mmu_oea64.c revision 276515
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29/*-
30 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31 * Copyright (C) 1995, 1996 TooLs GmbH.
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 *    must display the following acknowledgement:
44 *	This product includes software developed by TooLs GmbH.
45 * 4. The name of TooLs GmbH may not be used to endorse or promote products
46 *    derived from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58 *
59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60 */
61/*-
62 * Copyright (C) 2001 Benno Rice.
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 *    notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 *    notice, this list of conditions and the following disclaimer in the
72 *    documentation and/or other materials provided with the distribution.
73 *
74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 276515 2015-01-01 22:26:12Z nwhitehorn $");
88
89/*
90 * Manages physical address maps.
91 *
92 * Since the information managed by this module is also stored by the
93 * logical address mapping module, this module may throw away valid virtual
94 * to physical mappings at almost any time.  However, invalidations of
95 * mappings must be done as requested.
96 *
97 * In order to cope with hardware architectures which make virtual to
98 * physical map invalidates expensive, this module may delay invalidate
99 * reduced protection operations until such time as they are actually
100 * necessary.  This module is given full information as to which processors
101 * are currently using which maps, and to when physical maps must be made
102 * correct.
103 */
104
105#include "opt_compat.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/kernel.h>
110#include <sys/queue.h>
111#include <sys/cpuset.h>
112#include <sys/ktr.h>
113#include <sys/lock.h>
114#include <sys/msgbuf.h>
115#include <sys/malloc.h>
116#include <sys/mutex.h>
117#include <sys/proc.h>
118#include <sys/rwlock.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#include <sys/systm.h>
122#include <sys/vmmeter.h>
123
124#include <sys/kdb.h>
125
126#include <dev/ofw/openfirm.h>
127
128#include <vm/vm.h>
129#include <vm/vm_param.h>
130#include <vm/vm_kern.h>
131#include <vm/vm_page.h>
132#include <vm/vm_map.h>
133#include <vm/vm_object.h>
134#include <vm/vm_extern.h>
135#include <vm/vm_pageout.h>
136#include <vm/uma.h>
137
138#include <machine/_inttypes.h>
139#include <machine/cpu.h>
140#include <machine/platform.h>
141#include <machine/frame.h>
142#include <machine/md_var.h>
143#include <machine/psl.h>
144#include <machine/bat.h>
145#include <machine/hid.h>
146#include <machine/pte.h>
147#include <machine/sr.h>
148#include <machine/trap.h>
149#include <machine/mmuvar.h>
150
151#include "mmu_oea64.h"
152#include "mmu_if.h"
153#include "moea64_if.h"
154
155void moea64_release_vsid(uint64_t vsid);
156uintptr_t moea64_get_unique_vsid(void);
157
158#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
159#define ENABLE_TRANS(msr)	mtmsr(msr)
160
161#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163#define	VSID_HASH_MASK		0x0000007fffffffffULL
164
165/*
166 * Locking semantics:
167 * -- Read lock: if no modifications are being made to either the PVO lists
168 *    or page table or if any modifications being made result in internal
169 *    changes (e.g. wiring, protection) such that the existence of the PVOs
170 *    is unchanged and they remain associated with the same pmap (in which
171 *    case the changes should be protected by the pmap lock)
172 * -- Write lock: required if PTEs/PVOs are being inserted or removed.
173 */
174
175#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
176#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
177#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
178#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
179
180struct ofw_map {
181	cell_t	om_va;
182	cell_t	om_len;
183	uint64_t om_pa;
184	cell_t	om_mode;
185};
186
187extern unsigned char _etext[];
188extern unsigned char _end[];
189
190extern int dumpsys_minidump;
191extern int ofw_real_mode;
192
193/*
194 * Map of physical memory regions.
195 */
196static struct	mem_region *regions;
197static struct	mem_region *pregions;
198static u_int	phys_avail_count;
199static int	regions_sz, pregions_sz;
200
201extern void bs_remap_earlyboot(void);
202
203/*
204 * Lock for the pteg and pvo tables.
205 */
206struct rwlock	moea64_table_lock;
207struct mtx	moea64_slb_mutex;
208
209/*
210 * PTEG data.
211 */
212u_int		moea64_pteg_count;
213u_int		moea64_pteg_mask;
214
215/*
216 * PVO data.
217 */
218struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
219
220uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
221uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
222
223#define	BPVO_POOL_SIZE	327680
224static struct	pvo_entry *moea64_bpvo_pool;
225static int	moea64_bpvo_pool_index = 0;
226
227#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
228#ifdef __powerpc64__
229#define	NVSIDS		(NPMAPS * 16)
230#define VSID_HASHMASK	0xffffffffUL
231#else
232#define NVSIDS		NPMAPS
233#define VSID_HASHMASK	0xfffffUL
234#endif
235static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
236
237static boolean_t moea64_initialized = FALSE;
238
239/*
240 * Statistics.
241 */
242u_int	moea64_pte_valid = 0;
243u_int	moea64_pte_overflow = 0;
244u_int	moea64_pvo_entries = 0;
245u_int	moea64_pvo_enter_calls = 0;
246u_int	moea64_pvo_remove_calls = 0;
247SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
248    &moea64_pte_valid, 0, "");
249SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
250    &moea64_pte_overflow, 0, "");
251SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
252    &moea64_pvo_entries, 0, "");
253SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
254    &moea64_pvo_enter_calls, 0, "");
255SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
256    &moea64_pvo_remove_calls, 0, "");
257
258vm_offset_t	moea64_scratchpage_va[2];
259struct pvo_entry *moea64_scratchpage_pvo[2];
260uintptr_t	moea64_scratchpage_pte[2];
261struct	mtx	moea64_scratchpage_mtx;
262
263uint64_t 	moea64_large_page_mask = 0;
264uint64_t	moea64_large_page_size = 0;
265int		moea64_large_page_shift = 0;
266
267/*
268 * PVO calls.
269 */
270static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
271		    vm_offset_t, vm_offset_t, uint64_t, int, int8_t);
272static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
273static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
274
275/*
276 * Utility routines.
277 */
278static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
279static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
280static void		moea64_kremove(mmu_t, vm_offset_t);
281static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
282			    vm_offset_t pa, vm_size_t sz);
283
284/*
285 * Kernel MMU interface
286 */
287void moea64_clear_modify(mmu_t, vm_page_t);
288void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
289void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
290    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
291int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
292    u_int flags, int8_t psind);
293void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
294    vm_prot_t);
295void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
296vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
297vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
298void moea64_init(mmu_t);
299boolean_t moea64_is_modified(mmu_t, vm_page_t);
300boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
301boolean_t moea64_is_referenced(mmu_t, vm_page_t);
302int moea64_ts_referenced(mmu_t, vm_page_t);
303vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
304boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
305int moea64_page_wired_mappings(mmu_t, vm_page_t);
306void moea64_pinit(mmu_t, pmap_t);
307void moea64_pinit0(mmu_t, pmap_t);
308void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
309void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
310void moea64_qremove(mmu_t, vm_offset_t, int);
311void moea64_release(mmu_t, pmap_t);
312void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
313void moea64_remove_pages(mmu_t, pmap_t);
314void moea64_remove_all(mmu_t, vm_page_t);
315void moea64_remove_write(mmu_t, vm_page_t);
316void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
317void moea64_zero_page(mmu_t, vm_page_t);
318void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
319void moea64_zero_page_idle(mmu_t, vm_page_t);
320void moea64_activate(mmu_t, struct thread *);
321void moea64_deactivate(mmu_t, struct thread *);
322void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
323void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
324void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
325vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
326void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
327void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
328void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
329boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
330static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
331vm_offset_t moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
332    vm_size_t *sz);
333struct pmap_md * moea64_scan_md(mmu_t mmu, struct pmap_md *prev);
334
335static mmu_method_t moea64_methods[] = {
336	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
337	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
338	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
339	MMUMETHOD(mmu_enter,		moea64_enter),
340	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
341	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
342	MMUMETHOD(mmu_extract,		moea64_extract),
343	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
344	MMUMETHOD(mmu_init,		moea64_init),
345	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
346	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
347	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
348	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
349	MMUMETHOD(mmu_map,     		moea64_map),
350	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
351	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
352	MMUMETHOD(mmu_pinit,		moea64_pinit),
353	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
354	MMUMETHOD(mmu_protect,		moea64_protect),
355	MMUMETHOD(mmu_qenter,		moea64_qenter),
356	MMUMETHOD(mmu_qremove,		moea64_qremove),
357	MMUMETHOD(mmu_release,		moea64_release),
358	MMUMETHOD(mmu_remove,		moea64_remove),
359	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
360	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
361	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
362	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
363	MMUMETHOD(mmu_unwire,		moea64_unwire),
364	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
365	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
366	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
367	MMUMETHOD(mmu_activate,		moea64_activate),
368	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
369	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
370
371	/* Internal interfaces */
372	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
373	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
374	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
375	MMUMETHOD(mmu_kextract,		moea64_kextract),
376	MMUMETHOD(mmu_kenter,		moea64_kenter),
377	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
378	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
379	MMUMETHOD(mmu_scan_md,		moea64_scan_md),
380	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
381
382	{ 0, 0 }
383};
384
385MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
386
387static __inline u_int
388va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
389{
390	uint64_t hash;
391	int shift;
392
393	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
394	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
395	    shift);
396	return (hash & moea64_pteg_mask);
397}
398
399static __inline struct pvo_head *
400vm_page_to_pvoh(vm_page_t m)
401{
402
403	return (&m->md.mdpg_pvoh);
404}
405
406static __inline void
407moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
408    uint64_t pte_lo, int flags)
409{
410
411	/*
412	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
413	 * set when the real pte is set in memory.
414	 *
415	 * Note: Don't set the valid bit for correct operation of tlb update.
416	 */
417	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
418	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
419
420	if (flags & PVO_LARGE)
421		pt->pte_hi |= LPTE_BIG;
422
423	pt->pte_lo = pte_lo;
424}
425
426static __inline uint64_t
427moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
428{
429	uint64_t pte_lo;
430	int i;
431
432	if (ma != VM_MEMATTR_DEFAULT) {
433		switch (ma) {
434		case VM_MEMATTR_UNCACHEABLE:
435			return (LPTE_I | LPTE_G);
436		case VM_MEMATTR_WRITE_COMBINING:
437		case VM_MEMATTR_WRITE_BACK:
438		case VM_MEMATTR_PREFETCHABLE:
439			return (LPTE_I);
440		case VM_MEMATTR_WRITE_THROUGH:
441			return (LPTE_W | LPTE_M);
442		}
443	}
444
445	/*
446	 * Assume the page is cache inhibited and access is guarded unless
447	 * it's in our available memory array.
448	 */
449	pte_lo = LPTE_I | LPTE_G;
450	for (i = 0; i < pregions_sz; i++) {
451		if ((pa >= pregions[i].mr_start) &&
452		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
453			pte_lo &= ~(LPTE_I | LPTE_G);
454			pte_lo |= LPTE_M;
455			break;
456		}
457	}
458
459	return pte_lo;
460}
461
462/*
463 * Quick sort callout for comparing memory regions.
464 */
465static int	om_cmp(const void *a, const void *b);
466
467static int
468om_cmp(const void *a, const void *b)
469{
470	const struct	ofw_map *mapa;
471	const struct	ofw_map *mapb;
472
473	mapa = a;
474	mapb = b;
475	if (mapa->om_pa < mapb->om_pa)
476		return (-1);
477	else if (mapa->om_pa > mapb->om_pa)
478		return (1);
479	else
480		return (0);
481}
482
483static void
484moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
485{
486	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
487	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
488	register_t	msr;
489	vm_offset_t	off;
490	vm_paddr_t	pa_base;
491	int		i, j;
492
493	bzero(translations, sz);
494	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
495	    sizeof(acells));
496	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
497		panic("moea64_bootstrap: can't get ofw translations");
498
499	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
500	sz /= sizeof(cell_t);
501	for (i = 0, j = 0; i < sz; j++) {
502		translations[j].om_va = trans_cells[i++];
503		translations[j].om_len = trans_cells[i++];
504		translations[j].om_pa = trans_cells[i++];
505		if (acells == 2) {
506			translations[j].om_pa <<= 32;
507			translations[j].om_pa |= trans_cells[i++];
508		}
509		translations[j].om_mode = trans_cells[i++];
510	}
511	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
512	    i, sz));
513
514	sz = j;
515	qsort(translations, sz, sizeof (*translations), om_cmp);
516
517	for (i = 0; i < sz; i++) {
518		pa_base = translations[i].om_pa;
519	      #ifndef __powerpc64__
520		if ((translations[i].om_pa >> 32) != 0)
521			panic("OFW translations above 32-bit boundary!");
522	      #endif
523
524		if (pa_base % PAGE_SIZE)
525			panic("OFW translation not page-aligned (phys)!");
526		if (translations[i].om_va % PAGE_SIZE)
527			panic("OFW translation not page-aligned (virt)!");
528
529		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
530		    pa_base, translations[i].om_va, translations[i].om_len);
531
532		/* Now enter the pages for this mapping */
533
534		DISABLE_TRANS(msr);
535		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
536			if (moea64_pvo_find_va(kernel_pmap,
537			    translations[i].om_va + off) != NULL)
538				continue;
539
540			moea64_kenter(mmup, translations[i].om_va + off,
541			    pa_base + off);
542		}
543		ENABLE_TRANS(msr);
544	}
545}
546
547#ifdef __powerpc64__
548static void
549moea64_probe_large_page(void)
550{
551	uint16_t pvr = mfpvr() >> 16;
552
553	switch (pvr) {
554	case IBM970:
555	case IBM970FX:
556	case IBM970MP:
557		powerpc_sync(); isync();
558		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
559		powerpc_sync(); isync();
560
561		/* FALLTHROUGH */
562	default:
563		moea64_large_page_size = 0x1000000; /* 16 MB */
564		moea64_large_page_shift = 24;
565	}
566
567	moea64_large_page_mask = moea64_large_page_size - 1;
568}
569
570static void
571moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
572{
573	struct slb *cache;
574	struct slb entry;
575	uint64_t esid, slbe;
576	uint64_t i;
577
578	cache = PCPU_GET(slb);
579	esid = va >> ADDR_SR_SHFT;
580	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
581
582	for (i = 0; i < 64; i++) {
583		if (cache[i].slbe == (slbe | i))
584			return;
585	}
586
587	entry.slbe = slbe;
588	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
589	if (large)
590		entry.slbv |= SLBV_L;
591
592	slb_insert_kernel(entry.slbe, entry.slbv);
593}
594#endif
595
596static void
597moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
598    vm_offset_t kernelend)
599{
600	register_t msr;
601	vm_paddr_t pa;
602	vm_offset_t size, off;
603	uint64_t pte_lo;
604	int i;
605
606	if (moea64_large_page_size == 0)
607		hw_direct_map = 0;
608
609	DISABLE_TRANS(msr);
610	if (hw_direct_map) {
611		LOCK_TABLE_WR();
612		PMAP_LOCK(kernel_pmap);
613		for (i = 0; i < pregions_sz; i++) {
614		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
615		     pregions[i].mr_size; pa += moea64_large_page_size) {
616			pte_lo = LPTE_M;
617
618			/*
619			 * Set memory access as guarded if prefetch within
620			 * the page could exit the available physmem area.
621			 */
622			if (pa & moea64_large_page_mask) {
623				pa &= moea64_large_page_mask;
624				pte_lo |= LPTE_G;
625			}
626			if (pa + moea64_large_page_size >
627			    pregions[i].mr_start + pregions[i].mr_size)
628				pte_lo |= LPTE_G;
629
630			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
631				    NULL, pa, pa, pte_lo,
632				    PVO_WIRED | PVO_LARGE, 0);
633		  }
634		}
635		PMAP_UNLOCK(kernel_pmap);
636		UNLOCK_TABLE_WR();
637	} else {
638		size = sizeof(struct pvo_head) * moea64_pteg_count;
639		off = (vm_offset_t)(moea64_pvo_table);
640		for (pa = off; pa < off + size; pa += PAGE_SIZE)
641			moea64_kenter(mmup, pa, pa);
642		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
643		off = (vm_offset_t)(moea64_bpvo_pool);
644		for (pa = off; pa < off + size; pa += PAGE_SIZE)
645		moea64_kenter(mmup, pa, pa);
646
647		/*
648		 * Map certain important things, like ourselves.
649		 *
650		 * NOTE: We do not map the exception vector space. That code is
651		 * used only in real mode, and leaving it unmapped allows us to
652		 * catch NULL pointer deferences, instead of making NULL a valid
653		 * address.
654		 */
655
656		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
657		    pa += PAGE_SIZE)
658			moea64_kenter(mmup, pa, pa);
659	}
660	ENABLE_TRANS(msr);
661
662	/*
663	 * Allow user to override unmapped_buf_allowed for testing.
664	 * XXXKIB Only direct map implementation was tested.
665	 */
666	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
667	    &unmapped_buf_allowed))
668		unmapped_buf_allowed = hw_direct_map;
669}
670
671void
672moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
673{
674	int		i, j;
675	vm_size_t	physsz, hwphyssz;
676
677#ifndef __powerpc64__
678	/* We don't have a direct map since there is no BAT */
679	hw_direct_map = 0;
680
681	/* Make sure battable is zero, since we have no BAT */
682	for (i = 0; i < 16; i++) {
683		battable[i].batu = 0;
684		battable[i].batl = 0;
685	}
686#else
687	moea64_probe_large_page();
688
689	/* Use a direct map if we have large page support */
690	if (moea64_large_page_size > 0)
691		hw_direct_map = 1;
692	else
693		hw_direct_map = 0;
694#endif
695
696	/* Get physical memory regions from firmware */
697	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
698	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
699
700	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
701		panic("moea64_bootstrap: phys_avail too small");
702
703	phys_avail_count = 0;
704	physsz = 0;
705	hwphyssz = 0;
706	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
707	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
708		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
709		    regions[i].mr_start, regions[i].mr_start +
710		    regions[i].mr_size, regions[i].mr_size);
711		if (hwphyssz != 0 &&
712		    (physsz + regions[i].mr_size) >= hwphyssz) {
713			if (physsz < hwphyssz) {
714				phys_avail[j] = regions[i].mr_start;
715				phys_avail[j + 1] = regions[i].mr_start +
716				    hwphyssz - physsz;
717				physsz = hwphyssz;
718				phys_avail_count++;
719			}
720			break;
721		}
722		phys_avail[j] = regions[i].mr_start;
723		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
724		phys_avail_count++;
725		physsz += regions[i].mr_size;
726	}
727
728	/* Check for overlap with the kernel and exception vectors */
729	for (j = 0; j < 2*phys_avail_count; j+=2) {
730		if (phys_avail[j] < EXC_LAST)
731			phys_avail[j] += EXC_LAST;
732
733		if (kernelstart >= phys_avail[j] &&
734		    kernelstart < phys_avail[j+1]) {
735			if (kernelend < phys_avail[j+1]) {
736				phys_avail[2*phys_avail_count] =
737				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
738				phys_avail[2*phys_avail_count + 1] =
739				    phys_avail[j+1];
740				phys_avail_count++;
741			}
742
743			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
744		}
745
746		if (kernelend >= phys_avail[j] &&
747		    kernelend < phys_avail[j+1]) {
748			if (kernelstart > phys_avail[j]) {
749				phys_avail[2*phys_avail_count] = phys_avail[j];
750				phys_avail[2*phys_avail_count + 1] =
751				    kernelstart & ~PAGE_MASK;
752				phys_avail_count++;
753			}
754
755			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
756		}
757	}
758
759	physmem = btoc(physsz);
760
761#ifdef PTEGCOUNT
762	moea64_pteg_count = PTEGCOUNT;
763#else
764	moea64_pteg_count = 0x1000;
765
766	while (moea64_pteg_count < physmem)
767		moea64_pteg_count <<= 1;
768
769	moea64_pteg_count >>= 1;
770#endif /* PTEGCOUNT */
771}
772
773void
774moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
775{
776	vm_size_t	size;
777	register_t	msr;
778	int		i;
779
780	/*
781	 * Set PTEG mask
782	 */
783	moea64_pteg_mask = moea64_pteg_count - 1;
784
785	/*
786	 * Allocate pv/overflow lists.
787	 */
788	size = sizeof(struct pvo_head) * moea64_pteg_count;
789
790	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
791	    PAGE_SIZE);
792	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
793
794	DISABLE_TRANS(msr);
795	for (i = 0; i < moea64_pteg_count; i++)
796		LIST_INIT(&moea64_pvo_table[i]);
797	ENABLE_TRANS(msr);
798
799	/*
800	 * Initialize the lock that synchronizes access to the pteg and pvo
801	 * tables.
802	 */
803	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
804	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
805
806	/*
807	 * Initialise the unmanaged pvo pool.
808	 */
809	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
810		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
811	moea64_bpvo_pool_index = 0;
812
813	/*
814	 * Make sure kernel vsid is allocated as well as VSID 0.
815	 */
816	#ifndef __powerpc64__
817	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
818		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
819	moea64_vsid_bitmap[0] |= 1;
820	#endif
821
822	/*
823	 * Initialize the kernel pmap (which is statically allocated).
824	 */
825	#ifdef __powerpc64__
826	for (i = 0; i < 64; i++) {
827		pcpup->pc_slb[i].slbv = 0;
828		pcpup->pc_slb[i].slbe = 0;
829	}
830	#else
831	for (i = 0; i < 16; i++)
832		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
833	#endif
834
835	kernel_pmap->pmap_phys = kernel_pmap;
836	CPU_FILL(&kernel_pmap->pm_active);
837	RB_INIT(&kernel_pmap->pmap_pvo);
838
839	PMAP_LOCK_INIT(kernel_pmap);
840
841	/*
842	 * Now map in all the other buffers we allocated earlier
843	 */
844
845	moea64_setup_direct_map(mmup, kernelstart, kernelend);
846}
847
848void
849moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
850{
851	ihandle_t	mmui;
852	phandle_t	chosen;
853	phandle_t	mmu;
854	ssize_t		sz;
855	int		i;
856	vm_offset_t	pa, va;
857	void		*dpcpu;
858
859	/*
860	 * Set up the Open Firmware pmap and add its mappings if not in real
861	 * mode.
862	 */
863
864	chosen = OF_finddevice("/chosen");
865	if (!ofw_real_mode && chosen != -1 &&
866	    OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
867		mmu = OF_instance_to_package(mmui);
868		if (mmu == -1 ||
869		    (sz = OF_getproplen(mmu, "translations")) == -1)
870			sz = 0;
871		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
872			panic("moea64_bootstrap: too many ofw translations");
873
874		if (sz > 0)
875			moea64_add_ofw_mappings(mmup, mmu, sz);
876	}
877
878	/*
879	 * Calculate the last available physical address.
880	 */
881	for (i = 0; phys_avail[i + 2] != 0; i += 2)
882		;
883	Maxmem = powerpc_btop(phys_avail[i + 1]);
884
885	/*
886	 * Initialize MMU and remap early physical mappings
887	 */
888	MMU_CPU_BOOTSTRAP(mmup,0);
889	mtmsr(mfmsr() | PSL_DR | PSL_IR);
890	pmap_bootstrapped++;
891	bs_remap_earlyboot();
892
893	/*
894	 * Set the start and end of kva.
895	 */
896	virtual_avail = VM_MIN_KERNEL_ADDRESS;
897	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
898
899	/*
900	 * Map the entire KVA range into the SLB. We must not fault there.
901	 */
902	#ifdef __powerpc64__
903	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
904		moea64_bootstrap_slb_prefault(va, 0);
905	#endif
906
907	/*
908	 * Figure out how far we can extend virtual_end into segment 16
909	 * without running into existing mappings. Segment 16 is guaranteed
910	 * to contain neither RAM nor devices (at least on Apple hardware),
911	 * but will generally contain some OFW mappings we should not
912	 * step on.
913	 */
914
915	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
916	PMAP_LOCK(kernel_pmap);
917	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
918	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
919		virtual_end += PAGE_SIZE;
920	PMAP_UNLOCK(kernel_pmap);
921	#endif
922
923	/*
924	 * Allocate a kernel stack with a guard page for thread0 and map it
925	 * into the kernel page map.
926	 */
927	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
928	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
929	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
930	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
931	thread0.td_kstack = va;
932	thread0.td_kstack_pages = KSTACK_PAGES;
933	for (i = 0; i < KSTACK_PAGES; i++) {
934		moea64_kenter(mmup, va, pa);
935		pa += PAGE_SIZE;
936		va += PAGE_SIZE;
937	}
938
939	/*
940	 * Allocate virtual address space for the message buffer.
941	 */
942	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
943	msgbufp = (struct msgbuf *)virtual_avail;
944	va = virtual_avail;
945	virtual_avail += round_page(msgbufsize);
946	while (va < virtual_avail) {
947		moea64_kenter(mmup, va, pa);
948		pa += PAGE_SIZE;
949		va += PAGE_SIZE;
950	}
951
952	/*
953	 * Allocate virtual address space for the dynamic percpu area.
954	 */
955	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
956	dpcpu = (void *)virtual_avail;
957	va = virtual_avail;
958	virtual_avail += DPCPU_SIZE;
959	while (va < virtual_avail) {
960		moea64_kenter(mmup, va, pa);
961		pa += PAGE_SIZE;
962		va += PAGE_SIZE;
963	}
964	dpcpu_init(dpcpu, 0);
965
966	/*
967	 * Allocate some things for page zeroing. We put this directly
968	 * in the page table, marked with LPTE_LOCKED, to avoid any
969	 * of the PVO book-keeping or other parts of the VM system
970	 * from even knowing that this hack exists.
971	 */
972
973	if (!hw_direct_map) {
974		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
975		    MTX_DEF);
976		for (i = 0; i < 2; i++) {
977			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
978			virtual_end -= PAGE_SIZE;
979
980			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
981
982			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
983			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
984			LOCK_TABLE_RD();
985			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
986			    mmup, moea64_scratchpage_pvo[i]);
987			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
988			    |= LPTE_LOCKED;
989			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
990			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
991			    moea64_scratchpage_pvo[i]->pvo_vpn);
992			UNLOCK_TABLE_RD();
993		}
994	}
995}
996
997/*
998 * Activate a user pmap.  The pmap must be activated before its address
999 * space can be accessed in any way.
1000 */
1001void
1002moea64_activate(mmu_t mmu, struct thread *td)
1003{
1004	pmap_t	pm;
1005
1006	pm = &td->td_proc->p_vmspace->vm_pmap;
1007	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1008
1009	#ifdef __powerpc64__
1010	PCPU_SET(userslb, pm->pm_slb);
1011	#else
1012	PCPU_SET(curpmap, pm->pmap_phys);
1013	#endif
1014}
1015
1016void
1017moea64_deactivate(mmu_t mmu, struct thread *td)
1018{
1019	pmap_t	pm;
1020
1021	pm = &td->td_proc->p_vmspace->vm_pmap;
1022	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1023	#ifdef __powerpc64__
1024	PCPU_SET(userslb, NULL);
1025	#else
1026	PCPU_SET(curpmap, NULL);
1027	#endif
1028}
1029
1030void
1031moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1032{
1033	struct	pvo_entry key, *pvo;
1034	uintptr_t pt;
1035
1036	LOCK_TABLE_RD();
1037	PMAP_LOCK(pm);
1038	key.pvo_vaddr = sva;
1039	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1040	    pvo != NULL && PVO_VADDR(pvo) < eva;
1041	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1042		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1043		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1044			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1045			    pvo);
1046		pvo->pvo_vaddr &= ~PVO_WIRED;
1047		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_WIRED) == 0)
1048			panic("moea64_unwire: pte %p is missing LPTE_WIRED",
1049			    &pvo->pvo_pte.lpte);
1050		pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1051		if (pt != -1) {
1052			/*
1053			 * The PTE's wired attribute is not a hardware
1054			 * feature, so there is no need to invalidate any TLB
1055			 * entries.
1056			 */
1057			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1058			    pvo->pvo_vpn);
1059		}
1060		pm->pm_stats.wired_count--;
1061	}
1062	UNLOCK_TABLE_RD();
1063	PMAP_UNLOCK(pm);
1064}
1065
1066/*
1067 * This goes through and sets the physical address of our
1068 * special scratch PTE to the PA we want to zero or copy. Because
1069 * of locking issues (this can get called in pvo_enter() by
1070 * the UMA allocator), we can't use most other utility functions here
1071 */
1072
1073static __inline
1074void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1075
1076	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1077	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1078
1079	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1080	    ~(LPTE_WIMG | LPTE_RPGN);
1081	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1082	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1083	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1084	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1085	    moea64_scratchpage_pvo[which]->pvo_vpn);
1086	isync();
1087}
1088
1089void
1090moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1091{
1092	vm_offset_t	dst;
1093	vm_offset_t	src;
1094
1095	dst = VM_PAGE_TO_PHYS(mdst);
1096	src = VM_PAGE_TO_PHYS(msrc);
1097
1098	if (hw_direct_map) {
1099		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1100	} else {
1101		mtx_lock(&moea64_scratchpage_mtx);
1102
1103		moea64_set_scratchpage_pa(mmu, 0, src);
1104		moea64_set_scratchpage_pa(mmu, 1, dst);
1105
1106		bcopy((void *)moea64_scratchpage_va[0],
1107		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1108
1109		mtx_unlock(&moea64_scratchpage_mtx);
1110	}
1111}
1112
1113static inline void
1114moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1115    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1116{
1117	void *a_cp, *b_cp;
1118	vm_offset_t a_pg_offset, b_pg_offset;
1119	int cnt;
1120
1121	while (xfersize > 0) {
1122		a_pg_offset = a_offset & PAGE_MASK;
1123		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1124		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1125		    a_pg_offset;
1126		b_pg_offset = b_offset & PAGE_MASK;
1127		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1128		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1129		    b_pg_offset;
1130		bcopy(a_cp, b_cp, cnt);
1131		a_offset += cnt;
1132		b_offset += cnt;
1133		xfersize -= cnt;
1134	}
1135}
1136
1137static inline void
1138moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1139    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1140{
1141	void *a_cp, *b_cp;
1142	vm_offset_t a_pg_offset, b_pg_offset;
1143	int cnt;
1144
1145	mtx_lock(&moea64_scratchpage_mtx);
1146	while (xfersize > 0) {
1147		a_pg_offset = a_offset & PAGE_MASK;
1148		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1149		moea64_set_scratchpage_pa(mmu, 0,
1150		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1151		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1152		b_pg_offset = b_offset & PAGE_MASK;
1153		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1154		moea64_set_scratchpage_pa(mmu, 1,
1155		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1156		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1157		bcopy(a_cp, b_cp, cnt);
1158		a_offset += cnt;
1159		b_offset += cnt;
1160		xfersize -= cnt;
1161	}
1162	mtx_unlock(&moea64_scratchpage_mtx);
1163}
1164
1165void
1166moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1167    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1168{
1169
1170	if (hw_direct_map) {
1171		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1172		    xfersize);
1173	} else {
1174		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1175		    xfersize);
1176	}
1177}
1178
1179void
1180moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1181{
1182	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1183
1184	if (size + off > PAGE_SIZE)
1185		panic("moea64_zero_page: size + off > PAGE_SIZE");
1186
1187	if (hw_direct_map) {
1188		bzero((caddr_t)pa + off, size);
1189	} else {
1190		mtx_lock(&moea64_scratchpage_mtx);
1191		moea64_set_scratchpage_pa(mmu, 0, pa);
1192		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1193		mtx_unlock(&moea64_scratchpage_mtx);
1194	}
1195}
1196
1197/*
1198 * Zero a page of physical memory by temporarily mapping it
1199 */
1200void
1201moea64_zero_page(mmu_t mmu, vm_page_t m)
1202{
1203	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1204	vm_offset_t va, off;
1205
1206	if (!hw_direct_map) {
1207		mtx_lock(&moea64_scratchpage_mtx);
1208
1209		moea64_set_scratchpage_pa(mmu, 0, pa);
1210		va = moea64_scratchpage_va[0];
1211	} else {
1212		va = pa;
1213	}
1214
1215	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1216		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1217
1218	if (!hw_direct_map)
1219		mtx_unlock(&moea64_scratchpage_mtx);
1220}
1221
1222void
1223moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1224{
1225
1226	moea64_zero_page(mmu, m);
1227}
1228
1229/*
1230 * Map the given physical page at the specified virtual address in the
1231 * target pmap with the protection requested.  If specified the page
1232 * will be wired down.
1233 */
1234
1235int
1236moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1237    vm_prot_t prot, u_int flags, int8_t psind)
1238{
1239	struct		pvo_head *pvo_head;
1240	uma_zone_t	zone;
1241	uint64_t	pte_lo;
1242	u_int		pvo_flags;
1243	int		error;
1244
1245	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1246		VM_OBJECT_ASSERT_LOCKED(m->object);
1247
1248	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1249		pvo_head = NULL;
1250		zone = moea64_upvo_zone;
1251		pvo_flags = 0;
1252	} else {
1253		pvo_head = vm_page_to_pvoh(m);
1254		zone = moea64_mpvo_zone;
1255		pvo_flags = PVO_MANAGED;
1256	}
1257
1258	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1259
1260	if (prot & VM_PROT_WRITE) {
1261		pte_lo |= LPTE_BW;
1262		if (pmap_bootstrapped &&
1263		    (m->oflags & VPO_UNMANAGED) == 0)
1264			vm_page_aflag_set(m, PGA_WRITEABLE);
1265	} else
1266		pte_lo |= LPTE_BR;
1267
1268	if ((prot & VM_PROT_EXECUTE) == 0)
1269		pte_lo |= LPTE_NOEXEC;
1270
1271	if ((flags & PMAP_ENTER_WIRED) != 0)
1272		pvo_flags |= PVO_WIRED;
1273
1274	for (;;) {
1275		LOCK_TABLE_WR();
1276		PMAP_LOCK(pmap);
1277		error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1278		    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags, psind);
1279		PMAP_UNLOCK(pmap);
1280		UNLOCK_TABLE_WR();
1281		if (error != ENOMEM)
1282			break;
1283		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1284			return (KERN_RESOURCE_SHORTAGE);
1285		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1286		VM_WAIT;
1287	}
1288
1289	/*
1290	 * Flush the page from the instruction cache if this page is
1291	 * mapped executable and cacheable.
1292	 */
1293	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1294	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1295		vm_page_aflag_set(m, PGA_EXECUTABLE);
1296		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1297	}
1298	return (KERN_SUCCESS);
1299}
1300
1301static void
1302moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1303    vm_size_t sz)
1304{
1305
1306	/*
1307	 * This is much trickier than on older systems because
1308	 * we can't sync the icache on physical addresses directly
1309	 * without a direct map. Instead we check a couple of cases
1310	 * where the memory is already mapped in and, failing that,
1311	 * use the same trick we use for page zeroing to create
1312	 * a temporary mapping for this physical address.
1313	 */
1314
1315	if (!pmap_bootstrapped) {
1316		/*
1317		 * If PMAP is not bootstrapped, we are likely to be
1318		 * in real mode.
1319		 */
1320		__syncicache((void *)pa, sz);
1321	} else if (pmap == kernel_pmap) {
1322		__syncicache((void *)va, sz);
1323	} else if (hw_direct_map) {
1324		__syncicache((void *)pa, sz);
1325	} else {
1326		/* Use the scratch page to set up a temp mapping */
1327
1328		mtx_lock(&moea64_scratchpage_mtx);
1329
1330		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1331		__syncicache((void *)(moea64_scratchpage_va[1] +
1332		    (va & ADDR_POFF)), sz);
1333
1334		mtx_unlock(&moea64_scratchpage_mtx);
1335	}
1336}
1337
1338/*
1339 * Maps a sequence of resident pages belonging to the same object.
1340 * The sequence begins with the given page m_start.  This page is
1341 * mapped at the given virtual address start.  Each subsequent page is
1342 * mapped at a virtual address that is offset from start by the same
1343 * amount as the page is offset from m_start within the object.  The
1344 * last page in the sequence is the page with the largest offset from
1345 * m_start that can be mapped at a virtual address less than the given
1346 * virtual address end.  Not every virtual page between start and end
1347 * is mapped; only those for which a resident page exists with the
1348 * corresponding offset from m_start are mapped.
1349 */
1350void
1351moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1352    vm_page_t m_start, vm_prot_t prot)
1353{
1354	vm_page_t m;
1355	vm_pindex_t diff, psize;
1356
1357	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1358
1359	psize = atop(end - start);
1360	m = m_start;
1361	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1362		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1363		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1364		m = TAILQ_NEXT(m, listq);
1365	}
1366}
1367
1368void
1369moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1370    vm_prot_t prot)
1371{
1372
1373	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1374	    PMAP_ENTER_NOSLEEP, 0);
1375}
1376
1377vm_paddr_t
1378moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1379{
1380	struct	pvo_entry *pvo;
1381	vm_paddr_t pa;
1382
1383	PMAP_LOCK(pm);
1384	pvo = moea64_pvo_find_va(pm, va);
1385	if (pvo == NULL)
1386		pa = 0;
1387	else
1388		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1389		    (va - PVO_VADDR(pvo));
1390	PMAP_UNLOCK(pm);
1391	return (pa);
1392}
1393
1394/*
1395 * Atomically extract and hold the physical page with the given
1396 * pmap and virtual address pair if that mapping permits the given
1397 * protection.
1398 */
1399vm_page_t
1400moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1401{
1402	struct	pvo_entry *pvo;
1403	vm_page_t m;
1404        vm_paddr_t pa;
1405
1406	m = NULL;
1407	pa = 0;
1408	PMAP_LOCK(pmap);
1409retry:
1410	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1411	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1412	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1413	     (prot & VM_PROT_WRITE) == 0)) {
1414		if (vm_page_pa_tryrelock(pmap,
1415			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1416			goto retry;
1417		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1418		vm_page_hold(m);
1419	}
1420	PA_UNLOCK_COND(pa);
1421	PMAP_UNLOCK(pmap);
1422	return (m);
1423}
1424
1425static mmu_t installed_mmu;
1426
1427static void *
1428moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1429{
1430	/*
1431	 * This entire routine is a horrible hack to avoid bothering kmem
1432	 * for new KVA addresses. Because this can get called from inside
1433	 * kmem allocation routines, calling kmem for a new address here
1434	 * can lead to multiply locking non-recursive mutexes.
1435	 */
1436        vm_offset_t va;
1437
1438        vm_page_t m;
1439        int pflags, needed_lock;
1440
1441	*flags = UMA_SLAB_PRIV;
1442	needed_lock = !PMAP_LOCKED(kernel_pmap);
1443	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1444
1445        for (;;) {
1446                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1447                if (m == NULL) {
1448                        if (wait & M_NOWAIT)
1449                                return (NULL);
1450                        VM_WAIT;
1451                } else
1452                        break;
1453        }
1454
1455	va = VM_PAGE_TO_PHYS(m);
1456
1457	LOCK_TABLE_WR();
1458	if (needed_lock)
1459		PMAP_LOCK(kernel_pmap);
1460
1461	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1462	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP,
1463	    0);
1464
1465	if (needed_lock)
1466		PMAP_UNLOCK(kernel_pmap);
1467	UNLOCK_TABLE_WR();
1468
1469	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1470                bzero((void *)va, PAGE_SIZE);
1471
1472	return (void *)va;
1473}
1474
1475extern int elf32_nxstack;
1476
1477void
1478moea64_init(mmu_t mmu)
1479{
1480
1481	CTR0(KTR_PMAP, "moea64_init");
1482
1483	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1484	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1485	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1486	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1487	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1488	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1489
1490	if (!hw_direct_map) {
1491		installed_mmu = mmu;
1492		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1493		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1494	}
1495
1496#ifdef COMPAT_FREEBSD32
1497	elf32_nxstack = 1;
1498#endif
1499
1500	moea64_initialized = TRUE;
1501}
1502
1503boolean_t
1504moea64_is_referenced(mmu_t mmu, vm_page_t m)
1505{
1506
1507	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1508	    ("moea64_is_referenced: page %p is not managed", m));
1509	return (moea64_query_bit(mmu, m, PTE_REF));
1510}
1511
1512boolean_t
1513moea64_is_modified(mmu_t mmu, vm_page_t m)
1514{
1515
1516	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1517	    ("moea64_is_modified: page %p is not managed", m));
1518
1519	/*
1520	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1521	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1522	 * is clear, no PTEs can have LPTE_CHG set.
1523	 */
1524	VM_OBJECT_ASSERT_LOCKED(m->object);
1525	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1526		return (FALSE);
1527	return (moea64_query_bit(mmu, m, LPTE_CHG));
1528}
1529
1530boolean_t
1531moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1532{
1533	struct pvo_entry *pvo;
1534	boolean_t rv;
1535
1536	PMAP_LOCK(pmap);
1537	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1538	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1539	PMAP_UNLOCK(pmap);
1540	return (rv);
1541}
1542
1543void
1544moea64_clear_modify(mmu_t mmu, vm_page_t m)
1545{
1546
1547	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1548	    ("moea64_clear_modify: page %p is not managed", m));
1549	VM_OBJECT_ASSERT_WLOCKED(m->object);
1550	KASSERT(!vm_page_xbusied(m),
1551	    ("moea64_clear_modify: page %p is exclusive busied", m));
1552
1553	/*
1554	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1555	 * set.  If the object containing the page is locked and the page is
1556	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1557	 */
1558	if ((m->aflags & PGA_WRITEABLE) == 0)
1559		return;
1560	moea64_clear_bit(mmu, m, LPTE_CHG);
1561}
1562
1563/*
1564 * Clear the write and modified bits in each of the given page's mappings.
1565 */
1566void
1567moea64_remove_write(mmu_t mmu, vm_page_t m)
1568{
1569	struct	pvo_entry *pvo;
1570	uintptr_t pt;
1571	pmap_t	pmap;
1572	uint64_t lo = 0;
1573
1574	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1575	    ("moea64_remove_write: page %p is not managed", m));
1576
1577	/*
1578	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1579	 * set by another thread while the object is locked.  Thus,
1580	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1581	 */
1582	VM_OBJECT_ASSERT_WLOCKED(m->object);
1583	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1584		return;
1585	powerpc_sync();
1586	LOCK_TABLE_RD();
1587	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1588		pmap = pvo->pvo_pmap;
1589		PMAP_LOCK(pmap);
1590		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1591			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1592			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1593			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1594			if (pt != -1) {
1595				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1596				lo |= pvo->pvo_pte.lpte.pte_lo;
1597				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1598				MOEA64_PTE_CHANGE(mmu, pt,
1599				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1600				if (pvo->pvo_pmap == kernel_pmap)
1601					isync();
1602			}
1603		}
1604		if ((lo & LPTE_CHG) != 0)
1605			vm_page_dirty(m);
1606		PMAP_UNLOCK(pmap);
1607	}
1608	UNLOCK_TABLE_RD();
1609	vm_page_aflag_clear(m, PGA_WRITEABLE);
1610}
1611
1612/*
1613 *	moea64_ts_referenced:
1614 *
1615 *	Return a count of reference bits for a page, clearing those bits.
1616 *	It is not necessary for every reference bit to be cleared, but it
1617 *	is necessary that 0 only be returned when there are truly no
1618 *	reference bits set.
1619 *
1620 *	XXX: The exact number of bits to check and clear is a matter that
1621 *	should be tested and standardized at some point in the future for
1622 *	optimal aging of shared pages.
1623 */
1624int
1625moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1626{
1627
1628	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1629	    ("moea64_ts_referenced: page %p is not managed", m));
1630	return (moea64_clear_bit(mmu, m, LPTE_REF));
1631}
1632
1633/*
1634 * Modify the WIMG settings of all mappings for a page.
1635 */
1636void
1637moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1638{
1639	struct	pvo_entry *pvo;
1640	struct  pvo_head *pvo_head;
1641	uintptr_t pt;
1642	pmap_t	pmap;
1643	uint64_t lo;
1644
1645	if ((m->oflags & VPO_UNMANAGED) != 0) {
1646		m->md.mdpg_cache_attrs = ma;
1647		return;
1648	}
1649
1650	pvo_head = vm_page_to_pvoh(m);
1651	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1652	LOCK_TABLE_RD();
1653	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1654		pmap = pvo->pvo_pmap;
1655		PMAP_LOCK(pmap);
1656		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1657		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1658		pvo->pvo_pte.lpte.pte_lo |= lo;
1659		if (pt != -1) {
1660			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1661			    pvo->pvo_vpn);
1662			if (pvo->pvo_pmap == kernel_pmap)
1663				isync();
1664		}
1665		PMAP_UNLOCK(pmap);
1666	}
1667	UNLOCK_TABLE_RD();
1668	m->md.mdpg_cache_attrs = ma;
1669}
1670
1671/*
1672 * Map a wired page into kernel virtual address space.
1673 */
1674void
1675moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1676{
1677	uint64_t	pte_lo;
1678	int		error;
1679
1680	pte_lo = moea64_calc_wimg(pa, ma);
1681
1682	LOCK_TABLE_WR();
1683	PMAP_LOCK(kernel_pmap);
1684	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1685	    NULL, va, pa, pte_lo, PVO_WIRED, 0);
1686	PMAP_UNLOCK(kernel_pmap);
1687	UNLOCK_TABLE_WR();
1688
1689	if (error != 0 && error != ENOENT)
1690		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1691		    pa, error);
1692}
1693
1694void
1695moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1696{
1697
1698	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1699}
1700
1701/*
1702 * Extract the physical page address associated with the given kernel virtual
1703 * address.
1704 */
1705vm_paddr_t
1706moea64_kextract(mmu_t mmu, vm_offset_t va)
1707{
1708	struct		pvo_entry *pvo;
1709	vm_paddr_t pa;
1710
1711	/*
1712	 * Shortcut the direct-mapped case when applicable.  We never put
1713	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1714	 */
1715	if (va < VM_MIN_KERNEL_ADDRESS)
1716		return (va);
1717
1718	PMAP_LOCK(kernel_pmap);
1719	pvo = moea64_pvo_find_va(kernel_pmap, va);
1720	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1721	    va));
1722	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1723	PMAP_UNLOCK(kernel_pmap);
1724	return (pa);
1725}
1726
1727/*
1728 * Remove a wired page from kernel virtual address space.
1729 */
1730void
1731moea64_kremove(mmu_t mmu, vm_offset_t va)
1732{
1733	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1734}
1735
1736/*
1737 * Map a range of physical addresses into kernel virtual address space.
1738 *
1739 * The value passed in *virt is a suggested virtual address for the mapping.
1740 * Architectures which can support a direct-mapped physical to virtual region
1741 * can return the appropriate address within that region, leaving '*virt'
1742 * unchanged.  We cannot and therefore do not; *virt is updated with the
1743 * first usable address after the mapped region.
1744 */
1745vm_offset_t
1746moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1747    vm_paddr_t pa_end, int prot)
1748{
1749	vm_offset_t	sva, va;
1750
1751	sva = *virt;
1752	va = sva;
1753	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1754		moea64_kenter(mmu, va, pa_start);
1755	*virt = va;
1756
1757	return (sva);
1758}
1759
1760/*
1761 * Returns true if the pmap's pv is one of the first
1762 * 16 pvs linked to from this page.  This count may
1763 * be changed upwards or downwards in the future; it
1764 * is only necessary that true be returned for a small
1765 * subset of pmaps for proper page aging.
1766 */
1767boolean_t
1768moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1769{
1770        int loops;
1771	struct pvo_entry *pvo;
1772	boolean_t rv;
1773
1774	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1775	    ("moea64_page_exists_quick: page %p is not managed", m));
1776	loops = 0;
1777	rv = FALSE;
1778	LOCK_TABLE_RD();
1779	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1780		if (pvo->pvo_pmap == pmap) {
1781			rv = TRUE;
1782			break;
1783		}
1784		if (++loops >= 16)
1785			break;
1786	}
1787	UNLOCK_TABLE_RD();
1788	return (rv);
1789}
1790
1791/*
1792 * Return the number of managed mappings to the given physical page
1793 * that are wired.
1794 */
1795int
1796moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1797{
1798	struct pvo_entry *pvo;
1799	int count;
1800
1801	count = 0;
1802	if ((m->oflags & VPO_UNMANAGED) != 0)
1803		return (count);
1804	LOCK_TABLE_RD();
1805	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1806		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1807			count++;
1808	UNLOCK_TABLE_RD();
1809	return (count);
1810}
1811
1812static uintptr_t	moea64_vsidcontext;
1813
1814uintptr_t
1815moea64_get_unique_vsid(void) {
1816	u_int entropy;
1817	register_t hash;
1818	uint32_t mask;
1819	int i;
1820
1821	entropy = 0;
1822	__asm __volatile("mftb %0" : "=r"(entropy));
1823
1824	mtx_lock(&moea64_slb_mutex);
1825	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1826		u_int	n;
1827
1828		/*
1829		 * Create a new value by mutiplying by a prime and adding in
1830		 * entropy from the timebase register.  This is to make the
1831		 * VSID more random so that the PT hash function collides
1832		 * less often.  (Note that the prime casues gcc to do shifts
1833		 * instead of a multiply.)
1834		 */
1835		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1836		hash = moea64_vsidcontext & (NVSIDS - 1);
1837		if (hash == 0)		/* 0 is special, avoid it */
1838			continue;
1839		n = hash >> 5;
1840		mask = 1 << (hash & (VSID_NBPW - 1));
1841		hash = (moea64_vsidcontext & VSID_HASHMASK);
1842		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1843			/* anything free in this bucket? */
1844			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1845				entropy = (moea64_vsidcontext >> 20);
1846				continue;
1847			}
1848			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1849			mask = 1 << i;
1850			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1851			hash |= i;
1852		}
1853		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1854		    ("Allocating in-use VSID %#zx\n", hash));
1855		moea64_vsid_bitmap[n] |= mask;
1856		mtx_unlock(&moea64_slb_mutex);
1857		return (hash);
1858	}
1859
1860	mtx_unlock(&moea64_slb_mutex);
1861	panic("%s: out of segments",__func__);
1862}
1863
1864#ifdef __powerpc64__
1865void
1866moea64_pinit(mmu_t mmu, pmap_t pmap)
1867{
1868
1869	RB_INIT(&pmap->pmap_pvo);
1870
1871	pmap->pm_slb_tree_root = slb_alloc_tree();
1872	pmap->pm_slb = slb_alloc_user_cache();
1873	pmap->pm_slb_len = 0;
1874}
1875#else
1876void
1877moea64_pinit(mmu_t mmu, pmap_t pmap)
1878{
1879	int	i;
1880	uint32_t hash;
1881
1882	RB_INIT(&pmap->pmap_pvo);
1883
1884	if (pmap_bootstrapped)
1885		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1886		    (vm_offset_t)pmap);
1887	else
1888		pmap->pmap_phys = pmap;
1889
1890	/*
1891	 * Allocate some segment registers for this pmap.
1892	 */
1893	hash = moea64_get_unique_vsid();
1894
1895	for (i = 0; i < 16; i++)
1896		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1897
1898	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1899}
1900#endif
1901
1902/*
1903 * Initialize the pmap associated with process 0.
1904 */
1905void
1906moea64_pinit0(mmu_t mmu, pmap_t pm)
1907{
1908
1909	PMAP_LOCK_INIT(pm);
1910	moea64_pinit(mmu, pm);
1911	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1912}
1913
1914/*
1915 * Set the physical protection on the specified range of this map as requested.
1916 */
1917static void
1918moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1919{
1920	uintptr_t pt;
1921	struct	vm_page *pg;
1922	uint64_t oldlo;
1923
1924	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1925
1926	/*
1927	 * Grab the PTE pointer before we diddle with the cached PTE
1928	 * copy.
1929	 */
1930	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1931
1932	/*
1933	 * Change the protection of the page.
1934	 */
1935	oldlo = pvo->pvo_pte.lpte.pte_lo;
1936	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1937	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1938	if ((prot & VM_PROT_EXECUTE) == 0)
1939		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1940	if (prot & VM_PROT_WRITE)
1941		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1942	else
1943		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1944
1945	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1946
1947	/*
1948	 * If the PVO is in the page table, update that pte as well.
1949	 */
1950	if (pt != -1)
1951		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1952		    pvo->pvo_vpn);
1953	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1954	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1955		if ((pg->oflags & VPO_UNMANAGED) == 0)
1956			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1957		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1958		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1959	}
1960
1961	/*
1962	 * Update vm about the REF/CHG bits if the page is managed and we have
1963	 * removed write access.
1964	 */
1965	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1966	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1967		if (pg != NULL) {
1968			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1969				vm_page_dirty(pg);
1970			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1971				vm_page_aflag_set(pg, PGA_REFERENCED);
1972		}
1973	}
1974}
1975
1976void
1977moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1978    vm_prot_t prot)
1979{
1980	struct	pvo_entry *pvo, *tpvo, key;
1981
1982	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1983	    sva, eva, prot);
1984
1985	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1986	    ("moea64_protect: non current pmap"));
1987
1988	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1989		moea64_remove(mmu, pm, sva, eva);
1990		return;
1991	}
1992
1993	LOCK_TABLE_RD();
1994	PMAP_LOCK(pm);
1995	key.pvo_vaddr = sva;
1996	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1997	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1998		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1999		moea64_pvo_protect(mmu, pm, pvo, prot);
2000	}
2001	UNLOCK_TABLE_RD();
2002	PMAP_UNLOCK(pm);
2003}
2004
2005/*
2006 * Map a list of wired pages into kernel virtual address space.  This is
2007 * intended for temporary mappings which do not need page modification or
2008 * references recorded.  Existing mappings in the region are overwritten.
2009 */
2010void
2011moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2012{
2013	while (count-- > 0) {
2014		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2015		va += PAGE_SIZE;
2016		m++;
2017	}
2018}
2019
2020/*
2021 * Remove page mappings from kernel virtual address space.  Intended for
2022 * temporary mappings entered by moea64_qenter.
2023 */
2024void
2025moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2026{
2027	while (count-- > 0) {
2028		moea64_kremove(mmu, va);
2029		va += PAGE_SIZE;
2030	}
2031}
2032
2033void
2034moea64_release_vsid(uint64_t vsid)
2035{
2036	int idx, mask;
2037
2038	mtx_lock(&moea64_slb_mutex);
2039	idx = vsid & (NVSIDS-1);
2040	mask = 1 << (idx % VSID_NBPW);
2041	idx /= VSID_NBPW;
2042	KASSERT(moea64_vsid_bitmap[idx] & mask,
2043	    ("Freeing unallocated VSID %#jx", vsid));
2044	moea64_vsid_bitmap[idx] &= ~mask;
2045	mtx_unlock(&moea64_slb_mutex);
2046}
2047
2048
2049void
2050moea64_release(mmu_t mmu, pmap_t pmap)
2051{
2052
2053	/*
2054	 * Free segment registers' VSIDs
2055	 */
2056    #ifdef __powerpc64__
2057	slb_free_tree(pmap);
2058	slb_free_user_cache(pmap->pm_slb);
2059    #else
2060	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2061
2062	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2063    #endif
2064}
2065
2066/*
2067 * Remove all pages mapped by the specified pmap
2068 */
2069void
2070moea64_remove_pages(mmu_t mmu, pmap_t pm)
2071{
2072	struct	pvo_entry *pvo, *tpvo;
2073
2074	LOCK_TABLE_WR();
2075	PMAP_LOCK(pm);
2076	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2077		if (!(pvo->pvo_vaddr & PVO_WIRED))
2078			moea64_pvo_remove(mmu, pvo);
2079	}
2080	UNLOCK_TABLE_WR();
2081	PMAP_UNLOCK(pm);
2082}
2083
2084/*
2085 * Remove the given range of addresses from the specified map.
2086 */
2087void
2088moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2089{
2090	struct	pvo_entry *pvo, *tpvo, key;
2091
2092	/*
2093	 * Perform an unsynchronized read.  This is, however, safe.
2094	 */
2095	if (pm->pm_stats.resident_count == 0)
2096		return;
2097
2098	LOCK_TABLE_WR();
2099	PMAP_LOCK(pm);
2100	key.pvo_vaddr = sva;
2101	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2102	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2103		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2104		moea64_pvo_remove(mmu, pvo);
2105	}
2106	UNLOCK_TABLE_WR();
2107	PMAP_UNLOCK(pm);
2108}
2109
2110/*
2111 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2112 * will reflect changes in pte's back to the vm_page.
2113 */
2114void
2115moea64_remove_all(mmu_t mmu, vm_page_t m)
2116{
2117	struct	pvo_entry *pvo, *next_pvo;
2118	pmap_t	pmap;
2119
2120	LOCK_TABLE_WR();
2121	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2122		pmap = pvo->pvo_pmap;
2123		PMAP_LOCK(pmap);
2124		moea64_pvo_remove(mmu, pvo);
2125		PMAP_UNLOCK(pmap);
2126	}
2127	UNLOCK_TABLE_WR();
2128	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2129		vm_page_dirty(m);
2130	vm_page_aflag_clear(m, PGA_WRITEABLE);
2131	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2132}
2133
2134/*
2135 * Allocate a physical page of memory directly from the phys_avail map.
2136 * Can only be called from moea64_bootstrap before avail start and end are
2137 * calculated.
2138 */
2139vm_offset_t
2140moea64_bootstrap_alloc(vm_size_t size, u_int align)
2141{
2142	vm_offset_t	s, e;
2143	int		i, j;
2144
2145	size = round_page(size);
2146	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2147		if (align != 0)
2148			s = (phys_avail[i] + align - 1) & ~(align - 1);
2149		else
2150			s = phys_avail[i];
2151		e = s + size;
2152
2153		if (s < phys_avail[i] || e > phys_avail[i + 1])
2154			continue;
2155
2156		if (s + size > platform_real_maxaddr())
2157			continue;
2158
2159		if (s == phys_avail[i]) {
2160			phys_avail[i] += size;
2161		} else if (e == phys_avail[i + 1]) {
2162			phys_avail[i + 1] -= size;
2163		} else {
2164			for (j = phys_avail_count * 2; j > i; j -= 2) {
2165				phys_avail[j] = phys_avail[j - 2];
2166				phys_avail[j + 1] = phys_avail[j - 1];
2167			}
2168
2169			phys_avail[i + 3] = phys_avail[i + 1];
2170			phys_avail[i + 1] = s;
2171			phys_avail[i + 2] = e;
2172			phys_avail_count++;
2173		}
2174
2175		return (s);
2176	}
2177	panic("moea64_bootstrap_alloc: could not allocate memory");
2178}
2179
2180static int
2181moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2182    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2183    uint64_t pte_lo, int flags, int8_t psind __unused)
2184{
2185	struct	 pvo_entry *pvo;
2186	uintptr_t pt;
2187	uint64_t vsid;
2188	int	 first;
2189	u_int	 ptegidx;
2190	int	 i;
2191	int      bootstrap;
2192
2193	/*
2194	 * One nasty thing that can happen here is that the UMA calls to
2195	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2196	 * which calls UMA...
2197	 *
2198	 * We break the loop by detecting recursion and allocating out of
2199	 * the bootstrap pool.
2200	 */
2201
2202	first = 0;
2203	bootstrap = (flags & PVO_BOOTSTRAP);
2204
2205	if (!moea64_initialized)
2206		bootstrap = 1;
2207
2208	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2209	rw_assert(&moea64_table_lock, RA_WLOCKED);
2210
2211	/*
2212	 * Compute the PTE Group index.
2213	 */
2214	va &= ~ADDR_POFF;
2215	vsid = va_to_vsid(pm, va);
2216	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2217
2218	/*
2219	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2220	 * there is a mapping.
2221	 */
2222	moea64_pvo_enter_calls++;
2223
2224	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2225		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2226			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2227			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2228			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2229				/*
2230				 * The physical page and protection are not
2231				 * changing.  Instead, this may be a request
2232				 * to change the mapping's wired attribute.
2233				 */
2234				pt = -1;
2235				if ((flags & PVO_WIRED) != 0 &&
2236				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2237					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2238					pvo->pvo_vaddr |= PVO_WIRED;
2239					pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2240					pm->pm_stats.wired_count++;
2241				} else if ((flags & PVO_WIRED) == 0 &&
2242				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2243					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2244					pvo->pvo_vaddr &= ~PVO_WIRED;
2245					pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
2246					pm->pm_stats.wired_count--;
2247				}
2248			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2249					KASSERT(pt == -1,
2250					    ("moea64_pvo_enter: valid pt"));
2251					/* Re-insert if spilled */
2252					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2253					    &pvo->pvo_pte.lpte);
2254					if (i >= 0)
2255						PVO_PTEGIDX_SET(pvo, i);
2256					moea64_pte_overflow--;
2257				} else if (pt != -1) {
2258					/*
2259					 * The PTE's wired attribute is not a
2260					 * hardware feature, so there is no
2261					 * need to invalidate any TLB entries.
2262					 */
2263					MOEA64_PTE_CHANGE(mmu, pt,
2264					    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2265				}
2266				return (0);
2267			}
2268			moea64_pvo_remove(mmu, pvo);
2269			break;
2270		}
2271	}
2272
2273	/*
2274	 * If we aren't overwriting a mapping, try to allocate.
2275	 */
2276	if (bootstrap) {
2277		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2278			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2279			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2280			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2281		}
2282		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2283		moea64_bpvo_pool_index++;
2284		bootstrap = 1;
2285	} else {
2286		pvo = uma_zalloc(zone, M_NOWAIT);
2287	}
2288
2289	if (pvo == NULL)
2290		return (ENOMEM);
2291
2292	moea64_pvo_entries++;
2293	pvo->pvo_vaddr = va;
2294	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2295	    | (vsid << 16);
2296	pvo->pvo_pmap = pm;
2297	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2298	pvo->pvo_vaddr &= ~ADDR_POFF;
2299
2300	if (flags & PVO_WIRED)
2301		pvo->pvo_vaddr |= PVO_WIRED;
2302	if (pvo_head != NULL)
2303		pvo->pvo_vaddr |= PVO_MANAGED;
2304	if (bootstrap)
2305		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2306	if (flags & PVO_LARGE)
2307		pvo->pvo_vaddr |= PVO_LARGE;
2308
2309	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2310	    (uint64_t)(pa) | pte_lo, flags);
2311
2312	/*
2313	 * Add to pmap list
2314	 */
2315	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2316
2317	/*
2318	 * Remember if the list was empty and therefore will be the first
2319	 * item.
2320	 */
2321	if (pvo_head != NULL) {
2322		if (LIST_FIRST(pvo_head) == NULL)
2323			first = 1;
2324		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2325	}
2326
2327	if (pvo->pvo_vaddr & PVO_WIRED) {
2328		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2329		pm->pm_stats.wired_count++;
2330	}
2331	pm->pm_stats.resident_count++;
2332
2333	/*
2334	 * We hope this succeeds but it isn't required.
2335	 */
2336	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2337	if (i >= 0) {
2338		PVO_PTEGIDX_SET(pvo, i);
2339	} else {
2340		panic("moea64_pvo_enter: overflow");
2341		moea64_pte_overflow++;
2342	}
2343
2344	if (pm == kernel_pmap)
2345		isync();
2346
2347#ifdef __powerpc64__
2348	/*
2349	 * Make sure all our bootstrap mappings are in the SLB as soon
2350	 * as virtual memory is switched on.
2351	 */
2352	if (!pmap_bootstrapped)
2353		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2354#endif
2355
2356	return (first ? ENOENT : 0);
2357}
2358
2359static void
2360moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2361{
2362	struct	vm_page *pg;
2363	uintptr_t pt;
2364
2365	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2366	rw_assert(&moea64_table_lock, RA_WLOCKED);
2367
2368	/*
2369	 * If there is an active pte entry, we need to deactivate it (and
2370	 * save the ref & cfg bits).
2371	 */
2372	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2373	if (pt != -1) {
2374		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2375		PVO_PTEGIDX_CLR(pvo);
2376	} else {
2377		moea64_pte_overflow--;
2378	}
2379
2380	/*
2381	 * Update our statistics.
2382	 */
2383	pvo->pvo_pmap->pm_stats.resident_count--;
2384	if (pvo->pvo_vaddr & PVO_WIRED)
2385		pvo->pvo_pmap->pm_stats.wired_count--;
2386
2387	/*
2388	 * Remove this PVO from the pmap list.
2389	 */
2390	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2391
2392	/*
2393	 * Remove this from the overflow list and return it to the pool
2394	 * if we aren't going to reuse it.
2395	 */
2396	LIST_REMOVE(pvo, pvo_olink);
2397
2398	/*
2399	 * Update vm about the REF/CHG bits if the page is managed.
2400	 */
2401	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2402
2403	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2404		LIST_REMOVE(pvo, pvo_vlink);
2405		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2406			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2407				vm_page_dirty(pg);
2408			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2409				vm_page_aflag_set(pg, PGA_REFERENCED);
2410			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2411				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2412		}
2413		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2414			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2415	}
2416
2417	moea64_pvo_entries--;
2418	moea64_pvo_remove_calls++;
2419
2420	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2421		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2422		    moea64_upvo_zone, pvo);
2423}
2424
2425static struct pvo_entry *
2426moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2427{
2428	struct pvo_entry key;
2429
2430	key.pvo_vaddr = va & ~ADDR_POFF;
2431	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2432}
2433
2434static boolean_t
2435moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2436{
2437	struct	pvo_entry *pvo;
2438	uintptr_t pt;
2439
2440	LOCK_TABLE_RD();
2441	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2442		/*
2443		 * See if we saved the bit off.  If so, return success.
2444		 */
2445		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2446			UNLOCK_TABLE_RD();
2447			return (TRUE);
2448		}
2449	}
2450
2451	/*
2452	 * No luck, now go through the hard part of looking at the PTEs
2453	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2454	 * the PTEs.
2455	 */
2456	powerpc_sync();
2457	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2458
2459		/*
2460		 * See if this pvo has a valid PTE.  if so, fetch the
2461		 * REF/CHG bits from the valid PTE.  If the appropriate
2462		 * ptebit is set, return success.
2463		 */
2464		PMAP_LOCK(pvo->pvo_pmap);
2465		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2466		if (pt != -1) {
2467			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2468			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2469				PMAP_UNLOCK(pvo->pvo_pmap);
2470				UNLOCK_TABLE_RD();
2471				return (TRUE);
2472			}
2473		}
2474		PMAP_UNLOCK(pvo->pvo_pmap);
2475	}
2476
2477	UNLOCK_TABLE_RD();
2478	return (FALSE);
2479}
2480
2481static u_int
2482moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2483{
2484	u_int	count;
2485	struct	pvo_entry *pvo;
2486	uintptr_t pt;
2487
2488	/*
2489	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2490	 * we can reset the right ones).  note that since the pvo entries and
2491	 * list heads are accessed via BAT0 and are never placed in the page
2492	 * table, we don't have to worry about further accesses setting the
2493	 * REF/CHG bits.
2494	 */
2495	powerpc_sync();
2496
2497	/*
2498	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2499	 * valid pte clear the ptebit from the valid pte.
2500	 */
2501	count = 0;
2502	LOCK_TABLE_RD();
2503	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2504		PMAP_LOCK(pvo->pvo_pmap);
2505		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2506		if (pt != -1) {
2507			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2508			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2509				count++;
2510				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2511				    pvo->pvo_vpn, ptebit);
2512			}
2513		}
2514		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2515		PMAP_UNLOCK(pvo->pvo_pmap);
2516	}
2517
2518	UNLOCK_TABLE_RD();
2519	return (count);
2520}
2521
2522boolean_t
2523moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2524{
2525	struct pvo_entry *pvo, key;
2526	vm_offset_t ppa;
2527	int error = 0;
2528
2529	PMAP_LOCK(kernel_pmap);
2530	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2531	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2532	    ppa < pa + size; ppa += PAGE_SIZE,
2533	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2534		if (pvo == NULL ||
2535		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2536			error = EFAULT;
2537			break;
2538		}
2539	}
2540	PMAP_UNLOCK(kernel_pmap);
2541
2542	return (error);
2543}
2544
2545/*
2546 * Map a set of physical memory pages into the kernel virtual
2547 * address space. Return a pointer to where it is mapped. This
2548 * routine is intended to be used for mapping device memory,
2549 * NOT real memory.
2550 */
2551void *
2552moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2553{
2554	vm_offset_t va, tmpva, ppa, offset;
2555
2556	ppa = trunc_page(pa);
2557	offset = pa & PAGE_MASK;
2558	size = roundup2(offset + size, PAGE_SIZE);
2559
2560	va = kva_alloc(size);
2561
2562	if (!va)
2563		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2564
2565	for (tmpva = va; size > 0;) {
2566		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2567		size -= PAGE_SIZE;
2568		tmpva += PAGE_SIZE;
2569		ppa += PAGE_SIZE;
2570	}
2571
2572	return ((void *)(va + offset));
2573}
2574
2575void *
2576moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2577{
2578
2579	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2580}
2581
2582void
2583moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2584{
2585	vm_offset_t base, offset;
2586
2587	base = trunc_page(va);
2588	offset = va & PAGE_MASK;
2589	size = roundup2(offset + size, PAGE_SIZE);
2590
2591	kva_free(base, size);
2592}
2593
2594void
2595moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2596{
2597	struct pvo_entry *pvo;
2598	vm_offset_t lim;
2599	vm_paddr_t pa;
2600	vm_size_t len;
2601
2602	PMAP_LOCK(pm);
2603	while (sz > 0) {
2604		lim = round_page(va);
2605		len = MIN(lim - va, sz);
2606		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2607		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2608			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2609			    (va & ADDR_POFF);
2610			moea64_syncicache(mmu, pm, va, pa, len);
2611		}
2612		va += len;
2613		sz -= len;
2614	}
2615	PMAP_UNLOCK(pm);
2616}
2617
2618vm_offset_t
2619moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2620    vm_size_t *sz)
2621{
2622	if (md->md_vaddr == ~0UL)
2623	    return (md->md_paddr + ofs);
2624	else
2625	    return (md->md_vaddr + ofs);
2626}
2627
2628struct pmap_md *
2629moea64_scan_md(mmu_t mmu, struct pmap_md *prev)
2630{
2631	static struct pmap_md md;
2632	struct pvo_entry *pvo;
2633	vm_offset_t va;
2634
2635	if (dumpsys_minidump) {
2636		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2637		if (prev == NULL) {
2638			/* 1st: kernel .data and .bss. */
2639			md.md_index = 1;
2640			md.md_vaddr = trunc_page((uintptr_t)_etext);
2641			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2642			return (&md);
2643		}
2644		switch (prev->md_index) {
2645		case 1:
2646			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2647			md.md_index = 2;
2648			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2649			md.md_size = round_page(msgbufp->msg_size);
2650			break;
2651		case 2:
2652			/* 3rd: kernel VM. */
2653			va = prev->md_vaddr + prev->md_size;
2654			/* Find start of next chunk (from va). */
2655			while (va < virtual_end) {
2656				/* Don't dump the buffer cache. */
2657				if (va >= kmi.buffer_sva &&
2658				    va < kmi.buffer_eva) {
2659					va = kmi.buffer_eva;
2660					continue;
2661				}
2662				pvo = moea64_pvo_find_va(kernel_pmap,
2663				    va & ~ADDR_POFF);
2664				if (pvo != NULL &&
2665				    (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2666					break;
2667				va += PAGE_SIZE;
2668			}
2669			if (va < virtual_end) {
2670				md.md_vaddr = va;
2671				va += PAGE_SIZE;
2672				/* Find last page in chunk. */
2673				while (va < virtual_end) {
2674					/* Don't run into the buffer cache. */
2675					if (va == kmi.buffer_sva)
2676						break;
2677					pvo = moea64_pvo_find_va(kernel_pmap,
2678					    va & ~ADDR_POFF);
2679					if (pvo == NULL ||
2680					    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2681						break;
2682					va += PAGE_SIZE;
2683				}
2684				md.md_size = va - md.md_vaddr;
2685				break;
2686			}
2687			md.md_index = 3;
2688			/* FALLTHROUGH */
2689		default:
2690			return (NULL);
2691		}
2692	} else { /* minidumps */
2693		if (prev == NULL) {
2694			/* first physical chunk. */
2695			md.md_paddr = pregions[0].mr_start;
2696			md.md_size = pregions[0].mr_size;
2697			md.md_vaddr = ~0UL;
2698			md.md_index = 1;
2699		} else if (md.md_index < pregions_sz) {
2700			md.md_paddr = pregions[md.md_index].mr_start;
2701			md.md_size = pregions[md.md_index].mr_size;
2702			md.md_vaddr = ~0UL;
2703			md.md_index++;
2704		} else {
2705			/* There's no next physical chunk. */
2706			return (NULL);
2707		}
2708	}
2709
2710	return (&md);
2711}
2712