mmu_oea64.c revision 277157
182899Sjake/*-
282899Sjake * Copyright (c) 2001 The NetBSD Foundation, Inc.
380708Sjake * All rights reserved.
480708Sjake *
582899Sjake * This code is derived from software contributed to The NetBSD Foundation
682899Sjake * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
782899Sjake *
882899Sjake * Redistribution and use in source and binary forms, with or without
980708Sjake * modification, are permitted provided that the following conditions
1080708Sjake * are met:
1180708Sjake * 1. Redistributions of source code must retain the above copyright
1280708Sjake *    notice, this list of conditions and the following disclaimer.
1380708Sjake * 2. Redistributions in binary form must reproduce the above copyright
1480708Sjake *    notice, this list of conditions and the following disclaimer in the
1580708Sjake *    documentation and/or other materials provided with the distribution.
1680708Sjake *
1782899Sjake * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
1882899Sjake * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
1982899Sjake * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
2082899Sjake * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
2182899Sjake * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
2282899Sjake * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
2382899Sjake * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
2480708Sjake * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
2582899Sjake * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
2680708Sjake * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
2780708Sjake * POSSIBILITY OF SUCH DAMAGE.
2882899Sjake */
2980708Sjake/*-
3080708Sjake * Copyright (C) 1995, 1996 Wolfgang Solfrank.
3180708Sjake * Copyright (C) 1995, 1996 TooLs GmbH.
3280708Sjake * All rights reserved.
3380708Sjake *
3480708Sjake * Redistribution and use in source and binary forms, with or without
3580708Sjake * modification, are permitted provided that the following conditions
3680708Sjake * are met:
3782899Sjake * 1. Redistributions of source code must retain the above copyright
3882899Sjake *    notice, this list of conditions and the following disclaimer.
3982899Sjake * 2. Redistributions in binary form must reproduce the above copyright
4080708Sjake *    notice, this list of conditions and the following disclaimer in the
4180708Sjake *    documentation and/or other materials provided with the distribution.
4280708Sjake * 3. All advertising materials mentioning features or use of this software
4380708Sjake *    must display the following acknowledgement:
4480708Sjake *	This product includes software developed by TooLs GmbH.
4580708Sjake * 4. The name of TooLs GmbH may not be used to endorse or promote products
4680709Sjake *    derived from this software without specific prior written permission.
4780709Sjake *
4888651Sjake * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
4988651Sjake * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
5088651Sjake * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
5188651Sjake * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
5288651Sjake * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
5380709Sjake * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
5480709Sjake * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
5580709Sjake * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
5680709Sjake * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
5788651Sjake * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
5888651Sjake *
5980709Sjake * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
6088651Sjake */
6180709Sjake/*-
6283053Sobrien * Copyright (C) 2001 Benno Rice.
6388651Sjake * All rights reserved.
6488651Sjake *
6588651Sjake * Redistribution and use in source and binary forms, with or without
6680708Sjake * modification, are permitted provided that the following conditions
6780708Sjake * are met:
6883053Sobrien * 1. Redistributions of source code must retain the above copyright
6988651Sjake *    notice, this list of conditions and the following disclaimer.
7088651Sjake * 2. Redistributions in binary form must reproduce the above copyright
7188651Sjake *    notice, this list of conditions and the following disclaimer in the
7288651Sjake *    documentation and/or other materials provided with the distribution.
7380709Sjake *
7480709Sjake * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
7580709Sjake * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
7680709Sjake * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
7780708Sjake * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
7880708Sjake * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
7988651Sjake * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
8088651Sjake * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
8188651Sjake * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
8288651Sjake * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
8388651Sjake * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
8488651Sjake */
8588651Sjake
8688651Sjake#include <sys/cdefs.h>
8785241Sjake__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 277157 2015-01-14 02:18:29Z nwhitehorn $");
8880708Sjake
8984844Stmm/*
9088826Stmm * Manages physical address maps.
9180708Sjake *
9288651Sjake * Since the information managed by this module is also stored by the
9388651Sjake * logical address mapping module, this module may throw away valid virtual
9488651Sjake * to physical mappings at almost any time.  However, invalidations of
9589041Sjake * mappings must be done as requested.
9689041Sjake *
9784844Stmm * In order to cope with hardware architectures which make virtual to
9884844Stmm * physical map invalidates expensive, this module may delay invalidate
9980708Sjake * reduced protection operations until such time as they are actually
10080708Sjake * necessary.  This module is given full information as to which processors
10188651Sjake * are currently using which maps, and to when physical maps must be made
10288651Sjake * correct.
10380708Sjake */
10480708Sjake
10580708Sjake#include "opt_compat.h"
10688651Sjake#include "opt_kstack_pages.h"
10780708Sjake
10888651Sjake#include <sys/param.h>
10988651Sjake#include <sys/kernel.h>
11085241Sjake#include <sys/conf.h>
11185241Sjake#include <sys/queue.h>
11281087Sjake#include <sys/cpuset.h>
11388651Sjake#include <sys/kerneldump.h>
11481087Sjake#include <sys/ktr.h>
11588651Sjake#include <sys/lock.h>
11688651Sjake#include <sys/msgbuf.h>
11788651Sjake#include <sys/malloc.h>
11888651Sjake#include <sys/mutex.h>
11981087Sjake#include <sys/proc.h>
12081087Sjake#include <sys/rwlock.h>
12180708Sjake#include <sys/sched.h>
122#include <sys/sysctl.h>
123#include <sys/systm.h>
124#include <sys/vmmeter.h>
125
126#include <sys/kdb.h>
127
128#include <dev/ofw/openfirm.h>
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/uma.h>
139
140#include <machine/_inttypes.h>
141#include <machine/cpu.h>
142#include <machine/platform.h>
143#include <machine/frame.h>
144#include <machine/md_var.h>
145#include <machine/psl.h>
146#include <machine/bat.h>
147#include <machine/hid.h>
148#include <machine/pte.h>
149#include <machine/sr.h>
150#include <machine/trap.h>
151#include <machine/mmuvar.h>
152
153#include "mmu_oea64.h"
154#include "mmu_if.h"
155#include "moea64_if.h"
156
157void moea64_release_vsid(uint64_t vsid);
158uintptr_t moea64_get_unique_vsid(void);
159
160#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
161#define ENABLE_TRANS(msr)	mtmsr(msr)
162
163#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
165#define	VSID_HASH_MASK		0x0000007fffffffffULL
166
167/*
168 * Locking semantics:
169 * -- Read lock: if no modifications are being made to either the PVO lists
170 *    or page table or if any modifications being made result in internal
171 *    changes (e.g. wiring, protection) such that the existence of the PVOs
172 *    is unchanged and they remain associated with the same pmap (in which
173 *    case the changes should be protected by the pmap lock)
174 * -- Write lock: required if PTEs/PVOs are being inserted or removed.
175 */
176
177#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
178#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
179#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
180#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
181
182struct ofw_map {
183	cell_t	om_va;
184	cell_t	om_len;
185	uint64_t om_pa;
186	cell_t	om_mode;
187};
188
189extern unsigned char _etext[];
190extern unsigned char _end[];
191
192extern int ofw_real_mode;
193
194/*
195 * Map of physical memory regions.
196 */
197static struct	mem_region *regions;
198static struct	mem_region *pregions;
199static u_int	phys_avail_count;
200static int	regions_sz, pregions_sz;
201
202extern void bs_remap_earlyboot(void);
203
204/*
205 * Lock for the pteg and pvo tables.
206 */
207struct rwlock	moea64_table_lock;
208struct mtx	moea64_slb_mutex;
209
210/*
211 * PTEG data.
212 */
213u_int		moea64_pteg_count;
214u_int		moea64_pteg_mask;
215
216/*
217 * PVO data.
218 */
219struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
220
221uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
222uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
223
224#define	BPVO_POOL_SIZE	327680
225static struct	pvo_entry *moea64_bpvo_pool;
226static int	moea64_bpvo_pool_index = 0;
227SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
228    &moea64_bpvo_pool_index, 0, "");
229
230#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
231#ifdef __powerpc64__
232#define	NVSIDS		(NPMAPS * 16)
233#define VSID_HASHMASK	0xffffffffUL
234#else
235#define NVSIDS		NPMAPS
236#define VSID_HASHMASK	0xfffffUL
237#endif
238static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
239
240static boolean_t moea64_initialized = FALSE;
241
242/*
243 * Statistics.
244 */
245u_int	moea64_pte_valid = 0;
246u_int	moea64_pte_overflow = 0;
247u_int	moea64_pvo_entries = 0;
248u_int	moea64_pvo_enter_calls = 0;
249u_int	moea64_pvo_remove_calls = 0;
250SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
251    &moea64_pte_valid, 0, "");
252SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
253    &moea64_pte_overflow, 0, "");
254SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
255    &moea64_pvo_entries, 0, "");
256SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
257    &moea64_pvo_enter_calls, 0, "");
258SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
259    &moea64_pvo_remove_calls, 0, "");
260
261vm_offset_t	moea64_scratchpage_va[2];
262struct pvo_entry *moea64_scratchpage_pvo[2];
263uintptr_t	moea64_scratchpage_pte[2];
264struct	mtx	moea64_scratchpage_mtx;
265
266uint64_t 	moea64_large_page_mask = 0;
267uint64_t	moea64_large_page_size = 0;
268int		moea64_large_page_shift = 0;
269
270/*
271 * PVO calls.
272 */
273static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
274		    vm_offset_t, vm_offset_t, uint64_t, int, int8_t);
275static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
276static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
277
278/*
279 * Utility routines.
280 */
281static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
282static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
283static void		moea64_kremove(mmu_t, vm_offset_t);
284static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
285			    vm_offset_t pa, vm_size_t sz);
286
287/*
288 * Kernel MMU interface
289 */
290void moea64_clear_modify(mmu_t, vm_page_t);
291void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
292void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
293    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
294int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
295    u_int flags, int8_t psind);
296void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
297    vm_prot_t);
298void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
299vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
300vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
301void moea64_init(mmu_t);
302boolean_t moea64_is_modified(mmu_t, vm_page_t);
303boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
304boolean_t moea64_is_referenced(mmu_t, vm_page_t);
305int moea64_ts_referenced(mmu_t, vm_page_t);
306vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
307boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
308int moea64_page_wired_mappings(mmu_t, vm_page_t);
309void moea64_pinit(mmu_t, pmap_t);
310void moea64_pinit0(mmu_t, pmap_t);
311void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
312void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
313void moea64_qremove(mmu_t, vm_offset_t, int);
314void moea64_release(mmu_t, pmap_t);
315void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
316void moea64_remove_pages(mmu_t, pmap_t);
317void moea64_remove_all(mmu_t, vm_page_t);
318void moea64_remove_write(mmu_t, vm_page_t);
319void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
320void moea64_zero_page(mmu_t, vm_page_t);
321void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
322void moea64_zero_page_idle(mmu_t, vm_page_t);
323void moea64_activate(mmu_t, struct thread *);
324void moea64_deactivate(mmu_t, struct thread *);
325void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
326void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
327void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
328vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
329void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
330void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
331void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
332boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
333static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
334void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
335    void **va);
336void moea64_scan_init(mmu_t mmu);
337
338static mmu_method_t moea64_methods[] = {
339	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
340	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
341	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
342	MMUMETHOD(mmu_enter,		moea64_enter),
343	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
344	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
345	MMUMETHOD(mmu_extract,		moea64_extract),
346	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
347	MMUMETHOD(mmu_init,		moea64_init),
348	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
349	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
350	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
351	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
352	MMUMETHOD(mmu_map,     		moea64_map),
353	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
354	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
355	MMUMETHOD(mmu_pinit,		moea64_pinit),
356	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
357	MMUMETHOD(mmu_protect,		moea64_protect),
358	MMUMETHOD(mmu_qenter,		moea64_qenter),
359	MMUMETHOD(mmu_qremove,		moea64_qremove),
360	MMUMETHOD(mmu_release,		moea64_release),
361	MMUMETHOD(mmu_remove,		moea64_remove),
362	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
363	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
364	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
365	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
366	MMUMETHOD(mmu_unwire,		moea64_unwire),
367	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
368	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
369	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
370	MMUMETHOD(mmu_activate,		moea64_activate),
371	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
372	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
373
374	/* Internal interfaces */
375	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
376	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
377	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
378	MMUMETHOD(mmu_kextract,		moea64_kextract),
379	MMUMETHOD(mmu_kenter,		moea64_kenter),
380	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
381	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
382	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
383	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
384
385	{ 0, 0 }
386};
387
388MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
389
390static __inline u_int
391va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
392{
393	uint64_t hash;
394	int shift;
395
396	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
397	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
398	    shift);
399	return (hash & moea64_pteg_mask);
400}
401
402static __inline struct pvo_head *
403vm_page_to_pvoh(vm_page_t m)
404{
405
406	return (&m->md.mdpg_pvoh);
407}
408
409static __inline void
410moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
411    uint64_t pte_lo, int flags)
412{
413
414	/*
415	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
416	 * set when the real pte is set in memory.
417	 *
418	 * Note: Don't set the valid bit for correct operation of tlb update.
419	 */
420	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
421	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
422
423	if (flags & PVO_LARGE)
424		pt->pte_hi |= LPTE_BIG;
425
426	pt->pte_lo = pte_lo;
427}
428
429static __inline uint64_t
430moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
431{
432	uint64_t pte_lo;
433	int i;
434
435	if (ma != VM_MEMATTR_DEFAULT) {
436		switch (ma) {
437		case VM_MEMATTR_UNCACHEABLE:
438			return (LPTE_I | LPTE_G);
439		case VM_MEMATTR_WRITE_COMBINING:
440		case VM_MEMATTR_WRITE_BACK:
441		case VM_MEMATTR_PREFETCHABLE:
442			return (LPTE_I);
443		case VM_MEMATTR_WRITE_THROUGH:
444			return (LPTE_W | LPTE_M);
445		}
446	}
447
448	/*
449	 * Assume the page is cache inhibited and access is guarded unless
450	 * it's in our available memory array.
451	 */
452	pte_lo = LPTE_I | LPTE_G;
453	for (i = 0; i < pregions_sz; i++) {
454		if ((pa >= pregions[i].mr_start) &&
455		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
456			pte_lo &= ~(LPTE_I | LPTE_G);
457			pte_lo |= LPTE_M;
458			break;
459		}
460	}
461
462	return pte_lo;
463}
464
465/*
466 * Quick sort callout for comparing memory regions.
467 */
468static int	om_cmp(const void *a, const void *b);
469
470static int
471om_cmp(const void *a, const void *b)
472{
473	const struct	ofw_map *mapa;
474	const struct	ofw_map *mapb;
475
476	mapa = a;
477	mapb = b;
478	if (mapa->om_pa < mapb->om_pa)
479		return (-1);
480	else if (mapa->om_pa > mapb->om_pa)
481		return (1);
482	else
483		return (0);
484}
485
486static void
487moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
488{
489	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
490	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
491	register_t	msr;
492	vm_offset_t	off;
493	vm_paddr_t	pa_base;
494	int		i, j;
495
496	bzero(translations, sz);
497	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
498	    sizeof(acells));
499	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
500		panic("moea64_bootstrap: can't get ofw translations");
501
502	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
503	sz /= sizeof(cell_t);
504	for (i = 0, j = 0; i < sz; j++) {
505		translations[j].om_va = trans_cells[i++];
506		translations[j].om_len = trans_cells[i++];
507		translations[j].om_pa = trans_cells[i++];
508		if (acells == 2) {
509			translations[j].om_pa <<= 32;
510			translations[j].om_pa |= trans_cells[i++];
511		}
512		translations[j].om_mode = trans_cells[i++];
513	}
514	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
515	    i, sz));
516
517	sz = j;
518	qsort(translations, sz, sizeof (*translations), om_cmp);
519
520	for (i = 0; i < sz; i++) {
521		pa_base = translations[i].om_pa;
522	      #ifndef __powerpc64__
523		if ((translations[i].om_pa >> 32) != 0)
524			panic("OFW translations above 32-bit boundary!");
525	      #endif
526
527		if (pa_base % PAGE_SIZE)
528			panic("OFW translation not page-aligned (phys)!");
529		if (translations[i].om_va % PAGE_SIZE)
530			panic("OFW translation not page-aligned (virt)!");
531
532		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
533		    pa_base, translations[i].om_va, translations[i].om_len);
534
535		/* Now enter the pages for this mapping */
536
537		DISABLE_TRANS(msr);
538		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
539			/* If this address is direct-mapped, skip remapping */
540			if (hw_direct_map && translations[i].om_va == pa_base &&
541			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) 			    == LPTE_M)
542				continue;
543
544			if (moea64_pvo_find_va(kernel_pmap,
545			    translations[i].om_va + off) != NULL)
546				continue;
547
548			moea64_kenter(mmup, translations[i].om_va + off,
549			    pa_base + off);
550		}
551		ENABLE_TRANS(msr);
552	}
553}
554
555#ifdef __powerpc64__
556static void
557moea64_probe_large_page(void)
558{
559	uint16_t pvr = mfpvr() >> 16;
560
561	switch (pvr) {
562	case IBM970:
563	case IBM970FX:
564	case IBM970MP:
565		powerpc_sync(); isync();
566		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
567		powerpc_sync(); isync();
568
569		/* FALLTHROUGH */
570	default:
571		moea64_large_page_size = 0x1000000; /* 16 MB */
572		moea64_large_page_shift = 24;
573	}
574
575	moea64_large_page_mask = moea64_large_page_size - 1;
576}
577
578static void
579moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
580{
581	struct slb *cache;
582	struct slb entry;
583	uint64_t esid, slbe;
584	uint64_t i;
585
586	cache = PCPU_GET(slb);
587	esid = va >> ADDR_SR_SHFT;
588	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
589
590	for (i = 0; i < 64; i++) {
591		if (cache[i].slbe == (slbe | i))
592			return;
593	}
594
595	entry.slbe = slbe;
596	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
597	if (large)
598		entry.slbv |= SLBV_L;
599
600	slb_insert_kernel(entry.slbe, entry.slbv);
601}
602#endif
603
604static void
605moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
606    vm_offset_t kernelend)
607{
608	register_t msr;
609	vm_paddr_t pa;
610	vm_offset_t size, off;
611	uint64_t pte_lo;
612	int i;
613
614	if (moea64_large_page_size == 0)
615		hw_direct_map = 0;
616
617	DISABLE_TRANS(msr);
618	if (hw_direct_map) {
619		LOCK_TABLE_WR();
620		PMAP_LOCK(kernel_pmap);
621		for (i = 0; i < pregions_sz; i++) {
622		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
623		     pregions[i].mr_size; pa += moea64_large_page_size) {
624			pte_lo = LPTE_M;
625
626			/*
627			 * Set memory access as guarded if prefetch within
628			 * the page could exit the available physmem area.
629			 */
630			if (pa & moea64_large_page_mask) {
631				pa &= moea64_large_page_mask;
632				pte_lo |= LPTE_G;
633			}
634			if (pa + moea64_large_page_size >
635			    pregions[i].mr_start + pregions[i].mr_size)
636				pte_lo |= LPTE_G;
637
638			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
639				    NULL, pa, pa, pte_lo,
640				    PVO_WIRED | PVO_LARGE, 0);
641		  }
642		}
643		PMAP_UNLOCK(kernel_pmap);
644		UNLOCK_TABLE_WR();
645	} else {
646		size = sizeof(struct pvo_head) * moea64_pteg_count;
647		off = (vm_offset_t)(moea64_pvo_table);
648		for (pa = off; pa < off + size; pa += PAGE_SIZE)
649			moea64_kenter(mmup, pa, pa);
650		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
651		off = (vm_offset_t)(moea64_bpvo_pool);
652		for (pa = off; pa < off + size; pa += PAGE_SIZE)
653		moea64_kenter(mmup, pa, pa);
654
655		/*
656		 * Map certain important things, like ourselves.
657		 *
658		 * NOTE: We do not map the exception vector space. That code is
659		 * used only in real mode, and leaving it unmapped allows us to
660		 * catch NULL pointer deferences, instead of making NULL a valid
661		 * address.
662		 */
663
664		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
665		    pa += PAGE_SIZE)
666			moea64_kenter(mmup, pa, pa);
667	}
668	ENABLE_TRANS(msr);
669
670	/*
671	 * Allow user to override unmapped_buf_allowed for testing.
672	 * XXXKIB Only direct map implementation was tested.
673	 */
674	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
675	    &unmapped_buf_allowed))
676		unmapped_buf_allowed = hw_direct_map;
677}
678
679void
680moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
681{
682	int		i, j;
683	vm_size_t	physsz, hwphyssz;
684
685#ifndef __powerpc64__
686	/* We don't have a direct map since there is no BAT */
687	hw_direct_map = 0;
688
689	/* Make sure battable is zero, since we have no BAT */
690	for (i = 0; i < 16; i++) {
691		battable[i].batu = 0;
692		battable[i].batl = 0;
693	}
694#else
695	moea64_probe_large_page();
696
697	/* Use a direct map if we have large page support */
698	if (moea64_large_page_size > 0)
699		hw_direct_map = 1;
700	else
701		hw_direct_map = 0;
702#endif
703
704	/* Get physical memory regions from firmware */
705	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
706	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
707
708	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
709		panic("moea64_bootstrap: phys_avail too small");
710
711	phys_avail_count = 0;
712	physsz = 0;
713	hwphyssz = 0;
714	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
715	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
716		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
717		    regions[i].mr_start, regions[i].mr_start +
718		    regions[i].mr_size, regions[i].mr_size);
719		if (hwphyssz != 0 &&
720		    (physsz + regions[i].mr_size) >= hwphyssz) {
721			if (physsz < hwphyssz) {
722				phys_avail[j] = regions[i].mr_start;
723				phys_avail[j + 1] = regions[i].mr_start +
724				    hwphyssz - physsz;
725				physsz = hwphyssz;
726				phys_avail_count++;
727			}
728			break;
729		}
730		phys_avail[j] = regions[i].mr_start;
731		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
732		phys_avail_count++;
733		physsz += regions[i].mr_size;
734	}
735
736	/* Check for overlap with the kernel and exception vectors */
737	for (j = 0; j < 2*phys_avail_count; j+=2) {
738		if (phys_avail[j] < EXC_LAST)
739			phys_avail[j] += EXC_LAST;
740
741		if (kernelstart >= phys_avail[j] &&
742		    kernelstart < phys_avail[j+1]) {
743			if (kernelend < phys_avail[j+1]) {
744				phys_avail[2*phys_avail_count] =
745				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
746				phys_avail[2*phys_avail_count + 1] =
747				    phys_avail[j+1];
748				phys_avail_count++;
749			}
750
751			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
752		}
753
754		if (kernelend >= phys_avail[j] &&
755		    kernelend < phys_avail[j+1]) {
756			if (kernelstart > phys_avail[j]) {
757				phys_avail[2*phys_avail_count] = phys_avail[j];
758				phys_avail[2*phys_avail_count + 1] =
759				    kernelstart & ~PAGE_MASK;
760				phys_avail_count++;
761			}
762
763			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
764		}
765	}
766
767	physmem = btoc(physsz);
768
769#ifdef PTEGCOUNT
770	moea64_pteg_count = PTEGCOUNT;
771#else
772	moea64_pteg_count = 0x1000;
773
774	while (moea64_pteg_count < physmem)
775		moea64_pteg_count <<= 1;
776
777	moea64_pteg_count >>= 1;
778#endif /* PTEGCOUNT */
779}
780
781void
782moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
783{
784	vm_size_t	size;
785	register_t	msr;
786	int		i;
787
788	/*
789	 * Set PTEG mask
790	 */
791	moea64_pteg_mask = moea64_pteg_count - 1;
792
793	/*
794	 * Allocate pv/overflow lists.
795	 */
796	size = sizeof(struct pvo_head) * moea64_pteg_count;
797
798	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
799	    PAGE_SIZE);
800	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
801
802	DISABLE_TRANS(msr);
803	for (i = 0; i < moea64_pteg_count; i++)
804		LIST_INIT(&moea64_pvo_table[i]);
805	ENABLE_TRANS(msr);
806
807	/*
808	 * Initialize the lock that synchronizes access to the pteg and pvo
809	 * tables.
810	 */
811	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
812	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
813
814	/*
815	 * Initialise the unmanaged pvo pool.
816	 */
817	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
818		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
819	moea64_bpvo_pool_index = 0;
820
821	/*
822	 * Make sure kernel vsid is allocated as well as VSID 0.
823	 */
824	#ifndef __powerpc64__
825	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
826		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
827	moea64_vsid_bitmap[0] |= 1;
828	#endif
829
830	/*
831	 * Initialize the kernel pmap (which is statically allocated).
832	 */
833	#ifdef __powerpc64__
834	for (i = 0; i < 64; i++) {
835		pcpup->pc_slb[i].slbv = 0;
836		pcpup->pc_slb[i].slbe = 0;
837	}
838	#else
839	for (i = 0; i < 16; i++)
840		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
841	#endif
842
843	kernel_pmap->pmap_phys = kernel_pmap;
844	CPU_FILL(&kernel_pmap->pm_active);
845	RB_INIT(&kernel_pmap->pmap_pvo);
846
847	PMAP_LOCK_INIT(kernel_pmap);
848
849	/*
850	 * Now map in all the other buffers we allocated earlier
851	 */
852
853	moea64_setup_direct_map(mmup, kernelstart, kernelend);
854}
855
856void
857moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
858{
859	ihandle_t	mmui;
860	phandle_t	chosen;
861	phandle_t	mmu;
862	ssize_t		sz;
863	int		i;
864	vm_offset_t	pa, va;
865	void		*dpcpu;
866
867	/*
868	 * Set up the Open Firmware pmap and add its mappings if not in real
869	 * mode.
870	 */
871
872	chosen = OF_finddevice("/chosen");
873	if (!ofw_real_mode && chosen != -1 &&
874	    OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
875		mmu = OF_instance_to_package(mmui);
876		if (mmu == -1 ||
877		    (sz = OF_getproplen(mmu, "translations")) == -1)
878			sz = 0;
879		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
880			panic("moea64_bootstrap: too many ofw translations");
881
882		if (sz > 0)
883			moea64_add_ofw_mappings(mmup, mmu, sz);
884	}
885
886	/*
887	 * Calculate the last available physical address.
888	 */
889	for (i = 0; phys_avail[i + 2] != 0; i += 2)
890		;
891	Maxmem = powerpc_btop(phys_avail[i + 1]);
892
893	/*
894	 * Initialize MMU and remap early physical mappings
895	 */
896	MMU_CPU_BOOTSTRAP(mmup,0);
897	mtmsr(mfmsr() | PSL_DR | PSL_IR);
898	pmap_bootstrapped++;
899	bs_remap_earlyboot();
900
901	/*
902	 * Set the start and end of kva.
903	 */
904	virtual_avail = VM_MIN_KERNEL_ADDRESS;
905	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
906
907	/*
908	 * Map the entire KVA range into the SLB. We must not fault there.
909	 */
910	#ifdef __powerpc64__
911	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
912		moea64_bootstrap_slb_prefault(va, 0);
913	#endif
914
915	/*
916	 * Figure out how far we can extend virtual_end into segment 16
917	 * without running into existing mappings. Segment 16 is guaranteed
918	 * to contain neither RAM nor devices (at least on Apple hardware),
919	 * but will generally contain some OFW mappings we should not
920	 * step on.
921	 */
922
923	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
924	PMAP_LOCK(kernel_pmap);
925	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
926	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
927		virtual_end += PAGE_SIZE;
928	PMAP_UNLOCK(kernel_pmap);
929	#endif
930
931	/*
932	 * Allocate a kernel stack with a guard page for thread0 and map it
933	 * into the kernel page map.
934	 */
935	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
936	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
937	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
938	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
939	thread0.td_kstack = va;
940	thread0.td_kstack_pages = KSTACK_PAGES;
941	for (i = 0; i < KSTACK_PAGES; i++) {
942		moea64_kenter(mmup, va, pa);
943		pa += PAGE_SIZE;
944		va += PAGE_SIZE;
945	}
946
947	/*
948	 * Allocate virtual address space for the message buffer.
949	 */
950	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
951	msgbufp = (struct msgbuf *)virtual_avail;
952	va = virtual_avail;
953	virtual_avail += round_page(msgbufsize);
954	while (va < virtual_avail) {
955		moea64_kenter(mmup, va, pa);
956		pa += PAGE_SIZE;
957		va += PAGE_SIZE;
958	}
959
960	/*
961	 * Allocate virtual address space for the dynamic percpu area.
962	 */
963	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
964	dpcpu = (void *)virtual_avail;
965	va = virtual_avail;
966	virtual_avail += DPCPU_SIZE;
967	while (va < virtual_avail) {
968		moea64_kenter(mmup, va, pa);
969		pa += PAGE_SIZE;
970		va += PAGE_SIZE;
971	}
972	dpcpu_init(dpcpu, 0);
973
974	/*
975	 * Allocate some things for page zeroing. We put this directly
976	 * in the page table, marked with LPTE_LOCKED, to avoid any
977	 * of the PVO book-keeping or other parts of the VM system
978	 * from even knowing that this hack exists.
979	 */
980
981	if (!hw_direct_map) {
982		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
983		    MTX_DEF);
984		for (i = 0; i < 2; i++) {
985			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
986			virtual_end -= PAGE_SIZE;
987
988			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
989
990			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
991			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
992			LOCK_TABLE_RD();
993			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
994			    mmup, moea64_scratchpage_pvo[i]);
995			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
996			    |= LPTE_LOCKED;
997			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
998			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
999			    moea64_scratchpage_pvo[i]->pvo_vpn);
1000			UNLOCK_TABLE_RD();
1001		}
1002	}
1003}
1004
1005/*
1006 * Activate a user pmap.  The pmap must be activated before its address
1007 * space can be accessed in any way.
1008 */
1009void
1010moea64_activate(mmu_t mmu, struct thread *td)
1011{
1012	pmap_t	pm;
1013
1014	pm = &td->td_proc->p_vmspace->vm_pmap;
1015	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1016
1017	#ifdef __powerpc64__
1018	PCPU_SET(userslb, pm->pm_slb);
1019	#else
1020	PCPU_SET(curpmap, pm->pmap_phys);
1021	#endif
1022}
1023
1024void
1025moea64_deactivate(mmu_t mmu, struct thread *td)
1026{
1027	pmap_t	pm;
1028
1029	pm = &td->td_proc->p_vmspace->vm_pmap;
1030	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1031	#ifdef __powerpc64__
1032	PCPU_SET(userslb, NULL);
1033	#else
1034	PCPU_SET(curpmap, NULL);
1035	#endif
1036}
1037
1038void
1039moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1040{
1041	struct	pvo_entry key, *pvo;
1042	uintptr_t pt;
1043
1044	LOCK_TABLE_RD();
1045	PMAP_LOCK(pm);
1046	key.pvo_vaddr = sva;
1047	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1048	    pvo != NULL && PVO_VADDR(pvo) < eva;
1049	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1050		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1051		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1052			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1053			    pvo);
1054		pvo->pvo_vaddr &= ~PVO_WIRED;
1055		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_WIRED) == 0)
1056			panic("moea64_unwire: pte %p is missing LPTE_WIRED",
1057			    &pvo->pvo_pte.lpte);
1058		pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1059		if (pt != -1) {
1060			/*
1061			 * The PTE's wired attribute is not a hardware
1062			 * feature, so there is no need to invalidate any TLB
1063			 * entries.
1064			 */
1065			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1066			    pvo->pvo_vpn);
1067		}
1068		pm->pm_stats.wired_count--;
1069	}
1070	UNLOCK_TABLE_RD();
1071	PMAP_UNLOCK(pm);
1072}
1073
1074/*
1075 * This goes through and sets the physical address of our
1076 * special scratch PTE to the PA we want to zero or copy. Because
1077 * of locking issues (this can get called in pvo_enter() by
1078 * the UMA allocator), we can't use most other utility functions here
1079 */
1080
1081static __inline
1082void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1083
1084	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1085	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1086
1087	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1088	    ~(LPTE_WIMG | LPTE_RPGN);
1089	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1090	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1091	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1092	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1093	    moea64_scratchpage_pvo[which]->pvo_vpn);
1094	isync();
1095}
1096
1097void
1098moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1099{
1100	vm_offset_t	dst;
1101	vm_offset_t	src;
1102
1103	dst = VM_PAGE_TO_PHYS(mdst);
1104	src = VM_PAGE_TO_PHYS(msrc);
1105
1106	if (hw_direct_map) {
1107		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1108	} else {
1109		mtx_lock(&moea64_scratchpage_mtx);
1110
1111		moea64_set_scratchpage_pa(mmu, 0, src);
1112		moea64_set_scratchpage_pa(mmu, 1, dst);
1113
1114		bcopy((void *)moea64_scratchpage_va[0],
1115		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1116
1117		mtx_unlock(&moea64_scratchpage_mtx);
1118	}
1119}
1120
1121static inline void
1122moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1123    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1124{
1125	void *a_cp, *b_cp;
1126	vm_offset_t a_pg_offset, b_pg_offset;
1127	int cnt;
1128
1129	while (xfersize > 0) {
1130		a_pg_offset = a_offset & PAGE_MASK;
1131		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1132		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1133		    a_pg_offset;
1134		b_pg_offset = b_offset & PAGE_MASK;
1135		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1136		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1137		    b_pg_offset;
1138		bcopy(a_cp, b_cp, cnt);
1139		a_offset += cnt;
1140		b_offset += cnt;
1141		xfersize -= cnt;
1142	}
1143}
1144
1145static inline void
1146moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1147    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1148{
1149	void *a_cp, *b_cp;
1150	vm_offset_t a_pg_offset, b_pg_offset;
1151	int cnt;
1152
1153	mtx_lock(&moea64_scratchpage_mtx);
1154	while (xfersize > 0) {
1155		a_pg_offset = a_offset & PAGE_MASK;
1156		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1157		moea64_set_scratchpage_pa(mmu, 0,
1158		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1159		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1160		b_pg_offset = b_offset & PAGE_MASK;
1161		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1162		moea64_set_scratchpage_pa(mmu, 1,
1163		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1164		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1165		bcopy(a_cp, b_cp, cnt);
1166		a_offset += cnt;
1167		b_offset += cnt;
1168		xfersize -= cnt;
1169	}
1170	mtx_unlock(&moea64_scratchpage_mtx);
1171}
1172
1173void
1174moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1175    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1176{
1177
1178	if (hw_direct_map) {
1179		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1180		    xfersize);
1181	} else {
1182		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1183		    xfersize);
1184	}
1185}
1186
1187void
1188moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1189{
1190	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1191
1192	if (size + off > PAGE_SIZE)
1193		panic("moea64_zero_page: size + off > PAGE_SIZE");
1194
1195	if (hw_direct_map) {
1196		bzero((caddr_t)pa + off, size);
1197	} else {
1198		mtx_lock(&moea64_scratchpage_mtx);
1199		moea64_set_scratchpage_pa(mmu, 0, pa);
1200		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1201		mtx_unlock(&moea64_scratchpage_mtx);
1202	}
1203}
1204
1205/*
1206 * Zero a page of physical memory by temporarily mapping it
1207 */
1208void
1209moea64_zero_page(mmu_t mmu, vm_page_t m)
1210{
1211	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1212	vm_offset_t va, off;
1213
1214	if (!hw_direct_map) {
1215		mtx_lock(&moea64_scratchpage_mtx);
1216
1217		moea64_set_scratchpage_pa(mmu, 0, pa);
1218		va = moea64_scratchpage_va[0];
1219	} else {
1220		va = pa;
1221	}
1222
1223	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1224		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1225
1226	if (!hw_direct_map)
1227		mtx_unlock(&moea64_scratchpage_mtx);
1228}
1229
1230void
1231moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1232{
1233
1234	moea64_zero_page(mmu, m);
1235}
1236
1237/*
1238 * Map the given physical page at the specified virtual address in the
1239 * target pmap with the protection requested.  If specified the page
1240 * will be wired down.
1241 */
1242
1243int
1244moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1245    vm_prot_t prot, u_int flags, int8_t psind)
1246{
1247	struct		pvo_head *pvo_head;
1248	uma_zone_t	zone;
1249	uint64_t	pte_lo;
1250	u_int		pvo_flags;
1251	int		error;
1252
1253	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1254		VM_OBJECT_ASSERT_LOCKED(m->object);
1255
1256	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1257		pvo_head = NULL;
1258		zone = moea64_upvo_zone;
1259		pvo_flags = 0;
1260	} else {
1261		pvo_head = vm_page_to_pvoh(m);
1262		zone = moea64_mpvo_zone;
1263		pvo_flags = PVO_MANAGED;
1264	}
1265
1266	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1267
1268	if (prot & VM_PROT_WRITE) {
1269		pte_lo |= LPTE_BW;
1270		if (pmap_bootstrapped &&
1271		    (m->oflags & VPO_UNMANAGED) == 0)
1272			vm_page_aflag_set(m, PGA_WRITEABLE);
1273	} else
1274		pte_lo |= LPTE_BR;
1275
1276	if ((prot & VM_PROT_EXECUTE) == 0)
1277		pte_lo |= LPTE_NOEXEC;
1278
1279	if ((flags & PMAP_ENTER_WIRED) != 0)
1280		pvo_flags |= PVO_WIRED;
1281
1282	for (;;) {
1283		LOCK_TABLE_WR();
1284		PMAP_LOCK(pmap);
1285		error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1286		    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags, psind);
1287		PMAP_UNLOCK(pmap);
1288		UNLOCK_TABLE_WR();
1289		if (error != ENOMEM)
1290			break;
1291		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1292			return (KERN_RESOURCE_SHORTAGE);
1293		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1294		VM_WAIT;
1295	}
1296
1297	/*
1298	 * Flush the page from the instruction cache if this page is
1299	 * mapped executable and cacheable.
1300	 */
1301	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1302	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1303		vm_page_aflag_set(m, PGA_EXECUTABLE);
1304		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1305	}
1306	return (KERN_SUCCESS);
1307}
1308
1309static void
1310moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1311    vm_size_t sz)
1312{
1313
1314	/*
1315	 * This is much trickier than on older systems because
1316	 * we can't sync the icache on physical addresses directly
1317	 * without a direct map. Instead we check a couple of cases
1318	 * where the memory is already mapped in and, failing that,
1319	 * use the same trick we use for page zeroing to create
1320	 * a temporary mapping for this physical address.
1321	 */
1322
1323	if (!pmap_bootstrapped) {
1324		/*
1325		 * If PMAP is not bootstrapped, we are likely to be
1326		 * in real mode.
1327		 */
1328		__syncicache((void *)pa, sz);
1329	} else if (pmap == kernel_pmap) {
1330		__syncicache((void *)va, sz);
1331	} else if (hw_direct_map) {
1332		__syncicache((void *)pa, sz);
1333	} else {
1334		/* Use the scratch page to set up a temp mapping */
1335
1336		mtx_lock(&moea64_scratchpage_mtx);
1337
1338		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1339		__syncicache((void *)(moea64_scratchpage_va[1] +
1340		    (va & ADDR_POFF)), sz);
1341
1342		mtx_unlock(&moea64_scratchpage_mtx);
1343	}
1344}
1345
1346/*
1347 * Maps a sequence of resident pages belonging to the same object.
1348 * The sequence begins with the given page m_start.  This page is
1349 * mapped at the given virtual address start.  Each subsequent page is
1350 * mapped at a virtual address that is offset from start by the same
1351 * amount as the page is offset from m_start within the object.  The
1352 * last page in the sequence is the page with the largest offset from
1353 * m_start that can be mapped at a virtual address less than the given
1354 * virtual address end.  Not every virtual page between start and end
1355 * is mapped; only those for which a resident page exists with the
1356 * corresponding offset from m_start are mapped.
1357 */
1358void
1359moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1360    vm_page_t m_start, vm_prot_t prot)
1361{
1362	vm_page_t m;
1363	vm_pindex_t diff, psize;
1364
1365	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1366
1367	psize = atop(end - start);
1368	m = m_start;
1369	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1370		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1371		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1372		m = TAILQ_NEXT(m, listq);
1373	}
1374}
1375
1376void
1377moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1378    vm_prot_t prot)
1379{
1380
1381	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1382	    PMAP_ENTER_NOSLEEP, 0);
1383}
1384
1385vm_paddr_t
1386moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1387{
1388	struct	pvo_entry *pvo;
1389	vm_paddr_t pa;
1390
1391	PMAP_LOCK(pm);
1392	pvo = moea64_pvo_find_va(pm, va);
1393	if (pvo == NULL)
1394		pa = 0;
1395	else
1396		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1397		    (va - PVO_VADDR(pvo));
1398	PMAP_UNLOCK(pm);
1399	return (pa);
1400}
1401
1402/*
1403 * Atomically extract and hold the physical page with the given
1404 * pmap and virtual address pair if that mapping permits the given
1405 * protection.
1406 */
1407vm_page_t
1408moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1409{
1410	struct	pvo_entry *pvo;
1411	vm_page_t m;
1412        vm_paddr_t pa;
1413
1414	m = NULL;
1415	pa = 0;
1416	PMAP_LOCK(pmap);
1417retry:
1418	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1419	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1420	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1421	     (prot & VM_PROT_WRITE) == 0)) {
1422		if (vm_page_pa_tryrelock(pmap,
1423			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1424			goto retry;
1425		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1426		vm_page_hold(m);
1427	}
1428	PA_UNLOCK_COND(pa);
1429	PMAP_UNLOCK(pmap);
1430	return (m);
1431}
1432
1433static mmu_t installed_mmu;
1434
1435static void *
1436moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1437{
1438	/*
1439	 * This entire routine is a horrible hack to avoid bothering kmem
1440	 * for new KVA addresses. Because this can get called from inside
1441	 * kmem allocation routines, calling kmem for a new address here
1442	 * can lead to multiply locking non-recursive mutexes.
1443	 */
1444        vm_offset_t va;
1445
1446        vm_page_t m;
1447        int pflags, needed_lock;
1448
1449	*flags = UMA_SLAB_PRIV;
1450	needed_lock = !PMAP_LOCKED(kernel_pmap);
1451	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1452
1453        for (;;) {
1454                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1455                if (m == NULL) {
1456                        if (wait & M_NOWAIT)
1457                                return (NULL);
1458                        VM_WAIT;
1459                } else
1460                        break;
1461        }
1462
1463	va = VM_PAGE_TO_PHYS(m);
1464
1465	LOCK_TABLE_WR();
1466	if (needed_lock)
1467		PMAP_LOCK(kernel_pmap);
1468
1469	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1470	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP,
1471	    0);
1472
1473	if (needed_lock)
1474		PMAP_UNLOCK(kernel_pmap);
1475	UNLOCK_TABLE_WR();
1476
1477	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1478                bzero((void *)va, PAGE_SIZE);
1479
1480	return (void *)va;
1481}
1482
1483extern int elf32_nxstack;
1484
1485void
1486moea64_init(mmu_t mmu)
1487{
1488
1489	CTR0(KTR_PMAP, "moea64_init");
1490
1491	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1492	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1493	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1494	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1495	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1496	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1497
1498	if (!hw_direct_map) {
1499		installed_mmu = mmu;
1500		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1501		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1502	}
1503
1504#ifdef COMPAT_FREEBSD32
1505	elf32_nxstack = 1;
1506#endif
1507
1508	moea64_initialized = TRUE;
1509}
1510
1511boolean_t
1512moea64_is_referenced(mmu_t mmu, vm_page_t m)
1513{
1514
1515	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1516	    ("moea64_is_referenced: page %p is not managed", m));
1517	return (moea64_query_bit(mmu, m, PTE_REF));
1518}
1519
1520boolean_t
1521moea64_is_modified(mmu_t mmu, vm_page_t m)
1522{
1523
1524	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1525	    ("moea64_is_modified: page %p is not managed", m));
1526
1527	/*
1528	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1529	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1530	 * is clear, no PTEs can have LPTE_CHG set.
1531	 */
1532	VM_OBJECT_ASSERT_LOCKED(m->object);
1533	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1534		return (FALSE);
1535	return (moea64_query_bit(mmu, m, LPTE_CHG));
1536}
1537
1538boolean_t
1539moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1540{
1541	struct pvo_entry *pvo;
1542	boolean_t rv;
1543
1544	PMAP_LOCK(pmap);
1545	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1546	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1547	PMAP_UNLOCK(pmap);
1548	return (rv);
1549}
1550
1551void
1552moea64_clear_modify(mmu_t mmu, vm_page_t m)
1553{
1554
1555	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1556	    ("moea64_clear_modify: page %p is not managed", m));
1557	VM_OBJECT_ASSERT_WLOCKED(m->object);
1558	KASSERT(!vm_page_xbusied(m),
1559	    ("moea64_clear_modify: page %p is exclusive busied", m));
1560
1561	/*
1562	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1563	 * set.  If the object containing the page is locked and the page is
1564	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1565	 */
1566	if ((m->aflags & PGA_WRITEABLE) == 0)
1567		return;
1568	moea64_clear_bit(mmu, m, LPTE_CHG);
1569}
1570
1571/*
1572 * Clear the write and modified bits in each of the given page's mappings.
1573 */
1574void
1575moea64_remove_write(mmu_t mmu, vm_page_t m)
1576{
1577	struct	pvo_entry *pvo;
1578	uintptr_t pt;
1579	pmap_t	pmap;
1580	uint64_t lo = 0;
1581
1582	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1583	    ("moea64_remove_write: page %p is not managed", m));
1584
1585	/*
1586	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1587	 * set by another thread while the object is locked.  Thus,
1588	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1589	 */
1590	VM_OBJECT_ASSERT_WLOCKED(m->object);
1591	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1592		return;
1593	powerpc_sync();
1594	LOCK_TABLE_RD();
1595	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1596		pmap = pvo->pvo_pmap;
1597		PMAP_LOCK(pmap);
1598		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1599			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1600			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1601			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1602			if (pt != -1) {
1603				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1604				lo |= pvo->pvo_pte.lpte.pte_lo;
1605				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1606				MOEA64_PTE_CHANGE(mmu, pt,
1607				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1608				if (pvo->pvo_pmap == kernel_pmap)
1609					isync();
1610			}
1611		}
1612		if ((lo & LPTE_CHG) != 0)
1613			vm_page_dirty(m);
1614		PMAP_UNLOCK(pmap);
1615	}
1616	UNLOCK_TABLE_RD();
1617	vm_page_aflag_clear(m, PGA_WRITEABLE);
1618}
1619
1620/*
1621 *	moea64_ts_referenced:
1622 *
1623 *	Return a count of reference bits for a page, clearing those bits.
1624 *	It is not necessary for every reference bit to be cleared, but it
1625 *	is necessary that 0 only be returned when there are truly no
1626 *	reference bits set.
1627 *
1628 *	XXX: The exact number of bits to check and clear is a matter that
1629 *	should be tested and standardized at some point in the future for
1630 *	optimal aging of shared pages.
1631 */
1632int
1633moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1634{
1635
1636	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1637	    ("moea64_ts_referenced: page %p is not managed", m));
1638	return (moea64_clear_bit(mmu, m, LPTE_REF));
1639}
1640
1641/*
1642 * Modify the WIMG settings of all mappings for a page.
1643 */
1644void
1645moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1646{
1647	struct	pvo_entry *pvo;
1648	struct  pvo_head *pvo_head;
1649	uintptr_t pt;
1650	pmap_t	pmap;
1651	uint64_t lo;
1652
1653	if ((m->oflags & VPO_UNMANAGED) != 0) {
1654		m->md.mdpg_cache_attrs = ma;
1655		return;
1656	}
1657
1658	pvo_head = vm_page_to_pvoh(m);
1659	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1660	LOCK_TABLE_RD();
1661	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1662		pmap = pvo->pvo_pmap;
1663		PMAP_LOCK(pmap);
1664		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1665		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1666		pvo->pvo_pte.lpte.pte_lo |= lo;
1667		if (pt != -1) {
1668			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1669			    pvo->pvo_vpn);
1670			if (pvo->pvo_pmap == kernel_pmap)
1671				isync();
1672		}
1673		PMAP_UNLOCK(pmap);
1674	}
1675	UNLOCK_TABLE_RD();
1676	m->md.mdpg_cache_attrs = ma;
1677}
1678
1679/*
1680 * Map a wired page into kernel virtual address space.
1681 */
1682void
1683moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1684{
1685	uint64_t	pte_lo;
1686	int		error;
1687
1688	pte_lo = moea64_calc_wimg(pa, ma);
1689
1690	LOCK_TABLE_WR();
1691	PMAP_LOCK(kernel_pmap);
1692	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1693	    NULL, va, pa, pte_lo, PVO_WIRED, 0);
1694	PMAP_UNLOCK(kernel_pmap);
1695	UNLOCK_TABLE_WR();
1696
1697	if (error != 0 && error != ENOENT)
1698		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1699		    pa, error);
1700}
1701
1702void
1703moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1704{
1705
1706	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1707}
1708
1709/*
1710 * Extract the physical page address associated with the given kernel virtual
1711 * address.
1712 */
1713vm_paddr_t
1714moea64_kextract(mmu_t mmu, vm_offset_t va)
1715{
1716	struct		pvo_entry *pvo;
1717	vm_paddr_t pa;
1718
1719	/*
1720	 * Shortcut the direct-mapped case when applicable.  We never put
1721	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1722	 */
1723	if (va < VM_MIN_KERNEL_ADDRESS)
1724		return (va);
1725
1726	PMAP_LOCK(kernel_pmap);
1727	pvo = moea64_pvo_find_va(kernel_pmap, va);
1728	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1729	    va));
1730	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1731	PMAP_UNLOCK(kernel_pmap);
1732	return (pa);
1733}
1734
1735/*
1736 * Remove a wired page from kernel virtual address space.
1737 */
1738void
1739moea64_kremove(mmu_t mmu, vm_offset_t va)
1740{
1741	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1742}
1743
1744/*
1745 * Map a range of physical addresses into kernel virtual address space.
1746 *
1747 * The value passed in *virt is a suggested virtual address for the mapping.
1748 * Architectures which can support a direct-mapped physical to virtual region
1749 * can return the appropriate address within that region, leaving '*virt'
1750 * unchanged.  We cannot and therefore do not; *virt is updated with the
1751 * first usable address after the mapped region.
1752 */
1753vm_offset_t
1754moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1755    vm_paddr_t pa_end, int prot)
1756{
1757	vm_offset_t	sva, va;
1758
1759	sva = *virt;
1760	va = sva;
1761	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1762		moea64_kenter(mmu, va, pa_start);
1763	*virt = va;
1764
1765	return (sva);
1766}
1767
1768/*
1769 * Returns true if the pmap's pv is one of the first
1770 * 16 pvs linked to from this page.  This count may
1771 * be changed upwards or downwards in the future; it
1772 * is only necessary that true be returned for a small
1773 * subset of pmaps for proper page aging.
1774 */
1775boolean_t
1776moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1777{
1778        int loops;
1779	struct pvo_entry *pvo;
1780	boolean_t rv;
1781
1782	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1783	    ("moea64_page_exists_quick: page %p is not managed", m));
1784	loops = 0;
1785	rv = FALSE;
1786	LOCK_TABLE_RD();
1787	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1788		if (pvo->pvo_pmap == pmap) {
1789			rv = TRUE;
1790			break;
1791		}
1792		if (++loops >= 16)
1793			break;
1794	}
1795	UNLOCK_TABLE_RD();
1796	return (rv);
1797}
1798
1799/*
1800 * Return the number of managed mappings to the given physical page
1801 * that are wired.
1802 */
1803int
1804moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1805{
1806	struct pvo_entry *pvo;
1807	int count;
1808
1809	count = 0;
1810	if ((m->oflags & VPO_UNMANAGED) != 0)
1811		return (count);
1812	LOCK_TABLE_RD();
1813	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1814		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1815			count++;
1816	UNLOCK_TABLE_RD();
1817	return (count);
1818}
1819
1820static uintptr_t	moea64_vsidcontext;
1821
1822uintptr_t
1823moea64_get_unique_vsid(void) {
1824	u_int entropy;
1825	register_t hash;
1826	uint32_t mask;
1827	int i;
1828
1829	entropy = 0;
1830	__asm __volatile("mftb %0" : "=r"(entropy));
1831
1832	mtx_lock(&moea64_slb_mutex);
1833	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1834		u_int	n;
1835
1836		/*
1837		 * Create a new value by mutiplying by a prime and adding in
1838		 * entropy from the timebase register.  This is to make the
1839		 * VSID more random so that the PT hash function collides
1840		 * less often.  (Note that the prime casues gcc to do shifts
1841		 * instead of a multiply.)
1842		 */
1843		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1844		hash = moea64_vsidcontext & (NVSIDS - 1);
1845		if (hash == 0)		/* 0 is special, avoid it */
1846			continue;
1847		n = hash >> 5;
1848		mask = 1 << (hash & (VSID_NBPW - 1));
1849		hash = (moea64_vsidcontext & VSID_HASHMASK);
1850		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1851			/* anything free in this bucket? */
1852			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1853				entropy = (moea64_vsidcontext >> 20);
1854				continue;
1855			}
1856			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1857			mask = 1 << i;
1858			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1859			hash |= i;
1860		}
1861		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1862		    ("Allocating in-use VSID %#zx\n", hash));
1863		moea64_vsid_bitmap[n] |= mask;
1864		mtx_unlock(&moea64_slb_mutex);
1865		return (hash);
1866	}
1867
1868	mtx_unlock(&moea64_slb_mutex);
1869	panic("%s: out of segments",__func__);
1870}
1871
1872#ifdef __powerpc64__
1873void
1874moea64_pinit(mmu_t mmu, pmap_t pmap)
1875{
1876
1877	RB_INIT(&pmap->pmap_pvo);
1878
1879	pmap->pm_slb_tree_root = slb_alloc_tree();
1880	pmap->pm_slb = slb_alloc_user_cache();
1881	pmap->pm_slb_len = 0;
1882}
1883#else
1884void
1885moea64_pinit(mmu_t mmu, pmap_t pmap)
1886{
1887	int	i;
1888	uint32_t hash;
1889
1890	RB_INIT(&pmap->pmap_pvo);
1891
1892	if (pmap_bootstrapped)
1893		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1894		    (vm_offset_t)pmap);
1895	else
1896		pmap->pmap_phys = pmap;
1897
1898	/*
1899	 * Allocate some segment registers for this pmap.
1900	 */
1901	hash = moea64_get_unique_vsid();
1902
1903	for (i = 0; i < 16; i++)
1904		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1905
1906	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1907}
1908#endif
1909
1910/*
1911 * Initialize the pmap associated with process 0.
1912 */
1913void
1914moea64_pinit0(mmu_t mmu, pmap_t pm)
1915{
1916
1917	PMAP_LOCK_INIT(pm);
1918	moea64_pinit(mmu, pm);
1919	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1920}
1921
1922/*
1923 * Set the physical protection on the specified range of this map as requested.
1924 */
1925static void
1926moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1927{
1928	uintptr_t pt;
1929	struct	vm_page *pg;
1930	uint64_t oldlo;
1931
1932	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1933
1934	/*
1935	 * Grab the PTE pointer before we diddle with the cached PTE
1936	 * copy.
1937	 */
1938	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1939
1940	/*
1941	 * Change the protection of the page.
1942	 */
1943	oldlo = pvo->pvo_pte.lpte.pte_lo;
1944	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1945	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1946	if ((prot & VM_PROT_EXECUTE) == 0)
1947		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1948	if (prot & VM_PROT_WRITE)
1949		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1950	else
1951		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1952
1953	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1954
1955	/*
1956	 * If the PVO is in the page table, update that pte as well.
1957	 */
1958	if (pt != -1)
1959		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1960		    pvo->pvo_vpn);
1961	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1962	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1963		if ((pg->oflags & VPO_UNMANAGED) == 0)
1964			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1965		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1966		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1967	}
1968
1969	/*
1970	 * Update vm about the REF/CHG bits if the page is managed and we have
1971	 * removed write access.
1972	 */
1973	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1974	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1975		if (pg != NULL) {
1976			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1977				vm_page_dirty(pg);
1978			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1979				vm_page_aflag_set(pg, PGA_REFERENCED);
1980		}
1981	}
1982}
1983
1984void
1985moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1986    vm_prot_t prot)
1987{
1988	struct	pvo_entry *pvo, *tpvo, key;
1989
1990	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1991	    sva, eva, prot);
1992
1993	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1994	    ("moea64_protect: non current pmap"));
1995
1996	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1997		moea64_remove(mmu, pm, sva, eva);
1998		return;
1999	}
2000
2001	LOCK_TABLE_RD();
2002	PMAP_LOCK(pm);
2003	key.pvo_vaddr = sva;
2004	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2005	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2006		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2007		moea64_pvo_protect(mmu, pm, pvo, prot);
2008	}
2009	UNLOCK_TABLE_RD();
2010	PMAP_UNLOCK(pm);
2011}
2012
2013/*
2014 * Map a list of wired pages into kernel virtual address space.  This is
2015 * intended for temporary mappings which do not need page modification or
2016 * references recorded.  Existing mappings in the region are overwritten.
2017 */
2018void
2019moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2020{
2021	while (count-- > 0) {
2022		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2023		va += PAGE_SIZE;
2024		m++;
2025	}
2026}
2027
2028/*
2029 * Remove page mappings from kernel virtual address space.  Intended for
2030 * temporary mappings entered by moea64_qenter.
2031 */
2032void
2033moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2034{
2035	while (count-- > 0) {
2036		moea64_kremove(mmu, va);
2037		va += PAGE_SIZE;
2038	}
2039}
2040
2041void
2042moea64_release_vsid(uint64_t vsid)
2043{
2044	int idx, mask;
2045
2046	mtx_lock(&moea64_slb_mutex);
2047	idx = vsid & (NVSIDS-1);
2048	mask = 1 << (idx % VSID_NBPW);
2049	idx /= VSID_NBPW;
2050	KASSERT(moea64_vsid_bitmap[idx] & mask,
2051	    ("Freeing unallocated VSID %#jx", vsid));
2052	moea64_vsid_bitmap[idx] &= ~mask;
2053	mtx_unlock(&moea64_slb_mutex);
2054}
2055
2056
2057void
2058moea64_release(mmu_t mmu, pmap_t pmap)
2059{
2060
2061	/*
2062	 * Free segment registers' VSIDs
2063	 */
2064    #ifdef __powerpc64__
2065	slb_free_tree(pmap);
2066	slb_free_user_cache(pmap->pm_slb);
2067    #else
2068	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2069
2070	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2071    #endif
2072}
2073
2074/*
2075 * Remove all pages mapped by the specified pmap
2076 */
2077void
2078moea64_remove_pages(mmu_t mmu, pmap_t pm)
2079{
2080	struct	pvo_entry *pvo, *tpvo;
2081
2082	LOCK_TABLE_WR();
2083	PMAP_LOCK(pm);
2084	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2085		if (!(pvo->pvo_vaddr & PVO_WIRED))
2086			moea64_pvo_remove(mmu, pvo);
2087	}
2088	UNLOCK_TABLE_WR();
2089	PMAP_UNLOCK(pm);
2090}
2091
2092/*
2093 * Remove the given range of addresses from the specified map.
2094 */
2095void
2096moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2097{
2098	struct	pvo_entry *pvo, *tpvo, key;
2099
2100	/*
2101	 * Perform an unsynchronized read.  This is, however, safe.
2102	 */
2103	if (pm->pm_stats.resident_count == 0)
2104		return;
2105
2106	LOCK_TABLE_WR();
2107	PMAP_LOCK(pm);
2108	key.pvo_vaddr = sva;
2109	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2110	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2111		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2112		moea64_pvo_remove(mmu, pvo);
2113	}
2114	UNLOCK_TABLE_WR();
2115	PMAP_UNLOCK(pm);
2116}
2117
2118/*
2119 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2120 * will reflect changes in pte's back to the vm_page.
2121 */
2122void
2123moea64_remove_all(mmu_t mmu, vm_page_t m)
2124{
2125	struct	pvo_entry *pvo, *next_pvo;
2126	pmap_t	pmap;
2127
2128	LOCK_TABLE_WR();
2129	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2130		pmap = pvo->pvo_pmap;
2131		PMAP_LOCK(pmap);
2132		moea64_pvo_remove(mmu, pvo);
2133		PMAP_UNLOCK(pmap);
2134	}
2135	UNLOCK_TABLE_WR();
2136	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2137		vm_page_dirty(m);
2138	vm_page_aflag_clear(m, PGA_WRITEABLE);
2139	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2140}
2141
2142/*
2143 * Allocate a physical page of memory directly from the phys_avail map.
2144 * Can only be called from moea64_bootstrap before avail start and end are
2145 * calculated.
2146 */
2147vm_offset_t
2148moea64_bootstrap_alloc(vm_size_t size, u_int align)
2149{
2150	vm_offset_t	s, e;
2151	int		i, j;
2152
2153	size = round_page(size);
2154	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2155		if (align != 0)
2156			s = (phys_avail[i] + align - 1) & ~(align - 1);
2157		else
2158			s = phys_avail[i];
2159		e = s + size;
2160
2161		if (s < phys_avail[i] || e > phys_avail[i + 1])
2162			continue;
2163
2164		if (s + size > platform_real_maxaddr())
2165			continue;
2166
2167		if (s == phys_avail[i]) {
2168			phys_avail[i] += size;
2169		} else if (e == phys_avail[i + 1]) {
2170			phys_avail[i + 1] -= size;
2171		} else {
2172			for (j = phys_avail_count * 2; j > i; j -= 2) {
2173				phys_avail[j] = phys_avail[j - 2];
2174				phys_avail[j + 1] = phys_avail[j - 1];
2175			}
2176
2177			phys_avail[i + 3] = phys_avail[i + 1];
2178			phys_avail[i + 1] = s;
2179			phys_avail[i + 2] = e;
2180			phys_avail_count++;
2181		}
2182
2183		return (s);
2184	}
2185	panic("moea64_bootstrap_alloc: could not allocate memory");
2186}
2187
2188static int
2189moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2190    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2191    uint64_t pte_lo, int flags, int8_t psind __unused)
2192{
2193	struct	 pvo_entry *pvo;
2194	uintptr_t pt;
2195	uint64_t vsid;
2196	int	 first;
2197	u_int	 ptegidx;
2198	int	 i;
2199	int      bootstrap;
2200
2201	/*
2202	 * One nasty thing that can happen here is that the UMA calls to
2203	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2204	 * which calls UMA...
2205	 *
2206	 * We break the loop by detecting recursion and allocating out of
2207	 * the bootstrap pool.
2208	 */
2209
2210	first = 0;
2211	bootstrap = (flags & PVO_BOOTSTRAP);
2212
2213	if (!moea64_initialized)
2214		bootstrap = 1;
2215
2216	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2217	rw_assert(&moea64_table_lock, RA_WLOCKED);
2218
2219	/*
2220	 * Compute the PTE Group index.
2221	 */
2222	va &= ~ADDR_POFF;
2223	vsid = va_to_vsid(pm, va);
2224	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2225
2226	/*
2227	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2228	 * there is a mapping.
2229	 */
2230	moea64_pvo_enter_calls++;
2231
2232	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2233		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2234			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2235			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2236			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2237				/*
2238				 * The physical page and protection are not
2239				 * changing.  Instead, this may be a request
2240				 * to change the mapping's wired attribute.
2241				 */
2242				pt = -1;
2243				if ((flags & PVO_WIRED) != 0 &&
2244				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2245					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2246					pvo->pvo_vaddr |= PVO_WIRED;
2247					pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2248					pm->pm_stats.wired_count++;
2249				} else if ((flags & PVO_WIRED) == 0 &&
2250				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2251					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2252					pvo->pvo_vaddr &= ~PVO_WIRED;
2253					pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
2254					pm->pm_stats.wired_count--;
2255				}
2256			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2257					KASSERT(pt == -1,
2258					    ("moea64_pvo_enter: valid pt"));
2259					/* Re-insert if spilled */
2260					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2261					    &pvo->pvo_pte.lpte);
2262					if (i >= 0)
2263						PVO_PTEGIDX_SET(pvo, i);
2264					moea64_pte_overflow--;
2265				} else if (pt != -1) {
2266					/*
2267					 * The PTE's wired attribute is not a
2268					 * hardware feature, so there is no
2269					 * need to invalidate any TLB entries.
2270					 */
2271					MOEA64_PTE_CHANGE(mmu, pt,
2272					    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2273				}
2274				return (0);
2275			}
2276			moea64_pvo_remove(mmu, pvo);
2277			break;
2278		}
2279	}
2280
2281	/*
2282	 * If we aren't overwriting a mapping, try to allocate.
2283	 */
2284	if (bootstrap) {
2285		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2286			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2287			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2288			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2289		}
2290		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2291		moea64_bpvo_pool_index++;
2292		bootstrap = 1;
2293	} else {
2294		pvo = uma_zalloc(zone, M_NOWAIT);
2295	}
2296
2297	if (pvo == NULL)
2298		return (ENOMEM);
2299
2300	moea64_pvo_entries++;
2301	pvo->pvo_vaddr = va;
2302	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2303	    | (vsid << 16);
2304	pvo->pvo_pmap = pm;
2305	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2306	pvo->pvo_vaddr &= ~ADDR_POFF;
2307
2308	if (flags & PVO_WIRED)
2309		pvo->pvo_vaddr |= PVO_WIRED;
2310	if (pvo_head != NULL)
2311		pvo->pvo_vaddr |= PVO_MANAGED;
2312	if (bootstrap)
2313		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2314	if (flags & PVO_LARGE)
2315		pvo->pvo_vaddr |= PVO_LARGE;
2316
2317	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2318	    (uint64_t)(pa) | pte_lo, flags);
2319
2320	/*
2321	 * Add to pmap list
2322	 */
2323	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2324
2325	/*
2326	 * Remember if the list was empty and therefore will be the first
2327	 * item.
2328	 */
2329	if (pvo_head != NULL) {
2330		if (LIST_FIRST(pvo_head) == NULL)
2331			first = 1;
2332		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2333	}
2334
2335	if (pvo->pvo_vaddr & PVO_WIRED) {
2336		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2337		pm->pm_stats.wired_count++;
2338	}
2339	pm->pm_stats.resident_count++;
2340
2341	/*
2342	 * We hope this succeeds but it isn't required.
2343	 */
2344	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2345	if (i >= 0) {
2346		PVO_PTEGIDX_SET(pvo, i);
2347	} else {
2348		panic("moea64_pvo_enter: overflow");
2349		moea64_pte_overflow++;
2350	}
2351
2352	if (pm == kernel_pmap)
2353		isync();
2354
2355#ifdef __powerpc64__
2356	/*
2357	 * Make sure all our bootstrap mappings are in the SLB as soon
2358	 * as virtual memory is switched on.
2359	 */
2360	if (!pmap_bootstrapped)
2361		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2362#endif
2363
2364	return (first ? ENOENT : 0);
2365}
2366
2367static void
2368moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2369{
2370	struct	vm_page *pg;
2371	uintptr_t pt;
2372
2373	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2374	rw_assert(&moea64_table_lock, RA_WLOCKED);
2375
2376	/*
2377	 * If there is an active pte entry, we need to deactivate it (and
2378	 * save the ref & cfg bits).
2379	 */
2380	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2381	if (pt != -1) {
2382		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2383		PVO_PTEGIDX_CLR(pvo);
2384	} else {
2385		moea64_pte_overflow--;
2386	}
2387
2388	/*
2389	 * Update our statistics.
2390	 */
2391	pvo->pvo_pmap->pm_stats.resident_count--;
2392	if (pvo->pvo_vaddr & PVO_WIRED)
2393		pvo->pvo_pmap->pm_stats.wired_count--;
2394
2395	/*
2396	 * Remove this PVO from the pmap list.
2397	 */
2398	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2399
2400	/*
2401	 * Remove this from the overflow list and return it to the pool
2402	 * if we aren't going to reuse it.
2403	 */
2404	LIST_REMOVE(pvo, pvo_olink);
2405
2406	/*
2407	 * Update vm about the REF/CHG bits if the page is managed.
2408	 */
2409	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2410
2411	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2412		LIST_REMOVE(pvo, pvo_vlink);
2413		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2414			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2415				vm_page_dirty(pg);
2416			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2417				vm_page_aflag_set(pg, PGA_REFERENCED);
2418			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2419				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2420		}
2421		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2422			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2423	}
2424
2425	moea64_pvo_entries--;
2426	moea64_pvo_remove_calls++;
2427
2428	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2429		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2430		    moea64_upvo_zone, pvo);
2431}
2432
2433static struct pvo_entry *
2434moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2435{
2436	struct pvo_entry key;
2437
2438	key.pvo_vaddr = va & ~ADDR_POFF;
2439	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2440}
2441
2442static boolean_t
2443moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2444{
2445	struct	pvo_entry *pvo;
2446	uintptr_t pt;
2447
2448	LOCK_TABLE_RD();
2449	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2450		/*
2451		 * See if we saved the bit off.  If so, return success.
2452		 */
2453		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2454			UNLOCK_TABLE_RD();
2455			return (TRUE);
2456		}
2457	}
2458
2459	/*
2460	 * No luck, now go through the hard part of looking at the PTEs
2461	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2462	 * the PTEs.
2463	 */
2464	powerpc_sync();
2465	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2466
2467		/*
2468		 * See if this pvo has a valid PTE.  if so, fetch the
2469		 * REF/CHG bits from the valid PTE.  If the appropriate
2470		 * ptebit is set, return success.
2471		 */
2472		PMAP_LOCK(pvo->pvo_pmap);
2473		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2474		if (pt != -1) {
2475			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2476			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2477				PMAP_UNLOCK(pvo->pvo_pmap);
2478				UNLOCK_TABLE_RD();
2479				return (TRUE);
2480			}
2481		}
2482		PMAP_UNLOCK(pvo->pvo_pmap);
2483	}
2484
2485	UNLOCK_TABLE_RD();
2486	return (FALSE);
2487}
2488
2489static u_int
2490moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2491{
2492	u_int	count;
2493	struct	pvo_entry *pvo;
2494	uintptr_t pt;
2495
2496	/*
2497	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2498	 * we can reset the right ones).  note that since the pvo entries and
2499	 * list heads are accessed via BAT0 and are never placed in the page
2500	 * table, we don't have to worry about further accesses setting the
2501	 * REF/CHG bits.
2502	 */
2503	powerpc_sync();
2504
2505	/*
2506	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2507	 * valid pte clear the ptebit from the valid pte.
2508	 */
2509	count = 0;
2510	LOCK_TABLE_RD();
2511	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2512		PMAP_LOCK(pvo->pvo_pmap);
2513		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2514		if (pt != -1) {
2515			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2516			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2517				count++;
2518				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2519				    pvo->pvo_vpn, ptebit);
2520			}
2521		}
2522		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2523		PMAP_UNLOCK(pvo->pvo_pmap);
2524	}
2525
2526	UNLOCK_TABLE_RD();
2527	return (count);
2528}
2529
2530boolean_t
2531moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2532{
2533	struct pvo_entry *pvo, key;
2534	vm_offset_t ppa;
2535	int error = 0;
2536
2537	PMAP_LOCK(kernel_pmap);
2538	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2539	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2540	    ppa < pa + size; ppa += PAGE_SIZE,
2541	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2542		if (pvo == NULL ||
2543		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2544			error = EFAULT;
2545			break;
2546		}
2547	}
2548	PMAP_UNLOCK(kernel_pmap);
2549
2550	return (error);
2551}
2552
2553/*
2554 * Map a set of physical memory pages into the kernel virtual
2555 * address space. Return a pointer to where it is mapped. This
2556 * routine is intended to be used for mapping device memory,
2557 * NOT real memory.
2558 */
2559void *
2560moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2561{
2562	vm_offset_t va, tmpva, ppa, offset;
2563
2564	ppa = trunc_page(pa);
2565	offset = pa & PAGE_MASK;
2566	size = roundup2(offset + size, PAGE_SIZE);
2567
2568	va = kva_alloc(size);
2569
2570	if (!va)
2571		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2572
2573	for (tmpva = va; size > 0;) {
2574		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2575		size -= PAGE_SIZE;
2576		tmpva += PAGE_SIZE;
2577		ppa += PAGE_SIZE;
2578	}
2579
2580	return ((void *)(va + offset));
2581}
2582
2583void *
2584moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2585{
2586
2587	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2588}
2589
2590void
2591moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2592{
2593	vm_offset_t base, offset;
2594
2595	base = trunc_page(va);
2596	offset = va & PAGE_MASK;
2597	size = roundup2(offset + size, PAGE_SIZE);
2598
2599	kva_free(base, size);
2600}
2601
2602void
2603moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2604{
2605	struct pvo_entry *pvo;
2606	vm_offset_t lim;
2607	vm_paddr_t pa;
2608	vm_size_t len;
2609
2610	PMAP_LOCK(pm);
2611	while (sz > 0) {
2612		lim = round_page(va);
2613		len = MIN(lim - va, sz);
2614		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2615		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2616			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2617			    (va & ADDR_POFF);
2618			moea64_syncicache(mmu, pm, va, pa, len);
2619		}
2620		va += len;
2621		sz -= len;
2622	}
2623	PMAP_UNLOCK(pm);
2624}
2625
2626void
2627moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2628{
2629
2630	*va = (void *)pa;
2631}
2632
2633extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2634
2635void
2636moea64_scan_init(mmu_t mmu)
2637{
2638	struct pvo_entry *pvo;
2639	vm_offset_t va;
2640	int i;
2641
2642	if (!do_minidump) {
2643		/* Initialize phys. segments for dumpsys(). */
2644		memset(&dump_map, 0, sizeof(dump_map));
2645		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2646		for (i = 0; i < pregions_sz; i++) {
2647			dump_map[i].pa_start = pregions[i].mr_start;
2648			dump_map[i].pa_size = pregions[i].mr_size;
2649		}
2650		return;
2651	}
2652
2653	/* Virtual segments for minidumps: */
2654	memset(&dump_map, 0, sizeof(dump_map));
2655
2656	/* 1st: kernel .data and .bss. */
2657	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2658	dump_map[0].pa_size = round_page((uintptr_t)_end) - dump_map[0].pa_start;
2659
2660	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2661	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2662	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2663
2664	/* 3rd: kernel VM. */
2665	va = dump_map[1].pa_start + dump_map[1].pa_size;
2666	/* Find start of next chunk (from va). */
2667	while (va < virtual_end) {
2668		/* Don't dump the buffer cache. */
2669		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2670			va = kmi.buffer_eva;
2671			continue;
2672		}
2673		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2674		if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2675			break;
2676		va += PAGE_SIZE;
2677	}
2678	if (va < virtual_end) {
2679		dump_map[2].pa_start = va;
2680		va += PAGE_SIZE;
2681		/* Find last page in chunk. */
2682		while (va < virtual_end) {
2683			/* Don't run into the buffer cache. */
2684			if (va == kmi.buffer_sva)
2685				break;
2686			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2687			if (pvo == NULL ||
2688			    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2689				break;
2690			va += PAGE_SIZE;
2691		}
2692		dump_map[2].pa_size = va - dump_map[2].pa_start;
2693	}
2694}
2695