668			VI_LOCK(vp);
5669			drain_output(vp, 0);
5670			VI_UNLOCK(vp);
5671			vput(vp);
5672			vn_finished_write(mp);
5673			return;
5674		}
5675	}
5676	FREE_LOCK(&lk);
5677}
5678
5679/*
5680 * Clear out a block of dirty inodes in an effort to reduce
5681 * the number of inodedep dependency structures.
5682 */
5683static void
5684clear_inodedeps(td)
5685	struct thread *td;
5686{
5687	struct inodedep_hashhead *inodedephd;
5688	struct inodedep *inodedep;
5689	static int next = 0;
5690	struct mount *mp;
5691	struct vnode *vp;
5692	struct fs *fs;
5693	int error, cnt;
5694	ino_t firstino, lastino, ino;
5695
5696	ACQUIRE_LOCK(&lk);
5697	/*
5698	 * Pick a random inode dependency to be cleared.
5699	 * We will then gather up all the inodes in its block
5700	 * that have dependencies and flush them out.
5701	 */
5702	for (cnt = 0; cnt < inodedep_hash; cnt++) {
5703		inodedephd = &inodedep_hashtbl[next++];
5704		if (next >= inodedep_hash)
5705			next = 0;
5706		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
5707			break;
5708	}
5709	if (inodedep == NULL)
5710		return;
5711	/*
5712	 * Ugly code to find mount point given pointer to superblock.
5713	 */
5714	fs = inodedep->id_fs;
5715	TAILQ_FOREACH(mp, &mountlist, mnt_list)
5716		if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
5717			break;
5718	/*
5719	 * Find the last inode in the block with dependencies.
5720	 */
5721	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5722	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5723		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
5724			break;
5725	/*
5726	 * Asynchronously push all but the last inode with dependencies.
5727	 * Synchronously push the last inode with dependencies to ensure
5728	 * that the inode block gets written to free up the inodedeps.
5729	 */
5730	for (ino = firstino; ino <= lastino; ino++) {
5731		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
5732			continue;
5733		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5734			continue;
5735		FREE_LOCK(&lk);
5736		if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp)) != 0) {
5737			softdep_error("clear_inodedeps: vget", error);
5738			vn_finished_write(mp);
5739			return;
5740		}
5741		if (ino == lastino) {
5742			if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_WAIT, td)))
5743				softdep_error("clear_inodedeps: fsync1", error);
5744		} else {
5745			if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td)))
5746				softdep_error("clear_inodedeps: fsync2", error);
5747			VI_LOCK(vp);
5748			drain_output(vp, 0);
5749			VI_UNLOCK(vp);
5750		}
5751		vput(vp);
5752		vn_finished_write(mp);
5753		ACQUIRE_LOCK(&lk);
5754	}
5755	FREE_LOCK(&lk);
5756}
5757
5758/*
5759 * Function to determine if the buffer has outstanding dependencies
5760 * that will cause a roll-back if the buffer is written. If wantcount
5761 * is set, return number of dependencies, otherwise just yes or no.
5762 */
5763static int
5764softdep_count_dependencies(bp, wantcount)
5765	struct buf *bp;
5766	int wantcount;
5767{
5768	struct worklist *wk;
5769	struct inodedep *inodedep;
5770	struct indirdep *indirdep;
5771	struct allocindir *aip;
5772	struct pagedep *pagedep;
5773	struct diradd *dap;
5774	int i, retval;
5775
5776	retval = 0;
5777	ACQUIRE_LOCK(&lk);
5778	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5779		switch (wk->wk_type) {
5780
5781		case D_INODEDEP:
5782			inodedep = WK_INODEDEP(wk);
5783			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5784				/* bitmap allocation dependency */
5785				retval += 1;
5786				if (!wantcount)
5787					goto out;
5788			}
5789			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5790				/* direct block pointer dependency */
5791				retval += 1;
5792				if (!wantcount)
5793					goto out;
5794			}
5795			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
5796				/* direct block pointer dependency */
5797				retval += 1;
5798				if (!wantcount)
5799					goto out;
5800			}
5801			continue;
5802
5803		case D_INDIRDEP:
5804			indirdep = WK_INDIRDEP(wk);
5805
5806			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5807				/* indirect block pointer dependency */
5808				retval += 1;
5809				if (!wantcount)
5810					goto out;
5811			}
5812			continue;
5813
5814		case D_PAGEDEP:
5815			pagedep = WK_PAGEDEP(wk);
5816			for (i = 0; i < DAHASHSZ; i++) {
5817
5818				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5819					/* directory entry dependency */
5820					retval += 1;
5821					if (!wantcount)
5822						goto out;
5823				}
5824			}
5825			continue;
5826
5827		case D_BMSAFEMAP:
5828		case D_ALLOCDIRECT:
5829		case D_ALLOCINDIR:
5830		case D_MKDIR:
5831			/* never a dependency on these blocks */
5832			continue;
5833
5834		default:
5835			FREE_LOCK(&lk);
5836			panic("softdep_check_for_rollback: Unexpected type %s",
5837			    TYPENAME(wk->wk_type));
5838			/* NOTREACHED */
5839		}
5840	}
5841out:
5842	FREE_LOCK(&lk);
5843	return retval;
5844}
5845
5846/*
5847 * Acquire exclusive access to a buffer.
5848 * Must be called with splbio blocked.
5849 * Return acquired buffer or NULL on failure.  mtx, if provided, will be
5850 * released on success but held on failure.
5851 */
5852static struct buf *
5853getdirtybuf(bpp, mtx, waitfor)
5854	struct buf **bpp;
5855	struct mtx *mtx;
5856	int waitfor;
5857{
5858	struct buf *bp;
5859	int error;
5860
5861	/*
5862	 * XXX This code and the code that calls it need to be reviewed to
5863	 * verify its use of the vnode interlock.
5864	 */
5865
5866	for (;;) {
5867		if ((bp = *bpp) == NULL)
5868			return (0);
5869		if (bp->b_vp == NULL)
5870			kdb_backtrace();
5871		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
5872			if ((bp->b_vflags & BV_BKGRDINPROG) == 0)
5873				break;
5874			BUF_UNLOCK(bp);
5875			if (waitfor != MNT_WAIT)
5876				return (NULL);
5877			/*
5878			 * The mtx argument must be bp->b_vp's mutex in
5879			 * this case.
5880			 */
5881#ifdef	DEBUG_VFS_LOCKS
5882			if (bp->b_vp->v_type != VCHR)
5883				ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf");
5884#endif
5885			bp->b_vflags |= BV_BKGRDWAIT;
5886			interlocked_sleep(&lk, SLEEP, &bp->b_xflags, mtx,
5887			    PRIBIO, "getbuf", 0);
5888			continue;
5889		}
5890		if (waitfor != MNT_WAIT)
5891			return (NULL);
5892		if (mtx) {
5893			error = interlocked_sleep(&lk, LOCKBUF, bp, mtx,
5894			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 0, 0);
5895			mtx_lock(mtx);
5896		} else
5897			error = interlocked_sleep(&lk, LOCKBUF, bp, NULL,
5898			    LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
5899		if (error != ENOLCK) {
5900			FREE_LOCK(&lk);
5901			panic("getdirtybuf: inconsistent lock");
5902		}
5903	}
5904	if ((bp->b_flags & B_DELWRI) == 0) {
5905		BUF_UNLOCK(bp);
5906		return (NULL);
5907	}
5908	if (mtx)
5909		mtx_unlock(mtx);
5910	bremfree(bp);
5911	return (bp);
5912}
5913
5914/*
5915 * Wait for pending output on a vnode to complete.
5916 * Must be called with vnode lock and interlock locked.
5917 */
5918static void
5919drain_output(vp, islocked)
5920	struct vnode *vp;
5921	int islocked;
5922{
5923	ASSERT_VOP_LOCKED(vp, "drain_output");
5924	ASSERT_VI_LOCKED(vp, "drain_output");
5925
5926	if (!islocked)
5927		ACQUIRE_LOCK(&lk);
5928	while (vp->v_bufobj.bo_numoutput) {
5929		vp->v_bufobj.bo_flag |= BO_WWAIT;
5930		interlocked_sleep(&lk, SLEEP,
5931		    (caddr_t)&vp->v_bufobj.bo_numoutput,
5932		    VI_MTX(vp), PRIBIO + 1, "drainvp", 0);
5933	}
5934	if (!islocked)
5935		FREE_LOCK(&lk);
5936}
5937
5938/*
5939 * Called whenever a buffer that is being invalidated or reallocated
5940 * contains dependencies. This should only happen if an I/O error has
5941 * occurred. The routine is called with the buffer locked.
5942 */
5943static void
5944softdep_deallocate_dependencies(bp)
5945	struct buf *bp;
5946{
5947
5948	if ((bp->b_ioflags & BIO_ERROR) == 0)
5949		panic("softdep_deallocate_dependencies: dangling deps");
5950	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
5951	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5952}
5953
5954/*
5955 * Function to handle asynchronous write errors in the filesystem.
5956 */
5957static void
5958softdep_error(func, error)
5959	char *func;
5960	int error;
5961{
5962
5963	/* XXX should do something better! */
5964	printf("%s: got error %d while accessing filesystem\n", func, error);
5965}
5966